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Pressure losses in laminar, pressure-gradient-driven channel flows modified by wall
transpiration have been analysed in the range of Reynolds numbers guaranteeing flow
stability. It was found that these losses were affected by the reduction of the effective
channel opening due to formation of transpiration ‘bubbles’, by nonlinear streaming
and by the elimination of direct contact between the stream and the bounding walls.
It was further found that pressure losses can be reduced by properly selecting the
transpiration pattern. It was determined that nonlinear streaming is the dominant effect
as the transpiration wave number resulting in the largest reduction of pressure losses
corresponds to the maximization of this streaming. Using transpiration at both walls
further decreases pressure losses, but only when both transpiration patterns are in a proper
relative position. The largest reduction of losses is achieved by concentrating transpiration
at a single wave number. It is shown that the performance of finite-slot transpiration is
well captured using just a few leading modes from the Fourier expansions describing
the transpiration distribution. The analysis of energy expenditure shows that the use of
transpiration increases the energy cost of the flow. Conditions leading to the minimization
of this cost represent the most effective use of transpiration as a propulsion augmentation
system.

Key words: drag reduction

1. Introduction

Research in drag reduction has traditionally been stimulated by energy costs and the
environmental impact of energy use. One of the questions to be addressed is the overall
system efficiency, i.e. whether the energy savings associated with drag reduction surpass
the energy expenditures implied by the flow control process. Alternatively, one can look
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at drag reduction as a part of the overall propulsion system where one can expend energy
on reducing drag rather than increasing the propulsive force so that the existing propulsive
system can deliver an improved performance. If the maximum possible propulsive force
has been achieved, the only way to improve the system performance is to expend energy on
drag reduction. It is worth noting the recent emergence of a new direction of such research
with the reduction of the energy cost associated with stirring being the main objective
(Gepner & Floryan 2020).

Drag is created primarily by two effects: the interaction of the pressure field with the
geometry of a moving object and the friction between the fluid and the surface of this
object (Mohammadi & Floryan 2012). While the physical processes are well understood,
an enormous effort has been expended in developing strategies which could mitigate drag.
This work is focused on the use of surface transpiration to change the character of the
interaction between the stream and its bounding surface with the goal of reducing frictional
drag.

Wall friction is proportional to the fluid viscosity and the wall-normal velocity gradient
in the case of Newtonian fluids. Assuming that the fluid properties cannot be altered,
shear can be reduced only by changing the velocity field near the wall. The recognition
that laminar shear is always smaller than turbulent shear led to a sustained interest in
the development of laminar–turbulent transition control strategies explored primarily in
the context of the development of laminar flow aerofoils (Arnal, Perraud & Séraudie
2008). These techniques can be viewed as indirect methods of drag reduction. Direct
methods involve externally imposed modifications of flows in the immediate vicinity of
the bounding wall using either passive or active means. Altering surface topography (Perot
& Rothstein 2004) represents the former approach while the use of surface transpiration
(Bewley & Alamo 2004; Min et al. 2006; Bewley 2009; Hœpffner & Fukagata 2009;
Mamori, Iwamoto & Marata 2014), plasma- (Inasawa, Ninomiya & Asai 2013), sound-
(Kato, Fukunishi & Kobayashi 1997) and piezo-driven actuators (Fukunishi & Ebina 2001)
as well as surface vibrations (Floryan & Zandi 2019) represent the latter techniques.

Passive methods rely on the creation of a proper surface topography. If the smooth
surface is viewed as the reference case, all its alterations increase the wetted area and,
thus, the reduction of the wall shear must be large enough to overcome the increase of
this area. It is known that short wavelength longitudinal grooves (riblets) can reduce drag
by forcing the stream to lift above the grooves (Walsh 1980, 1983). It is also known that
long wavelength longitudinal grooves can lead to drag reduction through changes in the
distribution of the bulk flow (Szumbarski, Blonski & Kowalewski 2011, Moradi & Floryan
2013; Mohammadi & Floryan 2013a, 2014, 2015; Mohammadi, Moradi & Floryan 2015,
Chen et al. 2016; DeGroot, Wang & Floryan 2016; Raayai-Ardakani & McKinley 2017;
Yadav, Gepner & Szumbarski 2017, 2018). Such grooves can be optimized (Mohammadi
& Floryan 2013b) with their most effective forms changing with the imposed constraints.
Grooves are effective in the laminar case if the flow remains stable, but the required
stability estimates are available for long wavelength grooves only (Szumbarski 2007;
Moradi & Floryan 2014; Mohammadi et al. 2015; Yadav et al. 2017, 2018).

Use of the so-called super-hydrophobic effect (Rothstein 2010) offers an attractive
version of topography re-arrangement. The essence of this effect is the ability of the
surface topography to trap gas bubbles in micro-pores which partially replace direct
contact between the liquid and the solid by contact between the liquid and the gas, reducing
the shear stress acting on the liquid (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005;
Park, Park & Kim 2013; Srinivasan et al. 2013; Park, Sun & Kim 2014). This effect is
limited to two-phase systems and is counteracted by the simultaneous creation of pressure
drag by surface irregularities. The stability characteristics of flows over superhydrophobic
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surfaces are yet to be established, including conditions which guarantee the existence of
laminar flows. Other system limitations are associated with the integrity of the gas-liquid
interface, which depends on surface tension and shear-driven interfacial instabilities, and
on the hydrostatic pressure which can lead to the collapse of gas bubbles, leaving the liquid
directly exposed to a rough surface (Poetes et al. 2010; Bocquet & Lauga 2011; Samaha,
Tafreshi & Gad-el-Hak 2011; Aljallis et al. 2013). Bubble collapse can be avoided by
working with two liquids, leading to the concept of liquid infused surfaces (Wong et al.
2011). The infusing liquid has much higher viscosity than a gas, but drag reduction is
nevertheless possible (Solomon, Khalil & Varanasi 2014, 2016; Rosenberg et al. 2016).
Substantial drag reduction has been reported recently (Van Buren & Smits 2017). This
technique is subject to limitations associated with variations of pressure along the surface,
which causes migration of the infusing liquid.

A separate class of methods relies on spatial heating patterns which create convection
rolls. The roll rotation is driven by horizontal density gradients providing a propulsive
force. The rolls prevent direct contact between the stream and the bounding walls, reducing
friction opposing fluid movement. The net result cannot be predicted a priori as the stream
needs to meander between convection rolls, potentially increasing friction. The strength of
this effect is increased by combining spatially distributed and uniform heating (Floryan
& Floryan 2015), and by heating both walls with the proper phase difference between the
upper and lower heating patterns (Hossain & Floryan 2016). The effect is resilient as it
can be generated by heating applied either at the lower or upper wall (Hossain & Floryan
2014). The flow must remain laminar for the method to work and the relevant stability
characteristics are available (Hossain & Floryan 2015). The method remains effective for
small Reynolds numbers (Hossain, Floryan & Floryan 2012) as stronger flows eliminate
the convection bubbles. Recent results (Hossain & Floryan 2020) demonstrate that proper
combination of the heating and groove patterns can significantly amplify the drag reducing
effect through activation of the thermal streaming mechanism (Abtahi & Floryan 2017).

