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We discuss the combined semi-classical and relaxation limit of a one-dimensional
isentropic quantum hydrodynamical model for semiconductors. The quantum
hydrodynamic equations consist of the isentropic Euler equations for the particle
density and current density, including the quantum potential and a momentum
relaxation term. The momentum equation is highly nonlinear and contains a
dispersive term with third-order derivatives. The equations are self-consistently
coupled to the Poisson equation for the electrostatic potential. With the help of the
Maxwell-type iteration, we prove that, as the relaxation time and Planck constant
tend to zero, periodic initial-value problems of a scaled one-dimensional isentropic
quantum hydrodynamic model have unique smooth solutions existing in the time
interval where the classical drift-diffusion model has smooth solutions. Meanwhile, we
justify a formal derivation of the classical drift-diffusion model from the quantum
hydrodynamic model.

1. Introduction

Quantum hydrodynamic models are important and necessary in order to model
and simulate electron transport, affected by extremely high electric fields, in ultra-
small (sub-micron) semiconductor devices such as resonant tunnelling diodes, where
quantum effects (like particle tunnelling through potential barriers and build-up in
quantum wells [5]) take place and dominate the process. Such quantum mechanical
phenomena cannot be simulated by classical hydrodynamic models. The advantage
of macroscopic quantum hydrodynamic models relies on the fact that they not only
are able to describe directly the dynamics of the physically observable and simu-
late the main characters of quantum effects, but are also numerically less expensive
than microscopic models like the Schrödinger and Wigner–Boltzmann equations.
The quantum hydrodynamic model is a moment model, derived from the quan-
tum Wigner–Boltzmannn equation using a velocity-moment method or from the
Schrödinger equation. (details are given in [5,7,9]). The isentropic quantum hydro-
dynamic system governs the evolution of the electron density, the electron current
density and the electrostatic potential. In this paper, we study an isentropic quan-
tum hydrodynamic model for semiconductors. More specifically, with appropriate
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scaling, our model can be represented as

nt +
1
ε
∂x(nu) = 0,

∂t(nu) +
1
ε
∂x(nu2 + p(n)) =

n∂xφ

ε
+

h2

4ε
∂x(n∂xx(log n)) − nu

ε2
,

λ2∂xxφ = n − b(x).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.1)

The variables are the electron density n, the mean velocity u and the electrostatic
potential φ. p(n) is the given strictly increasing function and denotes the pres-
sure. The function b(x) denotes the prescribed density of positively charged back-
ground ions (doping profile). The parameters are the (scaled) Planck constant h,
the momentum relaxation time ε and the Debye length λ. In the real semiconductor
device, the rescaled parameters λ, ε, h take the form

h2 =
�

2

2mkBT0L2 , λ2 =
εkBT0

q2CmL2 , ε2 =
kBT0τ

2
0

mL2 ,

which may be sufficiently small or O(1), depending on the different real situations.
Note that the scaling t = εt̃ converts (1.1) back into the original quantum isentropic
model in [5,9] with t̃ as its time variable. The scaled-time variable t was first intro-
duced in [21] in order to study the relation between the classical hydrodynamical
and drift-diffusion models.

Since we are interested in the small relaxation time and small Planck constant
analysis, we can take λ = 1, h = ε. Moreover, we introduce the enthalpy f(n) for
n > 0, which satisfies

f ′(n) =
p′(n)

n
.

Since p(n) is strictly increasing, f(n) is also strictly increasing. As in [11, 18], it is
convenient to make use of the variable transformation n = w2. With the simplifi-
cations above, we can rewrite the model (1.1) as

wt +
1
2ε

wux +
1
ε
uwx = 0,

ut +
1
ε
uux +

1
ε
f(w2)x =

1
ε
φx +

ε

2

(
wxx

w

)
x

− u

ε2
,

φxx = w2 − b(x).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)

Recently, many efforts have been made to solve the quantum hydrodynamic
(Euler–Poisson) system. The existence and uniqueness of thermal equilibrium and
non-thermal equilibrium steady-state classical solutions for one-dimensional and
high-dimensional quantum models have been studied in [1, 3, 4, 6, 23, 26]. For the
time-dependent system, the local- and global-in-time existence of the classical solu-
tions was obtained in the bounded domain [14] (subject to boundary conditions on
the density and the electrostatic potential) and on the real line [11,18].

Relaxation limits in the classical hydrodynamic equations have been performed
extensively. In one spatial dimension, the relaxation limit problem for isentropic
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and non-isentropic hydrodynamic models has been investigated in the compactness
frameworks for non-smooth solutions of conservation laws [8, 10, 12, 21]. In [16, 17],
Lattanzio and Marcati considered the multidimensional isentropic unipolar hydro-
dynamic model and the corresponding bipolar model with x in a bounded domain,
assumed the existence of L∞-solutions in a τ -independent time interval, and jus-
tified the relaxation limit in a compactness framework for non-smooth solutions.
In [19,25], Li and Yong, respectively, studied the diffusive relaxation of multidimen-
sional isentropic and non-isentropic hydrodynamical models for semiconductors by
the Maxwell iteration. Investigations of the relaxation limit and semi-classical and
relaxation limits for the unipolar and bipolar quantum hydrodynamic models by
compactness arguments were made in [15,27].

