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Three-dimensional nonstationary flow of a viscous incompressible liquid is investigated in

a layer, driven by a nonuniform distribution of temperature on its free boundaries. If

the temperature given on the layer boundaries is quadratically dependent on horizontal

coordinates, external mass forces are absent, and the motion starts from rest then the free

boundary problem for the Navier–Stokes equations has an ‘exact’ solution in terms of two

independent variables. Here the free boundaries of the layer remain parallel planes and the

distance between them must be also determined. In present paper, we formulate conditions

for both the unique solvability of the reduced problem globally in time and the collapse of

the solution in finite time. We further study qualitative properties of the solution such as its

behaviour for large time (in the case of global solvability of the problem), and the asymptotics

of the solution near the collapse moment in the opposite case.

1 Statement of problem

We consider thermocapillary motion of a viscous incompressible liquid bounded entirely

by free surfaces. The domain occupied by liquid is denoted by Ωt, and its boundary is

denoted by Γt. The liquid density ρ and kinematic viscosity ν are taken to be constant,

and the surface tension σ is taken to be a linear function of temperature θ:

σ = σ0 − κ(θ − θ0), (1.1)

where σ0, κ and θ0 are positive constants. We will suppose further that the motion

starts from rest, and that external mass forces do not act on the liquid. Moreover, we will

assume that the temperature at free surface θΓ (~x, t) is a known function of the coordinates

~x = (x, y, z) and time t. Hence, the mathematical statement of the problem is reduced to

determination of the domain Ωt, 0 < t < T and the solution ~v(~x, t) = (u, v, w), p(~x, t) of

the Navier–Stokes equations

~vt +~v · ∇~v = −ρ−1∇p+ ν∆~v, ∇ ·~v = 0 (1.2)

in this domain, satisfying the initial conditions

Ω0 is given, ~v(~x, 0) = 0, ~x ∈ Ω0 (1.3)

and the conditions on the free surfaces

−p~n+ 2ρνD ·~n = −2Kσ~n+ ∇Γσ, (1.4)
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206 V. V. Pukhnachov

~v ·~n = Vn, ~x ∈ Γt, 0 < t < T . (1.5)

The following notation is used in (1.4), (1.5): ~n is the unit external normal to the surface

Γt, D = [∇~v+ (∇~v)∗]/2 is the strain velocity tensor, K is the mean curvature of the surface

Γt, ∇Γ = ∇ −~n(~n · ∇) is the surface gradient, Vn is the velocity of displacement of the

surface Γt in the direction of ~n. After substitution of the expression for σ in the form

of (1.1) with θ = θΓ (~x, t) into (1.4) we obtain a closed statement of the free boundary

problem for the Navier–Stokes equations.

The solvability conditions for the initial boundary value problem (1.2)–(1.5) are derived

in Mogilevskii & Solonnikov [10]. Investigated in Andreev & Pukhnachov [3] are the

invariance properties of this problem; the group classification of this problem relative to

an ‘arbitrary element’ θΓ (~x, t) is satisfied there too. Examples of exact solutions of the

equations of thermocapillary motion are presented in Birikh [4], Napolitano [11], Gupalo

& Ryazanov [7], Andreev & Adamev [1] and Andreev et al. [2, Ch, 7] (see also the

references therein). It must be noted that the majority of these exact solutions describe

stationary flows determined by a system of ordinary differential equations. A solution

of plane nonstationary flow for system (1.2) describing thermocapillary flow in a strip is

given in Andreev & Pukhnachov [3]. It assumes the dependence θΓ = θ∗ + l(t)x2, where

θ∗ = const and l is an arbitrary function of t. This solution is derived via a system of

equations with two independent variables. The possibility of the decrease of order of the

problem considered in Andreev & Pukhnachov [3] results from the fact that its solution

is a partially invariant solution [12] of the plane analogue of (1.2). The solution studied

in the present paper is a natural generalization of the previous solution for the case of

thermocapillary motion in a layer. It corresponds to the temperature distribution on the

boundaries of the layer

θΓ = θ∗ + l(t)x2/2 + m(t)y2/2, (1.6)

where l and m are arbitrary functions of t. The further considerations are based on the

following statement, which can be checked directly. If

u = (f + g)x, v = (f − g)y, w = −2

∫ z

0

f(ς, t)dς, (1.7)

p/ρ = νwz(z, t)−
∫ z

0

wt(ς, t)dς− 1

2
w2(z, t) + χ(t),

where f(z, t), g(z, t) are the solutions of the system of equations

ft + f2 + g2 − 2fz

∫ z

0

f(ς, t)dς = νfzz, (1.8)

gt + 2fg − 2gz

∫ z

0

f(ς, t)dς = νgzz

and χ is an arbitrary function of t, then the functions ~v = (u, v, w), p satisfy the Navier–

Stokes equations (1.2). (Note that the solution (1.7) of the system (1.2) can be determined

as usual as a partially invariant solution with rank two and defect two relative to the

four-parameter Lie group generated by translations and Galilean translations along the

x- and y-axes [9].)
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Let us show that the solution (1.7) can be interpreted as a solution describing thermo-

capillary motion in the layer |z| < s(t) where the temperature distribution is prescribed

on its boundaries (1.6). In fact, in this case K = 0, ∇Γσ = (−κxl(t),−κym(t)) and the

condition (1.4) will be satisfied at z = s(t) if the functions f and g satisfy

fz(s(t), t) = −k[l(t) + m(t)], 0 < t < T , (1.9)

gz(s(t), t) = −k[l(t)− m(t)], 0 < t < T ,

where k = κ/ρν = const > 0 and the function χ(t) is chosen in the form

χ = νwz(s(t), t) +

∫ s(t)

0

wt(ς, t)dς+
1

2
w2(s(t), t).

Further, we assume that

fz(0, t) = gz(0, t) = 0, 0 < t < T (1.10)

and continue the functions f, g (determined initially for 0 < z < s(t), 0 < t < T ) to the

domain −s(t) < z < 0 in an even way. Then condition (1.4) will be satisfied at the lower

boundary of the layer z = −s(t) too. If we demand the condition

ds

dt
= −2

∫ s(t)

0

f(z, t)dz, 0 < t < T (1.11)

then we can satisfy the condition (1.5) on both boundaries of the layer. Finally, we assume

that

s(0) = a > 0 (1.12)

(which corresponds to the definition of the initial position of the layer) and

f(z, 0) = g(z, 0) = 0, 0 6 z 6 a. (1.13)

Then the initial conditions (1.3) will be satisfied.