Studies of stationary transpiration were initiated by Floryan, Yamamoto & Murase
(1992), who carried out direct numerical simulations of the laminar–turbulent transition
process in channel flows modulated by transpiration, including the turbulent regime. They
demonstrated the existence of a bypass transition induced by transpiration. The theoretical
framework for analysis was provided by Floryan (1997), who demonstrated formation
of instabilities leading to the generation of streamwise vortices as well as reduction of
the critical Reynolds number for the Tollmien–Schlichting waves. The vortex instabilities
have also been found in Couette flow (Floryan 2003). These studies assumed pores of
infinitesimal size uniformly and densely distributed along a wall. Such models imply
that the pressure required to implement transpiration must be increasing without bounds
as the pore size goes to zero, and that there is a pore at any point along the wall; its
limitations are well summarized by Tilton & Cortelezzi (2008). Bewley & Alamo (2004)
and Bewley (2009) concluded that the energy cost of transpiration is always higher than
energy savings associated with reduction of pressure losses. Min et al. (2006), Marusic,
Joseph & Nahesh (2007) and Woodcock, Sader & Marusic (2012) demonstrated that a
reduction of the pressure gradient can be achieved using suction/blowing waves but that
the energy cost of the creation of such waves is higher than the energy savings associated
with smaller pressure gradients (Bewley 2009; Fukagata, Sugiyama & Kasagi 2009).
Transpiration can also increase losses through destabilization of the laminar flow (Lee,
Min & Kim 2008; Lieu, Moarref & Jovanovič 2010; Moarref & Jovanovič 2010). Similar
waves can lead to relaminarization of turbulent flows (Mamori et al. 2014) which provides
a different mechanism for reduction of pressure losses. Transpiration has been used in the
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control of turbulent flows (Sumitani & Kasagi 1995; Quadrio, Floryan & Luchini 2005,
2007; Gomez et al. 2016; Koganezawa et al. 2019), where it was concluded that the drag
reducing effect is associated with the injection of the turbulence-free fluid. The effects of
transpiration on boundary layer instabilities were investigated by Roberts et al (2001) and
Roberts & Floryan (2002, 2008). Szumbarski & Floryan (2000) analysed small amplitude
transpirations and explained how they interact with the Tollmien–Schlichting waves.

The main objective of this study is to carry out a detailed analysis of the changes
in pressure-gradient-driven laminar channel flow subject to different patterns of spatial
modulations created by transpiration, with the goal of identifying conditions leading to a
reduction of pressure losses. Section 2 presents the formulation of the model problem.
Section 3 discusses the solution method. Section 4 is focused on one-wall unimodal
transpiration; § 4.1 discusses flow topologies and reduction of pressure losses; § 4.2
describes nonlinear streaming generated by such transpiration and self-pumping; § 4.3
describes flow properties with a special focus on transpiration distributions which lead
to the reduction of pressure losses; § 4.4 is focused on flow energetics. Section 5 considers
unimodal transpiration applied at both walls with a focus on pattern interaction effects
and their consequences for the energy costs. Section 6 discusses multimodal transpiration
and commensurability effects. Section 7 is focused on transpiration using finite-size slots.
Section 8 provides a short summary of the main conclusions.

2. Problem formulation

We begin by explaining our model problem. Consider the steady flow of a fluid confined
in a channel bounded by two parallel walls extending to ±∞ in the x-direction and placed
a distance 2 h apart as shown in figure 1. The flow is driven in the positive x-direction
by a pressure gradient. The fluid is incompressible and Newtonian with constant and
uniform dynamic viscosity μ, density ρ and kinematic viscosity ν = μ/ρ. The velocity
and pressure fields and the flow rate have the form

v0(x, y) = [u0( y), 0] = [1 − y2, 0], p0(x, y) = − 2x
Re

+ const., Q0 = 4/3,

(2.1a–c)

where v0 = [u0, v0] denotes the velocity vector scaled by the maximum of the x-velocity
Umax, p0 stands for the pressure scaled by ρU2

max, Q0 is the flow rate and Re = Umaxh/ν
stands for the Reynolds number.

Let us introduce spatially distributed transpiration at the walls and represent the resulting
flow as a superposition of the original flow and the transpiration-driven modifications. The
complete flow quantities have the form

uT(x, y) = Re u0( y)+ u1(x, y) vT(x, y) = v1(x, y),

pT(x, y) = Re2p0(x)+ p1(x, y), QT = Re Q0 + Q1,

}
(2.2)

where [uT , vT ], pT , QT stand for the complete velocity vector, pressure and flow rate,
respectively, and [u1, v1], p1 and Q1 denote velocity, pressure and flow rate modifications,
respectively. The complete flow quantities and the modifications have been scaled by the
convective velocity scale Uv = ν/h, where Umax/Uv = Re, and the complete pressure field
and the pressure modifications have been scaled using ρU2

v as the pressure scale.

915 A78-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.143


On the use of transpiration patterns

y

x

u

v
vU (x)

vL(x)

u0( y)

–1

1

λ = 2π/α
λ = 2π/α

Ω/α

Figure 1. Sketch of the flow configuration. Left side: continuous transpiration; right side: slotted
transpiration.

Transpirations can have arbitrary patterns but cannot carry any net mass flux. We shall
represent them using Fourier expansions of the form

u1(x,−1) = 0, v1(x,−1) = ReL

n=+NL∑
n=−NL,n /= 0

f (n)L ei nαx, (2.3a)

u1(x,+1) = 0, v1(x,+1) = ReU

n=+NU∑
n=−NU,n /= 0

f (n)U ei nαx, (2.3b)

where α is the transpiration wave number and λ = 2π/α is its wavelength, ReL = VLh/ν
and ReU = VUh/ν are the lower and upper transpiration Reynolds numbers, respectively,
VL and VU are the differences between the maximum and minimum of v1 at the lower and
upper walls, respectively, f (n)L and f (n)U have been scaled by VL and VU so that

−1
2 ≤

n=NG∑
n=−NG

f (n)L ei nαx ≤ 1
2 , −1

2 ≤
n=NG∑

n=−NG

f (n)U ei nαx ≤ 1
2 , (2.3c)

the reality conditions require that f (n)L = f (−n)∗
L , f (n)U = f (−n)∗

U where stars denote complex
conjugates, and NL and NU denote the numbers of Fourier modes required to describe
transpiration distributions at the lower and upper walls, respectively.

The field equations for the flow modifications are of the form

∂u1

∂x
+ ∂v1

∂y
= 0, (2.4a)

(Re u0 + u1)
∂u1

∂x
+ Re v1

du0

dy
+ v1

∂u1

∂y
= −∂p1

∂x
+ ∇2u1, (2.4b)

(Re u0 + u1)
∂v1

∂x
+ v1

∂v1

∂y
= −∂p1

∂y
+ ∇2v1, (2.4c)

where ∇2 denotes the Laplace operator. The transpiration is expected to affect pressure
losses, and the question of their determination is posed as the question of finding the
additional pressure gradient which is required to maintain the same flow rate in channels
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with and without transpiration. This requirement is imposed in the form of the flow rate
constraint, i.e.

