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Abstract

Numerical simulations of the Rayleigh-Taylor instability in the interface of two semi-infinite media have been
performed based on the finite element method. Two different interfaces have been considered: elastic solid0elastic solid
and elastic solid0viscous fluid. The results have been compared with previously published analytical models. In
particular, the asymptotic growth rate has been compared with the model by Terrones ~2005! while the initial transient
phase is compared with the model by Piriz et al. ~2005!. Finally, some examples show the importance of such an initial
transient phase if more realistic material laws ~for example, elastoplastic behavior! are taken into account.
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1. INTRODUCTION

Conditions for the development of the Rayleigh-Taylor ~RT!
instability arise in the Laboratory of Planetary Sciences
~LAPLAS! experiment ~Tahir et al., 2005! that will be
performed at Gesellschaft für Schwerionenforschung ~GSI!,
Darmstadt, Germany, in the frame of the Facility for Anti-
proton and Ion Research ~FAIR! facility ~Henning, 2004;
Hoffmann et al., 2005!. A typical experiment ~Fig. 1! con-
siders a cylindrical target in which the sample material ~for
example, hydrogen! is surrounded by a thick shell of heavy
material ~typically gold or lead!. One face of the target is
irradiated with an intense ion beam that has an annular focal
spot. When the annular region is heated by the ion beam, it
expands, pushing the inner layers of the target ~the pusher!,
and compressing the material sample in the axial region.
The external layer around the beam-heated zone acts as a
tamper that confines the implosion for a longer time.

By means of numerical simulations and analytical models
~Tahir et al., 2001, 2003, 2004; Piriz et al., 2002a, 2002b;
Temporal et al., 2005, 2003; Breil et al., 2005!, we have
shown that this configuration is very suitable for an exper-
iment dedicated to the study of the hydrogen metallization
problem ~Wigner & Huntigton, 1935; Weir et al., 1996!.

Such studies include the problem of the generation of the
annular focal spot ~Arnold et al., 1982; Piriz et al., 2003a,
2003b!.

The stability of the pusher during the implosion still
remains an issue of possible concern. The RT instability will
arise at the pusher0absorber interface during the accelera-
tion phase, and later at the pusher0hydrogen interface dur-
ing the stagnation phase. Under the conditions of the LAPLAS
experiment, the pusher will be accelerated by a driving
pressure of few megabars achieving accelerations of the
order of 1013 cm0s2. During the implosion, the pusher
remains mainly solid although its internal layers are melted
during the deceleration phase, so that it retains the elastic
and plastic properties during most of the implosion process.
On the other hand, the absorber region is melted during the
phase of heating and then it remains in a liquid state the rest
of the implosion time. Similar situations can be found in
magnetically accelerated shells ~Bowers et al., 1998; Keinigs
et al., 1999; Reinovsky et al., 2002! and in plates acceler-
ated by gaseous detonations products ~Barnes et al., 1974,
1980; Bakharakh et al., 1997!. Recently, a method based on
measuring the RT instability in solids has been proposed to
study the material strength of metals at extreme pressures
~Colvin et al., 2003; Lorenz et al., 2005!.

