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A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough
surface (24-grit sandpaper) with k+≈ 11 and a momentum-thickness Reynolds number
of approximately 2400 is studied using direct numerical simulation (DNS). Heat
transfer between the isothermal rough surface and the turbulent flow with molecular
Prandtl number Pr=0.71 is simulated. The dynamic multiscale approach developed by
Araya et al. (J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe
realistic time-dependent thermal inflow boundary conditions. In general, the rough
surface reduces mean and fluctuating temperature profiles with respect to the smooth
surface flow when normalized by Wang & Castillo (J. Turbul., vol. 4, 2003, 006)
inner/outer scaling. It is shown that the Reynolds analogy does not hold for y+ < 9.
In this region the value of the turbulent Prandtl number departs substantially from
unity. Above this region the Reynolds analogy is only approximately valid, with the
turbulent Prandtl number decreasing from 1 to 0.7 across the boundary layer for rough
and smooth walls. In comparison with the smooth-wall case, the turbulent transport
of heat per unit mass, v′v′θ ′, towards the wall is enhanced in the buffer layer, but
the transport of v′v′θ ′ away from the wall is reduced in the outer layer for the rough
case; similar behaviour is found for the vertical transport of turbulent momentum
per unit mass, v′u′v′. Above the roughness sublayer (3k–5k) it is found that most
of the temperature field statistics, including higher-order moments and conditional
averages, are highly similar for the smooth and rough surface flow, showing that the
Townsend’s Reynolds number similarity hypothesis applies for the thermal field as
well as the velocity field for the Reynolds number and k+ considered in this study.
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Rough surface thermal turbulent boundary layer 85

1. Introduction

Understanding the physics of spatially developing thermal turbulent boundary layers
over smooth and rough surfaces is an essential step in the design and optimization
of heat control tools for industrial applications, and also in turbulence modelling
development for Reynolds averaged Navier–Stokes (RANS) and large eddy simulations
(LES). Many studies have been performed on the subject of heat transfer in turbulent
boundary layers over smooth surfaces, but as of today, direct numerical simulation
(DNS) of realistic surface roughness and heat transfer in a spatially developing
turbulent boundary layer has not been reported. Problems such as flow over pitted
gas turbine blades, fouled heat exchangers or the atmospheric flows over urban
areas are related to thermal fields over rough surfaces. Experimental and numerical
studies have been conducted for several decades to investigate thermal field statistics
and fundamental mechanisms of momentum and heat transport in smooth-wall and
rough-wall thermal turbulent boundary layers (Pimenta, Moffat & Kays 1975; Miyake,
Tsujimoto & Nakaji 2001; Belnap, van Rij & Ligrani 2002). However, resolving the
viscous region, even on smooth surfaces, has been a challenge for computations and
experiments. We use the statistics from our DNS database to test two long-standing
concepts in wall-bounded turbulent flows: the Reynolds analogy and the Townsend’s
Reynolds number similarity hypothesis.

The Reynolds analogy asserts that transports of momentum and heat are similar,
with the consequence that the turbulent Prandtl number, Prt, is constant and close
to one. Prt is defined as the ratio of the eddy viscosity, νt = −u′v′/(dU/dy), to
the eddy diffusivity, κt = v′θ ′/(dΘ/dy). Here, u′ and v′ are the streamwise and
wall-normal components of velocity fluctuations, θ ′ is the temperature fluctuation,
U is the mean streamwise velocity, Θ is the mean temperature, and the overbar
represents time averaging. This is a useful reference concept, and its value provides a
useful relationship for calculating the turbulent heat transfer by knowing the velocity
field in smooth and rough walls.

Although there have been many experimental studies in determining Prt, as reported
by Kays (1994), the accurate and simultaneous measurements of the four quantities
(turbulent shear stress, turbulent heat flux, gradient of temperature and gradient
of velocity) needed to calculate Prt at a single point are extremely difficult to
obtain. This difficulty has led to large scatter in experimental results. In a review
paper, Kays (1994) presented available experimental data for the turbulent boundary
layer in proximity of a smooth wall which showed that Prt ranged from 0.8 to
1, agreeing fairly well with the Reynolds analogy. However, this approach is not
always valid, especially for complex flows. Pimenta et al. (1975) experimentally
studied a zero-pressure-gradient turbulent boundary layer with 20< Rek < 150, where
Rek = k+ = uτk/ν, k is the roughness height, ν is the kinematic molecular viscosity,
and uτ (=√τw/ρ, where τw is the wall shear stress and ρ is the fluid density) is the
friction velocity. They found that a transitionally rough surface flow retained some
characteristics of smooth-wall flow. For instance, Prt was constant with a value close
to unity for the rough case for the closest distance from the wall at y+≈ 250 (where
y+ was the distance from the wall normalized in inner units), as was speculated
earlier by Owen & Thomson (1963).

Belnap et al. (2002) conducted experiments of a transitionally rough channel flow
at 10 000 < ReDh < 25 000, where ReDh = VDh/ν, V is the mean streamwise velocity
of pipe flow, and Dh is the hydraulic diameter of pipe. They indicated that surface
roughness only modified the ratio St/(Cf /2) slightly, which was another representation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.676


86 A. Doosttalab and others

of the Reynolds analogy, where St is the Stanton number and Cf is the skin friction
coefficient.

Miyake et al. (2001) performed a numerical study in a fully developed turbulent
channel flow with sand-grain roughness modelled as straight cones on one side of
channel and Reτ = 150, where Reτ = huτ/ν, with h the half-height of the channel.
They reported that Prt remained unchanged and close to unity in the rough case, but
the question regarding the validity of Reynolds analogy in higher Reynolds numbers
over a rough surface in spatially developing flows has remained unanswered.

Townsend (1976) proposed the Reynolds number similarity hypothesis, which
states that at sufficiently high Reynolds numbers and outside the roughness sublayer,
the characteristics of turbulent flow are independent of the Reynolds number and
surface roughness. Raupach, Antonia & Rajagopalan (1991) also concluded that at
high Reynolds numbers, above the roughness sublayer, turbulence structures were
similar. Experiments by Flack, Schultz & Shapiro (2005) supported the Townsend’s
Reynolds number similarity hypothesis for turbulent boundary layer flow over a
uniform, three-dimensional, fully rough wall at Reθ = 14 000, where Reθ = θU∞/ν
is the Reynolds number based on momentum thickness, and θ is the momentum
thickness. They found that the rough-wall modifications to the flow were confined
to the roughness sublayer, provided that the roughness elements were sufficiently
small compared to the boundary thickness. Jiménez (2004) proposed a criterion for
satisfying the latter condition which requires that k/δ < 0.02. However, the validity
of Townsend’s hypothesis is still in question for the thermal and velocity field at
moderate Reynolds numbers.

DNS of the velocity field over a spatially developing ZPG-boundary layer (zero
pressure gradient) subjected to transitional, 24-grit sandpaper surface roughness was
carried out by Cardillo et al. (2013). The Reynolds stresses were decreased by
roughness when scaled by inner units, but were increased by roughness when scaled
by outer units; thus showing a scaling dependency. Two-point correlations distinctly
showed an effect due to roughness at y+ = 5; however, velocity fluctuations were
slightly less correlated in the outer region for the rough case. The POD analysis
demonstrated that low-order modes of the streamwise velocity fluctuations possessed
characteristic wavelengths of the order of 3δ for the smooth case, while the same
modes for the rough case exhibited characteristic wavelengths of the order of δ,
where δ was the boundary layer thickness.

The performed literature review has revealed that publications on the effects
of roughness on turbulent thermal boundary layers are rather scarce. With many
unanswered questions about rough surface thermal turbulent boundary layers, it is
obvious that more accurate and extensive methods, such as DNS, are needed to
shed some light on the thermal turbulent boundary layer over rough surfaces and
to develop turbulence models for lower-level numerical approaches, such as RANS
and LES. Therefore, the present study’s objective is to gain better knowledge of
the thermal field behaviour in spatially developing turbulent boundary layers under
the effect of small surface roughness at moderate Reynolds numbers by adding a
passive scalar into the DNS performed in Cardillo et al. (2013). The most important
questions we seek to answer are how structural modifications caused by roughness in
the velocity field are translated to the thermal field, particularly in the heat-flux terms.
Further, we seek to understand the interaction of heat fluxes between the inner and
outer layers of the boundary layer. These investigations allow us to further evaluate
the validity of the Reynolds analogy in the vicinity of the rough wall by accurately
computing the turbulent Prandtl number and to examine the validity of Townsend’s
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FIGURE 1. Schematic of the rough thermal boundary layer with different regions and
planes: inlet, test and recycle stations.

Reynolds number similarity hypothesis for the velocity and thermal field in flow
over transitionally rough surfaces. The paper is organized as follows: § 2 deals with
basis of the dynamic multiscale approach employed in the simulations, § 3 describes
the roughness modelling and flow solver description, § 4 discusses the velocity and
thermal field results and § 5 presents the concluding remarks.