Finally, the semi-classical limits from the stationary and non-stationary quantum
hydrodynamical model have been partly discussed (see [1, 2, 6, 27]). To the best of
our knowledge, no results for the combined semi-classical and relaxation limit of
the time-dependent quantum hydrodynamic model (1.2) have been found. In this
paper, we investigate the combined relaxation and semi-classical limit in (1.2). We
expect the quantum hydrodynamic model and the classical drift-diffusion model to
give similar results when ε is small, which can be seen formally as follows. Applying
the Maxwell-type iteration to the momentum equations in (1.2) gives

u = −ε∂xf(w2) + ε∂xφ − εu∂xu + ε3
(

wxx

w

)
x

− ε2∂tu

= −ε∂xf(w2) + ε∂xφ + O(ε2).

Substituting the truncation u = −ε∂xf(w2)+ε∂xφ into the mass equations in (1.2),
we arrive at the quantum drift-diffusion model [13,22]

2w∂tw − ∂x(p(w2)x − w2φx) = 0,

φxx = w2 − b(x),

}
(1.3)

which is a parabolic–elliptic-type system, provided that p′(w2) > 0. We state our
main results in the following.

Theorem 1.1. Suppose that p ∈ C4(0, ∞), p′(w2) > 0, b(x) ∈ H4(Ω) and that the
classical drift-diffusion model (1.3) with initial data

w(x, 0) = w0(x), x ∈ (0, 1](=: Ω),
∫ 1

0
(w2

0(x) − b(x)) dx = 0

has a solution w ∈ C([0, T∗], H6(Ω)) ∩ C1([0, T∗], H5(Ω)) with a positive lower
bound and φ ∈ C([0, T∗], H4(Ω)).

Then, for ε sufficiently small, the quantum isentropic model (1.2) with periodic
initial data

w(x, 0) = w0(x), u(x, 0) = εφx(x, 0) − εp(w2
0(x))

w2
0(x)

(1.4)

has a unique solution

(wε, uε, φε) ∈ C([0, T∗], H4(Ω)) × C([0, T∗], H3(Ω)) × C([0, T∗], H4(Ω)),
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and there exists a constant K > 0, independent of ε but dependent on T∗ < ∞, such
that

sup
t∈[0,T∗]

(‖wε − wε‖2 + ε‖(wε − wε)xxx‖1 + ‖uε − uε‖3 + ‖φε − φε‖4) � Kε2, (1.5)

where

wε = w, uε = ε∂xφ − ε∂xf(w2), φε = φ.

To prove our results, we shall adopt and modify the arguments in [24, 25]. How-
ever, we have to face up to two difficulties here. The first one is from the potential,
which is a third-order dispersive term. Our strategy is to reformulate the law of
conservation of mass in the quantum hydrodynamic equation as a fourth-order wave
equation as in [11, 27]. The second difficulty is that we cannot directly make use
of the previous convergence-stability lemma (which was first formulated in [24]),
since it only fits the symmetrizable hyperbolic system with a relaxation term. Thus,
we must establish the corresponding convergence-stability lemma for our quantum
hydrodynamic model with the third-order dispersive term.

Remark 1.2. As far as we know, it is the first time that the convergence-stability
lemma of the symmetrizable hyperbolic system has been extended to that of the
non-hyperbolic case, and we apply it in order to investigate the combined semi-
classical and relaxation limit for the quantum isentropic hydrodynamic model for
semiconductors.

Remark 1.3. Our conclusion implies that if the classical drift-diffusion model (1.3)
has a global smooth solution on [0, ∞] with w having a positive lower bound, then
there exists ε0 > 0 such that the quantum isentropic hydrodynamical model (1.2)
has a unique smooth solution up to time ∞, when ε < ε0, and when T < ∞ (1.5)
also holds. Moreover, employing similar arguments, we can investigate the combined
semi-classical and relaxation limit for the bipolar quantum hydrodynamic model
for semiconductors. Moreover, on the basis of the convergence-stability lemma, we
can use the matched-expansion method to discuss the combined semi-classical and
relaxation limit for the quantum hydrodynamic semiconductor models with more
general initial data.

Remark 1.4. In [11, 27], the global existence of smooth (or strong) solutions is
initially established for corresponding initial-value problems (IVPs), and then the
relaxation limit and semi-classical limit are investigated by compactness arguments.
However, we use proper scaling and assume the existence of the drift-diffusion
equations; we then construct the solutions of the one-dimensional quantum hydro-
dynamic model with appropriate initial data. Moreover, we also obtain the con-
vergence rate. Finally, due to the combined semi-classical and relaxation limit, the
estimate (1.5) is different from that obtained in [20].

