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The cooling box problem: convection with a
quadratic equation of state
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We investigate the convective cooling of a fluid with a quadratic equation of state
(EOS) by performing three-dimensional direct numerical simulations of a flow with a
fixed top-boundary temperature, which is lower than the initial fluid temperature. We
consider fluid temperatures near the density maximum, where the nonlinearity is expected
to be important. When the EOS is nonlinear, the resultant vertical transport of heat
is fundamentally different and significantly lower than the predictions derived for a
linear EOS. Further, three dimensionless groups parameterise the convective system: the
Rayleigh number (Ra0), the Prandtl number (Pr) and the dimensionless bottom water
temperature (TB). We further define an effective Rayleigh number (Raeff = Ra0 T2

B), which
is equivalent to the traditional Rayleigh number used with a linear EOS. We present
a predictive model for the vertical heat flux, the top boundary-layer thickness, and the
turbulent kinetic energy (TKE) of the system. We show that this model agrees well with
the direct numerical simulations. This model could be used to understand how quickly
freshwater lakes cool in high-latitude environments.

Key words: buoyancy-driven instability, Bénard convection

1. Introduction

An important feature of freshwater lakes is that they have a nonlinear equation of state
(EOS). This nonlinear EOS is nearly quadratic with temperature near the temperature
of maximum density, which is above the freezing temperature of the water (e.g.
T̃md ≈ 3.98 ◦C for distilled water at atmospheric pressure). The significance of this
nonlinearity for lakes has been recognised for over a century (Whipple 1898). As
a result of the density maximum, cooling the surface of a water body that has a
mean internal temperature below T̃md will stabilise the water column, resulting in
the characteristic reverse temperature stratification found during the winter months in
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Figure 1. (a) Representative mean temperature (blue line) and density (magenta dashed-dot line) profiles
with a nonlinear EOS. Note the presence of an upper stable thermal boundary layer (blue). The model’s
piecewise-linear profiles (4.2) are also included as a solid black line. (b) A diagram of the numerical domain.
(c) Comparative mean temperature and density profiles for a linear EOS.

temperate lakes (Farmer 1975). Stratification with temperatures on opposite sides of T̃md
will lead to cabbeling (nonlinear mixing), which has important implications for convection
(Carmack 1979; Farmer & Carmack 1981; Couston et al. 2017, 2018). Convection of this
type is also relevant in other fields such as Arctic melt ponds (Kim et al. 2018) and
geologically sequestered carbon dioxide (Hewitt, Neufeld & Lister 2013). This paper aims
to understand how thermal convection is altered near T̃md.

The theoretical studies of such a system date back to Veronis (1963). He considered the
linear stability of a fluid layer with fixed temperatures at the top and bottom boundaries;
temperatures fixed on either side of T̃md. Shortly thereafter, Townsend (1964) performed
a complementary experimental study, again with fixed temperatures at the top and
bottom. Both studies showed that the nonlinear EOS results in a stable upper layer
above a convectively unstable lower layer, which will preferentially mix the lower-layer
temperature stratification (similar to figure 1(a) except with a bottom thermal boundary
layer). Several studies have shown that convection can generate internal waves in the
stable upper layer, which are particularly relevant for astrophysical applications (Bars et al.
2015; Lecoanet et al. 2015). Recently, Toppaladoddi & Wettlaufer (2017) and Wang et al.
(2019) built on this previous work and performed two-dimensional and three-dimensional
simulations of convection with a nonlinear EOS. Both studies highlighted that in
addition to the traditional dimensionless parameters (the Rayleigh number and the Prandtl
number) considered for this flow set-up, the nonlinear EOS introduces an additional
independent parameter. The additional non-dimensional parameter quantifies the ratio of
the temperature variation across the stable and unstable layers. We will show that a similar
ratio is important here. In each of these studies, the top and bottom temperatures are fixed,
and the results focus on the statistical steady state.

