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Numerical simulation of jets generated by a
sphere moving vertically in a stratified fluid
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The flow past a sphere moving vertically at constant speeds in a salt-stratified fluid
is investigated numerically at moderate Reynolds numbers Re. Time development of
the flow shows that the violation of density conservation is the key process for the
generation of the buoyant jet observed in the experiments. For example, if the sphere
moves downward, isopycnal surfaces are simply deformed and dragged down by the
sphere while the density is conserved along the flow. (The flow pattern is inverted
if the sphere moves upward. Some explanations are given in the introduction.) Then,
the flow will never become steady. As density diffusion becomes effective around the
sphere surface and generates a horizontal hole in the isopycnal surface, fluid with
non-conserved density is detached from the isopycnal surface and moves upward
to generate a buoyant jet. These processes will constitute a steady state near the
sphere. With lengths scaled by the sphere diameter and velocities by the downward
sphere velocity, the duration of density conservation at the rear/upper stagnation
point, or the maximum distance that the isopycnal surface is dragged downward, is
proportional to the Froude number Fr, and estimated well by πFr for Fr & 1 and
Re & 200, corresponding to a constant potential energy. The radius of a jet defined
by the density and velocity distributions, which would have correlations with the
density and velocity boundary layers on the sphere, is estimated well by

√
Fr/2ReSc

and
√

Fr/2Re respectively for Fr . 1, where Sc is the Schmidt number. Numerical
results agree well with the previous experiments, and the origin of the conspicuous
bell-shaped structure observed by the shadowgraph method is identified as an internal
wave.

Key words: internal waves, jets, stratified flows

1. Introduction
Atmospheric and oceanic flows are under the influence of stratification, and the

horizontal velocity component is usually much larger than the vertical component
since the horizontal length scale is much larger than the vertical scale which is
limited by the total depth of the atmosphere or the ocean. Therefore, most of the
studies on stratified flows have been concentrated on horizontal flows, including the
flow past a mountain which generates internal gravity waves (e.g. Castro, Snyder &

† Email address for correspondence: hanazaki.hideshi.5w@kyoto-u.ac.jp
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Jets generated by a sphere in a stratified fluid 425

Marsh 1983) or horizontal eddies in a blocked fluid under strong stratification (e.g.
Hunt & Snyder 1980).

On the other hand, vertical flows have rarely been studied, while they often become
important in small-scale processes. For example, development of a Lagrangian float
to observe the deep ocean requires an estimation of the vertical drag at speeds less
than 20 cm s−1 (D’Asaro 2003). Small organic matter such as plankton controls
the carbon cycle in the ocean, and the prediction of its vertical movement requires
the investigation of spherical particles at low Reynolds numbers (Srdić-Mitrović,
Mohamed & Fernando 1999; Abaid et al. 2004; Camassa et al. 2009, 2010; Yick
et al. 2009).

One of the earliest studies on the flow around a vertically moving obstacle in salt-
stratified fluids is the paper by Mowbray & Rarity (1967), in which the internal waves
generated by a sphere moving vertically in a quiescent stratified fluid were observed
by a schlieren method. Ochoa & Van Woert (1977) observed the flow generated by a
descending sphere by a shadowgraph method, and identified a vertical plume-like flow
above the sphere. A similar flow pattern has also been observed in the flow generated
by free buoyant oscillations of a sphere (Levitskii & Chashechkin 1999; Chashechkin
& Levitskii 2003).

It is important to note that the flow pattern becomes inverted if the sphere is moving
upward instead of moving downward. Namely, if the sphere is moving upward, a
strong downward jet is generated below the sphere. This can be verified from the
symmetry of the governing equations under the Boussinesq approximation, and can
be observed readily in experiments when the sphere is pulled up to its original height
for the next downward movement.

In a numerical study, Torres et al. (2000) found that the plume-like flow is actually
a ‘jet’ whose upward velocity is much faster than the downward sphere velocity. The
jet appears instead of the standing vortex observed in a neutrally stratified fluid. The
vortex observed at Re=200 is completely collapsed even in a weakly stratified fluid of
Fr' 19. The parameters Re and Fr are here defined by Re= 2Wa/ν and Fr=W/Na,
where W is the sphere velocity, a is the sphere radius, ν is the dynamic viscosity
of fluid and N is the Brunt–Väisälä frequency. Along with the appearance of the jet,
the drag coefficient CD of the sphere increases significantly under strong stratification,
corresponding to the large upward velocity or the reduced pressure above the sphere.

More recently, Hanazaki, Konishi & Okamura (2009b) investigated the effects of
Schmidt number by a numerical simulation, and found that the jet becomes much
broader as the Schmidt/Prandtl number decreases from 700 (salt in water) to 0.7 (heat
in the air), and the velocity in the jet decreases significantly. This shows that the
formation of the jet is controlled largely by the diffusion process of stratifying agents.

In an experimental study on the flow around a vertically moving sphere at moderate
Reynolds numbers, Hanazaki, Kashimoto & Okamura (2009a) identified seven types
of wake or jet structures in the parameter range of 0.2 . Fr . 70 and 30 . Re .
4000. One of the conspicuous phenomena found in that paper is the ‘bell-shaped’
structure which appears under strong stratification, accompanying a thin jet. It appears
at approximately three sphere radii above the rear/upper stagnation point of the sphere
when Fr ∼ 0.3 (Re= 247). Although the relation to internal waves was suggested in
that paper using the velocity distribution obtained by particle image velocimetry (PIV),
further investigations are necessary to confirm that conjecture.

One of the fundamental processes in which we are interested is the unsteady
development of the flow leading to the generation of a jet. The final approach to
a steady flow is also of interest to understand the whole process of jet formation.
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We know that, as far as the density is materially conserved, isopycnal surfaces are
simply pulled down by the sphere for an indefinitely long distance. This means at
the same time that a steady flow is never realised, since the upper light fluid travels
down with the sphere, continuously generating a larger density perturbation around
the sphere. Here, ‘steady flow’ means that the density perturbation from the quiescent
fluid is independent of time, and the velocity also has a constant value. Steady flow
is realised by density diffusion since the diffusion can stop the indefinite pulling
down of an isopycnal surface by the sphere. It will change the fluid density around
the sphere surface and generate a horizontal circular hole along the sphere surface
in the isopycnal surface, allowing the fluid of altered density to go up to near its
original height.

In this numerical study, we will first investigate the origin of the bell-shaped
structure observed in previous experiments (Hanazaki et al. 2009a) and will clarify
its relation with the internal gravity waves. Then, we will focus on the unsteady
generation process of the jet, especially the flow development near the sphere surface
and in the jet, which is important to understanding how the steady patterns are
established by the diffusive processes of density.

2. Numerical methods
We consider a sphere moving vertically at a constant speed in a linearly stratified

fluid. The governing equations are the momentum equation under the Boussinesq
approximation, the density equation, and the mass-conservation equation. In the
laboratory (i.e. stationary) frame, they are given in dimensional form by

ρ
Du
Dt
=−∇p− ρgẑ+µ∇2u, (2.1)

Dρ
Dt
= κ∇2ρ (2.2)

and
∇ · u= 0, (2.3)

where t is the time, u is the velocity, p is the pressure, ρ is the density, g is the
acceleration due to gravity, µ is the viscosity coefficient and κ is the diffusivity
coefficient. We use cylindrical coordinates with the cylindrical axis z in the vertical
direction (figure 1), so that ẑ is the unit vector in the vertical direction.