2 Conditions for existence and non-existence of solution

Here the solvability conditions for the problem (1.8)–(1.13) are formulated and the

qualitative properties of its solution are determined. Note that we are interested only in

classical solutions of the above-mentioned problem. The input data of the problem (i.e.

the functions l(t) and m(t)) must be subjected to some conditions of smoothness and

compatibility to ensure the existence of such solutions. Further, we assume that these

functions are defined for all t > 0, moreover

l(t), m(t) ∈ C (1+α)/2[0,∞), 0 < α < 1, (2.1)

l(0) = m(0) = 0, (2.2)

where C (1+α)/2[0,∞) denotes the space of functions continuous on the semiaxis t > 0

and satisfying the Hölder conditions with exponent (1 + α)/2 on any compact set. The

following notation is used below: ST is the domain {z, t : 0 < z < s(t), 0 < t < T },
C2+α,1+α/2(S̄T ) is the Hölder class used in the theory of parabolic equations (its definition

can be found in [10]).
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Proposition 1 Let the conditions (2.1), (2.2) be satisfied. Then one can find T > 0

such that the problem (1.8)–(1.13) has the unique solution f(z, t), g(z, t), s(t); moreover

f, g ∈ C2+α,1+α/2(S̄T ), s ∈ C2+α/2[0, T ].

The proof of this proposition has a purely technical character. It is based on the

transition from the Eulerian coordinate z to the Lagrangian coordinate ς in the prob-

lem (1.8)–(1.13). The connection between the Lagrangian and Eulerian coordinates is

determined in terms of the solution of the Cauchy problem

zt = −2

∫ z

0

f(ξ, t)dξ when t > 0,

z = ς when t = 0.

Here the domain ST maps into the rectangle Π = {ς, t : 0 < ς < a, 0 < t < T } and the

equations (1.8) turns into the following equations for the functions F(ς, t) = f[z(ς, t), t],

G(ς, t) = g[z(ς, t), t] :

Ft + F2 + G2 = ν exp

[
2

∫ t

0

F(ς, τ)dτ

]{
exp

[
2

∫ t

0

F(ς, τ)dτ

]
Fς

}
ς

, (2.3)

Gt + 2FG = ν exp

[
2

∫ t

0

F(ς, τ)dτ

]{
exp

[
2

∫ t

0

F(ς, τ)dτ

]
Gς

}
ς

.

The equality

zς = exp

[
−2

∫ t

0

F(ς, τ)dτ

]
was used in the derivation of (2.3). The above-mentioned solution of the Cauchy problem

satisfies this equality. Then the boundary conditions (1.9) are rewritten in the form

Fς(a, t) = −k[l(t) + m(t)] exp

[
2

∫ z

0

F(a, τ)dτ

]
, 0 < t < T , (2.4)

Gς(a, t) = −k[l(t)− m(t)] exp

[
2

∫ z

0

F(a, τ)dτ

]
, 0 < t < T .

The conditions (1.10), (1.13) give the following conditions for the functions F and G:

Fς(0, t) = Gς(0, t) = 0, 0 < t < T , (2.5)

F(ς, 0) = G(ς, 0) = 0, 0 6 ς 6 a. (2.6)

As a result we obtain the initial boundary value problem (2.4)–(2.6)in a fixed domain

for the system of quasilinear integro-differential parabolic equations of the second order

(2.3). Its local unique solvability in Hölder classes follows from general results of the

theory of parabolic equations [8] and can be determined, for example, by the method of

successive approximations; the convergence of this method is guaranteed for sufficiently

small T . If the function F(ς, t) is known then the function s(t) defining the position of the

free boundary in the plane z, t is given by the formula

s(t) =

∫ a

0

exp

[
−2

∫ t

0

F(ς, τ)dτ

]
dς.

Hence the kinematic condition on the free boundary (1.11) is satisfied automatically.
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So solvability of problem (1.8)–(1.13) on a small time interval demands that the functions

l(t), m(t) only satisfy the smoothness condition (2.1) and compatibility condition (2.2).

As will be shown below, these conditions are insufficient for the solvability of the global

problem.

Proposition 2 Assume that

l(t) + m(t) > 0 for t > 0. (2.7)

Moreover the inequality (2.7) is strict on some interval (0, τ). Then the ‘life span’ t∗ of

solution of the problem (1.8)–(1.13) is finite.

Proof Let us consider the functions

f̄(t) =
1

s(t)

∫ s(t)

0

f(z, t)dz, h = f − f̄

so that quantity f̄ is the mean value of the function f(z, t) for any fixed t in the interval

[0, s(t)] and the mean value of the function h(z, t) is equal to zero on this interval for any

t > 0. The relation (1.11) will take the form

ds

dt
= −2f̄s, (2.8)

so that knowledge of the function f̄ determines completely the evolution of the free

boundary in the problem (1.8)–(1.13).

We obtain the identity

df̄

dt
= −f̄2 − 1

s

∫ s

0

(g2 + 3h2)dz − νk(l + m)

s
(2.9)

after integration of the first equation (1.8) with respect to z over the interval [0, s(t)] and

taking into account the conditions (1.9)–(1.11). Further we may suppose without loss of

generality that the number τ used in the formulation of Proposition 2 is less then the life

span t∗ of the solution of the studied problem. As follows from (2.9) and the conditions

of Proposition 2, the function f̄ decreases monotonically on the interval [0, t∗) and (1.13)

gives f̄(0) = 0. So using (2.8) one can conclude that s(t) > a when 0 6 t < t∗.
Integration of the identity (2.9) over the interval (0, τ) and elimination of necessarily

nonpositive terms from the right-hand part of the resulting equality lead to the chain of

inequalities

0 > f̄(τ) > −νk
∫ τ

0

l(t) + m(t)

s(t)
dt > −νk

a

∫ τ

0

[l(t) + m(t)]dt = −γ,
where γ = const > 0, in accordance with the condition of Proposition 2. (The sharpness

of the left inequality is guaranteed by this condition too.) The estimate f̄(t) 6 (1 + γτ −
γt)−1f̄(τ) follows from this fact and inequality df̄/dt 6 −f̄2 which follows from (2.9).

So far as f̄(τ) < 0, this estimate means that the solution of the problem (1.8)–(1.13) is

destroyed at finite period of time t∗ 6 γ−1 + τ. q

Actually, Proposition 2 contains the necessary condition for global solvability of the

problem (1.8)–(1.13). The determination of sufficient conditions for the existence of its
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solution for all t > 0 demands more effort. The main point here is obtaining the estimate

for the maximum modulus of the functions f and g in the domain ST for all T > 0.