2. The dynamic multiscale approach (DMA) for spatially evolving thermal flows
In order to prescribe realistic thermal turbulent inlet flow conditions we have

adapted the dynamic multiscale approach (DMA) developed by Araya et al. (2011)
to thermal rough walls in the present study. The DMA is based on the rescaling–
recycling methodology of Lund, Wu & Squires (1998), which prescribes time-
dependent turbulence information at the inlet plane by using a flow scaled from the
downstream solution at the recycle plane, as shown in figure 1. The major differences
between the DMA and the original rescaling–recycling method (henceforth ORRM)
by Lund et al. (1998) are threefold: (i) the precursor auxiliary domain is removed
(single domain); (ii) different scaling functions in the inner and outer regions of the
boundary layer (i.e. multiscale) are imposed; and (iii) the friction velocity uτ and
flow parameters at the inlet of the computational domain are deduced dynamically by
using a ‘test plane’ located between the inlet and recycle planes (Araya et al. 2011),
as shown in figure 1. The previously mentioned improvements have made the DMA
a more versatile, robust and computational-resource-saving method, without the need
for empirical correlations in the rescaling process, especially at the inlet plane that
generates a short developing section. The DMA has also been applied to thermal
boundary layers over smooth surfaces with and without streamwise pressure gradients
(Araya & Castillo 2012, 2013). In this method, the instantaneous temperature, Θ , is
represented as a mean value, Θ plus a fluctuating component, θ ′, given as

Θ(x, y, z, t)=Θ(x, y)+ θ ′(x, y, z, t). (2.1)

In the inner region, the mean temperature follows a thermal law of the wall, as
expressed by

Θw −Θ inner = Tsi(x)gsi(y+T , Pr), (2.2)

where Θw stands for wall temperature, the superscript inner stands for inner layer, Tsi
is the temperature scale for the inner region, and gsi is the inner similarity function,
which depends on the inner thermal length scale, y+T = (yU∞/ν)

√
St, and the molecular
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TABLE 1. Thermal scaling functions.

Prandtl number (Pr), where St= qw/(ρCpU∞(Θw−Θ∞)), qw is the wall heat flux and
Cp is the specific heat. In the outer region, a defect law is used as follows,

Θ
outer −Θ∞ = Tso(x)gso(yT, Pr), (2.3)

where the superscript outer indicates outer layer, Θ∞ is the free-stream temperature, Tso
is the temperature scale for the outer region, and gso is the outer similarity function.
The wall-normal similarity coordinate in the outer region is expressed as yT = y/δT ,
where δT is the thermal boundary layer thickness where the temperature is 99 % of the
free-stream temperature. A similar procedure is carried out for thermal fluctuations,

θ ′inner = T ′si(x)g
′
si(y
+
T , z, t), (2.4)

θ ′outer = T ′so(x)g
′
so(yT, z, t). (2.5)

The thermal scaling functions (i.e. Tsi(x), Tso(x), T ′si(x) and T ′so(x)) employed in the
present study were developed by performing an equilibrium similarity analysis of the
governing equations of the inner and outer flow (Wang & Castillo 2003) shown in
table 1, where δ∗T is computed as

∫∞
0 [1−Θ/Θ∞] dy, and Cf = τw/(ρU2

∞/2) is the skin
friction. By relating (2.2)–(2.5) in the inlet plane and the recycle plane, respectively,
the mean and fluctuating components of the temperature can be obtained at the inlet
from the flow solution at the recycle station. Finally, a composite thermal profile can
be written for the entire boundary layer at the inlet plane at every time step, by
defining a weighted average of the inner and outer profiles, as follows,

Θinl = [Θ inner
inl + θ ′inner

inl ][1−W(yT,inl)] + [Θouter
inl + θ ′outer

inl ]W(yT,inl), (2.6)

where W(yT,inl) is a weighting function going smoothly from zero near the wall to 1
in the outer region. For W(yT,inl), the tanh profile of Lund et al. (1998), Kong, Choi
& Lee (2000) was used, given as

W(ηT)= 0.5
[

1+ tanh
[

α(ηT − b)
(1− 2b)ηT + b

]/
tanh(α)

]
, (2.7)

where ηT = yT,inl, α = 4 and b= 0.2.
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Rough surface thermal turbulent boundary layer 89

The rescaling method requires computation of thermal scaling functions at the inlet
and recycle stations (the similarity functions g are universal, hence, they cancel each
other). Furthermore, all variables involved in the thermal scaling functions can be
computed from the mean flow solution, except the Stanton number at the inlet plane.
This is because, at the inlet, the thermal boundary layer thickness is prescribed;
therefore, prescribing the inlet St as well would be redundant. In order to connect
the corresponding Stanton number at the inlet to the computed value from the flow
solution at the recycle plane, a dynamic method for computation of Stinl based on
the downstream solution is also employed in the present study. Since the calculation
of St number based on the wall thermal gradient will be very difficult in boundary
layers with surface roughness, we have utilized the energy integral equation, given as

St= d∆2

dx
, (2.8)

where ∆2 is the enthalpy thickness and x is the streamwise coordinate. In order to
compute (2.8), we have assumed a power-law variation for the enthalpy thickness as
a function of the streamwise Reynolds number, Rex, in the form ∆2/x∼ Reγ∆x , where
Rex = U∞x/ν. The streamwise coordinate is defined as x = x′ + xinl, where x = 0
indicates the virtual origin of the boundary layer, x′ = 0 means the computational
box origin and xinl is the distance between the virtual origin and the inlet plane. This
methodology of calculating the ratio of Stanton numbers (i.e. Stinl/Strec) has been
found to be more accurate and stable (particularly, during the transient stage) than
computing (2.8) via finite difference. Furthermore, a similar procedure to compute
dynamically the ratio of friction velocities (i.e. uτ inl/uτ rec) for rough walls based on
the momentum integral equation has been successfully implemented in Cardillo et al.
(2013). The unknown power γ∆ can be obtained by relating the downstream flow
solutions, as follows:

γ∆ = ln [(∆2/x)test/(∆2/x)rec]
ln [(Rex)test/(Rex)rec] , (2.9)

where subscripts test and rec stand for test and recycle planes, respectively. The enthalpy
thicknesses are computed at each streamwise station by means of the trapezoidal rule.
And the Stanton number ratio between inlet and recycle stations is calculated as
Stinl/Strec = (Rex inl/Rex rec)

γ∆ . Figure 2 shows the temporal trend of the γ∆ parameter.
It can be seen that after an initial transient, γ∆ tends approximately to a value of
−0.23, which is consistent with the empirical value proposed by Kong et al. (2000)
(i.e. γ∆ =−0.2) for smooth boundary layers at moderate Re numbers and isothermal
wall conditions. Simulations were run for approximately 45 000u2

τ/ν dimensionless
time and statistics were computed in the last 1200 time steps, which represents a
dimensionless time of approximately 6000u2

τ/ν in wall units.

3. Surface roughness modelling, flow solver and boundary conditions
To include surface roughness in the computational domain, a modification to the

original dynamic multiscale approach was incorporated, as explained in Cardillo
et al. (2013). Direct simulations of the Navier–Stokes and heat transfer equations
are performed by using the PHASTA code (parallel hierarchic adaptive stabilized
transient analysis), which is based on the finite element method with a streamline
upwind Petrov–Galerkin (SUPG) stabilization (Jansen 1999; Whiting & Jansen 2001).
The PHASTA code was also employed in the study by Cardillo et al. (2013) and
the velocity field results were validated by the experimental data of Brzek et al.
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FIGURE 2. Time series of the dynamically computed power-law exponent, γ∆, for the
smooth case.

(2008). Furthermore, the fully coupled momentum and continuity equations are
solved with multiple nonlinear iterations (two nonlinear iterations are performed on
each step). An additional discrete pressure Poisson equation is solved between each
iteration, to maintain a tight tolerance on the continuity equation (Whiting & Jansen
2001; Sun 2008). Linear elements were used which yielded global second-order
accuracy in space. Moreover, satisfactory results have been achieved with this set-up
(Araya, Jansen & Castillo 2009; Araya et al. 2011; Cardillo et al. 2013). In order to
characterize the surface roughness, a new subroutine has been added to the PHASTA
code. The subroutine employs a ‘displaced-boundary’ method. It works by taking the
no-slip condition, which is originally assigned to the bottom wall of the computational
domain, and displacing it to the height of the roughness element at the corresponding
node. The roughness distribution has been prescribed based on the topographical data
by Brzek et al. (2008), which consists of laser measurements of the surface of 24-grit
sandpaper.

For the velocity field, the no-slip condition is imposed at the wall and displaced
to the height of the roughness element at the corresponding node for the rough case;
meanwhile at the free-stream location, the streamwise velocity is given by U∞ and
zero derivatives of the normal and spanwise velocities are prescribed. Temperature
is assumed to be a passive scalar with wall isothermal conditions, whereas a free-
stream temperature value is considered at the top surface. At the inlet station, the
time-dependent inflow conditions for the velocity and temperature fields are generated
based on the dynamic multiscale approach by Araya et al. (2011). Periodic boundary
conditions are prescribed in the spanwise direction for the instantaneous velocity and
temperature.