Most lakes do not reach a steady state, but warm and cool throughout the year.
In addition, the dominant heat loss in these freshwater systems is through the water
surface with a relatively insulated bottom. Motivated by these considerations, we study
a box of warm fluid (T̃ > T̃md) cooled from above (T̃ < T̃md). Here, unlike the previous
studies, the lower boundary is insulating, and the temperature stratification is transient.
As is typical of these theoretical studies (Veronis 1963; Townsend 1964; Olsthoorn,
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Tedford & Lawrence 2019), we consider an EOS that is quadratic with temperature, which
approximates the full EOS of Chen & Millero (1986) for temperatures below 10 ◦C. In this
paper, we refer to a cooling of the surface, though the problem is symmetric for a box of
cold water that is heated from above, at least for a quadratic EOS assumed here. We want
to understand how convection and the resultant heat transport is changed in the presence of
this nonlinear density relationship, near T̃md. In particular, we address the three following
questions.

(i) Does the nonlinear EOS affect the vertical transport of heat within the water?
(ii) Which parameters determine the heat flux out of the water surface?

(iii) Can we predict the vertical heat transport and kinetic energy produced by the
turbulent convection?

We begin, in § 2, with a discussion of the numerical methods used in this paper.
Section 3 is an analysis of the three-dimensional direct numerical simulations, highlighting
that the vertical transport of heat is significantly different for a nonlinear EOS than that
predicted for a linear EOS. In § 4 we discuss the relevant parameters that control the heat
flux and present a predictive model for this system. We show that the model agrees well
with the data from the numerical simulations in § 5. Finally, we conclude in § 6.

2. Numerical set-up

We consider a body of water that is insulated from below and cooled from above. We
restrict our analysis to freshwater, where the temperature of maximum density T̃md is above
its freezing temperature. Figure 1(b) is a schematic of the numeric domain of interest. We
ignore the effects of salinity, pressure and higher-order terms in the EOS such that the
density (ρ̃) is given as

ρ̃ = ρ̃0 − CT

(
T̃ − T̃md

)2
. (2.1)

Here, CT is a constant and ρ̃0 is the density at T̃ = T̃md.
We are interested in parameterising the convective heat flux through the top boundary.

As such, a natural time scale for this set-up is the diffusive timescale of heat τκ over the
domain height H. That is,

τκ = H2

κ
, (2.2)

where κ is the diffusivity of heat. We then non-dimensionalise the spatial coordinates (x̃),
the fluid velocity (ũ), time (t̃) and temperature (T) as

x = x̃
H

, u = ũH
κ

, t = t̃
τκ

, T = T̃ − T̃md

�T̃
. (2.3a–d)

Boldface variables denote vector quantities and �T̃ = T̃md − T̃(z̃ = H). As an aside, we
would like to highlight that, throughout the paper, we have dropped factors of depth H = 1.
Although we believe that this is a reasonable simplification, we highlight this convention
to avoid any confusion for the reader.
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The equations of motion for this flow are the Navier–Stokes equations under the
Boussinesq approximation. These equations are written(

∂

∂t
+ u · ∇

)
u = −∇P + Ra0 Pr T2k̂ + Pr∇2u, (2.4)(
∂

∂t
+ u · ∇

)
T = ∇2T, (2.5)

∇ · u = 0. (2.6)

We have defined the Rayleigh number (Ra0) and Prandtl number (Pr) as

Ra0 = gCT�T̃2

ρ0

H3

κν
, Pr = ν

κ
, (2.7a,b)

where ν is the molecular viscosity of water and g is gravitational acceleration. The value
of the Prandtl number for freshwater varies from Pr ≈ 7 at T̃ = 20 ◦C to Pr ≈ 13.4 at
T̃ = 0 ◦C, largely owing to variations in ν. Incorporating the functional dependence of ν

on T is outside the scope of this paper. Hay & Papalexandris (2019) performed convective
simulations with an evolving Pr, in a different context, that do not show significant changes
to the vertical heat flux from the constant Pr case. Future work will discuss the role of the
changing viscosity at low temperatures. In this paper, we assume a constant ν and prescribe
Pr = 9.