Some analytical works have been presented to deal with
the RT instability in solids ~Miles, 1966; White, 1973;
Dienes, 1978; Drucker, 1980; Robinson & Swegle, 1989;
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Nizovtsev & Raevskii, 1991; Bakharakh et al., 1997; Plohr
& Sharp, 1998, Colvin et al., 2003; Terrones, 2005; Piriz
et al., 2005!. Among these works we will focus on a few of
them. The first one is the work by Plohr and Sharp ~1998!.
They consider the instability that is developed on a solid0
vacuum interface, so that it is limited to the case in which
the Atwood number AT � ~r2 � r1!0~r2 � r1! is equal to 1.
The behavior of the solid is modeled as a perfectly elastic
solid and, by means of the Laplace transform method, an
exact solution is obtained in which the growth rate is given
by an implicit formula. Although this model is exact and
describes the initial transient phase and the asymptotic
regime it is so involved from a mathematical point of view
that it seems very difficult to extend it to more realistic
situations, for example, the inclusion of plastic behavior.
The second one is the work by Terrones ~2005!. He has
obtained an exact solution for arbitrary Atwood numbers
that applies to solid0solid and solid0viscous fluid inter-
faces. In both cases, the solid is considered perfectly elastic.
This model is based on a normal mode linear analysis, so
that it yields a growth rate that coincides with the results by
Plohr and Sharp ~1998! ~for AT � 1! once the asymptotic
regime has been reached. However, this model cannot describe
the initial transient phase determined by the initial condi-
tions. The third work is by Piriz et al. ~2005!. This approx-
imated model can describe the complete time evolution of
the perturbation. It is based on the second law of Newton
and produces explicit analytical results that are in excellent
agreement with the two previous models that are exact but
more restrictive in their applications. Moreover, as we will
show in this paper, the initial conditions are very important
in the further development of the instability. The RT insta-
bility can be preceded in practice by the Ritchmyer-
Meshkov ~Wouchuk, 2001! unstable phase and0or by a
ramp in the driving pressure. So a relatively simple model,
although approximate, is of great importance in order to
include more realistic phenomena like elastoplastic behav-
ior of the solid or finite thickness effects. It is important to
highlight that the model by Plohr and Sharp ~1998! is valid
for any thickness of the solid layer while the one by Terrones
~2005! applies only to infinite semi-spaces.

Some efforts have been made in the past for simulating
the RT instability in accelerated solids. Two of the most
relevant are those by Swegle and Robinson ~1989! and
Bakharakh et al. ~1997!. In the first one, an elastoplastic

solid slab that is accelerated by means of an external driving
pressure is studied. So, the study is restricted to the case of
AT �1. The work consists in an exhaustive parametric study
in which the influence of many factors like the wavelength,
the initial amplitude, the material properties, the rise time of
the driving pressure, etc. are analyzed. One shortcoming of
this work is that these researchers dealt with many param-
eters at the same time and they did not have an adequate
analytical model to check and interpret their results. The
work by Bakharakh et al. ~1997! is the compilation of the
Russian papers until 1997 on RT in solids. They performed
numerical simulations on semi-spaces with Atwood num-
bers very close to one, and they also presented some numer-
ical simulations to support the model of Nizovtsev and
Raevskii ~1991! for a thin elastoplastic shell. The Nizovtsev
and Raevskii ~1991!model predicts, within the elastic limit,
a value of the critical wavelength lc that is in good agree-
ment with the exact model by Plohr and Sharp ~1998!, and if
the plastic flow is taken into account, the stability bound-
aries seem to agree with some experiments ~Dimonte et al.,
1998!.

In our work, we present a systematic set of numerical
simulations on the RT instability in semi-spaces covering
the following general cases: elastic solid0elastic solid and
elastic solid0viscous fluid interfaces. To simulate semi-
infinite media, we consider thick layers of thickness h, so
that kh �� 1, where k � 2p0l is the wave number, and l is
the wavelength of the perturbation of the interface. We
compare the results, in terms of the growth rates, with the
exact results by Terrones ~2005! and with the approximate
results ~within a 15% of error! by Piriz et al. ~2005!. In
addition, we can incorporate the initial conditions imposed
by the simulations in the model by Piriz et al. ~2005! and
check the excellent performance of this model. Finally we
present a few examples showing the importance of taking
into account such initial conditions specially if more realis-
tic material models ~for example, elastoplastic models! are
considered.

2. NUMERICAL MODEL

The numerical calculations have been performed with ver-
sion 6.5 of the ABAQUS finite element code ~Hibbit, Karls-
son and Sorensen Inc. Pawtucket, RI! which is suitable for
modeling fast transient phenomena. It is based on a central
difference scheme for the time integration of the equations
of motion of the body. The algorithm has second-order
accuracy and is conditionally stable. This means that the
time step size is fixed according to stability requirements
resulting from the Courant criteria.