At the outflow, pressure is weakly prescribed. Outflow boundary conditions play
an important role in the numerical simulation of spatially developing turbulent
flows, particularly for the velocity–pressure field. The finite element formulation of
the PHASTA code together with initial and boundary condition discussion is well
documented in several papers, such as Whiting & Jansen (2001), Whiting, Jansen &
Dey (2003), particularly in journals whose scopes are more related to the description
of computational methods in science and engineering. For convenience, a summary
of the PHASTA formulation (mathematical expressions) is discussed below. We will
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start from the outflow pressure boundary condition. The strong form of the continuity
and momentum balance equations for incompressible flows, written in advective and
index forms (Whiting & Jansen 2001), are as follows:

ui,i = 0 (3.1)
u̇i + ujui,i = −p,i + τij,i, (3.2)

where ui is the ith component of velocity, p is the pressure divided by the density ρ
(assumed constant), and τij is the viscous stress tensor given by τij= ν(ui,j+uj,i) where
ν is the fluid kinematic viscosity and the summation convention is used throughout
(sum on repeated indices). To proceed with the finite element discretization of
the weak form of the Navier–Stokes equations (3.1) and (3.2), they are written in
continuous function space. The next step is to discretize the weight and solution
function spaces using polynomial functions. Recall that Ω ⊂ RN (with N = 3)
represents the closure of the physical spatial domain, Ω ∪ Γ , where Ω indicates
the fluid domain and Γ represents its boundary. To obtain the weak formulation, the
strategy is to multiply the continuity equation (3.1) by q and the momentum equation
(3.2) by wi, the weight functions for the pressure and velocity fields, respectively.
The diffusive term, pressure term and continuity equation are all integrated by parts
in the domain and by making use of the gradient theorem;∫

Ω

[−q,iui +wi(u̇i + ujui,j)−wi,j(pδij − τij)] dΩ +
∫
Γ

[quini +wi(pni − τijnj)] dΓ = 0,

(3.3)
where ni indicates the unitary normal vector to the surface boundaries. The boundary
integral term in Γ arises from the integration by parts and is only carried out over
the portion of the domain without essential velocity boundary conditions (Dirichlet).

To be more precise, over the inflow and no-slip surfaces, velocity boundary
conditions are applied, and this makes the corresponding weight functions (wi)
zero, but on the outflow boundary, these weights take on arbitrary values. Thus, this
boundary integral remains active. In this way, the finite element method allows for
a weak application of the outflow pressure instead of a strong (Dirichlet) application
of pressure. This has the effect of forcing the solution to match the integral of
pressure over the surface, which allows the continuity equation to still remain in
the system. Such a boundary condition allows for pressure perturbations to pass
through the boundary with minimal reflection, which results in better numerical
stability for the method. In incompressible flows, unless the buoyancy forces are
taken into consideration for natural convection, the momentum and energy equations
are uncoupled. In this case, temperature acts as a passive scalar and only continuity
and momentum equations must be solved simultaneously, which is the case of the
present study. The strong form of the energy equation reads

Θ̇ + uiΘ,i = αΘ,ii, (3.4)

where α is the fluid thermal diffusivity. The weak form is obtained by multiplying
equation (3.4) by the temperature weight function wt. After integration by parts in
the whole domain Ω ∪ Γ and by using the gradient theorem result;∫

Ω

[wt(Θ̇ + uiΘ,i)+wt,iαΘ,i] dΩ −
∫
Γ

[wtαΘ,ini] dΓ = 0. (3.5)

Again, ni indicates the unitary normal vector to the surface boundaries. Therefore,
at the outflow the normal thermal derivative, Θ,ini, is prescribed a zero value (no
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Parameters ZPG smooth ZPG rough

Reθ 1948–2305 2111–2480
k+ 0 11
Lx 10δinl 10δinl

Ly 3δinl 3δinl

Lz 1.57δinl 1.57δinl

Nx ×Ny ×Nz 400× 150× 125 400× 150× 125
1x+ 23 24.6
1y+min, 1y+max 0.5, 25 0.545, 26.74
1z+ 11 11.77
1t+ 0.44 0.50
Tsampleu2

τ/ν 2640 6500
δ+inl 980 1048
Nprocs 128 128

TABLE 2. Table showing proposed DNS cases and domain parameters for smooth and
rough ZPG simulations.

streamwise heat transfer by conduction at the outflow). As with the pressure boundary
condition described above, this boundary condition is applied in an integral or weak
sense and thus not applied pointwise, which results in better stability for the method.

In order to have good performance for turbulent simulations, structured meshes with
hexahedral elements were employed. In the wall-normal direction, non-uniform mesh
sizes are used with the mesh properties indicated in table 2. From this table, it is
observed that the smooth and rough cases are very similar in terms of the Reynolds
number range and inlet boundary layer thicknesses. The differences between the two
simulations are mainly the spatio-temporal resolution (i.e. 1x+, 1y+, 1z+ and 1t+),
the sample time and δ+inl. A grid independence test and computation of the Obukhoff–
Corrsin lengths and Kolmogorov time scales can be found in appendices A and B,
respectively. Furthermore, suitability of the streamwise domain length is addressed in
appendix C. Both cases were run on 128 processors (Nprocs).

4. Numerical results
4.1. Displacement height

In order to ensure that the rough and smooth surface statistics are comparable, a
displacement of the origin in the wall-normal direction for the profiles was employed.
This origin displacement appears in the profile diagrams as a reference height for
vertical coordinates, and data is shifted by the displacement height. Due to the lack
of any models for flow characteristics around roughness elements, this height cannot
be determined analytically. Consequently, based on the total average roughness height
(k+ = 11) the reference height was chosen, given by ε+ = 11, at a streamwise station
where the local momentum thickness Reynolds number is 2465. For the smooth case,
averaging is done in time and in the full spanwise direction. On the other hand, for the
rough case the mean flow is, in principle, only averaged in time (to locally compute
the fluctuation as instantaneous minus mean flow). Additionally, we have selected 16
spanwise locations with similar roughness heights around the total average value of k+
(i.e. k+local ≈ 11). Once the statistics were computed, the corresponding homogeneous
spanwise values have been averaged.
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FIGURE 3. Schematic of the boundary layer with roughness elements for high Reynolds
numbers.
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FIGURE 4. Mean temperature profile comparison for rough and smooth DNS cases with
experimental smooth ZPG data for validation.

In figure 3, a schematic streamwise profile of the roughness elements with a line
denoting the reference height, ε+, and the corresponding boundary layer regions can
be seen. Given the moderate Reynolds number of the simulations (i.e. as compared
to typical high Reynolds numbers of experiments), an inertial sublayer is not present,
only a mesolayer region exists. As shown in figure 3, the roughness elements in the
current study occupy most of the linear sublayer, significantly altering the viscous
sublayer, and extending it into the lower part of the buffer layer (y+ ≈ 11).

4.2. Thermal field
Figure 4 compares the mean temperature profiles of the current DNS database, with
smooth ZPG experimental results by Blackwell (1972), Hoffmann & Perry (1979),
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FIGURE 5. (a) Streamwise variation of Stanton number. (b) Streamwise variation of
St/(Cf /2).

Nagano, Tsuji & Houra (1998) in classical coordinates (i.e. y+ = uτy/ν;Θ+ =Θ/θτ ,
where θτ = qw/(ρCpuτ ) is the friction temperature). Excellent agreement is observed
with the experimental data for the smooth case. As shown, the smooth-case profiles
from the simulations and the experiments follow the linear profile (Θ

+ = Pry+) and
the log-law profile (Θ

+= 0.48−1 ln y++ 3.8); however, surface roughness provokes the
typical downward shift of the mean temperature profile in the log region.

Figure 5(a) depicts the streamwise variation of the Stanton number values for the
smooth and rough cases. During postprocessing, the rough case Stanton number was
computed using the constant heat-flux equation (Teitel & Antonia 1993), given as

1
Pr
∂Θ
+

∂y+
− v′θ ′+ =−1. (4.1)

Furthermore, the main contributions to the wall heat flux, qw, in the inner region
(i.e. the wall-normal gradient of the mean temperature and wall-normal turbulent heat
fluxes) have been averaged at five points around the v′θ ′max location (i.e. the constant
heat-flux layer) to estimate St; whereas the wall thermal gradient is employed for
the smooth St number calculation. We have also checked the St number computation
in the smooth case by means of the constant heat-flux equation (4.1) and obtained
differences within 2 % with respect to the wall thermal gradient methodology.