This paper is organized as follows. In § 2 we establish the convergence-stability
lemma and construct the formal approximations. Section 3 is devoted to validating
the formal approximation and the existence of the solution to (wε, uε, φε) in the
time interval where w is well defined.
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2. The convergence-stability lemma and formal approximations

In this section, we establish the convergence-stability lemma and construct formal
approximations. Initially, for

wt +
1
2ε

wux +
1
ε
uwx = 0,

ut +
1
ε
uux +

1
ε
f(w2)x =

1
ε
φx +

ε

2

(
wxx

w

)
x

− u

ε2
,

φxx = w2 − b(x),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

we have the following lemma.

Lemma 2.1 (Huang et al . [11]). Assume p(w2) ∈ C4(0, +∞), p′(w2) > 0, b(x) ∈
H4(Ω), b(x) > 0 and

w(x, 0), u(x, 0) ∈ H4(Ω) × H3(Ω), w(x, 0) > 0,

∫ 1

0
(w(x, 0)2 − b(x)) dx = 0.

Then the unique classical solution (w, u, φ) of (2.1) with initial data w(x, 0), u(x, 0)
exists for t ∈ [0, T∗], satisfying w > 0 in Ω × [0, T∗] and

w ∈ Ci([0, T∗];H4−2i(Ω)), i = 0, 1, 2,

u ∈ Cj([0, T∗];H3−2j(Ω)), φ ∈ Cj([0, T∗];H4−2j(Ω)), j = 0, 1.

Fix ε according to lemma 2.1. There is a time interval [0, T ] such that (1.2) with
the initial data has a unique H4(Ω) × H3(Ω) × H4(Ω) solution

(wε, uε, φε) ∈ C([0, T ], H4(Ω)) × C([0, T ], H3(Ω)) × C([0, T ], H4(Ω)).

Define

Tε = sup{T > 0 : wε > 0, (wε, uε, φε) ∈ H4(Ω) × H3(Ω) × H4(Ω)}; (2.2)

namely, [0, Tε) is the maximal time interval of H4 × H3 × H4-existence. Note that
Tε may tend to 0 as ε goes to a certain singular point, say 0.

In order to show that limε→0 Tε > 0, we need the convergence-stability lemma as
in [24,25]. First, we make the following assumption.

Assumption 2.2 (convergence assumption). There exist T∗ > 0 and (wε, uε, φε) ∈
H4(Ω) × H3(Ω) × H4(Ω) for each ε, satisfying wε(t, x) > 0 such that, for t ∈
[0, min{T∗, Tε}),

sup
x,t

|(wε, uε, φε)(x, t) − (wε, uε, φε)(x, t)| = o(1),

sup
t

(‖wε(x, t) − wε(x, t)‖4 + ‖uε(x, t) − uε(x, t)‖3 + ‖φε(x, t) − φε(x, t)‖4) = O(1)

as ε tends to the singular point.

With such a convergence assumption, we are in a position to establish the con-
vergence-stability lemma.
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Lemma 2.3. Assume that (w̄, ū)(x, ε) ∈ H4(Ω) × H3(Ω), w̄(x, ε) > 0,

∫ 1

0
(w̄2(x, ε) − b(x)) dx = 0 for all (x, ε),

and that the convergence assumption holds. Let [0, Tε) be the maximal time interval
such that (1.2) with the initial data (w̄, ū)(x, ε) has a unique solution

(wε, uε, φε) ∈ C([0, Tε], H4(Ω)) × C([0, Tε], H3(Ω)) × C([0, Tε], H4(Ω)).

Then

Tε > T∗

for all ε in a neighbourhood of the singular point.

Proof. By contradiction, there exists a sequence {εk}k�1 such that limk→∞ εk = 0
and Tεk

� T∗. Owing to the convergence assumption, there exists a k such that
wεk > 0. Next, from (1.2)1 and

∫ 1

0
(w̄2(x, ε) − b(x)) dx = 0,

we have ∫ 1

0
(wεk2(x, t) − b(x)) dx = 0

for all (x, t) ∈ Ω × [0, Tεk
). On the other hand, we deduce from

‖wεk‖4 + ‖uεk‖3 + ‖φεk‖4 � ‖wεk − wεk
‖4 + ‖uεk − uεk

‖3

+ ‖φεk − φεk
‖4 + ‖wεk

‖4 + ‖uεk
‖3 + ‖φεk

‖4,

and the convergence assumption that ‖wεk‖4+‖uεk‖3+‖φεk‖4 is bounded uniformly
with respect to t ∈ [0, Tεk

). Now we apply lemma 2.1, beginning at a time t < Tεk
,

to continue this solution beyond Tεk
. This contradicts the definition of Tε in (2.2)

and completes the proof.

