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Peroxisomes are cytoplasmic organelles involved in fatty acid oxidation, ether-phospholipids biosynthesis, glyoxylate metab-
olism and purine catabolism among other metabolic pathways. However, these organelles are still poorly studied in molluscs.
During a light and electron microscopy study of the digestive glands of cephalaspidean sea slugs unusually large peroxisomes
reaching about 5 mm in diameter were found in basophilic cells of Philinopsis depicta (Aglajidae), being among the biggest
ever reported in metazoan cells. These round or oval peroxisomes were clearly visible with the light microscope, and their
diamond shaped core was strongly stained by the tetrazonium coupling reaction for protein detection. However, in the baso-
philic cells of Aglaja tricolorata, another aglajid cephalaspidean, peroxisomes were more variable in shape and no bigger than
1 mm in length. Round peroxisomes with a diameter of about 0.5 mm were common in basophilic cells of Philine quadripartita
(Philinidae) and Haminoea navicula (Haminoidae), whereas in Bulla striata (Bullidae) these organelles frequently had a
diameter of between 1.0 and 1.5 mm. Peroxisomes were larger in basophilic cells than in digestive ones. In all these
species, the electron-dense peroxisomal cores were diamond-shaped, and in H. navicula two cores could be seen in each per-
oxisome. The abundance and large size of peroxisomes in the digestive gland points out the importance of these organelles in
the metabolism of this organ.
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I N T R O D U C T I O N

Peroxisomes are cytoplasmic organelles that can contain up to
50 different enzymes, including catalase that eliminates the
hydrogen peroxide produced by peroxisomal oxidases.
Although their functions vary among species and between dif-
ferent tissues, peroxisomes are involved in fatty acid
a-oxidation and b-oxidation, ether-phospholipids biosyn-
thesis, glyoxylate metabolism and purine catabolism, among
other metabolic pathways (Islinger et al., 2010; Smith &
Aitchison, 2013). Peroxisome research has been mainly
focused on mammals (including human peroxisomal disor-
ders) and fungi (Vamecq et al., 2014; Sibirny, 2016), with
several studies also dedicated to the peroxisomes of plants
and some protozoans (Gabaldón, 2010; Hu et al., 2012).
Since their discovery in 1954, the biogenesis and evolutionary
origin of peroxisomes have been much debated. Although
these organelles most likely evolved non-symbiotically,
molecular data suggest that peroxisomal b-oxidation
enzymes had their origin in the alpha-proteobacteria

ancestors of mitochondria (Bolte et al., 2015). It was also
shown that several environmental pollutants can cause peroxi-
some proliferation in fish and bivalves (Cajaraville et al.,
2003). Nevertheless, despite some studies (Cancio &
Cajaraville, 2000) not much is known about the peroxisomes
of molluscs and other invertebrates.

Due to the abundance of peroxisomes in the digestive gland
this is the first choice organ to study peroxisomes in molluscs
(Lobo-da-Cunha et al., 1994). The digestive gland is a major
organ of the digestive system in gastropods and other molluscs.
Typically, this gland has a tubular structure, and the epithelium
of its tubules is formed by digestive cells and basophilic cells with
additional minor cell types reported in some species (Luchtel
et al., 1997; Dimitriadis & Andrews, 2000). The digestive
gland is connected to the stomach by ducts (Lobo-da-Cunha
et al., 2011a) and seems to be the major source of extracellular
digestive enzymes found in stomach and crop fluids (Oxford,
1977, 1979). Subsequently, the products of extracellular diges-
tion are carried through the ducts into the digestive gland
tubules where they are collected by endocytosis and their
digestion is completed in the heterolysosomes of digestive
cells (Lobo-da-Cunha, 2000; Taı̈eb, 2001). The basophilic cells
present the ultrastructural features of protein-secreting cells,
containing large amounts of rough endoplasmic reticulum
cisternae and apical electron-dense secretory vesicles
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(Lobo-da-Cunha, 1999; Dimitriadis & Andrews, 2000). These
cells were sometimes called calcium cells when containing
calcium concretions. Detoxification, storage of minerals and
accumulation of lipid and glycogen reserves are other functions
of the digestive gland of gastropods (Voltzow, 1994; Luchtel
et al., 1997). However, the digestive gland of gastropods can
be morphologically and functionally diverse, for example digest-
ive gland cells of sacoglossans retain functional chloroplast col-
lected from algae (Pierce & Curtis, 2012), and in some special
cases this gland can even be entirely absent as in deep sea
bathysciadiid limpets (Hartmann et al., 2011).