To examine the fundamental process of jet formation without complications by three-
dimensional effects, we consider the cases in which essentially axisymmetric flow
has been observed in the experiments. Then, we assume axisymmetric flow in the
computation, and the velocity has only two components u = (u, w), with u and w
being the horizontal (radial) and vertical components,

In the numerical simulation we use a coordinate frame moving downward with the
sphere at a constant speed W (figure 1). The flow observed in the moving frame is
equivalent to that generated when the stratified fluid layers move upward at the same
speed. The basic fluid density ρ and the hydrostatic pressure p are functions of time
and height z:

ρ(z, t)= ρ(0, 0)+ ∂ρ
∂z
(z−Wt) (2.4)

and
p(z, t)=−

∫ z

ρ(z, t)gdz, (2.5)
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Jets generated by a sphere in a stratified fluid 427

FIGURE 1. Schematic figure of the flow considered in this study. A frame moving
vertically downward with the sphere is used for the computation, i.e. linearly stratified
fluid moves up at a constant speed W relative to the sphere.

where z is the vertical coordinate measured from the centre of the sphere, ∂ρ/∂z is
the vertical gradient of the basic density field which is constant for a linearly stratified
fluid, and ρ(0, 0) is the initial density at the equator level (z= 0) of the sphere. The
term −Wt in (2.4) appears since we have adopted a moving frame.

We decompose the total density and the total pressure into the basic states and the
perturbations from them, i.e.

ρ = ρ(z, t)+ ρ ′(x, t) (2.6)

and
p= p(z, t)+ p′(x, t), (2.7)

where the primes denote perturbations.
Substituting (2.6) and (2.7) into (2.1), subtracting the basic state and using the

Boussinesq approximation, the momentum equation becomes

Du
Dt
=− 1

ρ0
∇p′ − ρ

′

ρ0
gẑ+ ν∇2u, (2.8)

where ρ0 = ρ(0, 0) and ν =µ/ρ0 is the kinematic viscosity. Similarly, substitution of
(2.6) into (2.2) gives

Dρ ′

Dt
=−∂ρ

∂z
(w−W)+ κ∇2ρ ′. (2.9)

We scale length by the sphere diameter 2a, velocity by the mean flow or the
downward velocity of the sphere W, pressure perturbation by ρ0W2, and density
perturbation by −2a(∂ρ/∂z). Then, the non-dimensional equations are

Du
Dt
=−∇p′ − 4

Fr2ρ
′ ẑ+ 1

Re
∇2u (2.10)

and
Dρ ′

Dt
=w− 1+ 1

ReSc
∇2ρ ′. (2.11)

The non-dimensional parameters in these equations are the Reynolds number Re =
W2a/ν, Froude number Fr =W/Na and Schmidt number Sc = ν/κ , where N is the
Brunt–Väisälä frequency defined by

N2 =− g
ρ0

∂ρ

∂z
. (2.12)
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We may rewrite (2.4) in non-dimensional form as

ρ(z, t)= ρ(0, 0)− z+ t. (2.13)

Comparison with (2.4) reveals that −z represents linear stable stratification and t
represents the density increase due to the downward movement of the sphere or the
mean upward movement of the stratified fluid. The non-dimensional total density then
becomes

ρ(x, t)= ρ(z, t)+ ρ ′(x, t)= ρ(0, 0)− z+ t+ ρ ′(x, t). (2.14)

When there is no initial density perturbation (ρ ′(x, 0)= 0), substitution of t= 0 into
(2.14) recovers the initial density distribution as

ρ(x, 0)= ρ(z, 0)= ρ(0, 0)− z. (2.15)

As an initial condition, we have used an impulsive start, i.e. vertical mean flow is
instantly raised to its maximum and constant speed W at t= 0.

Numerical methods for solving the governing equations are essentially the same as
those in Torres et al. (2000) or Hanazaki et al. (2009b). Namely, the finite difference
method combined with the marker and cell (MAC) method (Harlow & Welch 1965) is
used for the simulation of the flow of incompressible stratified fluid (Hanazaki 1988).

We mainly consider the flow at the Reynolds number of 200, below which
axisymmetric flow has been observed in homogeneous fluids (Taneda 1956), while
the Froude number is changed in the range of 0.36Fr 6 10. In some cases, we have
simulated the case of different Re (20 6 Re 6 1000) at fixed Fr (=1) to investigate
the Reynolds number effects. For comparison with previous experiments, we have
also simulated the case of Fr = 0.3 and Re= 247 (as will be seen later in figure 3).
Schmidt number is fixed at Sc= 700 throughout this study to correspond to the salt
stratification used in the previous experiments.

The governing equations originally written in cylindrical coordinates (z, r) are
transformed to body-fitted curvilinear coordinates with variables ξ and η (figure 2a),
and the computation is executed on the transformed coordinates. Since the density
boundary layer is very thin for a salt-stratified fluid with a high Schmidt number
(Sc = 700) even at moderate Reynolds numbers, grid points are highly concentrated
near the sphere surface along which η is constant, to resolve a large density variation
in a narrow region. The mesh number in the density boundary layer is approximately
six if we estimate the thickness of the density boundary layer by 1/

√
ReSc, which

is 2.67× 10−3 for Re= 200, and 1.20× 10−3 for Re= 1000, although we will show
later in figures 21 and 22 that the boundary layer is in many cases much thicker
than this passive-scalar limit (Fr→∞). An even finer mesh is used near the z-axis,
on which a thin vertical jet is generated and large horizontal density variation is
expected, especially under strong stratification (figure 2b). The grid lines are parallel
to the z axis to obtain a good resolution near the z axis.

The total number of grid points on the transformed plane, i.e. ξ–η plane, is 360×
1000. The grid resolution near the z-axis is much higher than in Torres et al. (2000)
and is comparable to the case of highest resolution (360 × 241) in Hanazaki et al.
(2009b) where the smallest grid spacing used along the z-axis is 1r= 6× 10−4. The
outer boundary of the computational domain is a circle whose radius is

√
r2 + z2 =

100× 2a, where 2a is the diameter of the sphere. A large area is used, since it takes
a long time before a steady state is realised in weakly stratified fluids, in which the
light upper fluid is pulled down by the sphere for a long distance. The computed area
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FIGURE 2. Grid used for the computation of the flow with Re = 200 and Sc = 700.
(a) Grid near the sphere. Only every other grid line is drawn in both the ξ and η
directions. (b) Close-up view of the grid very near the rear/upper stagnation point of
the sphere located at (r, z) = (0, 0.5). (c) Steady distribution of density perturbation
ρ ′ (Fr= 0.3, Re= 200) on the horizontal and straight grid line of z= 0, which originates
from the equator (θ = 90◦) of the sphere (cf. figure 6a). The abscissa d is the distance
from the sphere surface, and the black squares (p) denote the position of grid points.

is much larger than in Torres et al. (2000) and Hanazaki et al. (2009b), in which the
outer boundary is located at most twenty times the sphere diameter. This is realised
by the use of many more grid points in the η direction (=1000) normal to the sphere
surface. Isopycnals initially located at the height of the sphere centre, i.e. at z = 0,
move upward relative to the sphere at speed W, and they reach the upper boundary of
the computational domain at time Wt/2a=100. Computation should be stopped before
that time since the large deformation of the isopycnal surface at the upper boundary,
if it exists, would reduce the accuracy of the solution. In other words, at large times
which satisfy Wt/2a > 100, the isopycnal surface initially deformed and dragged by
the sphere can no longer be traced.