Due to lemma 2.3, our task is reduced to finding a (wε, uε, φε)(x, t) such that
the convergence assumption holds. We propose a construction of the approximation
(wε, uε, φε) in assumption 2.2 for the quantum isentropic hydrodynamic model (1.2).
Let w solve the IVP of the classical drift-diffusion model:

2w∂tw − ∂x(p(w2)x − w2φx) = 0,

φxx = w2 − b(x),

w(x, 0) = w0(x),
∫ 1

0
(w2

0(x) − b(x)) dx = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)
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Inspired by the Maxwell iteration, we take (wε, uε, φε) = (w, εφx − εf(w2)x, φ) and
define

R =
1
ε

(
∂tuε +

uεuεx

ε
− ε

2

(
wεxx

wε

)
x

)

= ∂t(φx − f(w2
ε )x) + (φx − f(w2

ε )x)(φx − f(w2
ε )x)x − 1

2

(
wεxx

wε

)
x

. (2.4)

Then we have

wεt +
1
2ε

wεuεx +
1
ε
uεwεx = 0,

uεt +
1
ε
uεuεx +

1
ε
f(w2

ε )x =
1
ε
φεx +

ε

2

(
wεxx

wε

)
x

− uε

ε2
+ εR,

φεxx = w2
ε − b(x).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

Regarding (wε, uε, φε), we have the following regularity result.

Lemma 2.4. Assume that p(·) ∈ C4(0, ∞) for w > 0 and that p′(w2) > 0. If
w ∈ C([0, T∗], H4(Ω)) ∩ C1([0, T∗], H3(Ω)) has positive lower bound and, more-
over, if b(x) ∈ H2(Ω), then uε ∈ C([0, T∗], H3(Ω)) ∩ C1([0, T∗], H2(Ω)) and R ∈
C([0, T∗], H1(Ω)).

Lemma 2.4 can easily be proved using the well-known calculus inequalities in
Sobolev spaces, and thus we omit the details here.

3. Proof of theorem 1.1

Having constructed the formal approximation (wε, uε, φε)(x, t) for the periodic IVP
of the isentropic quantum hydrodynamical model (1.2), we prove here the validity
of the approximation under some regularity assumptions on the given data and an
existence result for (2.1) in this section. Due to lemma 2.3, it suffices to prove the
error estimate in (1.5) for t ∈ [0, T∗).

First, in order to avoid the dispersive third-order term, we reformulate (1.2)1 of
the quantum hydrodynamic equation as a fourth-order wave equation. To do this,
by differentiating (1.2)1 with respect to time t and substituting this into (1.2)2, we
have

wtt +
1
w

w2
t +

1
ε2

wt − 1
2ε2w

(p(w2) + w2u2)xx

+
1

2ε2w
(w2φx)x + 1

4wxxxx − 1
4w

w2
xx = 0. (3.1)

Similarly, from (2.5), we can derive the wave equation satisfied by wε as follows:

wεtt +
1
wε

w2
εt +

1
ε2

wεt − 1
2ε2wε

(p(w2
ε ) + w2

ε u2
ε)xx

+
1

2ε2wε
(w2

ε φεx)x +
1
4
wεxxxx − 1

4wε
w2

εxx = −1
2
Rx. (3.2)
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Let us introduce the perturbed variable (ψ, η, e), which is defined by

(ψ, η, e)∗ = (wε − wε, uε − uε, φε − φε)∗.

Then, from (1.2)2,3, (2.5)2,3, (3.1) and (3.2), it follows that the error (ψ, η, e) satisfies

ψtt +
1
ε2

ψt +
1
4
ψxxxx +

1
wε

w2
εt − 1

wε
wε2

t

− 1
2ε2wε

(p(w2
ε ) + w2

ε u2
ε)xx +

1
2ε2wε

(p(wε2) + wε2uε2)xx

+
1

2ε2wε
(w2

ε φεx)x − 1
2ε2wε

(wε2φε
x)x − 1

4wε
w2

εxx +
1

4wε
wε2

xx = −1
2
Rx, (3.3)

ηt +
1
ε2

η +
1
ε
(f(w2

ε ) + uεuεx − f(wε2) − uεuε
x)x =

1
ε
ex +

ε

2

(
wεxx

wε
− wε

xx

wε

)
x

+ εR,

(3.4)

and

exx = (wε + wε)ψ. (3.5)

Moreover, from (1.2)1, (2.5)1, we obtain

ψt +
1
2ε

wεηx +
1
2ε

ηuεx +
1
ε
uεψx +

1
ε
ηwεx = 0. (3.6)

For the sake of clarity, we divide the necessary arguments into the following lemmas.

Lemma 3.1. Set

D = D(t) =
‖ψ‖2 + ‖η‖3 + ε‖∂xxxψ‖1 + ε‖ψt‖2 + ‖φ‖4

ε
.

Then we have

|uε|, |uε
x|, |uε

xx| � Cε + CεD, |wε
x| � C + CεD,

|wε
t |, |wε

tx|, |wε
xx|, |wε

xxx| � C + CD, |φε
x|, |φε

xx|, |φε
xxx| � C + CεD.

Proof. It is obvious from the Sobolev’s inequality and lemma 2.4 that

|uε| � |uε − uε| + |uε| � Cε + CεD.

We can prove other estimates similarly.

Lemma 3.2. From (3.5), we have

‖e‖2 + ‖ex‖2 + ‖exx‖2
2 � C‖ψ‖2. (3.7)

Proof. Since

e =
∫ x

0
ex dx,
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we have

|e|2 �
∫ x

0
|ex|2 dx �

∫ 1

0
|ex|2 dx,

which implies that

‖e‖2 � ‖ex‖2.