QT = Q0 =
∫ 1

−1
uT dy =

∫ 1

−1
(Re u0 + u1) dy = 4

3 Re + Q1, (2.5)

where typically Q1 = 0. Sometimes it is convenient to pose this question in an alternative
manner, i.e. determine the flow rate created by the same mean pressure gradient in channels
with and without transpiration, which leads to the pressure gradient constraint in the form
of

∂pT

∂x

∣∣∣∣
mean

= ∂p0

∂x

∣∣∣∣
mean

+ ∂p1

∂x

∣∣∣∣
mean

= −2Re + A, (2.6)

where typically A = 0.
In the next section we briefly describe the numerical method in order to provide the

reader with an assessment of the reliability and accuracy of our results.

3. Method of solution

The following presentation is limited to a short outline and is focused on the fixed flow rate
constraint (more details can be found in Hossain et al. 2012). We define the stream function
ψ(x, y) in the usual manner, i.e. u1 = ∂ψ/∂y, v1 = −∂ψ/∂x, and eliminate pressure,
bringing the governing equations to the following form:

∇4ψ − Re u0
∂

∂x
(∇2ψ)+ Re

d2u0

dy2
∂ψ

∂x
= NN(x, y), (3.1a)

where the nonlinear term NN is expressed as

NN(x, y) = ∂

∂y

(
∂〈u1u1〉
∂x

+ ∂〈u1v1〉
∂y

)
− ∂

∂x

(
∂〈u1v1〉
∂x

+ ∂〈v1v1〉
∂y

)
, (3.1b)

∇4 denotes the biharmonic operator and 〈· · · 〉 denotes products. The solution is assumed
to be in the form of Fourier expansions, i.e.

ψ(x, y) =
n=+∞∑
n=−∞

ϕ(n)( y) ei nαx, u1(x, y) =
n=+∞∑
n=−∞

u(n)1 ( y) ei nαx,

v1(x, y) =
n=+∞∑
n=−∞

v
(n)
1 ( y) ei nαx, p1(x, y) = Ax +

n=+∞∑
n=−∞

p(n)1 ( y) ei nαx,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

where u(n)1 = Dϕ(n), u(n)1 = −i nαϕ(n), ϕ(n) = ϕ(−n)∗ , u1
(n) = u1

(−n)∗ , v1
(n) = v1

(−n)∗ ,
p1
(n) = p1

(−n)∗ , D = d/dy, stars denote complex conjugates and A stands for the pressure
gradient correction associated with the transpiration whose positive values identify
reduction of pressure losses. The products are expressed using Fourier expansions of the
form

〈PR〉 =
n=+∞∑
n=−∞

〈FG〉(n)( y) ei nαx, (3.3)

where 〈PR〉 stands for any of the following quantities: 〈u1u1〉, 〈u1v1〉, 〈v1v1〉, NN.
Substitution of (3.2) into (3.1) and separation of Fourier components results in a system of

915 A78-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.143


On the use of transpiration patterns

ordinary differential equations for the modal functions of the form

D2
nϕ
(n) − inαRe(u0Dn − D2u0)ϕ

(n) = NN(n), (3.4)

where D2 = d2/dy2, Dn = D2 − n2α2, NN(n) = inαD〈u1u1〉(n) + D2〈u1v1〉(n) + n2α2

〈u1v1〉(n) − inαD〈v1v1〉(n), −∞ < n < +∞. The boundary conditions for the modal
functions, which account for the flow rate constraint (2.5), are expressed as

ϕ(0)(−1) = 0, ϕ(0)(+1) = 0, (3.5a,b)

ϕ(n)(−1) = i ReLf (n)L /nα for n ≤ NL, ϕ(n)(−1) = 0 for n > NL, (3.5c)

ϕ(n)(+1) = i ReUf (n)U /nα for n ≤ NU, ϕ(n)(+1) = 0 for n > NU, (3.5d)

Dϕ(n)(−1) = 0, Dϕ(n)(+1) = 0 for − ∞ < n < +∞. (3.5e,f )

System (3.4) and (3.5) is solved numerically using Chebyshev expansions for the modal
functions, Galerkin’s procedure for conversion of the differential equations into algebraic
equations and the Tau method for incorporation of boundary conditions (Canuto et al.
1996).

The pressure modal functions are computed by inserting (3.2) into (2.4b) and separating
Fourier modes, resulting in

p(n)1 = −i
nα

[
(D2 − n2α2 − inα Reu0)Dϕ(n)

+ inα Re
du0

dy
ϕ(n) − inα〈u1u1〉(n) − D〈u1v1〉(n)

]
, n /= 0, (3.6a)

A = D3ϕ(0) − D〈u1v1〉(0). (3.6b)

The modal function p(0)1 is computed by inserting (3.2) into (2.4c) and extracting the zeroth
mode, resulting in the following expression:

p(0)1 = −〈v1v1〉(0) + const., (3.6c)

where the integration constant is selected by setting the mean part pmean of the periodic
pressure component to zero, i.e.

pmean = 1
2λ

∫ 1

−1

∫ λ
0

[n=+∞∑
n=−∞

(p(n) ei nαx)+ const.

]
dx dy = 1

2

∫ 1

−1
p(0) dy + const. = 0.

(3.6d)

It is convenient for discussion purposes to write the expression for the total mean
pressure gradient in the following form:

∂pT

∂x

∣∣∣∣
mean

= Re
(

−2 + A
Re

)
, (3.7)

as the effectiveness of the transpiration can be judged by comparing A with the reference
pressure gradient −2Re required to drive the flow in the channel without transpiration (or
by comparing A/Re with −2).

To implement the fixed pressure gradient constraint (2.6), we integrate (3.6b) to obtain

D2ϕ(0)(1)− D2ϕ(0)(−1) = 2A, (3.8)

which replaces boundary condition (3.5b).
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Figure 2. Flow topologies created by transpiration with ReL = 20 applied at the lower wall: (a–c) Re = 10,
α= 0.5, 2.0, 10; (d–f ) Re = 1000, α= 0.5, 2.0, 10. The thicker line identifies streamlines separating the stream
from the fluid injected through the wall.

4. Unimodal transpiration at one wall

We start discussion of transpiration effects with the simplest transpiration pattern,
characterized by a single Fourier mode (unimodal transpiration) applied at one wall only,
i.e.

u1(x,−1) = 0, v1(x,−1) = 1
2 ReL cos(αx), (4.1a)

u1(x,+1) = 0, v1(x,+1) = 0. (4.1b)

4.1. Flow topologies and reduction of pressures losses
We begin our presentation with the description of flow topologies in order to provide the
reader with a global view of the modifications created by transpiration. Typical topologies,
shown in figure 2, demonstrate formation of a ‘cushion’ preventing direct contact between
the stream and the wall, which is expected to lead to the reduction of flow resistance.
The cushion has a finite thickness, which reduces the flow cross-sectional area available
to the fluid and, in this sense, it may increase the flow resistance. The cushion thickness
depends strongly on the transpiration wave number as it is a function of the fluid volume
Qw = 2ReL/α injected into the flow per half wavelength, i.e. it is large for long-wavelength
transpiration and rapidly diminishes for short-wavelength transpiration for the nominally
identical ReL. It also depends on the flow Reynolds number as faster flows limit penetration
of the injected fluid into the channel (see figure 2). As a result, transpiration creates spatial
flow modulations everywhere in the channel for small α’s, while such modulations are
limited to a thin boundary layer attached to the lower wall for large α’s. In this limit, the
stream lifts above the wall and slides on the cushion made of the injected fluid.