Under weak stratification, the isopycnal surface is pulled down for a very long
distance as we will see later in figure 7, for example. The remote outer boundary also
helps to reduce the effects of internal wave reflection at the boundary, compared with
the laboratory experiments in which the tank dimension is often less than 2a× 100.
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W

(a) (b) (c)

FIGURE 3. (Colour online) Typical results at a low Froude number (Fr = 0.3, Re= 247,
steady state at t= 30). (a) Velocity vectors in laboratory/stationary frame. The arrow at the
centre of the sphere shows the downward velocity of the sphere. (b) Contours of vertical
velocity in laboratory/stationary frame, i.e. (w − 1), drawn at intervals of 1(w − 1) =
(wmax − 1)/10 for w− 1> 0 (solid lines), and |wmin − 1|/10 for w− 1< 0 (dashed lines).
Thick lines represent w − 1 = 0. (c) Grey-scale image of the distribution of molecular
diffusion of density ∇2ρ ′/ReSc.

The boundary conditions for the numerical simulations are specified as follows
(Hanazaki et al. 2009b). On the sphere surface, velocity satisfies the no-slip boundary
condition

u= (u,w)= (0, 0), (2.16)

and the density satisfies the no-flux or adiabatic condition

∇ρ · n= 0, (2.17)

where n is the unit normal to the sphere surface. Substitution of (2.14) into (2.17)
gives the boundary condition for the density perturbation

z
∂ρ ′

∂z
+ r

∂ρ ′

∂r
= z, (2.18)

while the substitution of (2.16) into the momentum equation (2.8) gives the boundary
condition for the perturbation pressure

∇p′ =−
(

2
Fr

)2

ρ ′ ẑ+ 1
Re
∇2u. (2.19)
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On the outer boundary where perturbations are small, the density and the pressure
are given by

ρ ′ = 0 (2.20)

and
∂p′

∂n
= 0, (2.21)

where n is the unit normal to the outer boundary. The velocity is specified as

u= (u,w)= (0, 1), (2.22)

except near the z-axis in the upper wake region where it is given by

∂u
∂z
= ∂w
∂z
= 0. (2.23)

To illustrate the resolution of the density boundary layer on the sphere surface,
an example of the density distribution near the equator of the sphere is plotted in
figure 2(c). This shows that the density boundary layer is well resolved and the
boundary condition (2.17) is satisfied, although it may appear later in figure 5 that
the isopycnals are not normal to the sphere surface. This illusory contradiction occurs
since the density boundary layer is very thin, even thinner than the width of the
contour lines.

3. Results
3.1. Bell-shaped structure and internal waves at a low Froude number

Since the bell-shaped structure is one of the most conspicuous structures observed
in the experiments and the results under strong stratification give a good insight into
the overall phenomena, we first discuss that structure. In figure 3 the bell-shaped
structure observed at the lowest Froude number (Fr = 0.3, Re = 247) is presented
in three different physical quantities, i.e. velocity vector (figure 3a), vertical velocity
component in the laboratory frame (figure 3b) and molecular diffusion of density
(figure 3c). Reynolds number is 247 only in this figure for a direct comparison with
previous experiments.

The structure can be most clearly observed in figure 3(c), since the figure
corresponds most directly to shadowgraph experiments in which this particular
structure was first observed. In experiments it was found that a large downward
velocity exists near the bell-shaped structure, the position of the bell relative to the
sphere is time invariant, and the bell moves down at the same speed as the sphere.
This lead to a conjecture that the internal lee wave is the origin of the bell-shaped
structure. In this numerical study, contours of vertical velocity in the laboratory frame,
i.e. w − 1, show steady diverging lee waves (figure 3b) as observed by PIV (figure
13 of Hanazaki et al. 2009a), and the position of the bell-shaped structure (figure 3c)
agrees with the position of the largest downward velocity. Then, the bell-shaped
structure is supported by a ‘steady’ lee wave whose wavelength determines the
time-independent distance of the structure from the sphere. This will become clearer
in figure 9, where the Froude number dependence is discussed.

Comparison between figure 3(a–c) shows that there is a small but discernible
difference between the height of the bell-shaped structure and the height of largest
downward velocity. This can be understood through the phase difference between w
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(a) (b) (c) (d )

FIGURE 4. (Colour online) Typical deformation process of an isopycnal surface (Fr= 0.3,
Re = 200). The surface is initially located at z = −1 as a horizontal plane. (a) t = 1;
(b) t= 2; (c) t= 3; (d) t= 4.

and ∇2ρ ′. To be more explicit, we assume the form of vertical velocity to be (e.g.
Gill 1982)

w∝ cos(k · x−ωt)= sin(k · x−ωt+π/2), (3.1)

in the linearised inviscid and non-diffusive governing equations, where k is the
wavenumber, x is the position and ω is the frequency. Then, the Laplacian of the
density perturbation becomes

∇2ρ ′ ∝ sin(k · x−ωt), (3.2)

showing that w has a phase advance of π/2, or a quarter-wavelength, compared to
∇2ρ ′. The phase difference can be more clearly identified if we compare the contours
of w− 1 and ∇2ρ ′, although the contours of ∇2ρ ′ are not presented here.

An example of three-dimensional images of the initial deforming process of an
isopycnal surface is presented in figure 4, where the movement of an isopycnal surface
initially located horizontally at z = −1 is depicted. It moves up to z = 0 at t = 1
(figure 4a) since the stratified fluid in the moving frame goes up relative to the sphere
at a constant speed W (=1). As long as the density is conserved, the isopycnal surface
is trapped by the sphere and simply deforms along the sphere surface without being
ruptured, as observed at t= 1 and 2 (figure 4a,b). If the density is conserved for an
indefinitely long time, the sphere will pull down the isopycnal surface for an infinitely
long distance. In reality, however, molecular diffusion of density given by ∇2ρ in the
density equation becomes larger as time elapses. It becomes significant in the density
boundary layer on the sphere surface. We note that before t= 3 (figure 4c), molecular
diffusion alters the value of density on the isopycnal surface, generating a circular
hole along the sphere surface. The hole is at the height of z ∼ 0.1 in figure 4(c),
for example. The appearance of a hole means that a new closed isopycnal line is
generated along the circumference of the hole, and the density has been changed. The
fluid of non-conserved density is no longer pulled down by the sphere, and it will
return, by the buoyancy force, to a position in the neighbourhood of, but possibly
different from, its original height since the original density has been changed by the
molecular diffusion.
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FIGURE 5. Time development of the isopycnal lines of total density ρ (Fr=0.3,Re=200).
Horizontal lines on the sphere represent the density distribution on the sphere surface.
Contour interval 1ρ is 0.5. (a) t= 0.5; (b) t= 1.0; (c) t= 10.0.