In the case when such an estimate is obtained, the proof of solvability of the problem

(1.8)–(1.13) can be achieved globally by the proof scheme in Andreev et al. [2, Ch. 7,

Theorem 1], using the method developed by Ladyzhenskaya et al. [8].

The specific character of our free boundary problem lies in the fact that its solution can

cease to exist as t grows for two reasons. The first reason is demonstrated in Proposition

2. The existence of the function f̄(t) obtained in the process of its proof and equations

(2.8) imply that s → ∞ when t ↗ t∗. The vanishing of the function s(t) at finite time t∗
is the other reason. This possibility explains the conditional character of Proposition 3

formulated below. Henceforth, generic positive quantities (generally speaking, depending

on T ) are denoted by Ck (k = 1, 2, . . .).

Proposition 3 Let the following inequalities be satisfied:

l(t) 6 m(t) 6 0 for t > 0. (2.10)

Then either

(a) One can find t∗ < ∞ such that s(t) > 0 for 0 6 t < t∗ and s→ 0 when t↗ t∗. In this

case, the estimates

|f(z, t)| 6 C1, |g(z, t)| 6 C2 when (z, t) ∈ S̄T (2.11)

are valid (T > 0 is an arbitrary number less then t∗);
(b) The inequality s(t) > 0 is satisfied for any finite t > 0. Then the estimates (2.11) are

valid in the domain S̄T for any T > 0.

Proof Let us introduce the functions λ = f+ g, µ = f− g. It follows from (1.8) that these

functions satisfy the equations

λt + λ2 − 2λz

∫ z

0

f(ς, t)dς = νλzz, (2.12)

µt + µ2 − 2µz

∫ z

0

f(ς, t)dς = νµzz

in the domain ST . Initial and boundary conditions for the system (2.12) are obtained from

(1.9), (1.10), (1.13), and have the form

λz(s(t), t) = −2kl(t), µz(s(t), t) = −2km(t), (2.13)

λz(0, t) = µz(0, t) = 0, 0 < t < T , (2.14)

λ(z, 0) = µ(z, 0) = 0. (2.15)

If we note that the first and the second equations (2.12) are linear in to the functions λ

and µ, we may apply the maximum principle [5] to the solution of the initial-boundary

value problems (2.13)–(2.15) for these equations. In accordance with this principle, the

non-negativity of the right-hand sides of the conditions (2.13) provided by the inequalities

(2.10) and the homogeneity of the conditions (2.14), (2.15) imply the non-negativity of

the functions λ and µ in the domain ST , where T < t∗ in case (a) and T is an arbitrary
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positive number in case (b). This means that

f > 0 and |g| 6 f for (z, t) ∈ S̄T . (2.16)

Hence, the proof of the first inequality (2.11) will imply the proof of the second. Moreover,

the function s(t) decreases monotonically for t > 0 by virtue of (2.8), (2.16), so that this

fact, together with (2.12), implies the estimate

s(t) 6 a if t ∈ [0, T ]. (2.17)

Finding uniform pointwise estimates of functions fz, gz in the domain S̄T is the next step

of the proof. It is evident that it is sufficient for this purpose to obtain similar estimates

for the functions ξ = λz, η = µz . As follows from (2.12)–(2.15), these functions are the

solutions of the first initial-boundary value problems for the linear parabolic equations

ξt − 2ξz

∫ z

0

f(ς, t)dς+ 2gξ = νξzz, (2.18)

ηt − 2ηz

∫ z

0

f(ς, t)dς+ 2gη = νηzz,

ξ(s(t), t) = −2kl(t), η(s(t), t) = −2km(t), (2.19)

ξ(0, t) = η(0, t) = 0, 0 < t < T , (2.20)

ξ(z, 0) = η(z, 0) = 0, 0 6 z 6 a. (2.21)

Now we note that the function g is non-negative in the domain S̄T . Indeed, this function

satisfies a linear uniform parabolic equation (the second equation (1.8)) and conditions

(1.9), (1.10), (1.13). Due to the condition (2.10), the right-hand side of the second equality

(1.9) is non-negative for 0 < t < T that involves the non-negativeness of g on the base

of the maximum principle. The estimates below are also valid by applying the maximum

principle to the solutions of the problems (2.18)–(2.21) and inequalities (2.10) and g > 0

in S̄T :

0 6 ξ = λz 6 C3 = max
06t6T

[−2kl(t)],

0 6 η = µz 6 C4 = max
06t6T

[−2km(t)].

So we conclude from these estimates and the definition of λ and µ that

0 6 fz 6 C5 and |gz | 6 fz for (z, t) ∈ ST (2.22)

with C5 = C3 + C4.

From the inequalities (2.22), the maximal value of the function f(z, t) at some fixed t is

achieved at the point z = s(t) belonging to the free boundary of the domain ST . Hence,

one must obtain an estimate from above of the function f(s(t), t) for the completion of

the proof of Proposition 3. With this aim, let us consider the obvious representation

f(s(t), t) = f̄(t) +
1

s(t)

∫ s(t)

0

zfz(z, t)dz. (2.23)

The second term of the right-hand side is estimated from the inequalities (2.17), (2.22):

1

s(t)

∫ s(t)

0

zfz(z, t)dz 6
aC5

2
. (2.24)
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An upper estimate of f̄(t) is based on the inequality

df̄

dt
6 −νk(l + m)

s
,

following from (2.9). Integration of this inequality from zero to t 6 T with f̄(0) = 0,

and replacing the functions −l(t), −m(t) with their maximal values on the interval [0, T ],

implies

f̄(t) 6
νC5

2

∫ t

0

dτ

s(τ)
for t ∈ [0, T ]. (2.25)

Using estimates (2.24), (2.25) and representations (2.23), we conclude that

f(s(t), t) 6
C5

2

[∫ t

0

dτ

s(τ)
+ a

]
if 0 6 t 6 T .

Here, (a) T < t∗, and (b) T > 0 is arbitrary. q

Remark Proposition 3 holds if condition (2.10) is replaced by

m(t) 6 l(t) 6 0 for t > 0. (2.26)

This follows from the invariance of the Navier–Stokes equations with respect to the

transform x′ = −y, y′ = x, u′ = −v, v = u.