Despite some earlier studies in gastropods (Dannen &
Beard, 1977; Beard & Holtzman, 1985; Lobo-da-Cunha et al.,
1994), peroxisomes were not yet reported in cephalaspideans
(commonly known as bubble snails), a clade of marine
heterobranch gastropods with or without external shell distrib-
uted worldwide, comprising about 634 species (Malaquias
et al., 2009; Wägele et al., 2014; Oskars et al., 2015). Previous
light and electron microscopy studies were focused on the
salivary glands and digestive tract of cephalaspideans
(Lobo-da-Cunha et al., 2010a, 2010b, 2011a, 2011b, 2014,
2016), but the digestive gland of these gastropods has not yet
been studied in detail. To further proceed the investigation of
the digestive system of cephalaspideans, the digestive gland
was studied by light and electron microscopy in carnivorous
and herbivorous species, representing four families of cephalas-
pideans. In this paper only the ultrastructural aspects of their
peroxisomes are reported.

M A T E R I A L S A N D M E T H O D S

Animal collection
Specimens of Bulla striata Bruguière 1792, Aglaja tricolorata
Renier 1807 and Philinopsis depicta (Renier 1807) were col-
lected on the southern coast of Portugal (Algarve). Specimens
of Philine quadripartita Ascanius 1772 and Haminoea navicula
(da Costa 1778) were collected in Ria de Aveiro, a coastal
lagoon connected to the Atlantic Ocean on the central coastline
of Portugal. Specimens were collected in May and June, and at
least four of each species were analysed.

Morphology
Digestive gland samples were prepared for transmission elec-
tron microscopy as previously reported for other tissues of
cephalaspideans (Lobo-da-Cunha et al., 2010a). Small frag-
ments were fixed with 2.5% glutaraldehyde and 4% formalde-
hyde (obtained from hydrolysis of para-formaldehyde),
diluted with 0.4 M cacodylate buffer (final concentration
0.28 M), pH 7.4. After washing in buffer, samples were post-
fixed with 2% OsO4, dehydrated in ethanol and embedded
in Epon. Semi-thin sections (2 mm) for light microscopy
observations were stained with methylene blue and azure II.
Ultrathin sections stained by uranyl acetate and lead citrate
were observed in a JEOL 100CXII transmission electron
microscope operated at 60 kV.

Histochemistry
The tetrazonium coupling reaction for protein detection was
applied to 2 mm semi-thin sections of Epon embedded

samples, as reported previously (Lobo-da-Cunha et al.,
2010a). Sections on glass slides were treated for 10 min with
a freshly prepared 0.2% solution of fast blue salt B in
veronal-acetate buffer (pH 9.2), then washed and treated for
15 min with a saturated solution of b-naphthol in
veronal-acetate buffer (pH 9.2). After washing, Epon sections
were air dried and mounted with DPX.

R E S U L T S

In the digestive gland of gastropods, basophilic cells can be iden-
tified by the presence of spherical secretory vesicles mostly accu-
mulated in the cytoplasm above the nucleus. In semi-thin
sections of Philinopsis depicta digestive gland, structures resem-
bling peroxisomes with a diamond-shaped crystalline core were
observed with the light microscope in the basal region of baso-
philic cells (Figure 1A). These organelles could reach 5 mm in
diameter and the tetrazonium coupling reaction showed that
their core was made of proteins (Figure 1A, inset). Using
transmission electron microscopy, unusually large peroxisomes
containing an electron-dense diamond-shaped core were seen
in basophilic cells of P. depicta (Figure 1B), confirming the
observations made in the semi-thin sections. These oval or
round organelles were surrounded by cisternae of rough endo-
plasmic reticulum (Figure 1B). Peroxisomes were significantly
smaller in the digestive cells of P. depicta digestive gland, with
less than 1 mm in diameter, but also contained an
electron-dense diamond-shaped core (Figure 1C).

Several peroxisomes were also present in the digestive gland
cells of the other four species of cephalaspideans included in
this study. However, due to their smaller dimensions they
were not detectable in semi-thin sections stained with methy-
lene blue and azure II, and were only observed by transmission
electron microscopy. In Aglaja tricolorata, peroxisomes were
observed in the cytoplasm around the vacuoles that could
occupy a very large part of the basophilic cells (Figure 1D).
These peroxisomes were more variable in shape, including
round, oval and elongated forms usually with a length inferior
to 1 mm in ultra-thin sections, and also contained an
electron-dense core (Figure 1E). In basophilic cells of Philine
quadripartita, round peroxisomes with a diameter about
0.5 mm were more abundant close to the electron-dense secre-
tory vesicles (Figure 1F) and near mitochondria at the basal
region of these cells. Two cores were found in the peroxisomes
of Haminoea navicula (Figure 2A and B), which had an average
diameter of 0.5 mm. In the digestive gland of this species,
peroxisomes were also more frequently observed close to the
secretory vesicles (Figure 2A) and at the basal region of baso-
philic cells (Figure 2B). These organelles were bigger in Bulla
striata basophilic cells, frequently with a diameter between
1.0 and 1.5 mm (Figure 2C and D). In all five species, cores sec-
tions ranged from square to diamond-shaped, suggesting an
octahedral crystal. They were all highly electron-dense
without any visible internal crystalline structure. The morpho-
logical features of peroxisomes in the five species of cephalaspi-
deans included in this study are summarized in Table 1.