To examine the time development of density distributions more quantitatively,
contours of total density ρ are presented in figure 5 at a contour interval of 1ρ= 0.5.
Density contours on the sphere surface, which appear as straight horizontal lines due
to the axisymmetry of the flow, are also depicted. The contours on the sphere surface
represent circular holes in the isopycnal surface. The orange line at z = −0.5 when
t = 0.5 (figure 5a), which existed initially at z = −1 corresponds to the isopycnal
surface depicted in figure 4. The contour rises vertically and is simply deformed
along the sphere surface at least until t = 2, as observed in figure 4(b). A circular
hole appears in the isopycnal surface before t= 3 (figure 4c), and by the time when
the contour has risen to z= 9 at t = 10 (figure 5c), many new circular holes appear
on the sphere surface. The number of isopycnal lines on the sphere increases with
time, meaning that more stratified layers are affected by the molecular diffusion and
change their densities, generating a hole in each layer. We should note that the time
development of velocity shows that the jet develops (cf. figure 3a) in the vertical
range where large vertical displacement of isopycnal surface exists (e.g. 0.5. z. 1.8
in figure 5b), although the figures are not presented here.

We mention here that at this low Froude number (Fr = 0.3), velocity and density
near the sphere become steady in a short time, and figure 5(c) (t = 10) shows the
established steady distribution of ρ ′ near the sphere. Throughout this study, the word
‘steady’ means that the perturbation fields such as u′, w′ and ρ ′ are independent of
time, while the mean density field ρ(z, t) and the total density ρ are changing linearly
with time. Once the steady state is established, isopycnals in figure 5(c) drawn at the
vertical interval of 1z= 0.5, would also represent the time development of a single
isopycnal surface at the time interval of 1t= 0.5 as it rises up across the sphere.

Since the molecular diffusion on the sphere surface is essential to establish a steady
state, the time development of the density perturbation ρ ′ and the molecular diffusion
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FIGURE 6. (Colour online) (a) Time development of the density perturbation ρ ′ at six
selected points on the sphere surface. The angle θ is measured from the forward/lower
stagnation point of the sphere. (b) Time development of the density diffusion ∇2ρ ′/ReSc.
(Fr= 0.3 in both figures).

(1/ReSc)∇2ρ ′ at various points on the sphere is presented in figure 6. In figure 6(a)
the time development of ρ ′ is initially (t. 0.5) independent of the position (θ ) on the
sphere. Since ρ ′ changes according to (2.14), i.e.

ρ ′(x, t)=−t+ z− ρ(0, 0)+ ρ(x, t), (3.3)

and the initial density distribution is given by (2.15), invariance of density with time
at a fixed position (ρ(x, t)= ρ(x, 0)) is equivalent to

ρ ′(x, t)=−t, (3.4)

showing that ρ ′ decreases linearly with time.
On the sphere surface where velocity is zero (u=w= 0), the Lagrangian derivative

agrees with the partial time derivative (Dρ/Dt = ∂ρ/∂t). Then ρ(x, t) = ρ(x, 0),
i.e. ∂ρ/∂t = 0, means that the density is conserved (Dρ/Dt = 0). Therefore, on the
sphere surface, (3.4) means density conservation.

The violation of conservation of density is obviously due to molecular diffusion. On
the sphere surface where velocity is zero, (2.11) reduces to

∂ρ ′

∂t
=−1+ 1

ReSc
∇2ρ ′. (3.5)

In the case of no initial perturbation (ρ ′(x, 0)= 0), time integration gives

ρ ′ =−t+
∫ t

0

1
ReSc
∇2ρ ′dt, (3.6)

which shows that the cumulative molecular diffusion represented by the integral is the
origin of deviation from (3.4). We note at the same time that, when a steady state is
realised, ∂ρ ′/∂t= 0 in (3.5), and the diffusion term approaches unity, i.e.

1
ReSc
∇2ρ ′ = 1. (3.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.737


Jets generated by a sphere in a stratified fluid 435

7

6

5

4

3

2

1

11

0

0 11 0 11 0
–1

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

–1

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

–1

8

9

10

11

12

13

14

15

r r r

z

(a)  (b) (c)

FIGURE 7. Isopycnals of total density ρ in steady state (1ρ = 2). (a) Fr= 0.3 (t= 30);
(b) Fr= 1.5 (t= 30); (c) Fr= 10 (t= 90). The data used for (a) are almost the same as
figure 5(c), since the flow at Fr= 0.3 is almost steady near the sphere for t & 10.

As demonstrated in figure 6(b), molecular diffusion is generally small initially (t=0)
and is nearly zero at the stagnation points (θ = 0◦, 180◦), while it is already non-zero
near the equator (θ = 90◦) of the sphere. In the succeeding period (1. t. 2), however,
diffusion increases and approaches unity rapidly on the lower hemisphere, especially
near the lower stagnation point (θ = 0◦). As can be easily understood from (3.5) or
(3.6), (1/ReSc)∇2ρ ′ = 1 corresponds to constant ρ ′. Then, the steady state is realised
sooner on the lower hemisphere. On the rear/upper stagnation point (θ =180◦), density
is conserved for the longest period (t . 2), and the steady state is not realised until
t∼ 10.

Since the diffusion term increases to unity sooner and the decrease of ρ ′ stops
sooner, the final steady value of ρ ′ is larger at lower heights as demonstrated in
figure 6(a). Near the rear stagnation point, it takes the longest time before the density
diffusion approaches unity, and the final steady value of ρ ′ is smallest there. Thus, the
total density decreases more significantly at higher positions on the sphere surface.
This can be identified in figure 5(c), where the steady total-density distribution on
the sphere shows that the vertical distance between the contours is smaller at larger
heights.
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3.2. Froude number dependence
We next examine the effect of the Froude number. Steady isopycnals are shown in
figure 7 including the higher Froude numbers of Fr = 1.5 and 10. The figure shows
that a larger number of isopycnals are dragged downward under weaker stratification
(note that the contour interval 1ρ in figure 7 is four times that in figure 5). At
the same time, a larger number of isopycnals exist on the sphere surface, and the
diameter of the bundle of vertical isopycnals concentrated around the z axis becomes
larger, corresponding to an increased radius of the jet. These results suggest that the
density diffusion becomes smaller and the density is better conserved under weaker
stratification.

This change is not abrupt throughout the range of Froude number investigated
in this numerical study (0.3 6 Fr 6 10), suggesting that the transition between type
A (thin jet) and C (broad jet) in the shadowgraph experiments would be actually
continuous. In experiments, larger Fr for the same Re means that N is smaller for
the same W and a. Then, the black and white contrast of the shadowgraph would
be weakened. On the other hand, if N is kept constant, sphere size 2a must be
smaller and W must be larger to keep the value of W × 2a (∝ Re) constant. This
reduces the resolution of the image per unit length (=2a). These two effects would
have prohibited the clear observation of transition region between type A and C, as
discussed in Hanazaki et al. (2009a).