Variations of pressure gradient required to drive a specified fluid volume as a function
of the transpiration wavelength displayed in figure 3 demonstrate increase of the pressure
gradient for small α’s, indicating the dominance of effects associated with the reduction of
the cross-sectional area. Large Qw requires a larger pressure gradient as the amount of mass
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Figure 3. Variations of the pressure gradient correction A as a function of the transpiration wave number α
for ReL = 2, 20 using log-linear scales in figure 3(a) and log-log scales in figure 3(b). Curves for both ReL’s
overlap within the resolution of this figure. The cut-off wave numbers (see definition in the text) are αc =
1.638, 1.638, 1.728, 1.925, 2.044, or Re = 1, 10, 100, 500, 1000, respectively. The grey colour identifies
conditions leading to the reduction of pressure losses.

which needs to be driven from the injection to the extraction zone increases significantly
(see figure 3). One can show analytically (details not given due to their length) that for
α → 0, the pressure gradient correction approaches a finite, α-independent limit whose
magnitude is proportional to Re and Re2

L.
Figure 3 demonstrates a decrease of the pressure gradient for large α’s, indicating the

dominance of the effects associated with the reduction of the direct contact between
the stream and the wall. Analysis presented in Appendix A shows that this effect is
proportional to α−2 and is the result of nonlinear interactions between the first three
(0 + 1 + 2) modes. The character of variation of A in this limit is well illustrated in
figure 3(b), which uses the log-log scale for display of the same data as shown in
figure 3(a).

Figure 3 also demonstrates that A is proportional to Re2
L in the whole range of α’s. It

further shows that there exists a cut-off wave number αc which separates the resistance
reducing from the resistance increasing transpirations.

The above discussion demonstrates that there are two mechanisms at work, i.e. reduction
of the effective channel opening due to formation of a cushion made of transpiration
‘bubbles’, which dominates the flow response for small α’s, and reduction of shear due
to elimination of the direct contact between the stream and the transpired wall, which
dominates for large α’s. Both mechanisms are active for intermediate α’s, but the system
response under such conditions is dominated by a third mechanism which we shall discuss
in the next subsection.

4.2. Nonlinear streaming
The third mechanism relies on the nonlinear interactions associated with transpiration,
which generate a net propulsive force. To demonstrate this effect, we change problem
formulation by imposing the fixed pressure gradient constraint (2.6) with A = 0. We start
with no external mean pressure gradient (Re = 0), apply unimodal suction at the lower
wall, begin with a very small ReL and keep increasing it while evaluating the mean
longitudinal flow rate Q1. Variations of Q1 as a function of ReL, displayed in figure 4(a),

915 A78-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.143


L. Jiao and J.M. Floryan

20 70

60

50

40

10

–10

–20
0 20 40 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

Re = 10

Q = 0.0032Re2
L (Re = 10)

Q = 0.001Re2
L (Re = 1)

1
0

Q1

ReL

Re
L,
cr
it

43.97

2.53

α

(a) (b)

Figure 4. Variations of the flow rate correction Q1 a function of ReL for α = 2 determined using the fixed
pressure gradient constraint (2.6) with A = 0 are displayed in figure 4(a). Flow patterns for conditions identified
using black squares are displayed in figure 5. Dotted lines illustrate growth of Q1 for small ReL’s. Variations of
the critical value ReL,crit required for the onset of the streaming as a function of α are displayed in figure 4(b).
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Figure 5. Flow patterns for Re = 0, α = 2, ReL = 50 (a) and ReL = 70 (b,c).

demonstrate that there is no mean flow if ReL is below a certain critical value ReL,crit, with
ReL,crit = 50 for conditions used in this test. Once ReL,crit is exceeded, net longitudinal
flow appears, which can be directed either to the right or to the left with variations of Q1
as a function of ReL following a typical pitchfork bifurcation. The direction of the flow
is dictated by edge effects, which may be difficult to control. Introduction of the external
mean pressure gradient (Re > 0) breaks the symmetry and results in a smooth increase
of Q1 with ReL, with this increase being initially proportional to Re2

L. We shall refer to
this effect as nonlinear streaming. This effect does exist for ReL’s smaller than ReL,crit,
but it is not strong enough to generate its own flow – it just assists the pressure gradient
with propelling the fluid. It is of interest to observe that the presence of a flow driven by
the mean pressure gradient mitigates the streaming effect since Q1 for Re = 0 becomes
rapidly larger than Q1 for Re /= 0 as ReL increases above ReL,crit. The flow topologies
illustrated in figure 5 demonstrate flow symmetry below ReL,crit and elimination of this
symmetry by nonlinear streaming for ReL > ReL,crit with transpiration ‘rolls’ becoming
skewed either to the left or to the right. The critical value of ReL depends strongly on α
with its minimum occurring at α = 2.53; ReL,crit rapidly increases as α either increases
above 2.53 or decreases below 2.53, as illustrated in figure 4(b). The minimum of ReL,crit
correlates well with the maximum reduction of pressure losses (see figure 3), which
supports the conclusion that nonlinear streaming is responsible for most of the reduction
of pressure losses for α = 0(1).
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4.3. Description of flow properties
In this section we shall provide a detailed description of processes leading to changes in the
flow resistance. This resistance is created by wall shear, which consists of three elements:

τ(x,−1) = −2Re + 1
2

ReLα sin(αx)− ∂u1

∂y

∣∣∣∣
y=−1

= −2Re + τ1,L + τ2,L = −2Re + τad,L,

(4.2a)

τ(x, 1) = −2Re − 1
2

ReUα sin(αx)+ ∂u1

∂y

∣∣∣∣
y=1

= −2Re + τ2,U = −2Re + τad,U,

(4.2b)

where the first term accounts for contributions from the unmodified flow, the second
term captures the direct forcing associated with the transpiration and the third term
describes contributions from the transpiration-induced flow modifications. While the
second term (direct forcing) does not affect the average shear, the third term (flow
modifications) may increase or decrease the mean shear and, thus, this term is responsible
for changes in the overall friction. Distributions of τ2,L and τ2,U , illustrated in figure 6,
are characterized by very large amplitudes (compare with 2Re for the flow with no
transpiration), as well as changes of direction. The resulting mean stresses at the lower
wall for Re = 10, α = (0.5, 2.7) are τL,m = (−18.76, 2.878); for Re = 1000 and α =
(0.5, 5.15), they are τL,m = (−106.2, 1.542). Mean stresses at the upper wall for Re =
10 and α = (0.5, 2.7) are τU,m = (−2.349, 0.9605); for Re = 1000, α = (0.5, 5.15),
they are τU,m = (−19.06, 0.5520). The wave numbers used in this figure were selected
to illustrate drag increasing distributions (α= 0.5) and drag decreasing distributions
(α= 2.70 gives the maximum decrease of friction for Re = 10; α= 5.15 gives maximum
decrease of friction for Re = 1000). The increase of friction occurs approximately in the
zone x ∈ (0, λ/2), i.e. the zone of the largest reduction of the effective flow cross-sectional
area (see figure 2), while decrease occurs for x ∈ (λ/2, λ) where decrease in the cross
sectional area is much smaller (but not zero). The velocity distributions displayed in
figure 7 demonstrate flow acceleration in the zone with the largest reduction of the
flow cross-sectional area and deceleration in the zone of the smallest reduction in the
cross-sectional area.