The constant heat-flux equation is more accurate than the energy integral equation
(2.8) for the computation of St. However, (2.8) is simpler to implement (with a faster
rate of convergence, particularly in the transient stage) since it only requires the
knowledge of the mean thermal flow. Moreover, the dynamic multiscale approach
only demands the ratio of the Stanton number values at the inlet and recycle planes,
not the actual values of St, which produces an error compensation. For instance,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.676


Rough surface thermal turbulent boundary layer 95

the computed value of Stinl/Strec at the end of the collected sample by means of
the energy integral equation was just 1 % lower than that obtained by the constant
heat-flux equation. A similar methodology was implemented in Cardillo et al. (2013)
to compute the Cf in the rough case by means of the constant stress layer equation.

As observed in figure 5(a), there is a good agreement of the present smooth St with
the experimental and theoretical data of Blackwell (1972), Kays & Crawford (1993),
Wang, Castillo & Araya (2008). From this figure it is evident that the transitionally
rough surface with k+ ≈ 11 increased the heat transfer rate by as much as 12 %
compared to the smooth case at Reθ ≈ 2100. Since the Stanton number can be
expressed as St= Nu/(ReθPr), where Nu is the Nusselt number, it is proportional to
the Nusselt number (ratio of the convective to conductive heat transfer). This, it is
clear that the Nusselt number for the rough case is increased as well. This increase
in Nu is attributed to the enhancement of the turbulent convective heat transfer.

In figure 5(b), the streamwise variation of St/(Cf /2) is shown. Evidently this ratio
is around 1 in both smooth and rough cases; it shows a high correlation between
surface friction and the heat transfer coefficient. In an expression suggested by Kays
& Crawford (1993), for smooth turbulent ZPG and isothermal conditions,

St/(Cf /2)= Pr−0.4, (4.2)

for Pr=0.71, St/(Cf /2) adopts the value of 1.147, which is consistent with the results
presented for the smooth case here.

We also observe that the St/(Cf /2) ratio is closer to one for the rough case. For
higher Reynolds numbers, this unitary value does not change much (a change of the
order of 1 % in this range), and the relating expression for local Stanton number and
local surface skin friction factor can be applied to a transitionally rough surface of
k+ ≈ 11. This expression is useful for estimating heat transfer rates in situations in
which the skin friction is known.

The increase in the Cf value is larger than the increase in St over the transitionally
rough surface case. This increase is consistent with the experiments by Dipprey &
Sabersky (1963). With the presence of surface roughness, the Cf and St both increased
by approximately 17 % and 12%, respectively, which is the primary reason of the
observed decrease of the St/(Cf /2) ratio.

Figure 6(a) is in inner Wang–Castillo scaling, it can be observed that the mean
temperature is influenced by the rough surface, and the normalized temperature profile
of the rough surface flow lies below that of the smooth surface flow. The smooth
and rough Reynolds numbers are slightly different. However, the authors verified that
the DNS data’s Reynolds number dependence was negligible. The downward shifted
thermal profile may indicate that surface roughness enhances mixing (i.e. lower
temperature difference with the wall). Also note that the Stanton number is larger
for the rough case. A very good collapse is observed in the inner region, indicating
absorption of roughness effects by the Wang–Castillo scaling in the inner region. For
the outer scaling, as shown in figure 6(b), a perfect collapse in the outer region of
boundary layer is observed as well. This collapse indicates that the selected scaling
absorbs the effects induced by the surface roughness in the outer region.

Figure 7(a), shows the r.m.s. of temperature fluctuations in inner classical and outer
Wang–Castillo scaling. θ ′+rms is altered minimally in the inner and outer regions of the
boundary layer. In figure 7(a), the peak value of θ ′+rms in the rough case is slightly
reduced compared to the smooth case in the inner layer. However, a fair collapse
between the θ ′+rms profiles is noticed in the outer region, with a slight increase in the
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FIGURE 6. Mean temperature profiles in Wang–Castillo scaling for the smooth and rough
cases with (a) inner and (b) outer scaling.
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FIGURE 7. (a) θ ′rms fluctuations profiles of the smooth and rough cases with outer Wang–
Castillo (main) and inner (inset) classical scaling. (b) Wall-normal turbulent heat fluxes
using Wang–Castillo scaling for the smooth and rough cases with outer (main) and inner
units (inset).

rough case, particularly at the ‘shoulder’ location (i.e. for 0.1<(y+ ε)/δT < 0.5). The
wall-normal turbulent heat fluxes across the boundary layer are examined in figure 7(b)
for inner and outer Wang–Castillo scaling. In the main figure, in the outer region,
vertical turbulent heat flux is lower for the rough case, but from (y + ε)/δT = 0.4 a
nice collapse can be seen. For the inner layer, in the inset of figure 7(b), it is observed
that v′θ ′

+
is lower for the rough case compared to smooth case all across the inner

layer. The peak value of wall-normal heat flux is slightly moved away from the wall.
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FIGURE 8. Smooth and rough turbulent Prandtl numbers, (a) up to (y+ ε)+ = 600, and
(b) in the near-wall region.

It is evident that roughness plays a significant role in the inner region up to
(y + ε)/δT < 0.4 for the wall-normal turbulent heat fluxes, which corresponds to
(y + ε)+ < 100, since the profiles are self-similar beyond this wall-normal location.
This is consistent with Jiménez (2004), who showed that in flows with δ/k 6 50
the effect of roughness extends across the boundary layer. However, we have
δ/k ≈ 71, and therefore the effects of surface roughness on wall-normal heat fluxes
are approximately restricted to (y+ ε)/δT < 0.4.

The Reynolds analogy is a relationship between turbulent momentum and heat
transfer, and one outcome of this analogy is to relate the molecular wall heat transfer
to the local wall viscous stress. In the Reynolds analogy for turbulent flows, according
to Tennekes & Lumley (1972), the turbulent Prandtl number, Prt, is assumed to be
constant and close to one. Figure 8(a) shows the variation of Prt across the boundary
layer. These results are consistent for the smooth case with the review by Kays
(1994), in which he concluded that in the log region of boundary layer Prt has a
value from 0.8 to 1. Our results in figure 8(b) for the smooth case show a value
of 1.1 at the wall and start to decrease away from the wall. Up to y+ = 7 we have
Prt > 1, and then reach a value of 0.9 around y+ = 60, 0.8 around y+ = 140, and
far away from the wall a value of approximately 0.7 is obtained, which is consistent
with the DNS values of Prt for the smooth case of Li et al. (2009) at Reθ = 820
for Pr = 0.71. However, in the DNS study by Wu & Moin (2010) a wall value of
Prt = 1.9 was reported for the turbulent boundary layer at Reθ = 1840 and Pr = 1.0.
In the present DNS simulation, the data indicated no secondary peak, similar to Wu
& Moin (2010), but contrary to other studies which reported a secondary peak for
the Prt number close to the smooth wall around y+ ≈ 35, e.g. Kong et al. (2000),
Li et al. (2009), which can be attributed to the low Reynolds numbers considered in
the latter studies. We can assert that the Reynolds analogy is strictly valid for the
smooth case from the wall up to y+ ≈ 60, where the Prt attains the value of 0.9 and
for y+ > 60 it varies from 0.9 to 0.6 at the boundary layer edge; thus the Reynolds
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FIGURE 9. Turbulent Prandtl number decomposition, (a) dΘ/dU, (b) u′v′/v′θ ′.

analogy is approximately valid. For the rough surface, the Prt starts from a value of
1.3 at the wall and exhibits negative values in the region 5< (y+ ε)+ < 8. Later, Prt
increases to the smooth-case value at (y + ε)+ = 9, and above that the rough- and
smooth-case values are very similar. The ratio of the mean thermal gradient dΘ/dy
to the mean streamwise velocity gradient dU/dy in the rough case remains similar to
the smooth case given by dΘ/dU in figure 9(a). The ratios of Reynolds shear stresses
to wall-normal turbulent heat fluxes in figure 9(b) approximately exhibit the same
trend in both cases, except for the region 5< (y + ε)+ < 8, where the rough profile
significantly deviates from the smooth one. This is the principal reason for the strong
dissimilarity of the smooth and rough Prt values in that zone. The rough profiles
of u′v′+ and v′θ ′

+
exhibit positive values for (y + ε)+ < 6. Thus, it is inferred that

roughness mainly promotes outward (Q1) and inward (Q3) interactions instead of the
typical Q2 (ejections) and Q4 (sweeps) events that principally contribute to u′v′+ and
v′θ ′

+
in smooth boundary layers. Evidence of the Q1 and Q3 enhancement due to the

presence of roughness is shown later by a quadrant analysis. From figure 9(b) it is
observed that the turbulent momentum transport is more pronounced than the turbulent
transport of heat in the rough case for (y+ ε)+ < 4 (i.e. ratio of u′v′/v′θ ′ ≈ 1.5). In
the region 4 < (y + ε)+ < 9 the opposite occurs, with values of the ratio u′v′/v′θ ′
much lower than 1, meaning that the Reynolds analogy is not satisfied in the region
(y+ ε)+ < 9. Above y+ ≈ 9, up to (y+ ε)+ ≈ 60, the rough surface Prt varies from
1 to 0.9, so the Reynolds analogy is valid. Above this region, similar to the smooth
case, Prt varies from 0.9 to 0.6, indicating approximate validity of the Reynolds
analogy.