While we can observe the overall density distributions in figures 5 and 7, the density
distribution in the jet, particularly near its centre axis (r ∼ 0), is not discernible in
these figures since many isopycnals are concentrated in a thin region. Enlarged figures,
although not shown here, reveal that a local maximum of density appears on the z axis.
Below that point, lighter fluid exists at lower heights, suggesting a strong buoyancy
force above the rear/upper stagnation point of the sphere. Indeed, the vertical flow is
significantly accelerated there. On the other hand, above the point of local maximum,
density decreases in the upward direction, constituting a stable stratification which
would decelerate the vertical flow.

Steady velocity distributions in figure 8 (Fr = 0.3, 0.8, 1.5) show that the flow
of larger Froude number supports a jet of larger radius. In addition, the vertical
wavelength of the internal wave increases in proportion to Fr. This proportionality
to the Froude number can be predicted by the linear internal-wave theory (Mowbray
& Rarity 1967) and has also been identified in previous numerical simulations
(Torres et al. 2000). On the other hand, in experiments, the height of the bell-shaped
structure has been found to be proportional to the Froude number, but its relationship
to internal waves has not been so clear. Figure 8 shows an upward movement of
the bell-shaped structure with Fr, as observed in the shadowgraph experiments (cf.
figure 8 of Hanazaki et al. (2009a) where Fr = 0.32, 0.77 and 1.5), as well as the
diverging pattern of internal gravity waves.

Contours of steady vertical velocity in the laboratory frame (w− 1) in figure 9(a–c)
show clearly the increase of vertical wavelength with the Froude number. In each plot,
positive and negative vertical velocity appear alternately in the vertical direction, while
the amplitude of internal waves decreases with height. Then, the bell-shaped structure
is observed only at the height where the downward flow is fastest (e.g. 1.5< z< 2.0
in figures 8a and 9a), i.e. where the downward flow is first encountered if we go up
from the rear/upper stagnation point of the sphere (excluding the region very near the
upper stagnation point of the sphere where the fluid has to move downward with the
sphere). Therefore, the vertical position of the bell-shaped structure is determined by
the vertical wavelength of internal waves, which is proportional to the Froude number.
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FIGURE 8. Velocity vectors in steady state (t=30) under strong stratification. (a) Fr=0.3;
(b) Fr= 0.8; (c) Fr= 1.5.

When Fr = 0.3, the minimum value of w− 1 is −1.44, so that (w− 1)min <−1 and
wmin is negative. This means that the fluid moves downward faster than the sphere, as
a manifestation of large downward velocity in the bell-shaped structure. As the Froude
number increases, downward velocity decreases, and (w− 1)min=−1 (i.e. wmin= 0) for
Fr & 1.5, meaning that the fastest downward flow occurs at the upper stagnation point
so that no fluid descends faster than the sphere.

The corresponding distribution of molecular diffusion of density ∇2ρ ′/ReSc in grey-
scale image is given in figure 10. These plots compare well with the shadowgraphs at
approximately the same Froude numbers (figure 8 of Hanazaki et al. 2009a), although
the unsteady non-axisymmetric behaviour sometimes observed in experiments at large
height (z & 3) cannot be reproduced in this numerical simulation. Vertical positions
of the bell in the numerical simulation at Re = 200 agree with the experiments, in
which the Reynolds number was varied in the range of 200 . Re . 500. This shows
that the height of the bell is determined only by the Froude number which determines
the vertical wavelength of the internal wave, confirming the conjecture in experiments
that the origin of the bell-shaped structure is in internal gravity waves.

Temporal variations of density perturbation on the rear/upper stagnation point of the
sphere are shown in figure 11 for various Froude numbers. We observe that as Fr
increases, density is better conserved and (3.4) is satisfied for a longer period. The
duration of density conservation tc can be described in its simplest form by

tc = A Fr, (3.8)

where constant A is A∼ 3.5 for Fr & 1. The duration of conservation also represents
the vertical distance that the upper fluid is dragged downward since tc is equal to
Wt∗c/2a, i.e. the dragged length Wt∗c divided by 2a (asterisk denotes the dimensional
quantity).
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FIGURE 9. (Colour online) Contours of steady vertical velocity in the laboratory frame,
i.e. (w − 1), at t = 30. Thick lines denote w − 1 = 0, solid lines denote w − 1 > 0 with
interval of (wmax − 1)/10, and dashed lines denote w − 1 < 0 with interval of |wmin −
1|/10. Values written on the sphere are the maximum and minimum velocity in each case.
(a) Fr= 0.3; (b) Fr= 0.8; (c) Fr= 1.5.
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FIGURE 10. Distribution of density diffusion ∇2ρ ′/ReSc in steady state (t= 30)
depicted in grey scale. (a) Fr= 0.3; (b) Fr= 0.8; (c) Fr= 1.5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.737


Jets generated by a sphere in a stratified fluid 439

0

0

–10

–20

–30

–40

–50

20 40 60 80

t

FIGURE 11. (Colour online) Time development of density perturbation ρ ′ on the
rear/upper stagnation point of the sphere (θ = 180◦) for various Froude numbers.

Potential energy PE due to the vertical movement of fluid from its initial height to
the dragged height is given by

PE= 2
Fr2ρ

′2, (3.9)

where ρ ′ is the density difference between the dragged fluid and the surrounding
fluid before density diffusion becomes significant. It is given by ρ ′ =−tc at the rear
stagnation point where the density conservation lasts longest. Then, the proportionality
tc = A Fr gives

PEc = 2
Fr2 t2

c = 2A2 ∼ 25 (for Fr & 1), (3.10)

meaning that the maximum non-dimensional potential energy PEc attained during the
density conservation is independent of Fr for weak stratification. This shows that the
vertically dragged length of fluid is determined by some critical value PEc of potential
energy. Regardless of the ‘number’ of dragged isopycnals depicted in figure 7, the
maximum potential energy due to the vertical displacement of fluid is the same.

To confirm the approximate proportionality given by (3.8), we plot in figure 12 the
value of tc determined by the time when the total density ρ at the rear stagnation point
becomes slightly larger than its initial value, i.e. ρ =−0.5+ α (α = 0.001 and 0.01).
Figure 12(a) shows a proportionality between tc and Fr except for small Fr (<1).
Figure 12(b) shows that tc is quite independent of Re for sufficiently large Reynolds
numbers (Re & 200) at a fixed Fr. Therefore, PEc has only a weak dependence
on sufficiently large Froude numbers and Reynolds numbers. At low Fr (.1) and
low Re . 200, tc shows faster decrease, indicating that strong stratification and large
viscosity prevents the conservation of density.