We enforce a fixed temperature on the surface and an insulating bottom condition. That
is

T
∣∣∣∣z=1 = −1,

∂T
∂z

∣∣∣∣
z=0

= 0, (2.8a,b)

along with no-slip top and bottom velocity boundary conditions.
As we show, the well-mixed bottom water temperature TB is an important parameter

in this system. As illustrated in figure 1(a), although the system is convectively unstable,
the temperature profile below the top boundary layer is nearly uniform. In the numerical
simulations, we determine TB by fitting the horizontally averaged temperature profile to an
erf function. That is,

T̄ ≈ (1 + TB) erf
(

z − 1
η

)
− 1, (2.9)

where η ≈ δBL (defined later) is a fit parameter and ·̄ = (1/Lx Ly)
∫ · dx dy. Over time, TB

will decrease, whereas Ra0, by definition, will remain fixed.
In most cases, we selected the initial fluid temperature such that there was an initial

symmetry between the bottom water temperature (TB = 1) and the top boundary condition
about T = 0. For reference, for a water depth of H = 0.05 m with T̃(z̃ = H) = 0 ◦C, the
initial water temperature would be T̃ ≈ 8 ◦C and Ra0 ≈ 8 × 105. Thus, the simulations
presented in this paper (see table 1) are on the scale of potential laboratory experiments.
In the lowest Ra0 case, we selected TB(t = 0) = 2 so that the initial instability grew
significantly quicker than the background diffusion.

Although the top boundary temperature will remain fixed (T(x, y, z = 1, t) = −1),
TB will cool throughout the numerical simulations. While TB > 0, there exist two
sub-domains to the mean temperature stratification: an upper stable stratification of
depth δSt where T̄ < 0 and a lower hydrostatically-unstable stratification where T̄ > 0.
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Case EOS Domain size Resolution Ra0 Pr TB max
�x
ηB

(Lx × Ly × Lz) (Nx × Ny × Nz) (t = 0)

1 Quadratic 4 × 4 × 1 256 × 256 × 128 9.0 × 104 9 2 1.5
2 Quadratic 4 × 4 × 1 256 × 256 × 256 4.5 × 105 9 1 1.8
3 Quadratic 4 × 4 × 1 256 × 256 × 256 9.0 × 105 9 1 2.1
4 Quadratic 4 × 4 × 1 512 × 512 × 256 4.5 × 106 9 1 1.6
5 Quadratic 4 × 4 × 1 512 × 512 × 256 9.0 × 106 9 1 2.2
6 Linear 4 × 4 × 1 256 × 256 × 256 9.0 × 105 9 1 1.9

Table 1. Parameters for each numerical simulation.

Figure 1(a) is a plot of a representative temperature profile within the fluid domain. The
total top boundary-layer thickness between the well-mixed uniform temperature and the
upper boundary is δBL > δSt (see figure 1a).

Before continuing, we highlight that for a linear EOS, T̃md cannot be internal to the fluid
domain, and an upper stable layer cannot form. As such, for a linear EOS, we would expect
a temperature profile to resemble that in figure 1(c).

2.1. Numerical implementation
We performed direct numerical simulations using SPINS (Subich, Lamb & Stastna
2013). SPINS solves the Navier–Stokes equations under the Boussinesq approximation
using pseudospectral spatial derivatives and a third-order time-stepping scheme. As the
top boundary layer controls the dynamics of the initial instability and the subsequent
convection, we implement a Chebyshev grid in the vertical, which clusters grid points at
the domain boundaries. We assume periodic horizontal boundary conditions, implemented
with fast Fourier transforms.