3 Qualitative properties of solutions

It will be shown below that all the hypothetical possibilities considered in Proposition

3 can be realized. So as not to overload the paper, we consider two simple cases of

the behaviour of the functions l(t) and m(t) defining the ‘destiny’ of the solution of our

problem.

Proposition 4 Let the solution of the problem (1.8)–(1.13) be determined in some domain

ST . Suppose that the conditions (2.10) are satisfied, and moreover,

l(t) = m(t) = 0 when t > τ (3.1)

and l + m) 0 when 0 6 t 6 τ. Then the problem (1.8)–(1.13) is solvable in the domain

ST for any T > 0, and the following estimates are valid: either

s = C6t
−2 + O(t−3) when t→∞, (3.2)

f = t−1 + O(t−2), g = O(t−2) when 0 6 z 6 s(t), (3.3)

or

s = C7t
−1 + O(t−2) when t→∞, (3.4)

f = g = t−1/2 + O(t−2) when 0 6 z 6 s(t).

The last situation is possible only in the case l = 0 or m = 0 for all t > 0.
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Proof First, note that Proposition 1 implies that in any case, one can find the existence

time τ of the solution of problems (1.8)–(1.13). So far as the conditions of Proposition 3

are satisfied, the inequalities

λ = f + g > 0, µ = f − g > 0 (3.5)

are valid in the domain S̄T . Moreover, at least one of the functions λ, µ is not identically

equal to zero on the upper boundary of this domain, i.e. at t = τ, 0 6 z 6 s(τ); otherwise,

we arrive at a contradiction with the condition l + m) 0, 0 6 t 6 τ (the functions λ and

µ satisfy this condition as the solutions of the problem (2.12)–(2.15) by virtue of the strict

maximum principle [5]). So we can conclude from this and (3.5) that f̄(τ) > 0.

Now we can use the identity (2.9), where the last right-hand term is absent for t > τ, as

follows from (3.1). The inequality df̄/dt 6 −f̄2 follows from this identity and integration

of this inequality from t = τ, taking account of the positiveness of f̄(τ), implies the

estimate

f̄(t) 6
f̄(τ)

1 + (t− τ)f̄(τ)
when t > τ. (3.6)

In accordance with (2.8), the upper estimate of f̄(t) implies a lower estimate of the function

s(t). Thus, (2.8), (3.6) give

s(t) >
s(τ)

[1 + (t− τ)f̄(τ)]2
when t > τ. (3.7)

The global existence theorem is valid for the problem (1.8)–(1.13) on the ground of

Proposition 3 and inequality (3.7).

Now let us obtain the asymptotic representations (3.2)–(3.4). With this aim, we use the

formulation of the problem (1.8)–(1.13) in Lagrangian coordinates (2.3)–(2.6), where the

boundary condition (2.4) is homogeneous for t > τ by virtue of the assumption (3.1). We

introduce the functions Λ(ς, t) = λ(z, t), M(ς, t) = µ(z, t) and obtain the initial-boundary

value problem

Λt + Λ2 = ν exp

[∫ t

0

(Λ + M)dt

]{
exp

[∫ t

0

(Λ + M)dt

]
Λς

}
ς

, (3.8)

Mt + M2 = ν exp

[∫ t

0

(Λ + M)dt

]{
exp

[∫ t

0

(Λ + M)dt

]
Mς

}
ς

in the semistrip Στ = {ς, t : 0 < ς < a, t > τ},
Λς(a, t) = Mς(a, t) = 0, t > τ, (3.9)

Λς(0, t) = Mς(0, t) = 0, t > τ, (3.10)

Λ(ς, τ) = Λ0(ς), M(ς, τ) = M0(ς), 0 6 ς 6 a. (3.11)

Here the functions Λ0, M0 are defined by the equalities

Λ0(ς) = λ[z(ς, τ), τ], M0(ς) = µ[z(ς, τ), τ], (3.12)

where τ is a parameter, and the connection between the Lagrangian coordinate ς and the
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Eulerian coordinate z is given by the formula

z(ς, τ) =

∫ ς

0

exp

[
−2

∫ t

0

F(ρ, σ)dσ

]
dρ, 0 6 ς 6 a, t > 0

The boundedness of F(ς, t) = f(z, t) for ς ∈ [0, a] and any finite t > 0 is guaranteed by

the solvability of the problem (1.8)–(1.13) globally. This provides the mutual uniqueness

of correspondence between the variables ς and z.

The existence of solutions of system (3.8) not depending on ς is the remarkable

peculiarity of this system. Such solutions are compatible with the boundary conditions

(3.9), (3.10). This circumstance permits us to use them as barrier functions for the solution

of the problem (3.8)–(3.10). We choose these functions in the following form:

Λ−(t) =
λmin

1 + λmin(t− τ) , Λ+(t) =
λmax

1 + λmax(t− τ) ,

M−(t) =
µmin

1 + µmin(t− τ) , M+(t) =
µmax

1 + µmax(t− τ) ,
where λmin (λmax) and µmin (µmax) are the minimal (maximal) values of functions λ(z, τ) and

µ(z, τ) in the interval 0 6 z 6 s(τ).

Here we use the condition of Proposition 4, l(t) + m(t)) 0 for 0 6 t 6 τ. We may

assume without loss of generality that one can find an interval (t1, t2), 0 6 t1 < t2 6 τ

such that the strict inequality

l(t) < 0 when t1 < t < t2 (3.13)

is satisfied. At the same time, the function m(t) can vanish identically (note that both

functions l and m are nonpositive for t > 0 in accordance with condition (2.10)). The case

when l = 0 for all t > 0 and the inequality analogous to (3.13) is satisfied for the function

m(t) is considered in a similar way.

First, let us consider the special case m = 0 for all t > 0. Then the second condition

(2.13) is homogeneous and implies the equality µ = 0 in the domain S̄T for any T > 0

from the uniqueness theorem for the solution of the initial boundary value problem

(2.12)–(2.15) for the function µ. This means that the functions f and g coincide for all

z ∈ [0, s(t)], t > 0.