Furthermore, from (3.5) we have

‖ex‖2 � C‖ψ‖2

with the help of Poincaré’s inequality. Finally, it follows from (3.5) and the standard
theory of elliptic partial differential equations that

‖exx‖2 � C‖ψ‖2, ‖exx‖2
2 � C‖ψ‖2

2.

This completes the proof of lemma 3.2.

Lemma 3.3. Under the assumptions of theorem 1.1, it follows that, for 0 � α � 2,

1
2

d
dt

∫
(∂α

x η)2 dx +
15

16ε2

∫
(∂α

x η)2 dx

� 1
2‖∂α

x ψt‖2 + C(ε4 + (1 + D8)(‖ψ‖2
α+1 + ‖η‖2

α + ‖∂α
x ex‖2 + ε2‖∂α

x ψxx‖2)).
(3.8)

Proof. We multiply (3.4) by η and integrate the resultant equation over Ω. Then

1
2

d
dt

∫
η2 dx +

1
ε2

∫
η2 dx +

1
ε

∫
(f(w2

ε ) − f(wε2) + uεuεx − uεuε
x)xη dx

=
∫ (

1
ε
ex +

ε

2

(
wεxx

wε
− wε

xx

wε

)
x

+ εR

)
η dx. (3.9)

From the Cauchy–Schwarz and Young inequalities, we have

1
ε

∫
exη dx +

∫
εRη dx � ‖η‖2

16ε2
+ C‖ex‖2 + Cε4,

and

1
ε

∫
(uεuεx − uεuε

x)xη dx +
ε

2

∫ (
wεxx

wε
− wε

xx

wε

)
x

η dx

= −1
ε

∫
(uε(uε − uε)x − uε

x(uε − uε))ηx dx − ε

2

∫ (
wεψxx − ψwεxx

wεwε

)
ηx dx

� ‖ηx‖2

16ε2
+ C(1 + D)(‖ψ‖2 + ε2‖ψxx‖2 + ‖η‖2 + ‖ηx‖2),

with the help of integration by parts. Moreover, noting that

f(w2
ε ) − f(wε2) = (w2

ε − wε2)
∫ 1

0
f ′(w2

ε + σ(w2
ε − wε2)) dσ,
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we have

‖f(w2
ε ) − f(wε2)‖ � C‖ψ‖‖

∫ 1

0
f ′(w2

ε + σ(w2
ε − wε2)) dσ‖4

� C‖ψ‖
∫ 1

0
‖f ′(w2

ε + σ(w2
ε − wε2))‖4 dσ[0]

� C‖ψ‖
∫ 1

0
(1 + ‖σ(w2

ε − wε2)‖4) dσ � C(1 + D4)‖ψ‖.

Furthermore, we can obtain

1
ε

∫
(f(w2

ε ) − f(wε2))xη dx � ‖ηx‖2

16ε2
+ C(1 + D8)‖ψ‖2. (3.10)

Inserting the above inequalities into (3.9) yields

1
2

d
dt

∫
η2 dx +

15
16ε2

∫
η2 dx

� ‖ηx‖2

8ε2
+ Cε4 + C‖ex‖2 + C(1 + D8)(‖ψ‖2 + ε2‖ψxx‖2 + ‖η‖2

1). (3.11)

Similarly, taking ∂α
x , α � 1, we obtain

1
2

d
dt

∫
(∂α

x η)2 dx +
15

16ε2

∫
(∂α

x η)2 dx

� ‖∂α
x ηx‖2

8ε2
+ Cε4 + C‖∂α

x ex‖2 + C(1 + D8)(‖ψ‖2
α + ε2‖∂α

x ψxx‖2 + ‖η‖2
α+1).

(3.12)

Moreover, from (3.6), we may deduce that

‖ηx‖2 � 4ε2‖ψt‖ + Cε2‖η‖2 + ε2(1 + D2)‖ψx‖2 + C‖η‖2 (3.13)

and

‖∂α
x ηx‖2 � 4ε2‖∂α

x ψt‖ + Cε2‖η‖2
α + ε2(1 + D2)‖ψx‖2

α + C‖η‖2
α. (3.14)

Therefore, by combining (3.11) and (3.14), we can establish (3.8). This completes
the proof.

Lemma 3.4. Under the assumptions of theorem 1.1, we have

d
dt

∫ (
1

2ε2
(∂α

x ψ)2 + ∂α
x ψ∂α

x ψt + (∂α
x ψt)2 + 1

4 (∂α
x ψxx)2

)
dx + 1

4

∫
(∂α

x ψxx)2 dx

+
d
dt

∫
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)
2ε2wε

∂α
x ψ2

x dx

+
(

27
16ε2

− 17
16

) ∫
(∂α

x ψt)2 dx +
1

2ε2

∫
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)

wε
∂α

x ψ2
x dx

� C(1 + D3)(‖∂α
x ψxx‖2 + ‖∂α

x ψt‖2) +
C(1 + D8)

ε2
(‖ψ‖2

1+α + ‖η‖2
1+α) + Cε2.