Figure 10(a) shows the net force exerted by the Reynolds shear stress, which
vanishes at the location of the maximum value. This zero net Reynolds force occurs
at (y + ε)+ ≈ 45 for the smooth and rough cases at the same wall-normal location.
For the zero net turbulent heat flux, as shown in figure 10(b), the maximum value
of v′θ ′ occurs at (y + ε)+ ≈ 58 for the smooth case, and at (y + ε)+ ≈ 73 for the
rough case, a difference of approximately 15 wall units. Thus surface roughness
induces more significant changes in the thermal transport than in the turbulent
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FIGURE 10. Comparison of location of (a) zero net Reynolds force, (b) zero net turbulent
heat, for the smooth and rough cases, in the wall-normal direction.

transport. Furthermore, the peak values in each figure 10(a,b) representing maximum
thermal and turbulent transport, are increased and also moved away from the wall by
approximately two wall units for the rough surface compared to the smooth surface.
According to Adrian (2007) this increase in the maximum value of d(u′v′+/dy+)
causes an increase in the mean transport of turbulent momentum. Furthermore, the
similarity between the turbulent momentum and thermal transports is remarkable,
even for the rough case. Notice that the net force and net turbulent heat flux are
positive for (y+ ε)+ < 4 in the rough case, which indicates local positive curvatures
of the mean streamwise velocity and mean temperature. Furthermore, in the near-wall
region (i.e. (y+ ε)+ < 7) the net force and net turbulent heat flux are lower for the
rough case compared to the smooth case, leading to less acceleration of the flow
near the wall. This retardation of the flow will lead to deterioration of the heat and
mass transfer, as mentioned by Yaglom & Kader (1974) close to the rough surface.
Accordingly, we can conclude that the reduced zero net turbulent heat flux close to
the wall leads to the decrease of the mean turbulent thermal transport near the wall.

4.3. Thermal/turbulence production, transport and higher-order moments
Figure 11(a) shows production of temperature fluctuations computed by the following
equation,

−u′iθ ′
+ ∂Θ

+

∂x+i
. (4.3)

It can be seen that the peak of thermal production is reduced by approximately
5 % for the rough surface compared to the smooth surface. In the inner region the
thermal production is much lower in the rough case, which can be attributed to the
increased thermal dissipation. Up to (y + ε)+ ≈ 5 we observe a negative region of
thermal production which is due to the negative value of streamwise and vertical
production components. In this region both u′θ ′

+
and ∂Θ

+
/∂x+ are positive, and

also v′θ ′
+

is positive in a small region, while ∂Θ
+
/∂y+ is positive, leading to a
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FIGURE 11. (Colour online) Comparison of production of (a) temperature fluctuations and
(b) TKE, for smooth and rough cases.

negative production of temperature fluctuations. Furthermore, it can be inferred that
the imposed rough surface does not affect production of thermal fluctuations beyond
(y + ε)+ > 30. Similarly, in figure 11(b), production of turbulence kinetic energy
(TKE) is shown and computed as follows,

− u′iu′j
+ ∂Ui

+

∂x+j
. (4.4)

It is observed that the peak in production of TKE is reduced by as much as 17 % for
the rough case compared to the smooth case, which is consistent with observations of
turbulent heat flux and zero net Reynolds force. Additionally, in the inner layer, for
(y+ ε)+ < 20, turbulence production is much lower in the rough case, mainly due to
an increase of TKE dissipation and pressure diffusion due to roughness (not shown).
Moreover, for (y+ ε)+> 30, a good collapse between smooth and rough surface flow
is observed in the turbulent kinetic energy production. Notice that the shape of profiles
for production of thermal fluctuations and TKE are indeed similar.

Figure 12(a,b) show the vertical transport of the Reynolds shear stresses and wall-
normal heat fluxes by the wall-normal fluctuations, normalized in wall coordinates.
The presence of surface roughness enhances the wall-normal transport of the Reynolds
stresses and turbulent heat fluxes towards the wall in the near-wall region. On the
other hand, it reduces the transport away from the wall in the regions further away
from the wall. It may be due to the fact that roughness curtails the larger structures in
the outer flow, as shown in Cardillo et al. (2013). This phenomena inhibits the flow
to convect energy in the turbulent boundary layer.

The skewness factor distributions for θ ′ are shown in figure 13(a), where the
horizontal line indicate the Gaussian level. For (y + ε)+ > 4 an excellent agreement
for the smooth and rough profiles is observed. However, close to the wall the
skewness is higher for the rough case compared to the smooth case. In figure 13(b)
the flatness factor, Fθ , for θ ′ is shown and a good collapse is observed for (y+ ε)+>5,
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FIGURE 12. Turbulent transports of (a) Reynolds shear stresses and (b) turbulent heat flux.
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FIGURE 13. (a) Skewness factor Sθ and (b) flatness factor Fθ for θ ′.

particularly in the outer layer. For (y + ε)+ < 5, Fθ is observed to be much higher
for the rough case compared to the smooth case. Since flatness is a measure of the
intermittency, it is inferred that roughness significantly enhances intermittency of
thermal fluctuations. In figure 14 the skewness factor profiles, Su and Sv, for u′ and
v′, respectively, are depicted. Good agreement is observed for Su at (y + ε)+ > 5,
and closer to the wall, the skewness factor is higher for the rough case compared
to the smooth case. The skewness factor value of Sv is drastically higher for the
rough case compared to the smooth case near the wall, and there is a fair collapse
at (y + ε)+ > 17. It is also noticeable that the skewness factors Su and Sθ are very
similar in shape, and they both look quite different compared to the skewness factor
of Sv. Figure 15 shows the flatness factor distributions, Fu and Fv, for u′ and v′. A
very good collapse is observed for Fu at (y + ε)+ > 6 and for Fv at (y + ε)+ > 30.
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FIGURE 14. Skewness factor for (a) u′, Su, and (b) v′, Sv .
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FIGURE 15. Flatness factor for (a) u′, Fu, and (b) v′, Fv .

For Fu it can be observed that the flatness factor is higher for the rough case close
to the wall, whereas Fv is lower for the rough case close to the wall. It is evident
that both flatness factors Fu and Fv reach the Gaussian level for (y + ε)+ > 40,
whereas Fθ reaches a value lower than the Gaussian level. In general, since the
level of smoothness in the higher-order statistics profiles (i.e. skewness and flatness)
of fluctuations is very good, it is inferred that the collected sample size is quite
appropriate.

In figure 16(a) the fractional contribution of quadrant events to the wall-normal
turbulent heat flux is shown. It is observed that the presence of surface roughness
significantly promotes all quadrant motions, especially the Q1, Q3 and Q4 or sweep
events. A perfect collapse between smooth and rough data is observed for (y+ ε)+>
20. Figure 16(b) shows the contribution of quadrant motions to Reynolds shear stress.
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FIGURE 16. (Colour online) Fractional contributions from quadrant motions to (a) vertical
turbulent heat flux and (b) Reynolds shear stress. Solid lines: smooth, ε+ = 0; dash-dot
lines: rough, k+ = 11, ε+ = 11.

Rough surfaces enhance all quadrant motions, similar to the wall-normal turbulent
heat-flux motions. In both cases it can be concluded that surface roughness promotes
the sweep motions and inward interactions (Q3) towards the wall in the near-wall
region (as observed in the turbulent transport of Reynolds stresses and turbulent heat
fluxes), which is consistent with increased transport towards the wall, and also the
increased skewness observed earlier for the rough surface. This can be due to the less
rigid wall-normal boundary conditions for the rough surface.

The transport equation for v′+θ ′+ is given as

−U+i
∂(v′+θ ′+)
∂x+i︸ ︷︷ ︸

Convection

−u′+i v′+
∂Θ
+

∂x+i
− u′+i θ ′+

∂V+

∂x+i︸ ︷︷ ︸
Production

−∂(θ
′+v′+u′+i )
∂x+i︸ ︷︷ ︸

Turbulent diffusion

−
(

1+ 1
Pr

)
∂θ ′+

∂x+i

∂v′+

∂x+i︸ ︷︷ ︸
Dissipation

+p′+
∂θ ′+

∂y+︸ ︷︷ ︸
Press−temp. grad. correl.

+ ∂

∂x+i

(
θ ′+
∂v′+

∂x+i
+ 1

Pr
v′+
∂θ ′+

∂x+i

)
︸ ︷︷ ︸

Molecular diffusion

− ∂

∂y+
(
p′+θ ′+

)
︸ ︷︷ ︸

Pressure diffusion

= 0. (4.5)

Figure 17(a,b) shows energy budget terms for the turbulent vertical heat flux v′θ ′. Near
the wall, the convection term is negligible in the smooth case, but for the rough case
this term is significantly enhanced close to the wall, due to the less rigid wall-normal
velocity condition at the wall for the rough surface flow. Although the convective term
is enhanced, it is still negligible compared to the other terms.