We can also consider that the buoyancy time t∗N = 2π/N−1 determines the time scale
for the development of a density boundary layer and hence the vertically dragged
length of the isopycnals. Under this assumption, dragged length would be estimated
by

Wt∗N = 2πW/N = 2πFr a, (3.11)
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FIGURE 12. (Colour online) Duration of density conservation on the rear/upper stagnation
point (tc) determined by the time when the density becomes ρ = −0.5 + α (α = 0.001
and 0.01). (a) Froude number dependence (Re= 200); (b) Reynolds number dependence
(Fr= 1).

giving the non-dimensional dragged length as

Wt∗N
2a
=πFr, (3.12)

which is proportional to the Froude number, and differs from tc (=Wt∗c/2a ∼ 3.5Fr)
(cf. (3.8)) only by a small difference in the proportionality constant, which is
approximately 3.14 in (3.12) and 3.5 in (3.8). The inclination of the graph between
Fr= 2 and 10 in figure 12(a) is indeed close to 3.1, rather than 3.5. This shows that
the buoyancy time controls the initial unsteady process of density diffusion which
determines the duration of density conservation.

To understand the physical meaning of the above results, it is useful to consider the
energy conversion from kinetic energy to potential energy as discussed by Higginson,
Dalziel & Linden (2003). Indeed, the length scale determined by the ratio between the
vertical velocity and the buoyancy frequency, such as (3.11), can also be obtained from
the energy balance between kinetic energy and potential energy (Pearson, Puttock &
Hunt 1983). Since the dimensional potential energy per unit mass is given by PE∗ =
PE W2 while the kinetic energy of fluid generated by the sphere per unit mass would
be estimated by KE∗ = (1/2)W2, these two have the relation

PE∗ = 2PE KE∗. (3.13)

Therefore, non-dimensional potential energy PE represents how much of the kinetic
energy generated by the sphere is converted into the potential energy. Constant PEc

means that the energy conversion ratio from kinetic to potential is independent of Fr
and Re. Conversely, the threshold value of potential energy PEc determined by the
system (e.g. obstacle shape) will determine the maximum vertical movement tc of the
fluid according to (3.10), which is proportional to Fr.

We note that PEc is larger than unity here, while it should be of O(1) if we consider
the energy conversion. However, tc or ρ ′ is the value at the single stagnation point,
and it is the largest possible value among all the fluid dragged by the sphere. Since
the diffusion becomes effective sooner on other points of the sphere surface (figure 6),
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FIGURE 13. (Colour online) Temporal variation of the perturbation density distribution
on the sphere at the weakest stratification (Fr = 10). The angle θ is measured from the
lower/forward stagnation point of the sphere along the sphere surface, as indicated in
figure 6(a).

the mean value of PEc of all the dragged fluid would be much smaller. For example,
on the equator of the sphere (θ = 90◦) where the length of the latitude line is longest
and the contribution to the mean value would be largest, diffusion is effective from
the very initial moment (t� 1, cf. figure 6b).

We should also mention that Yick et al. (2009) found that the dragged length
is proportional to Fr1/2 at low Reynolds numbers (Re = 0.05, 0.5), suggesting the
difference due to strong viscosity.

Temporal variation of the distribution of ρ ′ on the sphere surface for the largest
Fr (=10) is shown in figure 13. Near the upper stagnation point at θ = 180◦, density
is conserved for a long time, and (3.4) is satisfied until t∼ 30. On the other hand, on
the lower hemisphere of the sphere (θ < 90◦), density diffusion becomes significant in
a short time and ρ ′ attains its final steady value before t= 10. The final distribution
of ρ ′ on the lower hemisphere is relatively independent of the Froude number under
weak stratification (Fr & 2). For all the Froude numbers investigated, steady state is
realised sooner on the lower hemisphere of the sphere where density diffusion is more
significant, and it is realised more slowly on the upper hemisphere.

On the rear/upper stagnation point where the density boundary layer does not exist,
the longest time is necessary before the steady state for density is realised. Since the
steady value of ρ ′ is as low as −50 for the weakest stratification (Fr= 10), the fluid
would have been pulled down for more than 50 sphere diameters. In addition, the
density distribution becomes steady only after t ∼ 80 (figure 11) and we continued
computation until t= 90.

3.3. Flow on the vertical axis of symmetry
We next describe the flow on the vertical symmetry axis. Distributions of ρ and ρ ′

on the z axis and their temporal variation under strong stratification (Fr = 0.3) are
presented in figure 14. We notice that the density perturbation ρ ′ is nearly zero above
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FIGURE 14. Distribution of density perturbation ρ ′ and total density ρ on the z-axis under
strong stratification (Fr = 0.3). (a) t = 1; (b) t = 3; (c) t = 5; (d) t = 10. Steady state is
achieved before t = 10. Height z = 0.5 is the rear/upper stagnation point of the sphere.
In these plots the two curves cross at z = t since ρ(0, 0) = 0 is assumed in (3.3) for
convenience in drawing figures.

z ∼ t + 0.8. Since z = t is the initial height of the sphere at each instant (=t), this
means that the fluid is strongly perturbed only where the sphere has passed through.
Fluid in the jet would not rise much beyond its initial height, although some overshoot
of the jet and the far-field perturbation of internal gravity waves exists. In the initial
time development at t=1.0 (figure 14a), the constant value of ρ and the increase of ρ ′
proportional to z just above the sphere (0.56 z. 1.7) show density conservation along
the almost vertical isopycnal surface observed in figures 4(c) and 5(b). As already
observed in figure 6, density is conserved on the rear/upper stagnation point until t∼3,
and ρ agrees with its initial value (ρ = −0.5) (figure 14a,b). At t = 3 (figure 14b),
density above the rear stagnation point begins to change due to molecular diffusion
within the jet, and the plots of ρ and ρ ′ are slightly curved in the range of 0.5< z.
3.5. As time proceeds (t > 3), the change becomes more significant near the sphere,
and ρ ′ approaches its final steady value at t∼ 5. After t= 10, the density distribution
is steady, i.e. the curve of ρ ′ is independent of time, and the curve of ρ moves upward
in proportion to time without changing its form.

Figure 15 shows a similar plot for a weak stratification (Fr = 5). The overall
behaviour has some similarity to the case of strong stratification, but one significant
difference is that density is better conserved in the whole region for a long time (until
t∼ 20). This means that much longer time is necessary before the molecular diffusion
becomes effective and steady state is realised. Under weak stratification, the flow near
z= t is still unsteady even at t= 90 (figure 15b) since the fluid dragged by the sphere
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FIGURE 15. Distribution of density perturbation ρ ′ and total density ρ on the z axis under
weak stratification (Fr = 5). (a) t = 20; (b) t = 90. The two curves cross at z = t since
ρ(0, 0)= 0 is assumed in (3.3) for convenience in drawing figures.

for a long distance returns nearly to its original height (z = t at time t) along the
jet. Then, the steady state is not yet realised. Under strong stratification, the fluid is
dragged only for a short length, and it returns to the original height in a short time,
leading to an earlier realisation of the steady flow. We observe small undulations in
the plot of ρ (figure 15b) due to internal gravity waves. Each undulation corresponds
to one wavelength of internal waves.