(3.15)
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Proof. Multiplying (3.3) by ψ and integrating the resultant equation over Ω, we
have

d
dt

∫ (
ψψt +

1
2ε2

ψ2
)

dx −
∫

ψ2
t dx + 1

4

∫
ψ2

xx dx

+
∫ (

1
wε

w2
εt − 1

wε
wε2

t − 1
2ε2wε

(p(w2
ε ) + w2

ε u2
ε)xx +

1
2ε2wε

(p(wε2) + wε2uε2)xx

+
1

2ε2wε
(w2

ε φεx)x − 1
2ε2wε

(wε2φε
x)x − 1

4wε
w2

εxx +
1

4wε
wε2

xx

)
ψ dx

= −1
2

∫
Rxψ dx.

(3.16)

In the following we deal with the terms in (3.16) one by one. First, using the
Cauchy–Schwarz inequality, we have∫ (

1
wε

w2
εt − 1

wε
wε2

t

)
ψ dx + 1

2

∫
Rxψ dx

=
∫

wε(wε + wε)tψt + (wε
t)

2ψ

wεwε
ψ dx + 1

2

∫
Rxψ dx

� 1
16‖ψt‖2 + C(1 + D2)‖ψ‖2 +

C

ε2
‖ψ‖2 + Cε2,

and

1
2ε2

∫ (
(w2

ε φεx)x

wε
− (wε2φε

x)x

wε

)
ψ dx − 1

4

∫ (
w2

εxx

wε
− wε2

xx

wε

)
ψ dx

=
1

2ε2

∫
wε(2wεwεxφεx + w2

ε φεxx) − wε(2wεwε
xφε

x + wε2φε
xx)

wεwε
ψ dx

− 1
4

∫ (
−w2

εxxψ + wε(wεxx + wε
xx)ψxx

wεwε

)
ψ dx

� C(1 + D2)
ε2

(‖ψ‖2 + ‖ψx‖2 + ‖ex‖2 + ‖exx‖2) + C(1 + D2)(‖ψ‖2 + ‖ψxx‖2).

Similarly to (3.10), we have

− 1
2ε2

∫ (
p(w2

ε )xx

wε
− p(wε2)xx

wε

)
ψ dx

= − 1
2ε2

∫ (
1
wε

(
p(w2

ε ) − p(wε2)
)
xx

+ p(w2
ε )xx

(
1
wε

− 1
wε

))
ψ dx

=
1

2ε2

∫ (
ψ

wε

)
x

(p(w2
ε ) − p(wε2))x dx +

1
2ε2

∫
p(w2

ε )xx

wεwε
ψ2 dx

�
∫

p′(w2
ε + σ(w2

ε − wε2))(wε + wε)
2ε2wε

ψ2
x dx +

C(1 + D2)
ε2

(‖ψ‖2 + ‖ψx‖2).

https://doi.org/10.1017/S030821050800036X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050800036X


130 Y.-P. Li

Moreover, with the aid of integration by parts, we have

− 1
2ε2

∫ (
(w2

ε u2
ε)xx

wε
− (wε2uε2)xx

wε

)
ψ dx

= − 1
2ε2

∫ (
(w2

ε )xxu2
ε + 2(w2

ε )x(u2
ε)x + w2

ε (u2
ε)xx

wε

− (wε2)xxuε2 + 2(wε2)x(uε2)x + wε2(uε2)xx

wε

)
ψ dx

� C(1 + D3)
ε2

(‖ψ‖2 + ‖ψx‖2 + ε2‖ψxx‖2 + ‖η‖2 + ‖ηx‖2).

Therefore, we have

d
dt

∫ (
ψψt +

1
2ε2

ψ2
)

dx − 17
16

∫
ψ2

t dx + 1
4

∫
ψ2

xx dx

+
∫

p′(w2
ε + σ(w2

ε − wε2))(wε + wε)
2ε2wε

ψ2
x dx

� C(1 + D8)
ε2

(‖ψ‖2
1 + ‖η‖2

1) + C(1 + D3)‖ψxx‖2 + Cε2. (3.17)

Next, multiplying (3.3) by 2ψt and integrating the resultant equation over Ω, we
have
d
dt

∫
(ψ2

t + 1
4ψ2

xx) dx +
2
ε2

∫
ψ2

t dx

+ 2
∫ (

1
wε

w2
εt − 1

wε
wε2

t − 1
2ε2wε

(p(w2
ε ) + w2

ε u2
ε)xx +

1
2ε2wε

(p(wε2) + wε2uε2)xx

+
1

2ε2wε
(w2

ε φεx)x − 1
2ε2wε

(wε2φε
x)x − 1

4wε
w2

εxx +
1

4wε
wε2

xx

)
ψt dx

= −
∫

Rxψt dx.