On the other hand, the values of the function λ are strictly positive on the upper

boundary t = τ, 0 6 z 6 s(τ) of the domain ST in consequence of inequality (3.13) and

the strict maximum principle applied to the solution of the problem (2.12)–(2.15) for the

function λ. So λmin = minλ(z, τ) > 0. Now let us consider the function P− = Λ − Λ−. By

virtue of (3.8)–(3.10), it is the solution of the following problem:

P−t + (Λ + Λ−)P− = ν exp

(∫ t

0

Λdt′
)[

exp

(∫ t

0

Λdt′
)
P−ς
]
ς

, (ς, t) ∈ ΣT ,

P−ς (0, t) = P−ς (a, t) = 0, t > τ,

P−(ς, τ) = Λ0(ς)− λmin, 0 6 ς 6 a

(here we take into account that λ[z(ς, τ), τ] = Λ0(ς) in accordance with (3.12)). It follows

from the maximum principle that P−(ς, τ) > 0 in the semistrip Σ̄T ; this fact implies the
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estimate

Λ(ς, τ) >
λmin

1 + λmin(t− τ) for (ς, t) ∈ Σ̄T
by virtue of definition of this function.

The inequality

Λ(ς, t) 6
λmax

1 + λmax(t− τ) for (ς, t) ∈ Σ̄T
is obtained in a similar way. Then we rewrite this inequality in terms of λ(z, t), and take

into account that λ = 2f, f = g by virtue of µ = 0, so that

λmin

1 + λmin(t− τ) 6 2f(z, t) 6
λmax

1 + λmax(t− τ) when 0 6 z 6 s(t), t > τ.

The correctness of asymptotics (3.4) for the functions f and g is obtained; consequently

the asymptotics for the function s follows immediately from (2.8).

Let us pass to the analysis of general case where the inequality (3.13) is satisfied in

parallel with

m(t) < 0 when t3 < t < t4, (3.14)

where t3 and t4 are some numbers from the interval [0, τ]. First of all we see that the

inequality (3.14) implies µmin = min µ(z, τ) > 0. This fact permits us to prove the non-

negativity of the functions Q− = M −M−, Q+ = M+ −M in the domain Σ̄T , and to

obtain the estimates

µmin

1 + µmin(t− τ) 6M(ς, t) 6
µmax

1 + µmax(t− τ) for (ς, t) ∈ Σ̄T .

The last inequalities take the following form in terms of the functions f and g (µ = f−g):

µmin

1 + µmin(t− τ) 6 f(z, t)− g(z, t) 6
µmax

1 + µmax(t− τ) when 0 6 z 6 s(t), t > τ.

These upper and lower estimates Λ(ς, t) imply the following inequalities for the function

λ = f + g:

λmin

1 + λmin(t− τ) 6 f(z, t) + g(z, t) 6
λmax

1 + λmax(t− τ) when 0 6 z 6 s(t), t > τ.

As a result, we come to the relations f + g = t−1 + O(t−2), f − g = t−1 + O(t−2) when

t → ∞, 0 6 z 6 s(t). This fact proves the correctness of the asymptotic representations

(3.3) for the general case, when the both functions l(t) and m(t) take negative values

even at some part over the interval (0, τ). The use of (2.8) and (3.3) gives the required

asymptotics (3.2) of function s(t). q

Proposition 5 Let us suppose that solution of problems (1.8)–(1.13) is defined in the

domain ST . If the inequality (2.10) and the condition

l + m = −A/νk = const < 0 when t > τ (3.15)

are satisfied then one can find such finite t∗ > 0 that s(t) > 0 for 0 6 t < t∗ and s → 0

when t↗ t∗.
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Proof Let us use the identity (2.9), and rewrite it in terms of the functions f and g:

d

dt

∫ s

0

fdz +

∫ s

0

(3f2 + g2)dz = −νk(l + m). (3.16)

We introduce the functions

U(t) =

∫ s(t)

0

f(z, t)dz, V (t) =

∫ s(t)

0

g(z, t)dz. (3.17)

Using the Cauchy–Bunyakovsky inequality and condition (3.15), we obtain from (3.16) a

differential inequality for the function U:

dU

dt
6 −3U2

s
+ A when t > τ. (3.18)

Note that the inequality U(τ) = U0 > 0 is valid by virtue of the conditions of Proposition

5. Moreover, the function U(t) is non-negative for t > τ and cannot vanish as long

as s(t) > 0. These statements follow from the strict maximum principle applied to the

functions f + g, f − g (see the beginning of the Proof of Proposition 4). Then it follows

from (2.8), (3.17) that ds/dt < 0 for these values of t. This fact permits us to rewrite the

inequality (3.18) in more convenient form by introducing the function U2 = W (s):

dW

ds
− 3W

s
> −A s 6 s(τ) = s0.

Integration of the last inequality leads to the result

W (s) >
sA

2

(
1− s2

s20
+

2U2
0s

3

As30

)
≡ sA

2
R2(s),

and, moreover, R(s) > C8 > 0 for s ∈ [0, s0]. The estimate below is obtained from this

fact and the relation ds/dt = −2W 1/2(s) following from (2.8), (3.17) and the definition of

function W : ∫ s0

s

dr

R(r)
√

2Ar
> t− τ.

The integral entering this estimate converges when s→ 0. This fact guarantees finiteness

of the value of t∗ corresponding to the vanishing-time of the function s, and we obtain

the following estimate of t∗:

t∗ 6
1√
2A

∫ s0

0

ds

R(s)
√
s

+ τ.

q

The interest in investigating the behaviour of solution of the problem (1.8)–(1.13) near

the moment t∗ follows from this proposition. The simplest solution of this question can

be found in the case when both functions l(t) and m(t) take constant values beginning

with some τ.

Proposition 6 Let the conditions of Proposition 5 be satisfied. Moreover, assume that

l − m = −B/νk = const when t > τ (3.19)
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with |B| 6 A. Then the following relations are valid as t↗ t∗:

s

(t∗ − t)2
→ 4A

(
1 +

√
1− 8β2/9

)
, (3.20)

U

t∗ − t → A

(
1 +

√
1− 8β2/9

)
, (3.21)

V

t∗ − t →
4B

3
(3.22)

where β = B/A (|β| 6 1) and the functions U(t), V (t) are defined by (3.17).

Proof The identity (3.15) and the analogous identity

d

dt

∫ s

0

gdz + 4

∫ s

0

fgdz = −νk(l − m), (3.23)

obtained by integration of the second equation (1.8) by z over the interval [0, s(t)] with the

use of relations (1.9)–(1.11) are the basis of the proof. Both identities are considered for

the values t > τ, when their right-hand sides are constant by virtue of conditions (3.15),

(3.19).

Let us denote the mean value of function g(z, t) on the interval 0 6 z 6 s(t) as ḡ(t) and

put j(z, t) = g − ḡ. The identities (3.16), (3.23) can be rewritten in the form

dU

dt
+

3U2 + V 2

s
+

∫ s

0

(3h2 + j2)dz = A, (3.24)

dV

dt
+

4UV

s
+

∫ s

0

hjdz = B when t ∈ [τ, t∗)

with the help of these functions and the functions f̄(t), h(z, t) = f − f̄ introduced before.