We performed five numerical simulations with a nonlinear EOS at different Rayleigh
numbers. We performed one additional simulation with a linear EOS for comparison.
The details of these numerical simulations are provided in table 1. In all six cases, the
Rayleigh number was large enough for the system to become unstable (see Appendix C
for the linear stability analysis). We initially perturb the three velocity components with a
random perturbation sampled from a Normal distribution scaled by 10−2. The numerical
resolution (Nx × Ny × Nz) was selected, such that max(�x/ηB) < 3, where we compute
the Batchelor scale ηB = (ε̄)−1/4 Pr−1/2, for viscous dissipation rate ε (see (4.8a,b))
and horizontal grid spacing Δx. The vertical grid is clustered towards the boundaries
and max(�z/ηB) < max(�x/ηB), in all cases. This resolution criterion is similar to
that employed in Hay & Papalexandris (2019), Kaminski & Smyth (2019), Olsthoorn
et al. (2019) and Smyth & Moum (2000). The resolution sufficiency is highlighted in
Appendix D.

3. Simulation results

In this section, we describe both the qualitative and quantitative dynamics of the numerical
simulations as they relate to the transport of heat within the fluid domain. In particular,
we show that the convection is self-similar in TB for the range of Rayleigh numbers
considered. Our discussion is focused on a single representative case: case 3, Ra =
9.0 × 105. The results are similar for the other simulations, except where otherwise noted.
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Figure 2. Snapshots of the temperature field for case 3: Ra0 = 9.0 × 105, Pr = 9. The volume plots
(a,d,g, j,m,p) encapsulate the three-dimensional structure of the flow field. The middle figure panels
(b,e,h,k,n,q) contour plots of vertical (x − z) temperature slices at y = −1. Similarly, the right figure
panels (c, f,i,l,o,r) are contour plots of horizontal (x − y) temperature slices at z = 0.9. Snapshots are
given at (a–c) t = 2.50 × 10−3, (d– f ) t = 5.00 × 10−3, (g–i) t = 7.50 × 10−3, ( j–l) t = 1.00 × 10−2, (m–o)
t = 1.25 × 10−2 and (p–r) t = 5.00 × 10−2. Note the jump in output times highlighted by the horizontal dashed
line.

Figure 2 contains snapshots of the temperature field for case 3. The left column of
figure 2 contains plots of the temperature field at different times t = {2.50 × 10−3, 5.00 ×
10−3, 7.50 × 10−3, 1.00 × 10−2, 1.25 × 10−2, 5.00 × 10−2}. These plots were made with
VisIt’s (Childs et al. 2012) volume plot option that varies the transparency of the
temperature field according to its value. The downwelling plumes are visible in the X–Z
slices (figure 2b,e,h,k,n,q). Initially, the temperature stratification is linearly stable, and
the temperature profile simply diffuses. At t = 0.0025 (figure 2a–c), the temperature
stratification matches that predicted by pure diffusion. Once the top thermal boundary
layer has grown sufficiently, the system is unstable and small perturbations to the velocity
and temperature field will grow. These near-modal perturbations are visible at t = 5.00 ×
10−3 (figure 2d– f ). Once the perturbations grow large enough, they begin to merge,
forming dense plumes that transport cold fluid to the bottom of the domain. The columnar
plumes are highly variable in both space and time, and the resultant convection will mix the
bottom fluid. Eventually (figure 2p–r), the bottom water temperature decreases sufficiently
such that the vertical heat flux rapidly decreases.

Slices of the spanwise (X–Y) structure of the temperature field at z = 0.9 are presented
in figure 2(c, f,i,l,o,r). Although a complete analysis of this structure is beyond the scope of
this paper, we highlight it here as it demonstrates that the spacing between the downwelling
plumes is increasing over time. The horizontal length scale of the three-dimensional flow
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structure increases as TB → 0, as viscous dissipation preferentially diffuses small-scale
motions. Eventually, the spacing between the plumes reaches the size of the domain, which
limits the run time of these simulations. We have performed several simulations at different
domain sizes and have determined that the present results are not domain-size dependent.