Similarly, we have∫ (
2
(

1
wε

w2
εt − 1

wε
wε2

t

)
+ Rx

)
ψt dx

=
∫ (

2wε(wε + wε)tψt − 2(wε
t)

2ψ

wεwε
+ Rx

)
ψt dx

� C(1 + D2)‖(ψ, ψt)‖2 +
1

16ε2
‖ψt‖2 + Cε2

and

1
ε2

∫ (
(w2

ε φεx)x

wε
− (wε2φε

x)x

wε

)
ψt dx − 1

2

∫ (
w2

εxx

wε
− wε2

xx

wε

)
ψt dx

=
1
ε2

∫ (
(w2

ε )xφεx + w2
ε φεxx

wε
− (wε2)xφε

x + wε2φε
xx

wε

)
ψt dx

− 1
2

∫ −w2
εxxψ + wε(wεxx + wε

xx)ψxx

wεwε
ψt dx
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� C(1 + D2)
ε2

(‖ψx‖2 + ‖ex‖2 + ‖exx‖2) +
1

16ε2
‖ψt‖2

+ C(1 + D2)(‖ψ‖2 + ‖ψt‖2 + ‖ψxx‖2).

Moreover, with the aid of integration by parts, we have

− 1
ε2

∫ (
p(w2

ε )xx

wε
− p(wε2)xx

wε

)
ψt dx

=
1
ε2

∫ ((
1
wε

)
x

(p(w2
ε ) − p(wε2))xψt +

1
wε

p′(w2
ε + σ(w2

ε − wε2)
)

× (wε + wε)(ψ2
x)t) dx

� d
dt

∫
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)
2ε2wε

ψ2
x dx − C(1 + D8)

ε2
‖ψ‖2

1 − 1
16ε2

‖ψt‖2

and

− 1
ε2

∫ (
(w2

ε u2
ε)xx

wε
− (wε2uε2)xx

wε

)
ψt dx

= − 1
ε2

∫ (
(w2

ε )xxu2
ε + 2(w2

ε )x(u2
ε)x + w2

ε (u2
ε)xx

wε

− (wε2)xxuε2 + 2(wε2)x(uε2)x + wε2(uε2)xx

wε

)
ψt dx

� − 2
ε2

∫
w2

ε wεuεuεxx − wε2wεu
εuε

xx

wεwε
ψt dx +

1
16ε2

‖ψt‖2

+
C(1 + D3)

ε2
(‖ψ‖2 + ‖ψx‖2 + ε2‖ψxx‖2 + ‖η‖2 + ‖ηx‖2)

� − 2
ε2

∫ −uεuεxxw2
ε ψ + w2

ε wεuεxxη + wεuεxxuε(w2
ε − wε2) + uεwεw

ε2ηxx

wεwε
ψt dx

+
1

16ε2
‖ψt‖2 +

C(1 + D3)
ε2

(‖ψ‖2 + ‖ψx‖2 + ε2‖ψxx‖2 + ‖η‖2 + ‖ηx‖2)

� 4
ε

∫
uεwε

(
1
wε

(
ψt +

1
2ε

ηuεx +
1
ε
uεψx +

1
ε
ηwεx

)
x

)
ψt dx

+
1

16ε2
‖ψt‖2 +

C(1 + D3)
ε2

(‖ψ‖2 + ‖ψx‖2 + ε2‖ψxx‖2 + ‖η‖2 + ‖ηx‖2)

� C(1 + D3)‖ψt‖2 +
1

8ε2
‖ψt‖2 +

C(1 + D3)
ε2

(‖ψ‖2
1 + ε2‖ψxx‖2 + ‖η‖2

1).

Furthermore, we have

d
dt

∫ (
ψ2

t +
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)
2ε2wε

ψ2
x + 1

4ψ2
xx

)
dx +

27
16ε2

∫
ψ2

t dx

� C(1 + D8)
ε2

(‖ψ‖2
1 + ‖η‖2

1 + ε2‖ψxx‖2) + Cε2.
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Therefore, we have

d
dt

∫ (
1

2ε2
ψ2 + ψψt + ψ2

t +
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)
2ε2wε

ψ2
x + 1

4ψ2
xx

)
dx

+
(

27
16ε2

− 17
16

) ∫
ψ2

t dx + 1
4

∫
ψ2

xx dx +
∫

p′(w2
ε + σ(w2

ε − wε2))(wε + wε)
2ε2wε

ψ2
x dx

� C(1 + D8)
ε2

(‖ψ‖2
1 + ‖η‖2

1 + ε2‖ψt‖2 + ε2‖ψxx‖2) + Cε2.

In order to obtain a higher-order estimate, we differentiate with respect to x; there-
fore, by repeating the previous steps, we have

d
dt

∫ (
1

2ε2
(∂α

x ψ)2 + ∂α
x ψ∂α

x ψt + (∂α
x ψt)2 + 1

4 (∂α
x ψxx)2

)
dx + 1

4

∫
(∂α

x ψxx)2 dx

+
d
dt

∫
p′(w2

ε + σ(w2
ε − wε2))(wε + wε)
2ε2wε

∂α
x ψ2

x dx

+
(

27
16ε2

− 17
16

) ∫
(∂α

x ψt)2 dx +
∫

p′(w2
ε + σ(w2

ε − wε2))(wε + wε)
2ε2wε

∂α
x ψ2

x dx

� C(1 + ε2D8)
ε2

(‖(ψ, η)‖2
1+α + ε2‖∂α

x ψxx‖2 + ε2‖∂α
x ψt‖2) + Cε2.