The behavior of the material is composed of a volumetric
and a deviatoric part. The hydrostatic behavior is governed
by an equation of state while the deviatoric behavior is
governed by a constitutive law, assuming that these two
responses are uncoupled. The material hydrostatic behavior
is defined by the Mie-Grüneisen equation of state:

Fig. 1. LAPLAS ~Laboratory of Planetary Sciences! experimental scheme.
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P � Ph � Gr~E � Eh !, ~1!

where P and E are the pressure and specific internal energy
and Ph and Eh are the Hugoniot pressure, and Hugoniot
specific internal energy, respectively. The latter are func-
tions of the material density r only. Also G is the Grüneisen
ratio defined as:

G � G0
r0

r
, ~2!

where G0 is a constant characteristic of the material and r0 is
the reference density. On the other hand, the momentum and
energy conservation equations are:

r
]v

]t
� �¹P � ¹{S, ~3!

r
]E

]t
� P

1

r

]P

]t
� S : _e � rQ̂, ~4!

where v is the velocity, _e is the rate of change of the
deviatoric strain tensor, S is the deviatoric stress tensor, and
Q̂ is the heat rate per unit of mass.

The equation of state and the equation of energy conser-
vation are coupled through the pressure and the internal
energy. The Hugoniot equations relate the pressure, internal
energy, and density behind the shock waves to the corre-
sponding quantities in front of them in terms of the shock
velocity us, and the particle velocity up. The Hugoniots of
many materials can be adequately represented by the fol-
lowing linear relationship ~McQueen et al., 1970!:

u � c0 � sup , ~5!

where c0 and s are fitting parameters that depend on the
considered material and are experimentally measured.

Three different constitutive laws are considered in this
work for the deviatoric part of the model. For a viscous
fluid, the deviatoric stresses Sij are related to the deviatoric
strain rates _eij through the viscosity m

Sij � 2m _eij . ~6!

To model a solid that behaves elastically the constitutive law
is given by the following linear relationship between the
deviatoric stress rates Ŝij and the deviatoric elastic strain
rates _eij

e

Ŝij � 2G _eij
e , ~7!

where G is the shear modulus and dots indicate the time
derivatives.

Finally, the deviatoric part of the material can be modeled
by using a perfectly elastoplastic model ~i.e., the yielding

plastic surface does not change with the plastic deforma-
tion! with a von Mises yield surface and an associative
plastic flow. This model needs two parameters, namely the
shear modulus G and the yield strength Y that defines
the onset of the plastic range. The algorithm to calculate the
stresses checks if the material has reached the plastic regime
or if it is within the elastic one. In this last case, the elastic
relationship is used and if plasticization occurs, the classical
radial return algorithm ~Hughes, 1984! for the updating of
stresses is applied. Of course, much more realistic models
like the Steinberg-Guinan constitutive model ~Steinberg
et al., 1980!, that accounts for the hardening due to increas-
ing pressure, and the softening due to increasing tempera-
ture can be used, but for the purpose of this paper, the simple
elastoplastic model is sufficient.

The medium to be modeled is shown in Figure 2. It is
spatially discretized with four-node plane strain elements. It
consists of two thick layers separated by a surface which has
a sinusoidal perturbation characterized by the wavelength l
and the initial amplitude j0. Both, the upper and lower
surfaces are flat and the position of the internal nodes is
linearly interpolated between these surfaces and the per-
turbed interface. The thickness of the layers is h, so that
kh �� 1 in order to simulate the instability of semi-infinite
media. Moreover, the lateral surfaces have symmetry con-
ditions to model an infinite lateral layer. In order to accel-
erate the medium an external driving pressure P ext is applied
to the top surface; so the acceleration that the medium
experiments is

g �
P ext

~r1 � r2 !h
, ~8!

where r1 and r2 are the densities of the layers, respectively.
The driving pressure is applied from 0 to the maximum

Fig. 2. Configuration used in the study, showing the layer thickness h, the
initial perturbation amplitude j, the perturbation wavelength l and the
applied driving pressure P. Also, the finite element mesh is shown.
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value P ext in a certain time and then is kept constant. In
Figure 2, the time history of the load as well as a typical
mesh used in the study are also represented. The particular-
ization to solid0vacuum interface is immediate simply elim-
inating the upper layer.

3. NUMERICAL STUDY

Once the medium is accelerated, the perturbation of the
interface can follow one of the following patterns: an
unbounded growth that asymptotically becomes exponen-
tial ~unstable case! or an oscillatory motion after a transient
phase ~stable case! as shown in Figures 3 and 4. Obviously,
in an unstable situation the asymptotic growth rate g� is the
slope of the time evolution of the perturbation j~t ! in a
semi-logarithmic scale. On the other hand, the frequency of
the oscillatory stable pattern is given by g� � 2p0T with T
the period of such an oscillation.