We highlight the mean structure of the temperature stratification in figure 3(a– f ), which
are plots of individual horizontally averaged temperature profiles at times t = {2.50 ×
10−3, 5.00 × 10−3, 7.50 × 10−3, 1.00 × 10−2, 1.25 × 10−2, 5.00 × 10−2} (identical to
figure 2). The evolution of the temperature stratification is further highlighted in the
contours of horizontally averaged temperature over time (figure 3g). These contours show
that the boundary-layer depth increases over time and that the bottom water temperature
decreases. Note that there is a weak thermal gradient near the bottom of the domain owing
to the solid boundary. This thermal gradient becomes weaker with increasing Ra, owing
to the increased energy within the system.

3.1. Vertical heat transport
Now that we have presented the essential features of the temperature evolution, we proceed
to quantify the heat loss resulting from the thermal convection. The rate of heat loss of the
water in the domain is

d
dt

∫ 1

0

∫
A

T dA dz = −FA, (3.1)

where F is the average outward heat flux at the domain surface, and A = Lx Ly is the
area of the water surface. The vertical transport of heat is approximately constant over the
upper conductive boundary layer.

The vertical heat flux within the convective layer is significantly greater than the
diffusive flux. We define σ as the ratio of average heat flux to the diffusive heat flux
over the convective domain. That is, we write

σ ≈ F/ (1 − δSt)

(TB − T0) / (1 − δSt)
= F

TB − T0
, (3.2)

where T0 is the temperature of maximum density within the domain. As we show, for
a quadratic EOS, σ is constant for a significant portion of the simulation time, which
indicates that the temperature decays exponentially. For a linear EOS, T0 will be equal to
the top boundary temperature (T0 = −1). In this case, σ is identical to the Nusselt number
(Nu), which is the ratio of the average vertical heat flux to the diffusive heat flux across the
entire domain. For the nonlinear EOS discussed here, where the temperature of maximum
density is interior to the fluid domain, T0 = 0.

As an aside, it is worth noting that F is a function of the temperature difference TB − T0.
As the water becomes uniform, (TB − T0) → 0, the vertical flux F → 0 such that σ is
bounded.

As a simple model, we first consider the scenario where the water column is uniformly
mixed to some temperature TU . If σ were a constant σ0, then

d
dt

TUA = −σ0 · (TU − T0) A =⇒ TU = B exp (−σ0t) + T0, (3.3)

where B is a constant of integration. That is, TU decays exponentially in time. In principle,
there is no a priori reason to suspect that σ will be constant and, in general, it is
not. However, as we show, for the initial convective evolution, σ is constant, and the
temperature will decay exponentially.
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Figure 3. The horizontally averaged temperature profiles are plotted at the output time of the snapshots
of figure 2: (a) t = 2.50 × 10−3, (b) t = 5.00 × 10−3, (c) t = 7.50 × 10−3, (d) t = 1.00 × 10−2, (e)
t = 1.25 × 10−2 and ( f ) t = 5.00 × 10−2. Contours of the horizontally averaged temperature (T̄) over time are
also plotted (g). The vertical dashed lines in panel (g) represent the time of the vertical temperature profiles.
Data are shown for case 3: Ra0 = 9.0 × 105.