This completes the proof.

Combining lemmas 3.2–3.4 yields

d
dt

‖(∂α
x ψ, ∂α

x ψx, ε∂α
x ψt, ∂

α
x η, ε∂α

x ψxx)‖2 + C‖(ε∂α
x ψxx, ∂α

x ψt, ∂
α
x ψx, ∂α

x η)‖2

� Cε4 + C(1 + D8)(‖(ψ, η)‖2
α+1 + ε2‖∂α

x ψt‖2 + ε2‖∂α
x ψxx‖2). (3.18)

Then we integrate (3.18) from 0 to T with [0, T ] ⊂ [0, min{Tε, T∗}) to obtain

‖(∂α
x ψ, ∂α

x ψx, ∂α
x η, ε∂α

x ψxx, ε∂α
x ψt)‖2 + C

∫ T

0
‖(ε∂α

x ψxx, ∂α
x ψx, ∂α

x ψt, ∂
α
x η)‖2 dt

� CTε4 + C

∫ T

0
(1 + D8)(‖(ψ, η)‖2

α+1 + ε2‖∂α
x ψxx‖2 + ε2‖∂α

x ψt‖2) dt.

Here we have used the fact the initial data are in equilibrium. Summing up the last
inequality over all α satisfying α � 2 and noting that (3.13), we get

‖(ψ, εψt)‖2
2 + ‖η‖2

3 + ε2‖ψxxx‖2
1 + C

∫ T

0
(‖ψ‖2

2 + ε2‖ψxxx‖2
1 + ε2‖ψt‖2

2 + ‖η‖2
3) dt

� CT∗ε
4 + C

∫ T

0
(1 + D8)(‖ψ‖2

2 + ‖η‖2
3 + ε2‖ψt‖2

2 + ε2‖ψxxx‖2
1) dt. (3.19)

We apply Gronwall’s lemma to (3.19) to get

‖ψ‖2
2 + ‖η‖2

3 + ε2‖ψt‖2
2 + ε2‖ψxxx‖2

1 � CT∗ε
4 exp

[
C

∫ T

0
(1 + D8) dt

]
. (3.20)
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Since ‖ψ‖2
2 + ‖η‖2

3 + ε2‖ψt‖2
2 + ε2‖ψxxx‖2

1 = ε2D2, it follows from (3.20) that

D(T )2 � CT∗ε
4 exp

[
C

∫ T

0
(1 + D8) dt

]
≡ Φ(T ). (3.21)

Thus, it holds that

Φ′(t) = C(1 + D8)Φ(t) � CΦ(t) + CΦ5(t). (3.22)

Applying the nonlinear Gronwall-type inequality in [24, 25] to the last inequality
yields

Φ(t) � eCT∗ (3.23)

for t ∈ [0, min{T∗, Tε}) if we choose ε so small that

Φ(0) = CT∗ε
2 � e−CT∗ .

Due to (3.21), there exists a constant c, independent of ε, such that

D(T ) � c (3.24)

for T ∈ [0, min{T∗, Tε}). Finally, the theorem is concluded from (3.20) and (3.24).
This completes the proof.
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15 A. Jüngel, H.-L. Li and A. Matsumura. The relaxation-time limit in the quantum hydro-
dynamic equations for semiconductors. J. Diff. Eqns 225 (2006), 440–464.

16 C. Lattanzio. On the 3-D bipolar isentropic Euler–Poisson model for semiconductors and
the drift-diffusion limit. Math. Models Meth. Appl. Sci. 10 (2000), 351–360.

17 C. Lattanzio and P. Marcati. The relaxation to the drift-diffusion system for the 3-D isen-
tropic Euler–Poisson model for semiconductors. Discrete Contin. Dynam. Syst. 5 (1999),
449–455.

18 H.-L. Li and P. Marcati. Existence and asymptotic behavior of multi-dimensional quantum
hydrodynamic model for semiconductors. Commun. Math. Phys. 245 (2004), 215–247.

19 Y. P. Li. Diffusion relaxation limit of a nonisentropic hydrodynamic model for semiconduc-
tors. Math. Meth. Appl. Sci. 30 (2007), 2247–2261.

20 Y. P. Li. Diffusion relaxation limit of a quantum hydrodynamical model for semiconductors.
Preprint, Shanghai Normal University (2007).

21 P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors
and relaxation to the drift-diffusion equation. Arch. Ration. Mech. Analysis 129 (1995),
129–145.

22 P. A. Markowich, C. A. Ringhofev and C. Schmeiser. Semiconductor equations (Springer,
1990).

23 A. Unterreiter. The thermal equilibrium solution of a generic bipolar quantum hydro-
dynamic model. Commun. Math. Phys. 188 (1997), 69–88.

24 W.-A. Yong. Basic aspects of hyperbolic relaxation systems. In Advances in the theory
of shock waves (ed. H. Freistuhler and A. Szepessy), Progress in Nonlinear Differential
Equations and Their Applications, vol. 47, pp. 259–305 (Birkhäuser, 2001).
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