D I S C U S S I O N

Among molluscs, ultrastructural aspects of peroxisomes were
reported in bivalves (Owen, 1972; Cajaraville et al., 1992),
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chitons (Lobo-da-Cunha, 1997) and in some clades of gastro-
pods (Dannen & Beard, 1977; Beard & Holtzman, 1985;
Lobo-da-Cunha et al., 1994; Lobo-da-Cunha, 1999), but not
in cephalaspideans.

Peroxisome abundance and dimensions in basophilic and
digestive cells reveal the importance of these organelles in digest-
ive gland metabolism. Catalase, D-amino acid oxidase, and the
fatty acid b-oxidation enzymes acyl-CoA oxidase and

multifunctional enzyme were reported in mussel peroxisomes
(Cajaraville et al., 1992; Cancio et al., 1999, 2000). In addition
to catalase and b-oxidation enzymes, urate oxidase, an enzyme
involved in purine catabolism, was also detected in the scallop
Placopecten magellanicus (Stewart et al., 1994). In gastropods,
in addition to catalase detected in marine and land species
(Dannen & Beard, 1977; Malik et al., 1987; Lobo-da-Cunha
et al., 1994; Lobo-da-Cunha, 1999), acyl-CoA oxidase and

Fig. 1. Peroxisomes in the digestive gland of carnivorous cephalaspideans. (A) Basal region of a basophilic cell of Philinopsis depicta showing the nucleus (nu) and
a structure looking like a very large peroxisome with a crystalline core (arrow) that could be stained by the tetrazonium coupling reaction for protein detection
(arrowhead, inset); (B) Giant peroxisome (px) with a large core (asterisk) surrounded by rough endoplasmic reticulum cisternae (arrows) in a basophilic cell of P.
depicta, arrowheads point to the peroxisomal membrane; (C) Peroxisomes with a diamond-shaped core (arrows) in the cytoplasm between the nucleus (nu) and
the large heterolysosomes (ly) of a digestive cell of P. depicta; (D) Ultra-thin section of a basophilic cell of Aglaja tricolorata showing peroxisomes (arrows) among
the vacuoles (va) that occupy most of the cytoplasm, the nucleus (n) and some mitochondria (arrowheads) are also visible; (E) Peroxisomes (px) with diverse
shapes containing an electron-dense core (arrowheads) in the cytoplasm between the vacuoles (va) of a basophilic cell of A. tricolorata; (F) Several
peroxisomes (px) with a diamond-shaped core (arrowheads) among secretory vesicles (asterisks) in a basophilic cell of Philine quadripartita.
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D-amino acid oxidase were reported in digestive gland peroxi-
somes of the land slug Arion ater (Malik et al., 1987). These
results suggest that peroxisomal metabolism in molluscs has
similarities with the peroxisomal metabolism of vertebrates,
which also contain these enzymes (Islinger et al., 2010). In
mammals and other vertebrates the liver is the richest organ in
peroxisomes, typically occupying between 1 and 2% of the
hepatocytes’ volume (Rocha et al., 1999), and although the

digestive gland of molluscs is an organ with different ontogeny
and functions in both organs peroxisomes have an important
metabolic role.

Although catalase is frequently used as a peroxisomal
marker, the typical morphology of peroxisomes with crystalline
cores can be sufficient to identify these organelles.
Nevertheless, further experiments including catalase detection
with antibodies or by cytochemical methods should be made to

Fig. 2. Peroxisomes in the digestive gland of herbivorous cephalaspideans. (A) Two cores (arrowheads) are clearly visible within a peroxisome (px) close to
mitochondria (mi) and a secretory vesicle (asterisk) in a basophilic cell of Haminoea navicula; (B) Basal region of a basophilic cells of H. navicula containing
peroxisomes (px) and rough endoplasmic reticulum cisternae (rer), cell membrane invaginations (arrowheads) and the basal lamina (bl) are also visible; (C)
Basal region of basophilic cells of Bulla striata showing nuclei (nu), peroxisomes (px), mitochondria (mi), Golgi stacks (Gs), rough endoplasmic reticulum
cisternae (arrows) and a vacuole (va); (D) A peroxisome (px) of B. striata with a large diamond-shaped core.

Table 1. Morphological features of peroxisomes in basophilic cells of cephalaspideans.