To perform the numerical simulations, the following data
have been used. The wavelength of the perturbation is l�
2.5 mm, the thickness of both layers is h �l� 2.5 mm, and
the initial amplitude is j0 � 5 mm. The quantity kh � 2p is
sufficient to simulate an infinite semi-space while such a
small value of the initial amplitude assures a linear behavior
during a sufficiently long time of computation. The spatial
discrimination consists in a grid of 40 � 40 finite elements
for each of the two layers.

In all the simulations, the heaviest media is simulated by
an elastic material defined by the shear modulus G2. To
describe the hydrostatic part we have taken the properties of
Aluminum: r2 � 2700 kg0m3, c0 � 5380 m0s, G0 � 2.16, and
s � 1.337 ~Swegle & Robinson, 1989!. For the lightest

medium we need to define the shear modulus G1 ~elastic
solid! or the viscosity m1 ~viscous fluid!. To cover different
Atwood numbers some values of the density of the lightest
medium r1 have been used. The parameters c0, G0, and s are
the same for both materials. In all the simulations, the
acceleration of the gravity g is defined by means of an
external pressure P ext with a rise time of trise � 5ms.

The comparisons between the numerical simulations and
the analytical results are shown in the following sections. It
is important to remark that the comparisons have been made
in terms of dimensionless numbers; therefore there are
several combinations of material parameters that produce
the same results. We have used different values of the shear
module G1 and G2 as well as the acceleration of gravity g to
define the dimensionless wave number k~G1 � G2!0r2 g,
and we have verified that the obtained dimensionless growth
rate g� @~G1 � G2!0r2 g2#102 does not depend on the partic-
ular value of the parameters.

3.1. Asymptotic growth rate

We have calculated the asymptotic instability growth rate by
considering two thick media separated by an interface for
the case in which both media are perfectly elastic solids and
for the case in which one of them is an elastic solid and the
other one is a viscous fluid. The results for elastic solid0
elastic solid interfaces are shown in Figure 5. We have
represented the asymptotic dimensionless growth rate
g� @~G1 � G2!0r2 g2#102 as a function of the dimensionless
wave number k~G1 � G2!0r2 g for two different Atwood
numbers, namely AT � 1 and AT � 0.6.

Fig. 3. Time evolution of the perturbation amplitude j~t ! of typical numer-
ical simulations. For an unstable situation the perturbation amplitude
experiments an unbounded growth that asymptotically becomes exponential.

Fig. 4. Time evolution of the perturbation amplitude j~t ! of typical numer-
ical simulations. For a stable situation the perturbation amplitude experi-
ments an oscillatory motion after a transient phase.
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The results for elastic solid0viscous fluid interfaces are
shown in Figure 6. We have represented the asymptotic
dimensionless growth rate g�~G20r2 g2!102 as a function of
the dimensionless wave number kG20r2 g for AT � 0.8 and

two different values of the dimensionless viscosity param-
eter m � @m1 g~r2 0G2

3!102 #102 , namely m � 0.1 and m � 2.
The results of the numerical simulations ~circles! are com-
pared with the exact analytical results by Terrones ~2005!
and to the approximate analytical results by Piriz et al.
~2005! ~dashed lines!. For both interfaces, it is possible to
see that the results of the simulations fit perfectly with the
exact results by Terrones ~2005! while the approximate
results by Piriz et al. ~2005! are within a 15% of error.