(Here we use the evident equalities U = sf̄, V = sḡ following from (3.17) and definition

of functions f̄ and ḡ .)

The system (3.24) is not closed for the functions U and V ; however, this fact does not

prevent us from finding the asymptotics of its solution near the moment t∗ when s(t∗) = 0.

The point is that the integral terms of (3.24) tend to zero quickly when t↗ t∗. The proof

depends upon the representations

f(z, t) = f̄(t) +

∫ z

b(t)

fz(ς, t)dς, (3.25)

g(z, t) = ḡ(t) +

∫ z

c(t)

gz(ς, t)dς,

where b(t) and c(t) are points from the interval [0, s(t)] where the function f(z, t) (g(z, t))

takes its mean value as a function of z. Using the uniform estimates (2.22) of the

functions |fz |, |gz | which are valid by virtue of (2.10), and remembering the definitions of

the functions h, j, we arrive at the inequalities

|h| 6 C5s, |j| 6 C5s when 0 6 z 6 s(t), τ 6 t 6 t∗.
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Now if the system (3.24) is rewritten in the form

dU

dt
+

3U2 + V 2

s
+ Φ(t) = A, (3.26)

dV

dt
+

4UV

s
+Ψ (t) = B,

where

Φ =

∫ s(t)

0

[3h2(z, t) + j2(z, t)]dz, Ψ = 4

∫ s(t)

0

h(z, t)j(z, t)dz

then the estimates

|Φ| 6 C9s
3, |Ψ | 6 C9s

3 when τ 6 t 6 t∗ (3.27)

with C9 = 4C2
5/3 = const will be valid for the functions Φ(t), Ψ (t).

It follows from the strict monotonicity of function s on the interval [τ, t∗) obtained in

Proposition 5 that we may convert the dependence on s to t, and consider Φ and Ψ as

functions of the variable s; Φ[t(s)] = φ(s), Ψ [t(s)] = ψ(s), where 0 6 s 6 s0 = s(τ). The

further reasoning is based on the transformation of (3.26) into a third-order system with

the help of the change of variables

U = (As)1/2q(ρ), V = (As)1/2r(ρ), ρ = ln(1/s). (3.28)

Substitution of (3.28) into (3.26) and recalling that ds/dt = −2U leads to the system of

equations

2q
dq

dρ
+ 2q2 + r2 = 1− ϕ(s)

A
,

2q
dr

dρ
+ 3qr = β − ψ(s)

A
, (3.29)

ds

dρ
= −s, ρ > ρ0,

where ρ0 = ln(1/s0), β = B/A = const, |β| 6 1 by virtue of the conditions of Proposition

6. Our aim is to investigate the behaviour of the solution of the Cauchy problem

q(ρ0) = q0, r(ρ0) = r0, s = exp(−ρ0) = s0 (3.30)

for the system (3.29) when ρ→∞, where

q0 = (As0)−1/2

∫ s0

0

f(z, t)dz, r0 = (As0)−1/2

∫ s0

0

g(z, τ)dz.

Moreover, it is assumed that the functions f and g are already defined in the domain

Sτ so that |r0| 6 q0, q0 > 0 on the basis of (2.16), (3.17) and (3.28) (note that conditions

of Proposition 6 guarantee the satisfaction of the inequalities (2.10), providing estimates

(2.16)). The inequalities

q(ρ) > 0, |r(ρ)| 6 q(ρ) (3.31)

for any finite ρ > ρ0 also follow from these relations, but here they play the role of a

priori estimates for solution of the Cauchy problem (3.29), (3.30).

First, note that the trajectory of the dynamical system (3.29) emerging from the

point (q0, r0, s0) cannot leave the limits of the cylindrical sector KN = {q, r, s : 0 <
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q2 + r2 < N2, |r| < q, 0 < s < s0} of phase space R3 (where N is sufficiently large)

when ρ > ρ0. It is sufficient for the proof of this statement to check that no outgoing

points of the system (3.29) are situated on the boundary of the domain KN . In fact,

the rectangles q = r, 0 6 s 6 s0 and q = −r, 0 6 s 6 s0 cannot contain outgoing

points in view of inequalities (3.31). The upper segment of KN , i.e. the circular sector

0 6 q 6 N, |r| 6 q, s = s0, consists of ingoing points in accordance with the third

equation of system (3.29). The lower segment of KN cannot contain outgoing points, since

it corresponds to the value ρ = ∞.

Now one must check the absence of exit points on the cylindrical part of the boundary

KN , i.e. on the set HN = {q, r, s : q2 + r2 = N2, |r| 6 q, 0 6 s 6 s0}. The field of

directions of the dynamical system (3.29) is characterized by the vector~l with components

(2q)−1[1− 2q2− r2−A−1ϕ(s)], (2q)−1[β− 3qr−A−1ψ(s)], −s. The scalar product~l ·~n of~l

and the unit external normal~n = (cosω, sinω, 0) to the surface HN , where ω = arctg(r/q),

gives

~l ·~n = −N(1 + sin2 ω)− [A−1ϕ(s)− 1] cosω + [A−1ψ(s)− β] sinω

(2N cosω)
.

Since |ω| 6 π/4 on the surface HN, |ϕ| 6 C9s
3
0, |ψ| 6 C9s

3
0 by virtue of (3.27), and |β| 6 1,

one can obtain the inequality ~l ·~n < 0 on the surface HN by choosing N larger than

max [(1 + A−1C9s
3
0)1/2, (q2

0 + r2
0)1/2], and that the point (q0, r0, s0) belongs to the set K̄N .

Then both inequalities (3.31) and the a priori estimate

q 6 N when ρ > ρ0 (3.32)

are valid for the solution of the Cauchy problem (3.29), (3.30).

Let us return to the system (3.29). It has the unique equilibrium point

q = q∗ ≡ 0.5

(
1 +

√
1− 8β2/9

)1/2

, (3.33)

r = r∗ ≡ 2−1/2Sgnβ

(
1 +

√
1− 8β2/9

)1/2

, s = 0

in the domain KN . Linearization of (3.29) near the equilibrium point leads to the system

dQ

dρ
= −2Q− r∗

q∗
R,

dR

dρ
= − 3r∗

2q∗
Q− 3

2
R,

dS

dρ
= −S.