To investigate the process of density diffusion, the time evolution of each term of
the density equation (2.11) on the z axis is shown in figure 16 (Fr = 0.3). Vertical
velocity increases initially with time but the jet (w − 1) is well developed before
t= 5 and it is already steady for a short distance above the sphere (z . 4), although
unsteadiness in velocity is still observed at higher altitude (z & 4).

At time t= 1 (figure 16a), the time derivative has a constant value of ∂ρ ′/∂t=−1
just above the sphere (0.5 6 z . 1.7) since the density is conserved and isopycnals
are simply pulled down by the sphere (cf. figure 5b). This can be explained as
follows. First, we note that u · ∇ρ ′ = w∂ρ ′/∂z is satisfied on the z axis since u = 0
on the symmetry axis. If the isopycnals are vertical (∂ρ/∂z= 0) and also if the mean
stratification is uniform (dρ/dz=−1), density perturbation satisfies ∂ρ ′/∂z= 1. Then,

u · ∇ρ ′ =w
∂ρ ′

∂z
=w (3.14)

is satisfied. This simplifies the density equation (2.11) to (3.5), which we have already
encountered on the sphere surface. Therefore, if the density is conserved and density
diffusion is negligible (∇2ρ ′ = 0), (3.5) further reduces to ∂ρ ′/∂t=−1.

As time proceeds (t= 3∼ 10), diffusion (∇2ρ ′/ReSc) increases in the jet, near the
rear stagnation point (z= 0.5) in particular. Note that on the sphere surface where the
fluid velocity is zero, the final steady value of the diffusion term is unity (cf. (3.7)).
On the other hand, on the z axis away from the sphere, (3.5) is not satisfied unless
density is conserved, i.e. (3.7) is not satisfied in steady state in which the molecular
diffusion is essential. Therefore, ∇2ρ ′/ReSc can increase beyond unity.

At t= 10, a nearly steady state is achieved on the whole z axis at this low Froude
number (Fr = 0.3), and ∇2ρ ′/ReSc asymptotes to unity on the rear stagnation point
(z= 0.5), while its maximum value (∼8) is much larger than unity. We again observe
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FIGURE 16. (Colour online) Distribution of each term in the density equation (2.11) on
the z axis under strong stratification (Fr = 0.3) at selected times: (a) t = 1; (b) t = 3;
(c) t= 5; (d) t= 10.

undulations due to internal waves, in the distributions of u · ∇ρ ′ and w − 1 in
particular. It is of interest to note that the distribution of ∂ρ ′/∂t is flat at low Froude
numbers, and approaches zero at approximately the same time in the whole range of
the jet (0.56 z. t), meaning that the flow becomes steady on the z axis with a short
time lag.

3.4. Radius of the round jet
To investigate the Froude number dependence of the radius of a jet, we show in
figure 17 the steady distributions of w− 1 in the jet as functions of r, at the heights
where the vertical velocity on the z axis becomes maximum. The radius of the jet
increases with Fr as we have observed in figure 8, while the maximum vertical
velocity decreases. This means that the jet becomes less concentrated under weak
stratification. We note also that the velocity becomes maximum at larger height for
larger Fr, corresponding to the larger pulled-down length by the sphere or the larger
vertical wavelength of internal waves.

Unsteady development of the molecular diffusion of density in the jet is shown
in figure 18, for both strong and weak stratification. The value of ∇2ρ ′/ReSc is
considered here since it directly corresponds to the previous shadowgraph experiments
(Hanazaki et al. 2009a), and more faithfully represents a boundary layer or a jet
where the diffusive term is dominant, compared to the isopycnals significantly
deformed by the sphere. Under strong stratification (Fr = 0.3), full development
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FIGURE 17. (Colour online) Froude number dependence of the distribution of vertical
velocity (w− 1) near the z axis. The distribution at the height where w becomes maximum
is drawn for each Fr.

7

6

5

4

3

2

1

0

–1

8

0.020 0.0200.010 0.0100

7

6

5

4

3

2

1

0

–1

8

0.020 0.0200.010 0.0100

(a)  (b)

r r

FIGURE 18. (Colour online) Time development of ∇2ρ ′/ReSc near the z axis at the height
where maximum value is observed in steady state. (a) Fr= 0.3 (z= 0.56); (b) Fr= 10 (z=
0.60).

of the jet is established much sooner at around t= 10, while under weak stratification
(Fr = 10), almost no development of the jet is observed until t = 15, and it takes a
much longer time (t∼ 90) for the full development.

Comparison of figure 18 with figure 17 shows that the radius observed in the
distribution of density diffusion is much smaller than that observed in the vertical
velocity. The difference at the same Froude number is approximately sixty times,
reflecting mainly the difference between the boundary-layer thickness of velocity
and density on the sphere surface at a high Schmidt number (

√
Sc = √700 ∼ 27),

although this is partly because the velocity is used instead of its Laplacian (∇2w/Re),
for which the estimated radius reduces to 1/3–1/4 times the value presented here.
These are the straightforward results since the vertical jet is a continuation of the
viscous and diffusive boundary layer on the sphere surface, across the rear stagnation
point of the sphere.
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FIGURE 19. Froude number dependence of the HWHM of (a) ∇2ρ ′/ReSc and (b) w− 1
at Re= 200.

The Froude number dependence of the jet radius, defined by the half-width at half-
maximum (HWHM) of density diffusion, is shown in figure 19(a). We observe that the
radius is proportional to Fr1/2. Similar Froude number dependence holds also for the
velocity (figure 19b), although saturation appears for Fr1/2 & 2 (Fr & 4). The reason
why the radius of a jet or the thickness of a density boundary layer on the sphere
is proportional to Fr1/2 may be explained as follows. A plausible assumption is that
in stratified fluids, the length scale of density is determined by a combination of the
buoyancy frequency N and the diffusion coefficient of density κ , since the jet defined
by the density anomaly is a continuation of the density boundary layer on the sphere
surface and the process of jet formation would be controlled by the density boundary
layer where the density diffusion is significant.

The dimensional analysis gives a fundamental length scale:

lκ =
√
κ/N =

(
κ

ν

ν

W 2a
W
Na

2a2

)1/2

=
(

2a2Fr
ReSc

)1/2

, (3.15)

which can be rewritten in non-dimensional form as

lκ
2a
=
(

Fr
2ReSc

)1/2

. (3.16)

If we substitute Re = 200, Sc = 700 and Fr = 1 into (3.16), lκ/2a = 1.9× 10−3 is
obtained, which is close to the simulated value in figure 20(a) (∼1.2 × 10−3). This
example shows that the above assumptions give a good estimation.