Families Species Shape Diameter in mm
(average +++++ SD)

Number and
shape of cores

Aglajidae Aglaja tricolorata Oval and other shapes 0.6 + 0.2 1 – diamond
Philinopsis depicta Round or oval 2.7 + 1.4 1 – diamond

Philinidae Philine quadripartita Round 0.5 + 0.1 1 – diamond
Bullidae Bulla striata Round 1.0 + 0.3 1 – diamond
Haminoeidae Haminoea navicula Round 0.5 + 0.1 2 – diamond
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confirm the identification of these organelles as peroxisomes.
Among gastropods, peroxisomal cores present a considerable
morphological variability, including cores with diamond,
hexagonal or rectangular sections (Dannen & Beard, 1977;
Lobo-da-Cunha et al., 1994; Lobo-da-Cunha, 1999).
Although cores are typically present in peroxisomes, coreless
peroxisomes were reported in basophilic cells of some
gastropods (Lobo-da-Cunha et al., 1994). On the other hand,
peroxisomes with two cores were observed in bivalves and
chitons (Owen, 1972; Lobo-da-Cunha, 1997), as in the
basophilic cells of Haminoea navicula. In the digestive gland
of the five cephalaspideans included in this study, all peroxi-
somal cores seem to have an octahedral shape suggesting that
they are formed by the same proteins. More unusual hexagonal
crystals have been found so far only in the digestive gland
of Phorcus lineatus (¼Monodonta lineata) and Gibbula umbi-
licalis, two species of the Trochidae family (Vetigastropoda)
(Lobo-da-Cunha et al., 1994).Thus, some relationships
between the shape of peroxisomal cores and phylogenetic
position may exist, but much more data are required to verify
this hypothesis.

The core of mammalian liver peroxisomes contains urate
oxidase (Völkl et al., 1988), but in gastropods the enzymes
present in cores are still unknown. In the digestive gland of
some marine gastropods the average diameter of peroxisomes
is �0.5 mm, nevertheless peroxisomes with diameters between
1.0 and 1.5 mm were frequent in basophilic cells of Trochidae
(Lobo-da-Cunha et al., 1994). But even these are smaller than
the giant peroxisomes of the Philinopsis depicta digestive
gland. Unusually large peroxisomes were also reported in
the liver of the grey mullet (Mugil cephalus), which could
reach 3 mm in diameter (Orbea et al., 1999). Even so, the per-
oxisomes with �5 mm in diameter found in P. depicta baso-
philic cells surpass those, being among the biggest ever
reported in animal cells. However, in the digestive cells of P.
depicta peroxisomes have common sizes. In the anaspidean
sea slug Aplysia depilans, peroxisomes are also larger in baso-
philic cells than in digestive cells, although these rarely exceed
0.7 mm in diameter (Lobo-da-Cunha, 1999, 2000). Although
A. tricolorata and P. depicta both belong to the Aglajidae
family, the peroxisomes in the A. tricolorata digestive gland
are much smaller than the giant peroxisomes of P. depicta
basophilic cells, showing the morphological variability of
these organelles within this family of carnivorous cephalaspi-
deans (Zamora-Silva & Malaquias, 2016). Peroxisomes were
common in digestive gland cells of both carnivorous (A. trico-
lorata, P. depicta, P. quadripartita) and herbivorous cephalas-
pideans (B. striata, H. navicula). However, a quantitative
study is required to verify if there is any significant difference
in the abundance of these organelles between herbivorous and
carnivorous cephalaspideans.
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Wägele H., Klussmann-Kolb A., Verbeek E. and Schrödle M. (2014)
Flashback and foreshadowing – a review of the taxon Opisthobranchia.
Organism Diversity and Evolution 14, 133–149.

and

Zamora-Silva A. and Malaquias M.A.E. (2016) Diet preferences of the
Aglajidae: a family of cephalaspidean gastropod predators on tropical
and temperate shores. Journal of the Marine Biological Association of
the United Kingdom 96, 1101–1112.

Correspondence should be addressed to:
A. Lobo da Cunha
Department of Microscopy, Institute of Biomedical Sciences
Abel Salazar, Rua Jorge Viterbo Ferreira 228, 4050-313
Porto, Portugal
email: alcunha@icbas.up.pt

202 alexandre lobo-da-cunha et al.

https://doi.org/10.1017/S0025315417001813 Published online by Cambridge University Press

mailto:alcunha@icbas.up.pt
https://doi.org/10.1017/S0025315417001813

	Giant peroxisomes revealed by a comparative microscopy study of digestive gland cells of cephalaspidean sea slugs (Gastropoda, Euopisthobranchia)
	INTRODUCTION
	MATERIALS AND METHODS
	Animal collection
	Morphology
	Histochemistry

	RESULTS
	DISCUSSION
	FINANCIAL SUPPORT
	CONFLICT OF INTEREST
	REFERENCES