The eigenvalues of the matrix of this system are

λ1,2 =
−7q∗ ±√(q∗)2 + 24(r∗)2

2q∗
, λ3 = −1.

Since q∗ > 0 and |r∗| 6 q∗, and |β| 6 1 all eigenvalues λi (i = 1, 2, 3) are negative. The

equilibrium point (q∗, r∗, 0) of system (3.29) is stable in accordance with the Lyapunov

theorem.

The proof of the fact that trajectory of the dynamic system (3.29) starting from the point

(q0, r0, s0) at the ‘moment’ ρ = ρ0 finishes at ρ→∞ at the equilibrium point (q∗, r∗, 0) will
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complete the proof of Proposition 6. From this fact, (3.20)–(3.22) are derived without any

problems. By virtue of the third equation (3.29), the projection of the desired trajectory

on the plane s = 0 approaches asymptotically (by virtue of the third equation (3.29)) as

ρ→∞ the trajectory of two-dimensional dynamical system

dq

dρ
= (2q)−1(1− 2q2 − r2), (3.34)

dr

dρ
= (2q)−1(β − 3qr)

emerging from the point (q0, r0) at ρ = ρ0; denote this trajectory by L. As was proved

before, the curve L is contained in a circular sector D̄N = {q, r : q2 + r2 6 N2, |r| 6 q}.
Now let us suppose that |β| < 1. Then

~m(q, r) = ((2q)−1(1− 2q2 − r2), (2q)−1(β − 3qr))

does not vanish on the boundary of the domain DN,ε = {q, r : ε2 < q2 + r2 < N2, |r| < q},
where the number ε > 0 is chosen less than q0 > 0. (Note that for |β| < 1 and sufficiently

small ε all points of the ‘arch’ q2 + r2 = ε2, |r| 6 q are ingoing points for system (3.34),

so that the trajectory L does not fall outside the limits of not only the sector D̄N but

also the domain D̄N,ε for ρ > ρ0.) Since ~m� 0 on the boundary of the domain DN,ε we

may calculate the rotation of the vector field ~m(q, r) on this boundary. Simple calculations

show that this rotation is equal to unity. Since q = q∗, r = r∗ is the unique singular point

of the field ~m in the domain D̄N,ε and the index of this point is equal to unity, then system

(3.34) has no limit cycles in the domain D̄N,ε. So it follows that point (q∗, r∗) is the limit

point of curve L when ρ→∞.

Now let β = 1 (case β = −1 is considered in a similar way). Here the vector ~m

vanishes on the boundary of the domain DN,ε : ~m(1/
√

3, 1/
√

3) = 0. If at the same time

q0 = r0 = 1/
√

3, then the trajectory L consists of one point. If q0 = r0� 1/
√

3, ε 6 q0 6 N
then the line L is a part of a segment of the straight line q = r. In this case, the dependence

q(ρ) is defined from solution of the Cauchy problem

dq

dρ
= (2q)−1(1− 3q2) when ρ > ρ0, q(ρ0) = q0.

It is evident that q → q∗ = 1/
√

3 when ρ → ∞. If the point (q0, r0) lies strictly inside

the domain D̄N,ε then we can narrow down a little the opening angle of this domain and

achieve the situation when vector field ~m has no zeros on the boundary of the domain

ε2 < q2 + r2 < N2, |r| < (1 − δ)q containing the point (q0, r0) (the last fact can be

ascertained for small enough δ > 0). Now the above reasoning about the rotation of the

field ~m can be repeated almost literally.

So now we have shown that the relations

q → q∗, r → r∗ when ρ→∞. (3.35)

hold under the conditions of Proposition 6. Concerning ρ = ln (1/s), this follows from

(3.35) and definition of q∗ and r∗ (3.33), with account of equations (3.28), that

U

(As)1/2
→ 0.5

(
1 +

√
1− 8β2/9

)1/2

, (3.36)
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V

(As)1/2
→ [0.5

(
1−

√
1− 8β2/9

)
]1/2 when s→ 0.

The first of this relations means that ds/dt → −
[
As
(

1 +
√

1− 8β2/9
)]1/2

when t ↗ t∗

by virtue of the equation ds/dt = −2U. The limit equality (3.20) follows from this fact

and then the relations (3.21), (3.22) can be obtained from (3.36). q

This proposition deserves some comment. The reason for introducing the functions

U(t), V (t) is the following: these functions remain bounded in the limit t↗ t∗ in contrast

to the functions f̄(t), ḡ(t); moreover, U = O(t∗ − t), V = O(t∗ − t) when t ↗ t∗. On the

other hand, the equalities below follow from the formulae U = f̄s, V = ḡs, relations

(3.20)–(3.22) and representations (3.25) by virtue of equations (2.22):

f(z, t) =
1

4(t∗ − t) + O(t∗ − t)2, (3.37)

g(z, t) =
3

8β(t∗ − t)
(

1−
√

1− 8β2/9

)
+ O(t∗ − t)2 when t↗ t∗, 0 6 z 6 s(t).

Thus, formulae (3.20), (3.37) imply that smooth joining of free boundaries of the layer

takes place in the moment t∗, although the longitudinal components of the liquid velocity

grow infinitely when t↗ t∗.

4 Discussion and conclusion

(a) The system (1.8) admits solutions with f = g, f = −g and g = 0. In accordance

with (1.7), the first two cases describe plane flows. These cases can be realized if

one puts m = 0 and l = 0 in (1.6). The case g = 0 corresponds to the equality

l = m for all t > 0. In this case, the solution of the problem (1.8)–(1.13) describes

axisymmetric motion.

(b) Proposition 2 gives sufficient conditions for blow-up of the solution of problems

(1.8)–(1.19) in finite time t∗. Note that this phenomenon has a purely inertial

character; viscous forces cannot prevent it, although these forces guarantee the

space regularity of the solution.

The question about the structure of the solution singularity near the moment t∗
is still open. This question is studied in detail in Galaktionov & Vazquez [6] for

the plane analogue of the discussed problem. More precisely, (1.8) with g = f is

considered in Galaktionov & Vazquez [6] ; there the modified problem with free

boundary (1.9)–(1.13) is investigated – one puts l = m = 0 in the condition (1.9)

and substitutes condition (1.13) for f by the following:

f(z, 0) = f0(z), 0 6 z 6 a.

(We shall call this problem P.)