When α is large enough, the decrease of shear dominates, resulting in an overall
reduction of pressure losses. The flow topologies displayed in figure 2 demonstrate
stream lift away from the wall; the flow cross-sectional area decreases, but the
transpiration-induced stream cushioning near the wall results in an overall decrease of
the drag as the stream ‘slides’ on the cushion made of the injected fluid.

The mean values of τad,L and τad,U , i.e. τL,mean and τU,mean, vary in a very similar
manner as functions of α, with both contributing to the drag reduction for transpirations
with sufficiently short wavelengths and with the lower stress being much larger and thus
dominating the system response (figure 6). The maximum drag reduction occurs at α =
αm, and variations of αm as a function of Re displayed in figure 8 show αm ≈ 2.7 and
being insensitive to changes of Re for Re< 10, then increasing up to αm ≈ 5 at Re ≈ 400
and subsequently decreasing down to αm ≈ 2 at Re ≈ 5000. The same figure shows that
the cut-off wave number is approximately constant, with αc ≈ 1.638, when Re< 10 and
increases to around 2 when Re increases to 5000.

The results displayed in figure 9(a) demonstrate that the reduction of pressure losses is
initially proportional to Re for Re < 20 and then slows down with further increase of Re.
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Figure 6. Distributions of shear stress components acting on the fluid for ReL = 20, ReU = 0: τ1,L (dashed
lines), τ2,L (dash-dotted lines), τad,L and τad,U (solid lines). τ2,L and τad,L figure 6(b) for α = 0.5 were
multiplied by 0.1 and τad,U in figure 6(d) for α= 0.5 was multiplied by 0.001 for display purposes.
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Figure 7. Distributions of u1( y)or ReL = 10, Re = 10 (dashed lines) and Re = 1000 (solid lines). Figure 7(a)
displays results for α = 0.5 while figure 7(b) displays results for α = 2.7(Re = 10) and α = 5.15(Re = 1000).

It increases proportionally to Re2
L within the range of ReL’s of interest as demonstrated

in figure 9(b). Once ReL reaches a certain critical value, the reduction of pressure losses
is equal to the pressure losses of the reference flow, i.e. there is no need for any external
pressure gradient to maintain the fluid movement. When ReL exceeds the critical value, an
opposite pressure gradient must be imposed to slow down the fluid movement in order to
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lines) walls as well as their sums (dashed-dotted line) as functions of α for ReL = 2, Re = 10 are displayed in
figure 8(a). Variations of the cut-off wave number αc resulting in A = 0 (solid line) and the wave number αm
giving the largest A (dashed line) as functions of Re for ReL ≤ 20 are displayed in figure 8(b).
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Figure 9. Variations of the pressure gradient correction A: (a) as a function of Re for α= 2 and (b) as a
function of ReL. Grey zones identify conditions where transpiration can drive the flow by itself, i.e. without
any external pressure gradient. Thick solid (dashed) lines correspond to positive (negative) values.

maintain the prescribed flow rate. This effect can be attributed to the nonlinear streaming.
The results displayed in figure 10 show the relationship between the reduction of pressure
losses and the typical flow and transpiration conditions.

4.4. Energetics
It is of interest to determine if the use of transpiration can lead to a net reduction of energy
cost associated with fluid movement. To determine energy balances, we start with the
field equations expressed in terms of the full flow quantities, multiply the x-momentum
equation by uT , the y-momentum equation by vT , add them together and integrate over the
control volume extending between the walls in the y-direction and over one wavelength in
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Figure 10. Variations of 20 ∗ A/(Re ∗ Re2
L) (solid line) and A/Re2

L (dashed line) as functions of α and Re are
displayed in figure 10(a). Variations of A/Re for Re = 10 (solid lines) and 100*A/Re for Re = 1000 (dashed lines)
as functions of α and ReL are displayed in figure 10(b). Grey colours identify conditions leading to a reduction
of pressure losses.

the x-direction to arrive at

∫ λ
0

∫ 1
−1

(
u2

T
∂uT

∂x
+ uTvT

∂uT

∂y
+ uTvT

∂vT

∂x
+ v2

T
∂vT

∂x

)
dy dx

= − ∫ λ0 ∫ 1
−1

(
uT
∂pT

∂x
+ vT

∂pT

∂y

)
dy dx

+ ∫ λ0 ∫ 1
−1

(
uT
∂2uT

∂x2 + uT
∂2uT

∂y2 + vT
∂2vT

∂x2 + vT
∂2vT

∂y2

)
dy dx.

(4.3)

Re-arrangement of the left-hand-side (LHS), its integration by parts, use of the continuity
equation and simplification due to x-periodicity result in

LHS = 1
2

∫ λ
0
(v3

T |y=1 − v3
T |y=−1) dx. (4.4)

Re-arrangement of the second term on the right-hand-side (RHS2), its integration by parts,
use of the boundary and periodicity conditions as well as the continuity equation lead to

RHS2 = −
∫ λ

0

∫ 1

−1

[(
∂uT

∂x

)2

+
(
∂uT

∂y

)2

+
(
∂vT

∂x

)2

+
(
∂vT

∂y

)2
]

dy dx=−DIS(uT , vT),

(4.5)

where DIS(uT , vT) stands for the dissipation function for the full flow quantities.
Re-arrangements of the first term on the right-hand-side (RHS1) begins with dividing
pressure into the linear and periodic components, i.e.

pT = Bx + p1(x, y), (4.6)

where B stands for the mean pressure gradient and p1 denotes the periodic component.
Substituting (4.6) into RHS1, integrating by parts, and taking advantage of the periodicity

915 A78-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.143


On the use of transpiration patterns

conditions and the continuity equation leads to

RHS2 = −BλQT −
∫ λ

0
[(vTp1)y=1 − (vTp1)y=−1] dx, (4.7)

where QT is the flow rate. Substitution of (4.4), (4.5) and (4.7) into (4.3) and
re-arrangements lead to a relationship of the form

BλQT = −
∫ λ

0

{[
vT

(
1
2v

2
T + p1

)]
y=1

−
[
vT

(
1
2v

2
T + p1

)]
y=−1

}
dx − DIS(uT , vT),

(4.8)

where the integral can be viewed as the kinetic energy inserted at the slots and the work
associated with transpiration done at the slots. Write conservation of the x-momentum for
the same control volume to arrive at∫ 1

−1
pT |x=0 dy −

∫ 1

−1
pT |x=λ dy −

∫ λ
0
(τT |y=1 + τT |y=−1) dx = 0, (4.9)

where τT stands for the wall shear stress. Substitute (4.6) and simplify to arrive at