3.2. Effective initial amplitude (initial conditions)

The asymptotic regime in which the perturbation grows
exponentially with a growth rate g� is achieved after a
transient phase that lasts for a time of the order g�

�1.
Although this growth rate is independent of the initial con-
ditions, the perturbation amplitude will be affected, in gen-
eral, by the initial velocity ĵ0 and the initial acceleration \j0.
These initial conditions are important because the RT phase
may start from a surface at rest in a stress-free material or,
instead it may arise after a transient phase in which the
driving pressure increases before reaching a constant value.
Therefore, the description of the transient phase between the
initial conditions and the asymptotic regime is essential in
order to determine the perturbation amplitude at any time. In
particular, the effective initial amplitude jeff from which the
perturbation seems to growth when the asymptotic regime is
reached may be very different from the real initial perturba-
tion j0. The meaning of the effective initial amplitude is
clearly shown in Figures 7 and 8. For an unstable case, the

Fig. 5. Asymptotic dimensionless growth rate g� @~G1 �G2!0r2 g2#102 as a
function of the dimensionless wave number k~G1 � G2!0r2 g for two
different Atwood numbers, namely AT � 1 and AT � 0.6. Elastic solid0
elastic solid interfaces. Solid lines are the model by Terrones ~2005!,
dashed lines are the model by Piriz et al. ~2005! and circles are the
numerical simulations.

Fig. 6. Asymptotic dimensionless growth rate g�~G20r2 g 2 !102 as a
function of the dimensionless wave number kG20r2 g for AT � 0.6 and
two different values of the dimensionless viscosity parameter m �
@m1 g~r2 0G2

3!102 #102 , namely m � 0.1 and m � 2. Elastic solid0viscous
fluid interfaces. Dots are the model by Terrones ~2005!, dashed lines are the
model by Piriz et al. ~2005! and circles are the numerical simulations.

Fig. 7. Graphical representation of the dimensionless effective initial ampli-
tude. For an unstable case, the effective initial amplitude jeff

� is the apparent
amplitude for which the time evolution of the perturbation would start if it
were asymptotic from the beginning. This case has been computed accord-
ing to the model by Piriz et al. ~2005! for the particular values of u� �5 and
a� � 5.
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effective initial amplitude jeff
� is the apparent amplitude for

which the time evolution of the perturbation would start if
it were asymptotic from the beginning. For a stable case,
the effective initial amplitude jeff

� is the amplitude of the
oscillation.

In Piriz et al. ~2005! the dimensionless effective initial
amplitude jeff

6 0j0 was compared to the exact results by Plohr
and Sharp ~1998! with an excellent agreement. It is impor-
tant to highlight here that the results by Plohr and Sharp
~1998! apply to a stress free plate initially at rest, so that
ĵ0 � 0 and \j0 � AT kgj0. This is not the case of our
simulations in which the rise time of the driving force
imposes different initial conditions ~initial conditions are
taken at the end of the ramp of the load!. We have measured
in the computations the velocity ĵ0 and the acceleration \j0 at
the end of the rise time of the pressure, and then we used
them to obtain the dimensionless effective initial amplitude
jeff
6 0j0 that is given according to the model by Piriz et al.
~2005! by the following expressions:

jeff
�

j0

�
a� � u�

2
~unstable case!, ~9!

jeff
�

j0

� Ma�
2 � u�

2 ~stable case!, ~10!

where a6� \j0 0g62 j0 and u6� ĵ00g6j0. In Figures 7 and 8,
the time evolution of the perturbation is calculated accord-
ing to the model by Piriz et al. ~2005! for the particular cases
of u6� 5 and a6� 5.

In Figures 9 and 10, the dimensionless effective initial
amplitude jeff

6 0j0 versus the dimensionless wave number

2kG20r2 g is represented for the unstable and stable cases
respectively. In these cases, we have considered a solid0
vacuum interface that is AT � 1. We can see that the
numerical simulations ~circles! fit quite well with the approx-
imate analytical results by Piriz et al. ~2005! ~crosses!.

It is important to note that this effective amplitude goes to
infinity when the perturbation wave number approaches the

Fig. 8. Graphical representation of the effective initial amplitude. For a
stable case, the effective initial amplitude jeff

� is the amplitude of the
oscillation. This case has been computed according to the model by Piriz
et al. ~2005! for the particular values u� � 5 and a� � 5.

Fig. 9. Dimensionless effective initial amplitude jeff
� 0j0 versus the dimen-

sionless wave number 2kG20r2 g for an unstable case. Solid0vacuum
interface. Circles are the numerical simulations and crosses are the analyt-
ical results by Piriz et al. ~2005!.