Similarly, we may consider that the length scale of velocity in stratified fluids
is controlled by stratification, and is determined by a combination of the buoyancy
frequency N and the viscosity of fluid ν. The velocity length scale

√
ν/N thus

obtained by dimensional analysis was originally used in the literature on stratified
turbulence as the primitive length scale (e.g. Gibson 1980; Barry et al. 2001), and
was used in the context of a vertically moving sphere in stratified fluids to estimate
the thickness of a fluid shell dragged by the sphere (Yick et al. 2009). If we assume
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FIGURE 20. Reynolds number dependence of the HWHM of (a) ∇2ρ ′/ReSc and
(b) w− 1 at Fr= 1.

that the thickness of the velocity shear layer in the jet lν is estimated by this length
scale, we obtain

lν =
√
ν/N =

(
ν

W 2a
W
Na

2a2

)1/2

=
(

2a2Fr
Re

)1/2

, (3.17)

i.e.
lν
2a
=
(

Fr
2Re

)1/2

. (3.18)

If we substitute Re= 200 and Fr= 1 into (3.18), we obtain lν/2a= 5× 10−2. This
value is close to the simulated value in figure 20(b) (∼7 × 10−2), and gives good
agreement. If we use ∇2w instead of w−1, the HWHM value would be approximately
1/3–1/4 times that of figure 20(b) and reduces to ∼ 2 × 10−2 for example, but the
agreement is still reasonable.

This length scale lν has the same proportionality (∝(Fr/Re)1/2) as lκ , and if Sc is
constant, it is equivalent to lκ except for a proportionality constant (= Sc−1/2). Indeed,
in numerical results by Yick et al. (2009), proportionality to (Fr/Re)1/2 was observed
at low Reynolds numbers (Re= 0.05, 0.5) for a single Prandtl/Schmidt number (Pr=
700).

To explore the limiting behaviour as Fr→∞, computation at larger Fr is necessary.
However, larger Fr requires a larger time to establish a steady state, meaning that a
larger vertical computational area and a more exhaustive computation are necessary.
Since the time necessary to establish a steady state at the rear stagnation point is
approximately 8Fr (cf. figure 11), we can estimate, for example in the case of Fr= 30,
that a steady state would be realised after t = 240. Then, the top boundary of the
computational domain should be higher than z = 240, which is an extremely large
value.

In order to examine the Reynolds number dependence of the radius of a jet, HWHM
of ∇2ρ ′/ReSc and w− 1 are presented in figure 20 for Reynolds numbers in the range
of 206Re6 1000 at a fixed Froude number (Fr= 1). Approximate proportionality to
Re−1/2 is observed, supporting the applicability of (3.16) and (3.18).
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FIGURE 21. (Colour online) Distribution of ∇2ρ ′/ReSc in the density boundary layer on
the equator of the sphere (θ = 90◦), where d is the distance from the sphere surface
(Re= 200).

Since the radius of a jet would have a strong correlation with the boundary layer
thickness on the sphere, it would be appropriate to investigate the distribution of
density diffusion near the sphere surface. Figure 21 shows that the thickness of the
density boundary layer on the equator of the sphere (θ = 90◦) actually increases with
Fr, with similarity to the radius of a jet.

We see in figure 22 that the thickness of the density boundary layer on the sphere
surface is four to ten times larger than the radius of a jet (figures 19a, 20a) at the
same Fr and Re, although the jet is a continuation of the density boundary layer on
the sphere surface so that an approximate equality between the thickness and radius
might be expected. For example, the thickness at Re = 200 in figure 22(a) is larger
than the passive-scalar boundary layer in homogeneous fluids ((1/ReSc)1/2 = 2.67 ×
10−3) for all the Froude numbers investigated. We should note that (3.16) agrees with
the passive-scalar limit (Fr→∞) at Fr = 2 (i.e. Fr1/2 = 1.4) and further increase of
Fr in (3.16) would give an underestimation. A density boundary layer thicker than
(1/ReSc)1/2 has also been observed in the previous numerical simulations (Torres et al.
2000). Phenomenologically, it would be caused by the accumulated isopycnal surfaces
pulled down by the sphere. In figure 22(b), the thickness of the density boundary
layer at Fr= 1 increases ∝Re−1/2 in agreement with (3.16), since there would be no
restriction on the value of Re, in contrast to the upper limit of Fr.

The Froude number dependence of the drag coefficient which would be important
in applications is shown in figure 23. The value of the drag in homogeneous fluid is
0.81 at Re= 200, and the plot shows that the drag increase due to stratification, i.e.
CS (= CD − 0.81), is proportional to 1/Fr. This is in agreement with the numerical
simulations by Torres et al. (2000), although this point was not explicitly discussed in
that paper. More recently, Higginson et al. (2003) measured the drag on a grid of bars,
and derived a formula for the buoyancy drag coefficient CS which predicts CS ∝ 1/Fr
(cf. their equation (16)), assuming that CS is due to the gravitational restoring force
working on the vertically dragged fluid. Our results suggest that their formula is also
applicable to a sphere.

4. Conclusions
We have investigated the generation of a buoyant jet by a sphere moving vertically

in a stratified fluid. An unsteady process showed that the density is almost materially
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FIGURE 22. Thickness of the density boundary layer on the equator of the sphere (θ =
90◦) defined by the position of the negative peak of ∇2ρ ′/ReSc in figure 21. (a) Froude
number dependence (Re= 200); (b) Reynolds number dependence (Fr= 1).
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FIGURE 23. Froude number dependence of the drag coefficient of a sphere (Re= 200).

conserved initially, but molecular diffusion becomes significant after a certain period,
and a horizontal circular hole appears along the sphere surface in the isopycnal
surface. Density conservation is violated first near the equator of the sphere and
finally at the rear/upper stagnation point of the sphere. The non-conserved light fluid
can continuously move upward owing to the buoyancy force, and it generates a
vertical jet along the symmetry axis of the flow.

The vertical dragging time of an isopycnal surface is very close to the buoyancy
time t∗N (= 2π/N), and the corresponding non-dimensional dragged length of the
isopycnal surface is proportional to the Froude number and well estimated by πFr
for Fr & 1 and Re & 200 at the rear/upper stagnation point. Potential energy due to
the vertical displacement of fluid is approximately constant and independent of Fr
and Re.

The radius of the jet determined by the density distribution is estimated by
√
κ/N,

or in non-dimensional form by
√

Fr/2ReSc, which would be the fundamental length
scale in stratified diffusive fluids. The radius of the jet determined by the velocity
distribution is estimated by

√
ν/N, or in non-dimensional form by

√
Fr/2Re, which

has been considered as a ‘primitive’ length scale in stratified turbulence. The thickness
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of the density boundary layer on the sphere is significantly larger than the radius of
the jet determined from the density distribution, while the thickness of the velocity
boundary layer on the sphere is comparable to the radius of a jet determined from
the velocity distribution. The difference is due to the isopycnal surfaces dragged by
the sphere.

It is found that a large downward velocity related to the internal waves generates
a bell-shaped structure under strong stratification, and the vertical distance between
the bell and the sphere corresponds to the wavelength of internal waves, which is
proportional to the Froude number.

In weakly stratified fluids (Fr� 1), isopycnal surfaces can be dragged vertically for
a very long distance. At time t, the density distribution might be still unsteady near
the height of z= t, at which the sphere was initially located, although the possibility of
whether this actually occurs would depend largely on the Reynolds number and the
Schmidt number. When this occurs, however, upper boundary of the computational
domain should be higher than z = t to capture the large deformation of isopycnal
surfaces.
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