2Bλ =
∫ λ

0

(
∂uT

∂y

∣∣∣∣
y=1

− ∂uT

∂y

∣∣∣∣
y=−1

)
dx = −Ds,T , (4.10)

where Ds,T stands for the shear drag force. Use of (4.10) in (4.8) leads to

Ds,TQT = 2
∫ λ

0

{[
vT

(
1
2v

2
T + p1

)]
y=1

−
[
vT

(
1
2v

2
T + p1

)]
y=−1

}
dx + 2 DIS(uT , vT),

(4.11)

where the product Ds,TQT describes the external power required to maintain the modified
flow. To determine the power required to maintain the unmodified flow, substitute

uT = Reu0, vT = 0, QT = 4
3 Re, B = −2 Re, Ds,T = 4λ Re, u0 = 1 − y2,

(4.12)

into (4.11) to arrive at

Ds,unQT = 16
3 λ Re2, (4.13)

where Ds,un stands for the drag of the unmodified flow and the flow rate remains
the same in view of the fixed flow rate constraint. It is easy to verify (4.11) as
DIS(Re u0, 0) = 8

3λ Re2. The difference of power requirements associated with the
modified and unmodified flows can be expressed as

(Ds,T − Ds,un)QT = 2
∫ λ

0

{[
v1

(
1
2v

2
1 + p1

)]
y=1

−
[
v1

(
1
2v

2
1 + p1

)]
y=−1

}
dx

+ 2 DIS(u1, v1), (4.14)

and this expression can be further reduced to the following form:

−4
3λ Re A −

∫ λ
0

{[
v1

(
1
2v

2
1 + p1

)]
y=1

−
[
v1

(
1
2v

2
1 + p1

)]
y=−1

}
dx = DIS(u1, v1).

(4.15)

The additional dissipated energy DIS(u1, v1) comes either from the increase of pressure
losses or from the work done at the boundaries. When pressure losses are reduced (A > 0),
the work done at the boundaries must increase.
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Figure 11. (a) Distributions of the periodic pressure component p1 at the lower wall for Re = 10 (solid lines)
and Re = 1000 (dashed lines). (b) Variations of the work at the slots λ−1℘per as a function of α. (c) Variations
of the phase difference φ between the wall transpiration and the periodic component of the wall pressure as a
function of α. All results are for ReL = 20.

We now use (2.2) and (3.2) in (4.15), specialize the above relationship to the unimodal
transpiration applied at the lower wall, carry out the required integration and express all
components per unit channel length, which leads to

−4
3 Re A + 1

4 ReL( p(1)1 + p(−1)
1 )|y=−1 = λ−1DIS(u1, v1). (4.16)

Typical distributions of p1(x,−1), illustrated in figure 11(a), demonstrate its strong
dependence on Re, including changes of its amplitude as well as phase shift with respect to
transpiration. Variations of the second term on the LHS, i.e. work done at the transpiration
slots λ−1℘per as a function of α, illustrated in figure 11(b), show that the stream can assist
with the transpiration as ℘per can be negative but only if Re is large enough (Re > 30
for the conditions used in this figure). The range of α’s where pressure modifications
promote transpiration rather than opposing it (negative ℘per) expands quite rapidly with
Re. Variations of the phase difference φ = arctan(Imag( p(1)1 )/Real( p(1)1 )) between the wall
pressure and the transpiration as a function of α, illustrated in figure 11(c), correlate well
with changes of sign of ℘per, which suggests that it is the phase shift that is responsible
for the sign change.

The most energetically effective configuration from the point of view of reduction
of pressure losses corresponds to the minimization of dissipation λ−1DIS(u1, v1) while
maintaining A > 0. The variations of λ−1DIS(u1, v1) with α illustrated in figure 12
demonstrate that α’s near αc’s provide the largest reduction of pressure losses at the lowest
energy cost.

5. Transpiration applied at both walls and pattern interaction effects

The discussion so far has focused on the use of transpiration on one wall only. We shall
now inquire how adding transpiration to the other wall may affect the system response.
The proper boundary conditions have the form

u1(x,−1) = 0, v1(x,−1) = 1
2 ReL cos(αx), (5.1a)

u1(x,+1) = 0, v1(x,+1) = 1
2 ReU cos(αx +Ω), (5.1b)

which introduces two new parameters, i.e. the phase shift Ω between the upper and lower
transpiration patterns and the amplitude ReU of the upper transpiration. We shall focus
our attention on ReL = ReU , i.e. eliminate the effect of different transpiration amplitudes

915 A78-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.143


On the use of transpiration patterns

106

1000

1000

500

500
100

1.728

αc = 1.638

1.925

2.044

100

Re = 1

Re = 1

105

104

103

100

α
101 102

D
IS

(u
1
, 
v 1

)/
λ

102

10–1

Figure 12. Variations of dissipation increase λ−1DIS(u1, v1) (see text for details) as a function of α for
ReL = 20. Arrows show α’s which lead to the reduction of pressure losses.

and study the effects of their spatial distributions. This problem can be viewed as a
pattern interaction problem where the system response changes as a function of the relative
position of both patterns. The flow topologies (not shown) display characteristics similar
to the one-wall transpiration, i.e. deep penetration of the transpiration cushion into the
channel for small α’s, flow modulation constrained to very thin boundary layers for large
α’s and a transition region in-between where nonlinear streaming plays an important role.
The relative position of both patterns is important for small α’s, where the stream has
either to squeeze in-between the two cushions for Ω = π or to meander between them for
Ω = 0. This distinction is irrelevant for large α’s as spatial modulations are constrained to
the boundary layers, with the flow being rectilinear everywhere else. The situation is more
complex for α = 0(1). Increase of Re reduces modulation with A marginally affected by
Ω (see the results for Re = 1000 in figure 13). Modulations are significant for small Re’s,
and their character changes with Ω resulting in larger A’s in a smaller range of α’s for
Ω = 0 and smaller A’s extending over a wider range of α’s for Ω = π.

Figure 14 illustrates how Ω affects the nonlinear streaming. There is an almost 50 %
reduction of ReL,crit at Re = 0 when Ω decreases from Ω = π to Ω = 0, with most of
this decrease taking place between Ω = π/2 and Ω = 0. This means that streaming can
produce a very wide range of flow rates for certain ReL’s, e.g. ReL = 45. On the other
hand, variations of Ω have little effect on Q1 when Re increases beyond Re = 10.

To analyse the energy cost, we start with (4.15), insert (2.2), (3.2), (5.1), carry out
integrations and express all quantities per unit channel length to arrive at

− 4
3 ReA + 1

4 ReL( p(1)1 + p(−1)
1 )|y=−1 − 1

4 ReU(e−iΩp(1)1

+ eiΩp(−1)
1 )|y=1 = λ−1DIS(u1, v1). (5.2)

Variations of λ−1DIS(u1, v1), illustrated in figure 15, demonstrate that the largest
reduction of pressure losses (see figure 13) at the smallest energy cost can be achieved
for Ω = 0 and α’s slightly larger than αc. Comparisons of figures 3, 12, 13 and 15 show
that transpiration applied at both walls under the most optimal conditions provides the
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Figure 13. Variations of 100 ∗ A/(Re ∗ Re2
L) as a function of α and Ω for ReL = ReU are displayed in

figure 13(a). Grey colours identify conditions leading to the reduction of pressure losses. Variations of
A/(Re ∗ Re2

L) as a function of α for selected Ω ′s for the same conditions are displayed in figure 13(b). Re = 10
– solid lines; Re = 1000 – dashed lines.
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Figure 14. Variations of the flow rate correction Q1 for the unimodal transpiration applied at both walls
(see (5.1)) as a function of ReL = ReU for α = 2 and Re = 0 (solid lines), Re = 1 (dashed lines), Re = 10
(dotted lines), determined using the fixed pressure gradient constraint (2.6). Dotted line illustrates the one-wall
transpiration with Re = 0. Only the upper parts of the bifurcation diagrams are displayed.

potential for a larger reduction in pressure losses at a similar energy cost to the one-wall
transpiration.