Fig. 10. Dimensionless effective initial amplitude jeff
� 0j0 versus the

dimensionless wave number 2kG20r2 g for a stable case. Solid0vacuum
interface. Circles are the numerical simulations and crosses are the analyt-
ical results by Piriz et al. ~2005!.
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cutoff value ~kr kc � r2 g02G2!, where the growth rate g
goes to zero. In this kind of situations, the instability could
enter in the nonlinear phase or in the plastic flow before the
asymptotic regime is reached.

3.3. Importance of the initial transient phase with
an elastoplastic behaviour for the solid layer

In this section, we show the importance of the initial phase
when we consider a more realistic constitutive law to model
the solid behavior, for example, a perfectly elastoplastic
law.

We have simulated a solid0vacuum interface ~AT � 1!
with material and geometric parameters that lead to a stable,
oscillatory pattern if the solid is considered to behave elas-
tically. Two different rise time of the driving pressure have
been taken into account. As Figure 11 shows, the amplitude
of the oscillation is larger for the shorter rise time. We fix the
elastic limit in such a way that only this evolution enters in
the plastic regime. The case of the longer rise time will
continue behaving elastically ~so it will remain stable! but
the case of the shorter rise time will plastify and will
develop an unstable growth.

The same situation can be observed in Figure 12. Now the
difference is the initial amplitude of the perturbation. The
case in which the initial amplitude is larger will oscillate
with larger values and therefore it can reach the plastic
regime ~and it becomes unstable! while the other case will
remain elastic and stable.

In both cases the RT instability has entered in the plastic
regime before the elastic asymptotic regime has been reached.

4. SUMMARY AND CONCLUSIONS

In this paper, numerical simulations of the RT instability in
infinite semi-spaces ~kh .. 1! considering elastic solid0
elastic solid and elastic solid0viscous fluid interfaces have
been done. The results of the simulations fit quite well with
previously published analytical models. In particular, the
asymptotic growth rate has been compared with the exact
model by Terrones ~2005! and with the approximated model
by Piriz et al. ~2005!. The initial transient phase before
reaching the asymptotic regime has been compared, with
excellent agreement, with the model by Piriz et al. ~2005!.
The initial phase is of great importance because the insta-
bility can enter in the non-linear phase or in the plastic flow
before the asymptotic regime is reached. We have presented
some few examples showing this effect. Therefore, to fix the
stability boundaries with an elastoplastic model, the actual
values of the perturbation at any time ~not only in the
asymptotic regime! are needed.

ACKNOWLEDGMENTS

This work has been partially supported by the Ministerio de
Ciencia y Tecnologìa ~DPI2005-02278; FTN2003-00721!, by the
Consejerìa de CYT-JCCLM ~PAI-05-071! of Spain and by the
BMBF of Germany.

REFERENCES

Arnold, R., Colton, E., Fenster, S., Foss, M., Magelssen, G.
& Moretti, A. ~1982!. Utilization of high-energy, small emit-

Fig. 11. Time evolution of the perturbation j~t ! for two different rise time
of the driving pressure. For elastic materials both evolutions follow a stable
pattern but if an elastoplastic material law is taken into account, the case of
the longer rise time is stable while the case of the shorter rise time is
unstable.

Fig. 12. Time evolution of the perturbation j~t ! for two different initial
perturbation amplitudes. For elastic materials both evolutions follow a
stable pattern but if an elastoplastic material law is taken into account, the
case of the smaller initial amplitude is stable while the case of the larger
initial amplitude is unstable

Numerical simulations of Rayleigh-Taylor instability in elastic solids 433

https://doi.org/10.1017/S0263034606060599 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034606060599


tance accelerators for ICF target experiments. Nucl. Instrum.
Met. Phys. Res. 199, 557.

Bakharakh, S.M., Drennov, O.B., Kovalev, N.P., Lebedev,
A.I., Meshkov, E.E., Mikhailov, A.L., Nevmerzhitsky,
N.V., Nizovtsev, P.N., Rayevsky, V.A., Simonov, G.P.,
Solovyev, V.P. & Zhidov, I.G. ~1997!. Hydrodinamic insta-
bility in strong media. Report No. UCRL-CR-126710. Liver-
more, CA: Lawrence Livermore National Laboratory.

Breil, J., Hallo, L., Maire, P.H. & Olazabal-Louma, M.
~2005!. Hydrodynamic instabilities in axisymmetric geometric
self-similar models and numerical simulations. Laser Part.
Beams 23, 47.