The dissipation term is slightly increased in the rough case compared to the smooth
case and the molecular diffusion for the rough case is very similar to the smooth
case. The contribution from the production term is slightly decreased for the rough
case compared to the smooth case, whereas the contribution from turbulent diffusion
is slightly enhanced in the rough case. Further, in figure 17(a), pressure diffusion
(PD) and pressure–temperature gradient correlation (PTG) terms can be seen. The
pressure terms are observed to be slightly modified close to the wall, with a slight
displacement away from the wall for the rough case compared to the smooth case. It
is also observed that the pressure diffusion term is slightly enhanced for the rough
case.
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FIGURE 17. (Colour online) Energy budgets of wall-normal turbulent heat flux v′θ ′. Solid
lines: smooth, ε+ = 0; dash-dot lines: rough, k+ = 11, ε+ = 11. (a) Strong contributions
and (b) weak contributions.

According to Tennekes & Lumley (1972), the energy budget of Reynolds stresses
is expressed as follows,

−U+j
∂R′+ij
∂x+j︸ ︷︷ ︸

Convection

−∂u′+i u′+j u′+k
∂x+k︸ ︷︷ ︸

Turbulent diffusion

+
(

p′+
∂u′+i
∂xj
+ p′+

∂u′+j
∂xi

)
︸ ︷︷ ︸

Pressure strain correlation

− ∂

∂x+k
(p′+u′+j δik + p′+u′+i δjk)︸ ︷︷ ︸

Pressure diffusion

+∂
2R′+ij
∂x+2

k︸ ︷︷ ︸
Molecular diffusion

−u′+i u′+k
∂U+j
∂x+k
− u′+j u′+k

∂U+i
∂x+k︸ ︷︷ ︸

Production

−2
∂u′+i
∂x+k

∂u′+j
∂x+k︸ ︷︷ ︸

Dissipation

= 0, (4.6)

where R11, R22, R33 and R12 represent Reynolds normal stresses and Reynolds shear
stresses, respectively, and δij corresponds to the Kronecker delta. The energy budget
terms of Reynolds shear stress u′v′ are shown in near-wall region in figure 18(a,b).
The contribution of the convection term is negligible near the smooth wall, as
expected; however, in the rough case it is slightly enhanced and visible around
(y + ε)+ ≈ 7 and (y + ε)+ ≈ 13. This is mainly due to the increase in the mean
wall-normal velocity, although its contribution is still negligible compared to other
terms. Similar to the vertical turbulent heat flux, the dissipation term is enhanced close
to the wall in the rough case compared to the smooth case. The molecular diffusion
term is negligible for both smooth and rough cases for (y + ε)+ > 30, and close to
the wall both positive and negative peaks are enhanced in the rough case. Regarding
the turbulent diffusion term, an increase in the peak value is observed for the rough
case compared to the smooth case around (y + ε)+ ≈ 9. However, the production
term is slightly suppressed in the rough case up to (y + ε)+ ≈ 15. The examination
of the energy redistribution (pressure diffusion and pressure-strain correlation (PS))
terms in figure 18(a) reveals that surface roughness modifies these terms close to
the wall. The peaks close to the wall are intensified and also moved away from the
wall for the rough case. In figure 19, the temperature–pressure gradient correlation
(TPG= PD− PTG) and velocity–pressure gradient correlation (VPG= PD− PS) are
depicted. It is concluded that the significant discrepancies of the smooth and rough
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FIGURE 18. (Colour online) Energy budgets of Reynolds shear stress u′v′. Solid lines:
smooth, ε+ = 0; dash-dot lines: rough, k+ = 11, ε+ = 11. (a) Strong contributions and (b)
weak contributions.
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FIGURE 19. Sum of the pressure-related terms in budgets. (a) Pressure–temperature
gradient correlation + pressure diffusion for v′θ ′. (b) Pressure–strain correlation +
pressure diffusion for u′v′.

cases disappear when considering the total contribution of pressure terms, i.e. TPG
and VPG. In general, similar trends are observed for the Reynolds shear stress and
vertical turbulent heat-flux budgets, which means that the similarity between u′v′ and
v′θ ′ somehow still holds for the type of roughness utilized in the present study. In
addition, the role of pressure fluctuations due to roughness play a significant role in
the energy exchange for v′θ ′ and u′v′ in the near-wall region for (y+ ε)+ < 20.

4.4. Vorticity
Figure 20(a,b) compares the r.m.s. of the vorticity fluctuation components for smooth
and rough cases, normalized by ν/u2

τ . All three components are nearly identical for
smooth and rough cases away from the wall for (y+ ε)+ > 50. For the x component,
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FIGURE 20. R.m.s. of vorticity fluctuation components, (a) for the x and y directions,
(b) for the z direction.

a peak is observed at (y + ε)+ ≈ 3 for the rough case. In the smooth case, a local
minimum is observed at y+ ≈ 5.5 before it attains a local maximum at y+ ≈ 10.5.
Kim, Moin & Moser (1987) attributed this behaviour to near-wall streamwise vortices.
They explained that the location of the local maximum is the average location of the
axis centre of the streamwise vortices and the first peak at the wall is due to the
streamwise vortices with opposite sign formed close to the wall due to the no-slip
condition. The local minimum is the average location at which two counter-rotating
streamwise vortices encounter each other. In the rough case, no such local minimum
of maximum is observed, which may indicate that the rough wall is disrupting the
formation of opposite sign streamwise vortices near the wall. For ω′+y , the changes
are not significant and a slight increase in the peak is observed around (y+ ε)+≈ 12.
ω′+y is primarily generated on streak flanks (Schoppa & Hussain 2002), so it can be
inferred that the height of streak is unchanged by roughness. Moreover, up to (y +
ε)+≈ 40, ω′+x for the rough surface is larger than the ω′+x for the smooth surface and
it can be inferred that hairpin legs have shallower inclination in the buffer region. In
the z direction, the vorticity magnitude of ω′+z has increased significantly up to y+≈20.
A peak is observed at y+ ≈ 3, which coincides with the drop in ω′+x .

4.5. Townsend’s hypothesis
As used in the study of turbulent flow over rough surfaces, Townsend’s Reynolds
number similarity hypothesis states that the mean relative motion and the motion of
the energy-containing eddies do not depend on viscosity or the surface roughness in
the region above the roughness layer, provided the Reynolds number is high enough,
and the roughness layer is small enough. While viscous stresses and the size and
shape of the roughness elements are dominant factors within the roughness layer,
they only manifest their effects in the outer layer through the mean velocity and
mean turbulent stress created at the top of the roughness layer. These values define
boundary conditions for the outer region. An important and obvious implication of
the hypothesis is that neither the viscous length scale, nor the scale of the roughness
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height are appropriate in the similarity region, leaving the outer length scale as the
proper property for non-dimensionalization. Measurements of moments as high as
fourth order support Townsend’s hypothesis for the velocity field (Schultz & Flack
2007; Nickels 2010).

We have tested the validity of Townsend’s hypothesis for the velocity and
temperature fields by comparing the statistical moments of the smooth-wall and
rough-wall cases. Since the hypothesis implies no effect of the roughness in the outer
layer, any statistically significant differences in the outer layer would invalidate it.
Comparisons of the profiles of many different statistical moments are contained in
the results already presented. For example, in figure 20 the r.m.s. values of each
component of vorticity converge above (y+ ε)+ ≈ 30–50, beyond which they are the
same with and without roughness. Thus, Townsend’s hypothesis is supported by the
behaviour of the r.m.s. vorticity in the outer layer. The single-point statistics profiles
shown in this paper in terms of wall units can be viewed as plots in outer units,
because y+ = (y/δ)δ+, and δ+ is nearly the same constant for the smooth and the
rough data. Regarding other moments, with our statistics of turbulent flow over smooth
and rough surfaces, we can examine the validity of Townsend’s hypothesis. Presented
results indicate that mean temperature defect profiles collapse above the roughness
sublayer with the outer scaling for the smooth and rough cases in figure 6(b). Thus,
the higher-order statistics of the turbulence fields for smooth and rough surfaces
reveal that they also support Townsend’s hypothesis.

The net force of the Reynolds shear stress and the net flux of the wall-normal
turbulent heat flux (figure 10), the production of temperature variance and turbulent
kinetic energy (figure 11), and the skewness and flatness of temperature and velocity
(figures 13–15), all support Townsend’s hypothesis in the outer region above a few
roughness heights, i.e. (3–5)k. Remarkably, the terms of the budgets of turbulent heat
flux (figure 17) and turbulent kinetic energy (figure 18) each indicate absence of a
roughness effect in the outer layer, as do fractional contributions of quadrant motions
to the total Reynolds shear stress and the vertical turbulent heat flux (figure 16).
However, it is observed from flow statistics, θ ′rms (figure 7a), v′θ ′ (figure 7b), v′u′v′

(figure 12a) and v′v′θ ′ (figure 12b) that the effects of roughness can extend beyond
3k–5k. Furthermore, a fair collapse (with deviations within 15 %) of the previously
mentioned smooth and rough profiles was obtained beyond y+ ≈ 80–90, which
corresponds to a roughness layer of approximately 7k–8k. We therefore conclude that
Townsend’s hypothesis applies both to the temperature and velocity fields.