6. Multimodal transpiration and commensurability effects

The discussion in the previous section was focused on transpiration distributions
characterized by a single wave number, which is a very special case. We shall now consider
general distributions and focus our attention on distributions characterized by two distinct
wave numbers β and γ . The wall-normal velocity distribution at the lower wall has the
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Figure 15. Variations of 10−3λ−1DIS(u1, v1) for ReU = ReL = 20 and Re = 100 (solid lines) and Re = 1000
(dashed lines).

form

v1(x,−1) = ReLGs(x)

= ReL[Vβ cos(βx)+ Vγ cos(γ x +Ω)]/{max[Vβ cos(βx)+ Vγ cos(γ x +Ω)] (6.1)

−min[Vβ cos(βx)+ Vγ cos(γ x +Ω)]},

where Gs(x) is the shape function describing transpiration distribution such that
max[Gs(x)] − min[Gs(x)] = 1 in view of the scaling used in § 2, Vβ and Vγ denote
amplitudes of each mode and Ω is the phase difference between them. We are
interested in investigating the effects of spatial distributions rather than the effects of
amplitudes of different modes, so accordingly, we assume that Vβ = Vγ = 1. Define the
commensurability index as

CI = λβ/λγ , (6.2)

with CI = 1 corresponding to the reference point where both modes have the same
wavelength and their superposition reduces to the case discussed in the previous section
(see § 5). In general, the flow system may be either periodic with periodicity defined
by CI (commensurable systems) or aperiodic when CI is irrational (non-commensurable
systems). If we assume that the wavelength λs of the system is λs = mλβ = nλγ , then F is
a function of Ω which varies in the range 0 ≤ Ω ≤ 2nπ.

Figure 16 illustrates typical results obtained for β = 2 with γ being adjusted to provide
the desired value of CI. Only the maximum of A over all values of Ω is reported.
The results clearly demonstrate that the largest effect is achieved when transpiration is
concentrated in a single Fourier mode. Distribution of the transpiration mass flux among
different modes rather than concentrating it in a single mode results in a decrease of
the drag reducing effect. CI< 1 gives preference to the long wavelength modulations,
which actually increases the losses, while CI> 1 gives preference to the short wavelength
modulations, which decreases the drag reducing effect.
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Figure 16. Variations of the pressure gradient correction A as a function of the commensurability index CI
for β = 2, ReL = 10, Re = 10 (solid lines) and Re = 1000 (dashed lines).
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Figure 17. Sketch of the transpiration system with finite size slots is displayed in figure 17(a). Variations of
A as a function of the number of Fourier modes NL used to represent this velocity for Re = 10, 1000, α = 2,
ReL = 10, ReU = 0, K2 = K3 = 0.1λ are illustrated in figure 17(b).

7. Finite size suction/blowing slots

The discussion so far was focused on a continuous distribution of transpiration. Practical
applications require the use of finite-size suction/blowing slots of various sizes and at
various distances from each other. One possible arrangement is sketched in figure 17(a),
where all slots have the same width. Velocity profiles at the outlets/inlets have parabolic
forms as the relevant Reynolds number is small, and their maxima are ½ to conform
with the scaling introduced in § 2. Distribution of the wall normal velocity at the wall
is represented as a Fourier expansion with coefficients determined numerically using fast
Fourier transform (FFT). Results displayed in figure 17(b) demonstrate a rapid convergence
of the computed value of A as the number of Fourier modes NL used to represent wall
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Figure 18. Variations of A for the slotted transpiration system sketched in figure 17 as a function of the
geometric parameters K2 and K3 (see figure 17 for definitions) for (a) ReL = 1, ReU = 0, α = 2, Re = 10
and (b) Re = 1000. The circle identifies the global maximum. The grey planes identify A for the sinusoidal
transpiration with the same parameters as well as planes A = 0.

velocity increases. Two Fourier modes are enough to represent velocity for large Re’s,
while up to six modes are required for small Re’s. These results demonstrate the existence
of a reduced distribution model as details of velocity distribution captured by higher
Fourier modes are irrelevant as far as the prediction of pressure losses is concerned.

One is interested in the determination of the slot configuration which produces the
largest A. This problem can be solved as a nonlinear constrained optimization problem
using the interior point optimization algorithm (Coleman & Li 1994, 1996). Since such
optimization methods can be trapped in a local maximum (Byrd, Hribar & Nocedal 1999;
Byrd, Gilbert & Nocedal 2000; Waltz et al. 2006), this problem was solved both as an
optimization problem and directly for all possible parameter combinations. The results,
displayed in figure 18, confirm the existence of both local and global maxima. They
demonstrate that the pressure gradient correction varies widely with variations of slot
geometry, with the best performance achieved when the distance between the slots is
smallest. A very reasonable estimate of the best performance of such a system can be
achieved by working with a continuous transpiration described by a single Fourier mode,
with the wave number dictated by the wavelength of the slot system and the amplitude
dictated by the transpiration Reynolds number. This technique can be easily adapted to
more complex slot distributions.

Figure 19 illustrates the formation of the nonlinear streaming. Slotted transpiration is
more effective in its formation in the sense that the required critical ReL is smaller than in
the sinusoidal transpiration, and the resulting horizontal flow rate is larger. This is because
‘jets’ emanating/entering slots are more concentrated and thus less stable to transverse
deflections.

8. Summary

We have carried out an analysis of pressure losses in transpiration-modified laminar
channel flows. The flow Reynolds number Re was kept sufficiently small to guarantee
the existence of stable flows. Transpiration was applied either at one or both walls, with
their distributions described by Fourier expansions, which led to the characterization of
their spatial patterns in terms of wave numbers and their intensity in terms of the lower
(ReL) and upper (ReU) transpiration Reynolds numbers.
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Figure 19. Variations of the flow rate correction Q1 for the slotted transpiration applied at the lower wall as
a function of ReL = ReU for α = 2 determined using the fixed pressure gradient constraint (2.6). Unimodal
sinusoidal transpiration – dotted line.

It is shown that pressure losses of the modified flow are affected by: (i) the reduction
of the effective flow cross-sectional area due to blockage by the bubbles formed by the
injected fluid, (ii) the elimination of direct contact between the stream and the side walls
and (iii) the formation of the nonlinear streaming effect. The first effect dominates for long
wavelength transpiration, resulting in an increase of pressure losses. The second effect
dominates for short wavelength transpiration where the stream lifts above the cushion
formed by bubbles of injected fluid, resulting in a reduction of pressure losses. The third
effect dominates for transpiration wavelengths of the order of the channel opening and
results in the largest possible reduction of pressure losses.