Barnes, J.F., Blewet, P.J., McQueen, R.G., Meyer, K.A. &
Venable, D. ~1974!. Taylor instability in solids. J. Appl. Phys.
45, 727.

Barnes, J.F., Janney, D.H., London, R.K., Meyer, K.A. &
Sharp, D.H. ~1980!. Further experimentation on Taylor insta-
bility in solids. J. Appl. Phys. 51, 4678.

Bowers, R.L., Brownell, J.M., Lee, H., Mclenithan, K.D.,
Scannapieco, A.J. & Shanhan, W.R. ~1998!. Design and
modelling of precision solid liner experiments on Pegasus. J.
Appl. Phys. 83, 4146.

Colvin, J.D., Legrand, M., Remington, B.A., Schurtz, G. &
Weber, S.V. ~2003!. A model for instability growth in acceler-
ated solid metals. J. Appl. Phys. 93, 5287.

Dienes, J.K. ~1978!. Method of generalized coordinates and an
application to Rayleigh-Taylor instability. Phys. Fluids 21, 736.

Dimonte, G., Gore, R. & Schneider, M. ~1998!. Rayleigh-
Taylor instability in elastic-plastic materials. Phys. Rev. Lett.
80, 1212

Drucker, D.C. ~1980!. Taylor instability of the surface of an
elastic-plastic plate. In Mechanics Today ~Nemmat-Nasses, S.,
Ed.!, Vol. 5, p. 37. Oxford: Pergamon.

Henning, W.F. ~2004!. The future GSI facility. Nucl. Instrum.
Methods Phys. Res. B 214, 155.

Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth,
M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov,
D., Weyrich, K. & Maron, Y. ~2005!. Present and future
perspectives for high energy density physics with intense heavy
ion and laser beams. Laser Part. Beams 23, 47.

Hughes, T.J.R. ~1984!. Numerical Implementation of Constitutive
Models: Rate Independent Deviatoric Plasticity ~Nemat-
Nasser, S., Asaro, R.J. & Hegemier, G.A., Eds.!. Boston, MA:
Martinus Nujhoff Publishers.

Keinigs, R.K., Atchison, W.L., Faehl, R.J., Thomas, V.A.,
Maclenithan, K.D. & Trainor, R.J. ~1999!. One and two
dimensional simulations of imploding metal shells. J. Appl.
Phys. 85, 7626.

Lorenz, K.T., Edwards, M.J., Glendinning, S.G., Jankowski,
A.F., McNaney, J., Pollain, S.M. & Remington, B.A.
~2005!. Accessing ultrahigh-pressure, quasi-isentropic states of
matter. Phys. Plasmas 12, 056309.

McQueen, R.G., Marsh, S.O., Taylor, J.W., Fritz, J.N. &
Carter, W.J. ~1970!. High-velocity impact phenomena ~Kinslow,
R., Ed.!. New York: Academic Press.

Miles, J.W. ~1966!. Taylor instability of a flat plate. General
Dynamics Report No. GAMD-7335, AD643161. San Diego,
CA: General Dynamics.

Nizovtsev, P.N. & Raevskii, V.A. ~1991!. Approximate analytic
solution for the problem of Rayleigh-Taylor instability in strong
media. VANT Ser. Teor. I Prikl. Fiz. 3, 11.

Piriz, A.R., Lopez Cela, J.J., Cortazar, O.D., Tahir, N.A. &
Hoffmann, D.H.H. ~2005!. Rayleigh-Taylor instability in elas-
tic solids. Phys. Rev. E 72, 056313.

Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hoffmann,
D.H.H. ~2002a!. Analytic model for studying heavy-ion-
imploded cylindrical targets. Laser Part. Beams 20, 427.

Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hoffmann,
D.H.H. ~2002b!. Implosion of multilayered cylindrical targets
driven by intense ion beams. Phys. Rev. E 66, 056403.

Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M.
~2003a!. Generation of a hollow ion beam: Calculation of the
rotation frequency required to accommodate symmetry con-
straint. Phys. Rev. E 67, 017501.

Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. &
Hoffmann, D.H.H. ~2003b!. Symmetry analysis of cylindrical
implosions driven by high-frequency rotating ion beams. Plasma
Phys. Contr. Fusion, 45, 1733.

Plohr, B.J. & Sharp, D.H. ~1998!. Instability of accelerated
elastic metal plates. ZAMP 49, 786.

Reinovsky, R.E., Anderson, W.E., Atchison, W.L., Ekdahl,
C.E., Faehl, R.J., Lindemuth, I.R., Morgan, D.V., Murillo,
M., Stokes, J.L. & Shlachter, J.S. ~2002!. Instability growth
in magnetically imploded high-conductivity cylindrical liners
with material strength. IEEE Trans. Plasma Sci. 30, 1764.

Robinson, A.C. & Swegle, J.W. ~1989!. Acceleration instability
in elastic-plastic solids: Analytical techniques. J. Appl. Phys.
66, 2859.

Steinberg, D.J., Cochran, S.G. & Guinan, M.W. ~1980!. A
constitutive model for metals applicable at high-strain rate. J.
Appl. Phys. 51, 1498.

Swegle, J.W. & Robinson, A.C. ~1989!. Acceleration instability
in elastic-plastic solids: Numerical simulations of plate accel-
eration. J. Appl. Phys. 66, 2838.

Tahir, N.A.,Adonin,A., Deutsch, C., Fortvo, V.E., Grandjouan,
N., Geil, B., Grayaznov, V., Hoffmann, D.H.H., Kulish,
M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D.,
Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal,
M., Ternovoi, V., Udrea, S. & Varentsov, D. ~2005!.
Studies of heavy ion-induced high-energy density states in
matter at the GSI Darmstadt SIS-18 and future FAIR facility.
Nucl. Instrum. Methods Phys. Res. A 544, 16.

Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz,
A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U. &
Bock, R. ~2001!. Designing future heavy-ion-matter inter-
action experiments for the GSI Darmstadt heavy ion synchro-
tron. Nucl. Instrum. Meth. Phys. Res. A 464, 211.

Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R.,
Temporal, M., Varentsov, D., Udrea, S., Hoffmann,
D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. ~2003!.
Influence of the equation of state on the compression and
heating hydrogen. Phys. Rev. B 67, 184101.

Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan,
G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk,
M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P.,
Temporal, M. & Varentsov, D. ~2004!. Target heating in
high-energy-density matter experiments at the proposed GSI
FAIR facility: Non-linear bunch rotation in SIS 100 and opti-
mization of spot size and pulse length. Laser Part. Beams 22,
485.

Temporal, M., Lopez Cela, J.J., Piriz, A.R., Grandjouan, N.,
Tahir, N.A. & Hofmann, D.H.H. ~2005!. Compression of

434 J.J. López Cela et al.

https://doi.org/10.1017/S0263034606060599 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034606060599


acylindrical hydrogen sample driven by an intense co-axial
heavy ion beam. Laser Part. Beams 23, 137.

Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. &
Hoffmann, D.H.H. ~2003!. Numerical analysis of a multilay-
ered cylindrical target compression driven by a rotating intense
heavy ion beam. Laser Part. Beams 21, 609.

Terrones, G. ~2005!. Fastest growing linear Rayleigh-Taylor
modes at solid0fluid and solid0solid interfaces. Phys. Rev. E
71, 036306.

Weir, S.T., Mitchell, A.C. & Nellis, W.J. ~1996!. Metallization
of fluid molecular hydrogen at 140 GPa ~1.4 Mbar!. Phys. Rev.
Lett. 76, 1860.

Wigner, E. & Huntigton, H.B. ~1935!. Metallization of molec-
ular hydrogen. J. Chem. Phys. 3, 764.

White, G.N. ~1973!. A one-degree-of-freedom model for the
Taylor instability of an ideally plastic metal plate. Los Alamos
National Laboratory Report LA-5225-MS. Los Alamos, NM:
Los Alamos National Laboratory.

Wouchuk, J.G. ~2001!. Growth rate of the linear Richtmyer-
Meshkov instability when a shock is reflected. Phys. Rev. E 63,
056303.

Numerical simulations of Rayleigh-Taylor instability in elastic solids 435

https://doi.org/10.1017/S0263034606060599 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034606060599