5. Conclusions
Thermal statistics from direct numerical simulations of a zero pressure gradient

turbulent boundary layer, over a transitionally rough surface at Reθ ≈ 2400, and
molecular Prandtl number of 0.71, are presented for the first time. The roughness
elements can be considered to be small compared to the boundary layer thickness. The
data from the smooth surface simulations were validated with existing experimental
data for the velocity field by Cardillo et al. (2013). Like the statistics of the velocity
field, the statistics of the temperature field are affected by the surface roughness in
the inner layer up to (y+ ε)+ ≈ 100 at most.

Based on the values of the turbulent Prandtl number, the Reynolds analogy does
not hold in the rough case for (y+ ε)+< 9. The rough surface decreased the ratio of
Reynolds stress to turbulent heat flux in the near-wall region, leading to a decreased
turbulent Prandtl number, while remaining unchanged above y+≈ 9. This is attributed
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Variables Coarse mesh Refined mesh

Nx × Ny × Nz 190 × 96 × 90 400 × 150 × 125
Number of points 1641 600 7500 000
Number of elements 1597 995 7371 924
1x+ 45 23
1y+min, 1y+max 0.5, 45 0.5, 25
1z+ 15 11

TABLE 3. Characteristics of the employed meshes in smooth ZPG simulations.

to the fact that the ratio of thermal to turbulent mixing is enhanced more than the
ratio of molecular heat transfer to viscous stress in the rough case in that zone. This
dissimilarity between the velocity and thermal field (no Reynolds analogy) might be
associated with the modification of pressure-related terms.

In addition, it was found that roughness enhances wall-normal heat-flux transport
in the inner layer, and reduces it in the outer region of the boundary layer. Surface
roughness suppresses the production of TKE and turbulent temperature fluctuations,
and moves the zero turbulent heat location away from the wall. Examining the energy
budget terms of Reynolds stress and turbulent heat flux, revealed the significant role
of pressure fluctuations due to surface roughness in the energy exchange for Reynolds
stresses and turbulent heat fluxes, below the buffer region. This supports the idea of
pressure fluctuations as the principal mean of energy transport over rough surfaces. In
addition, they play a key role in the presence of convective terms near the wall region
for the rough surface.

Our results indicate that Townsend’s Reynolds number similarity hypothesis applies
to the thermal field, as well as the velocity field. Various statistics of the temperature
field coincide for smooth and rough walls in the outer region, where it is known that
the velocity statistics are independent of Reynolds number and roughness. Thus, even
though our simulation pertains to a single Reynolds number, it can be concluded that
the similarity in the outer region is independent of Reynolds number for smooth and
rough surfaces. Furthermore, the observed similarity of velocity and thermal fields in
the outer region does not imply that the structures will not be modified in the outer
region for the rough surface flow.
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Appendix A. Grid independence test
Two different meshes composed of linear hexahedral elements are tested in the

smooth ZPG case. Both meshes are structured with equidistant points along the
streamwise (x) and spanwise (z) directions. The mesh is stretched in the wall-normal
direction (y). More grid points are clustered near the wall. The main features of the
coarse and refined meshes are depicted in table 3, such as number of points along
the directions, number of hexahedral elements and mesh resolution.
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FIGURE 21. Grid independence test: (a) mean temperature profile, (b) temperature
fluctuations and vertical turbulent heat flux at Reθ = 2239.

Figure 21 depicts the mean temperature, temperature fluctuations and vertical
turbulent heat flux in wall units obtained in the coarse and refined meshes at
Reθ = 2239. The mean temperature profiles normalized in wall units exhibit a very
analogous behaviour for both meshes, as shown in figure 21(a). However, in the outer
region it shows some differences, which can be attributed to some discrepancies in
the computed friction temperature for the coarse and refined meshes. Furthermore,
the friction temperature is proportional to the Stanton number, which has shown good
agreement with available smooth experimental and theoretical data in figure 5(a) for
the refined mesh. Moreover, the obtained temperature profile by means of the refined
mesh is validated with existing experimental studies in figure 4.

Nevertheless, the temperature fluctuations and vertical heat-flux profiles show some
differences in both meshes. Particularly, in the turbulent heat fluxes as seen in
figure 21(b), for the coarse mesh the value is higher than 1, which is not realistic
and may be attributed to a poor resolution in the constant heat-flux layer. In contrast,
for the refined mesh the value becomes lower than 1. Furthermore, the strategy
has been to initiate the numerical simulations with a somehow coarse grid and to
later interpolate the flow solution onto the refined grid, which saved considerable
computational resources. Finally, all results shown in this paper were computed by
means of the refined mesh.

Appendix B. Obukhoff–Corrsin length and Kolmogorov time scales
In this section, suitability of the mesh resolution and time step are demonstrated

by means of the Obukhoff–Corrsin length and Kolmogorov time scale calculation.
According to Batchelor (1959), the smallest resolved length scale in DNS should be
of the order of the Obukhoff–Corrsin length scale, lC for Pr < 1, or Batchelor scale,
λB for Pr > 1. The Kolmogorov length scale is defined as ηk = (ν3/ε)1/4, where ε is
the average rate of energy dissipation per unit mass, and ν is the kinematic viscosity
of the fluid. For the studied case (Pr = 0.71), the Obukhoff–Corrsin length scale is
defined as lC = ηkPr−3/4, which is bigger than the Kolmogorov length scale, so by
resolving the Kolmogorov length scales, the Obukhoff–Corrsin length scales should
also be captured. Table 4 shows the Obukhoff–Corrsin length scales at five different
wall distances for the smooth and rough DNS cases. Vertical locations have been
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Smooth DNS, Reθ = 2239 Rough DNS, Reθ = 2278
y+ |ε+| l+C 1y+ (y+ ε)+ |ε+| l+C 1y+

0.5 0.45 1.58 0.50 13 0.8 1.37 1.36
5 0.31 1.73 0.65 19 0.25 1.82 1.56

15 0.29 1.75 1.0 29 0.17 2.02 1.93
40 0.15 2.11 1.93 54 0.1 2.30 2.76
500 0.0082 4.29 18.22 513 0.011 3.99 18.8

TABLE 4. Obukhoff–Corrsin length scales.

Smooth DNS, Reθ = 2239 Rough DNS, Reθ = 2278
y+ ε+ τ+η 1t+ (y+ ε)+ ε+ τ+η 1t+

0.5 0.45 1.491 0.44 13 0.8 1.118 0.5
5 0.31 1.796 0.44 19 0.25 2.0 0.5

15 0.29 1.857 0.44 29 0.17 2.425 0.5
40 0.14 2.673 0.44 54 0.1 3.162 0.5
500 0.0082 11.04 0.44 513 0.011 9.535 0.5

TABLE 5. Kolmogorov time scales.

selected in such a way as to explore the Obukhoff–Corrsin length scales at critical
points; very close to the wall, peak locations of fluctuations and outer region. The
first wall distance being the distance where the smallest length scale or maximum
dissipation ε+ is observed in the computational domain (e.g. (y + ε)+ = 0.5 and 13
for the smooth and rough cases, respectively). One can observe that the presence
of the roughness causes the maximum dissipation of turbulent kinetic energy to be
offset further from the wall. Consequently, the minimum Obukhoff–Corrsin length
scale was observed at (y+ ε)+≈ 13 (computation not shown). Furthermore, it can be
inferred that the mesh resolutions are of the order of lC (i.e. 1y < 10lC). Therefore,
the grid points for the current mesh are sufficient to resolve even the smallest scales
in the flow. However, the mesh for the rough DNS case may be marginally adequate
to fully resolve all the details of the sand grit surface topography, particularly in the
streamwise direction.

Similarly, table 5 exhibits the Kolmogorov time scales also at five different wall
distances for the smooth and rough cases. The Kolmogorov time scale is defined
as τη = (ν/ε)1/2. In the present study, the time steps are chosen by considering
the Courant–Friedrichs–Levy (CFL) parameters approximately equal to 0.5, which
results in accurate prediction of turbulence statistics. According to Choi & Moin
(1994), ‘turbulence fluctuations can only be sustained if the computational time step
is appreciably less than the Kolmogorov time scale’. Clearly, it can be appreciated
from table 5 that the selected time steps in wall units (i.e. 1t+) are much lower
than the corresponding dimensionless Kolmogorov time scales, τ+η , at all vertical
coordinates considered for the smooth and rough cases.