Let the function f0 satisfy the natural smoothness and compatibility conditions

and also the inequality f0 6 0 for z ∈ [0, a] and some ‘steepness condition’ [6]. Then

https://doi.org/10.1017/S0956792501004776 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004776


222 V. V. Pukhnachov

the solution f, s of problem P has the asymptotics

s(t) ∼ π

2
√
α(t∗ − t) , f(z, t) ∼ −cos2

(
z
√
α(t∗ − t))

t∗ − t
when t↗ t∗, 0 6 z < s(t), where α = const > 0.

(c) Sufficient conditions for solvability of problem P for all t > 0 are determined in

Pukhnachov [13]. Also constructed in this paper is a class of its exact solutions of

the form

f = a(t) + b(t) cos[πnz/s(t)], (4.1)

where n is a natural number and functions a, b, s form the solution of a dynamical

system. The value of the solutions (4.1) consists of the fact that these solutions

represent the leading terms of both the blow-up of solutions of problem P when

t↗ t∗ and its regular solutions when t→∞.

(d) Let us consider the problem (1.8)–(1.13) for the case l + m = 0 where the function

l(t) is non-negative and l > 0 at some interval 0 < t1 < t < t2 < ∞. Then

the statement of Proposition 2 is valid, although its proof requires some small

modification. The case l = −m is interesting from the physical point of view in

so far as tangential stress applied to the free boundary in the x-direction has

the same magnitude but opposite sign to that applied in the y-direction. In this

case, the analysis of problems (1.8)–(1.13) shows that the layer thickness 2s(t) is a

monotonically increasing function of time, and there exist some t∗ < ∞ such that

s→∞ when t↗ t∗.
Indeed, now the boundary condition (1.9) for the function f is uniform, while

the right side of the same condition for the function g is strictly negative within

the interval (t1, t2). On the basis of the maximum principle, we have g2 > 0

when t1 < t < t2, 0 6 z 6 s(t). At once, we consider the first equation (1.8)

as a linear parabolic equation with coefficients f and −2
z∫

0

fdζ before f and fz ,

respectively, and with a source −g2. Remembering that the function f(z, t) satisfies

the uniform boundary and initial conditions (1.9), (1.13), we conclude that f < 0

when t ∈ (t1, t2), z ∈ [0, s(t)] in view of the maximum principle. It means that the

mean value f̄(t) of the function f in the interval [0, s(t)] is negative if t ∈ (t1, t2). As

was shown in the proof of Proposition 2, the inequality f̄(τ) < 0 implies the estimate

f̄(t) 6 (1 + γτ− γ t)−1f̄(τ) where t > τ ∈ (t1, t2), γ = const > 0. On account of (2.8),

this estimate guarantees the required property s → ∞ when t ↗ t∗ 6 τ + γ−1. We

emphasize that this effect has a purely nonlinear character.

(e) Here we suggest some comments on Proposition 4. The exceptional case described

by formulae (3.5) corresponds to plane motion. If the equality l = 0 or m = 0 is

broken at some arbitrarily small interval of time then the solution of the problem

(1.8)–(1.13) is symmetrized with growth of t, as follows from relations (3.4) (note that

g = 0 for axisymmetric motion). The essential distinction between plane and three-

dimensional regimes of thinning of the layer is demonstrated by the asymptotics of

function s: in the first case s ∼ t−1 and in the second case s ∼ t−2 when t→∞.
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(f) Let us consider the problem of thermocapillary motion of viscous liquid in a layer

with linear dependence of the free boundary temperature on the space coordinates,

θΓ = A(t)x+ B(t)y.

It is not difficult to see that its solution can be obtained in the form

u = u(z, t), v = v(z, t), w = 0, p = 0, s = a = const.

The functions u, v are determined as solutions of the second initial boundary value

problem for the linear equation of heat conduction (the details are omitted).

Thus, a linear distribution of temperature on the plane free boundary of a viscous

layer does not lead to a thickness change. It is natural to suppose on the basis of

this observation that the main change of the layer thickness under the action of

thermocapillary forces takes place near the critical points of the temperature field

on free surface. This concept can be considered as an additional motivation for

the investigation of solutions of the Navier–Stokes equations of the form (1.7). The

unboundedness of functions u and v when x, y → ∞ is the evident defect of this

solution. However, we can consider it as a solution describing the local behaviour

of liquid in vicinity of critical points of the temperature field on the free boundary.

(g) The problem (1.1)–(1.6) can be referred to as a ‘non-connected’ problem of thermo-

capillary convection. It originates from the assumption that the temperature is a

given function at the free boundary. A more complicated ‘connected’ problem deals

with the boundary condition of second or third kind for the temperature. Let us

suppose that the free boundary is thermo-insulated. Then the condition (1.6) should

be replaced by

θz(s(t), t) = 0, 0 < t < T . (4.2)

In this case, we have the temperature representation

θ = ϕx2 + ψy2 + ω

where ϕ(z, t), ψ(z, t), ω(z, t) are determined from the parabolic system coupled with

the equations (1.8) via boundary conditions including (4.2). The plane analogue of

this problem was studied numerically in Andreev & Pukhnachov [3].

(h) To identify a physical system that might correspond to the solution of the problem

(1.1)–(1.6), let us consider a liquid film of mean initial thickness a and the diameter

d suspended in a solid frame at the presence of gravity with the acceleration g. It

is clear that following relations should be satisfied: a � d, d ∼ (2σ0/ρg)1/2 = L,

where L is the capillary constant and σ0 is a characteristic value of the surface

tension coefficient. This gives an upper estimate for a. The lower estimate limiting

the applicability of our approach is a � λ, where λ is the thickness of the double

diffusional electric layer. In this case, we can neglect the disjoining pressure in the

film.

Now let us introduce the dimensionless parameter q = ρgβa2/κ where β is the

volumetric coefficient of thermal expansion and κ is the parameter in relation (1.1).

If q � 1, we can ignore the contribution of the buoyancy in a formation of the
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velocity field and, therefore, eliminate from consideration the heat equation in the

context of our problem.

As an example, we consider a pure water film at low gravity (g = 1 cm/s2) near

the temperature 298K; in this case, L = 12 cm. If we choose a = 0.1 cm, d =

5 cm, λ = 10−6 cm then inequalities λ� a� d will be true as well as q � 1 (in fact,

here q = 1.6 · 10−5). In addition, we note that the characteristic time of the problem

is of order [aρ/κ(l∗ + m∗)]1/2 = τ, where l∗ and m∗ are the maximum values of the

functions l and m, respectively. Putting l∗ = m∗ = 10−2K/cm2, we obtain τ = 5.6 s.
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