The quantification of the drag reducing effect was posed as a question of determining
the pressure gradient correction A required to maintain the same flow rate in the modified
channel as in the original unmodified channel. The magnitude of the positive correction
provides a measure of the drag reduction. It is shown that the transpiration wave number
α must be larger than a cut-off value αc in order to achieve drag reduction; αc changes
marginally with Re. It is also shown that the wave number αm resulting in the maximum
reduction of pressure losses is not too dissimilar from αc for small Re’s but increases
with Re for Re> 10. It is further shown that the magnitude of the drag reduction increases
proportionally to Re2

L and that sufficiently strong transpiration leads to self-pumping, i.e.
there is no need to apply an external pressure gradient to maintain the same flow rate as in
the unmodified channel. It is shown that the drag reducing effect increases proportionally
to Re for Re< 10, but it weakens with further increase of Re. Simultaneous use of
transpiration at both walls leads to pattern interaction effects which can either increase
or decrease the drag depending on the relative position of both patterns. It is shown that
in-phase patterns are more effective than out-of-phase patterns, with the former being able
to produce drag reduction about five times larger than the latter under the most optimal
conditions. Comparisons of transpirations characterized by multiple spatial wave numbers
are quantified in terms of the commensurability index CI. It is shown that transpirations
with CI = 1 are most effective, i.e. it is best to concentrate transpiration in a single spatial
wave number.
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Practical implementations of transpiration require the use of finite-size slots. It is
shown that the performance of such slot systems can be easily estimated using a reduced
distribution model where the actual velocity at the wall is replaced by a few leading
Fourier modes from its Fourier expansion. The best performance is achieved for the
smallest distance between the suction and blowing slots, and a respectable prediction of
the performance of such a system can be achieved using continuous transpiration described
by a single Fourier mode with the same wave number as the wave number of the finite-slot
system and the same transpiration Reynolds number.

Analysis of the energy costs shows that the overall energy cost of the modified flow is
higher than the cost of the unmodified flow. Energy costs corresponding to drag reduction
are of interest. These costs vary widely but are lowest for transpiration with α’s slightly
above αc. These conditions define the best performance for a propulsion augmentation
system utilizing wall transpiration.
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Appendix A. Solution for the short-wavelength (α → ∞) sinusoidal transpiration

The amount of fluid inserted/extracted from the channel per half transpiration wavelength
decreases proportionally to 1/α, resulting in small flow modulations. Accordingly, assume
that the solution can be represented as a power series in terms of a small parameter ε
expressing the magnitude of the modulations of the form

u1 = εû1 + ε2û2 + 0(ε3), v1 = εv̂1 + ε2v̂2 + 0(ε3), p1 = εp̂1 + ε2p̂2 + 0(ε3).
(A1a–c)

Substitute (A1a–c) into (2.3)–(2.5) and extract the leading-order system

−∂ p̂1

∂x
+ ∂2û1

∂x2 + ∂2û1

∂y2 − Re u0
∂ û1

∂x
− Re

du0

dy
v̂1 = 0, (A2)

−∂ p̂1

∂y
+ ∂2v̂1

∂x2 + ∂2v̂1

∂y2 − Reu0
∂v̂1

∂x
= 0, (A3)

∂ û1

∂x
+ ∂v̂1

∂y
= 0, (A4)

û1(1) = 0, û1(−1) = 0, v̂1(1) = 0, v̂1(−1) = 1
4 ReL(eiαx + e−iαx), (A5a–d)

whose solution has the form

[û1, v̂1, p̂1](x, y) = [ũ1, ṽ1, p̃1]( y) eiαx + [ũ∗
1, ṽ

∗
1 , p̃∗

1]( y) e−iαx, (A6)

where stars denote complex conjugates. Substitution of (A6) into (A2)–(A5a–d) and
elimination of ũ1 and p̃1 result in the following problem:

[(D2 − α2)2 − iαReu0(D2 − α2)− iαReD2u0]ṽ1 = 0, (A7)

ṽ1(−1) = 1
4 ReL, Dṽ1(−1) = 0 ṽ1(1) = 0 Dṽ1(1) = 0, (A8a–d)
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where D = d/dy. Problem (A7) and (A8a–d) has been solved numerically using
Galerkin’s method combined with Chebyshev expansion for ṽ1. The next order of
approximation takes the following form:

−∂ p̂2

∂x
+ ∂2û2

∂x2 + ∂2û2

∂y2 − Re u0
∂ û2

∂x
− Re

du0

dy
v̂2 = û1

∂ û1

∂x
+ v̂1

∂ û1

∂y
, (A9)

−∂ p̂2

∂y
+ ∂2v̂2

∂x2 + ∂2v̂2

∂y2 − Re u0
∂v̂2

∂x
= û1

∂v̂1

∂x
+ v̂1

∂v̂1

∂y
, (A10)

∂ û2

∂x
+ ∂v̂2

∂y
= 0, (A11)

û2(1) = 0, û2(−1) = 0, v̂2(1) = 0, v̂2(−1) = 0. (A12a–d)

Analysis of (A9)–(A12a–d) shows that its solution can be represented as

[û2, v̂2](x, y) = [ũ20, ṽ20]( y)+ [ũ22, ṽ22]( y) e2 iαx + [ũ∗
22, ṽ

∗
22]( y) e−2 iαx, (A13a)

p̂2(x, y) = Ax + p̃20( y)+ p̃22( y) e2 iαx + p̃∗
22( y) e−2 iαx. (A13b)

Substitution of (A13) into (A9)–(A12a–d) and extraction of mode zero leads to the
conclusion that ṽ20 = 0 and to the following equations for the remaining unknowns:

D2ũ20 = A + f ( y), f ( y) = ṽ1Dũ∗
1+ṽ∗

1Dũ1, (A14a,b)

ũ20(−1) = 0, ũ20(1) = 0,
∫ 1

−1
ũ20 dy = 0, (A15a–c)

Dp̃20 = iα(ũ1ṽ
∗
1−ũ∗

1ṽ1). (A16)

Equation (A16) can be solved resulting in

p̃20 = −ṽ1ṽ
∗
1+C, (A17)

where C stands for an arbitrary constant. We are concerned only with solution of (A14a,b)
and (A15a–c) as this determines the pressure gradient correction A. Double integration of
(A14a,b) results in

ũ20 =
∫ y

−1

∫ y

−1
f (η) dη dγ + A

y2

2
+ C1y + C2, (A18)

where C1 and C2 are the integration constants. Application of boundary conditions and
the flow rate constraint lead to

A = 3
2

[∫ 1

−1

∫ y

−1

∫ y

−1
f (η) dη dγ dy −

∫ 1

−1

∫ y

−1
f (η) dη dy

]
, (A19)

C1 = −1
2

∫ 1

−1

∫ y

−1
f (η) dη dy, C2 = −1

2

∫ 1

−1

∫ y

−1
f (η) dη dy − 1

2 A. (A20a,b)

If one defines ε as α−1, the above analysis shows that A = 0(α−2) for α → ∞. It also
shows that A = 0(Re2

L).
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