Appendix C. Inlet recovery of turbulent scales and suitability of the streamwise
domain length

C.1. Inlet recovery length or developing section
One of the main challenges in direct numerical simulations (DNS) of spatially
evolving turbulent boundary layers is the prescription of time-dependent turbulent
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inflow information. In the last few decades, several numerical ‘tripping’ methodologies
have been introduced with different degrees of success ‘and the Reynolds numbers of
the resulting simulations have steadily increased although often using relatively short
domains and coarse resolutions’, (Jiménez et al. 2010). Perhaps the most employed
inflow generation technique (and its variants) has been the rescaling–recycling method
by Lund et al. (1998). Jiménez’s group has performed a detailed assessment of the
rescaling–recycling method over extremely long domains. Simens et al. (2009) used
the original rescaling–recycling method (henceforth ORRM) by Lund et al. (1998)
in direct simulation of incompressible boundary layers over a flat plate. They found
that boundary layer simulations recovered from synthetic inflow conditions after an
initial length of approximately 0.25Lx (where Lx is the streamwise domain length)
by analysing local maxima of fluctuations and the decay of the space–time velocity
correlations. Therefore, this developing section had to be discarded from the statistics
computation. According to Simens et al. (2009), this is not a flaw of the ORRM by
Lund but a property of the boundary layer. The turnover time of the largest scales
is of the order of δ/uτ , and the large eddies are advected over a distance U∞δ/uτ
by assuming a convection velocity of U∞. Moreover, they found that ‘at least one
eddy turnover is required for most flow scales to decorrelate from the inlet’ (Sillero,
Jiménez & Moser 2013), which roughly corresponds to 20δ. Furthermore, Sillero
et al. (2013) showed that ‘the recovery length of the largest scales is considerable
longer than the decorrelation length mentioned above’. We will demonstrate in
this section that the recovery length of the large scales in our direct simulations
represents just a small fraction of the whole domain by analysing the evolution of
the same flow parameters utilized in Sillero et al. (2013). This discrepancy might
be attributed to the different turbulent inflow generator utilized. We strongly believe
that high-quality inflow conditions ensure a fast recovery of the flow structures. The
dynamic multiscale approach (DMA) by Araya et al. (2011) employed in this study
for turbulent inflow generation is an improvement of the ORRM. As stated at the
beginning of § 2, the major differences between the DMA and the ORRM are: (i)
different scaling functions in the inner and outer regions of the boundary layer (i.e.
multiscale) are imposed; and (ii) the friction velocity and friction temperature at the
inlet of the computational domain are deduced dynamically by using a ‘test plane’
located between the inlet and recycle planes. These improvements have made the
DMA a more versatile, robust and computational-resource-saving method, without
the need for empirical correlations in the rescaling process which enable us to
better absorb external effects such as different Reynolds numbers or streamwise
pressure gradients. In addition, another important feature of the DMA is that the inlet
developing section (a zone where flow structures behave in a non-physical sense) is
very short, attributed to the high-quality turbulent inlet conditions. The skin friction
coefficient, Cf (a near-wall property, according to Sillero et al. (2013)) for the smooth
and rough cases shows a nearly negligible developing section in figure 6 of Cardillo
et al. (2013). Furthermore, the outer flow parameters such as the shape factor (H),
momentum thickness (θ ) and boundary layer thickness (δ) can be linked to larger
turbulent scales (Sillero et al. 2013). From figures 7(b,c) of (Cardillo et al. 2013), the
outer parameters θ and δ decrease at the beginning of the computational domain, and
later exhibit an increasing trend. Therefore, it can be inferred that larger scales relax
slowly; however, they only demanded approximately 10 % of the streamwise domain
length for full recovery in our smooth and rough cases. Also, it can be observed from
figures 6 and 7 of Cardillo et al. (2013) that the present direct simulations (and the
computational box) have appropriately reproduced the streamwise development of the
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FIGURE 22. Downstream evolution of local maxima of (a) the Reynolds shear stresses,
(b) the wall-normal turbulent heat fluxes.

boundary layer parameters in the near-wall region (Cf ) and in the outer region (H,
θ and δ), as compared with rough experimental data by Brzek et al. (2008). Notice
that, in the present DNS, the same roughness topology as in Brzek et al. (2008)
has been modelled at similar Reynolds numbers. Moreover, in Brzek et al. (2008)
the LDA measurements were carried out far away from the trip wire (1.05–2.05 m),
which corresponds to roughly 35–69 boundary layer thicknesses, and once the flow
has relaxed from its initial tripping perturbations. This feature plus the high Reynolds
number range considered (Reθ ≈ 2600–3900) in experiments ensure a well-established
boundary layer Erm & Joubert (1991), Schlatter & Örlü (2012).

We have also plotted local maxima of the Reynolds shear stresses for the DNS
rough case in figure 22(a). Following Sillero et al. (2013), these maxima of u′v′+ are
near-wall quantities at y+≈O(δ+1/2), and thus might be related to the small scales in
the near-wall region. After a short initial developing section (of the order of 1δinlet),
as represented by the vertical dashed lines, the absolute values of (u′v′+)max exactly
follow the downstream evolution of experimental data by Brzek et al. (2008). There
is a small ‘downtick’ at the end of the domain, caused by the prescribed pressure
outflow boundary condition. However, the recycle plane is selected sufficiently far
away from the outflow in such a way that the flow solution is not affected at this
recycling station. Similarly, figure 22(b) depicts the downstream evolution of the local
maxima of the wall-normal turbulent heat fluxes in the DNS rough case. The near-
wall thermal structures require approximately 1δinlet for full relaxation. The ‘downtick’
on the (v′θ ′

+
)max at the domain end is more obvious than in (u′v′+)max; however, it

is still negligible. The numerically contaminated inflow and outflow zones represent
approximately 12 % of the total computational domain and have been discarded for
final statistics computation.

C.2. Suitability of the streamwise domain length
The suitability of the streamwise domain size has been demonstrated by computing: (i)
two-point correlation functions of velocity and thermal fluctuations from a reference
downstream location where larger outer scales are fully relaxed from inlet synthetic
conditions (xrelax ≈ 0.1Lx, where Lx is the streamwise domain length), and (ii)
superstructure dimensions based on the model proposed by Hutchins & Marusic
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FIGURE 23. Two-point streamwise correlations for thermal fluctuations at y+ = 500, for
smooth and rough cases, (a) Ruu, (b) Rθθ .

(2007). Furthermore, the two-point correlation analysis quantitatively documents the
correlation levels involved in the domain size chosen after the initial relaxation
zone of the larger scales. This is the standard way to justify whether or not a
computational domain is appropriate, as used by Kim et al. (1987) to justify their
streamwise domain length. With respect to the streamwise domain size, decorrelation
of the velocity and thermal fluctuations (i.e. Ruu and Rθθ ) is achieved by x+ ≈ 2000,
as seen in figure 23(a,b) in the outer region at y+ = 500 where large turbulent scales
are usually found, indicating that the computational domain (L+x ≈ 8660–9410) and
recycle lengths (x+rec ≈ 7770–8440) are large enough in the streamwise direction for
the smooth and rough cases. Notice that the reference planes, i.e. x+relax, are located
at 897 and 959 in wall units for the smooth and rough case, respectively. The
presence of a peak is also observed at the recycle plane, which is expected since it
is highly correlated with the inlet. A similar finding about the two-point correlations
of velocity fluctuations at the recycle station was reported in Simens et al. (2009),
Stolz & Adams (2003) in DNS of ZPG flows by employing the rescaling–recycling
approach of Lund et al. (1998). More details about two-point correlation analysis can
also be found in Araya et al. (2011), Araya & Castillo (2013).

Regarding superstructures in the boundary layer, Hutchins & Marusic (2007) have
stated that superstructures populate the log region of turbulent boundary layers. They
have also concluded that superstructures become increasingly large in comparison to
the near-wall structures as the Reynolds number increases (Hutchins & Marusic (2007)
carried out experiments up to Reτ ≈ 20 000). They approximated the superstructure
length with respect to the near-wall structure length by a factor of at least 6Reτ/1000,
where Reτ is the Reynolds number based on boundary layer thickness, δ, and the
friction velocity, uτ . Consequently, we have estimated the superstructure lengths in
our simulations according to the factor 6Reτ/1000 given by Hutchins & Marusic
(2007) by considering an average streamwise length of near-wall streaky structures
of approximately 1000 in wall units. Table 6 shows the corresponding superstructure
and useful region lengths for the smooth and rough case in wall units. It is inferred
that our computational domains are able to capture superstructures of the order of
5538–5694 in wall units since the corresponding useful regions are, at least, 46 %
longer (8096–8659 wall units), which is more than enough to capture large-scale
motions.
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Case Max Reτ Superstructure length Streamwise domain length

ZPG high Re number smooth 923 5538 8650
ZPG high Re number rough 949 5694 9410

TABLE 6. Superstructure lengths in present simulations.
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