Before continuing, we return to the first of the main questions we are trying to answer in
this paper. Does the nonlinear EOS affect the vertical transport of heat out of the domain?
We performed a single numerical simulation with a linear EOS with Ra0 = 9.0 × 105 and
Pr = 9. The boundary and initial conditions remain unchanged. For a linear EOS, there are
only two free parameters: a Prandtl number (Pr) and a time-dependent Rayleigh number.
The relevant Rayleigh number for a linear EOS includes the density difference across the
domain �ρ as

RaLin = g�ρ

ρ0

H3

κν
= Ra0 (1 + TB) . (3.4)

Here, we have related the constant Rayleigh number (Ra0) defined in this paper with a
more traditionally defined time-varying Rayleigh number (RaLin), used with a linear EOS.
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Figure 4. A comparison plot of (a) TB and (b) F versus time between convection with a linear or a quadratic
EOS. The temperature of maximum density is included as a horizontal dashed line in (a). The scaling (3.6) is
included as a dashed line in panel (b). In both cases, Ra0 = 9.0 × 105. We plot in grey the initial (diffusive)
transition period.

The equivalent effective Rayleigh number (Raeff ) for the quadratic EOS is given by

Raeff = Ra0T2
B. (3.5)

We will return to this in our discussion of σ later.
For a linear EOS, it is empirically determined that

NuLin ∝ Ran
Lin. (3.6)

While significant controversy persists over the exact value of n (e.g. see Plumley & Julien
2019), we will specify n = 0.28 as it best fits the data discussed.

Figure 4 is a comparison plot of (a) temperature and (b) vertical heat flux as a function
of time, with a comparison between a linear and quadratic EOS. The scaling (3.6) is
included in panel (b). Here, and for the rest of the paper, we plot in grey the initial
transition period before reaching a quasi-equilibrium state (where the vertical buoyancy
flux approximately balances viscous dissipation). We observe that the curvature in the EOS
fundamentally changes the temperature evolution of the system over time. The surface heat
flux is significantly greater for the linear EOS, resulting in the bottom water temperature
TB decaying much faster for a linear EOS. For the quadratic EOS, the presence of a
temperature of maximum density also restricts the convective mixing such that TB → 0
(note that molecular diffusion will eventually reduce TB → −1 as t → ∞). If we return
to the dimensional example of a 0.05 m deep container with a surface temperature at 0 ◦C,
then by t = 0.05 (≈15 min) there is a 1.5 ◦C difference between the internal temperatures
of the linear and quadratic EOS; nearly a 40 % increase in the heat loss.
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The Nusselt number dependency in (3.6) is inadequate to describe the temperature
evolution for a quadratic EOS. In the next section, we derive a model for the vertical heat
flux (F) and turbulent kinetic energy (TKE) density of convection with a nonlinear EOS.
We show that the convection is fundamentally dependent on three independent parameters,
as opposed to the two needed with a linear EOS.

4. Scaling laws

We begin with a Reynolds decomposition of the temperature and velocity field into a mean
temperature profile and fluctuations from it, where

u = 0 + u′, T = T̄ + T ′. (4.1a,b)

In the numerical simulations, we take · as the horizontal average through the domain. For
this scaling analysis, we simplify T̄ as a piecewise linear profile

T̄ =
⎧⎨
⎩−1 − 1 + TB

δBL
(z − 1) z > 1 − δBL,

TB z � 1 − δBL,

(4.2)

as in figure 1(a). Note that δBL is the total transition thickness with δBL > δSt.

4.1. Boundary-layer thickness δSt

The diffusion of heat through the top boundary is

F = − ∂T̄
∂z

∣∣∣∣
z=1

= 1 + TB

δBL
= 1

δSt
. (4.3)

That is, in this non-dimensionalisation, the boundary-layer thickness determines solely the
outward heat flux. As a reminder, δSt is the top stable boundary-layer thickness between
the top boundary and where T̄ = 0 (the temperature of maximum density).

Substituting the Reynolds decomposition (4.1a,b) into the temperature evolution
equation (2.5), we derive the evolution equation for the mean temperature profile,

∂T̄
∂t

= − ∂

∂z

(
−∂T̄

∂z
+ T ′w′

)
. (4.4)

Balancing the heat fluxes within the domain and top boundary layer, we determine

− ∂TB

∂t
(1 − (1 + TB) δSt)︸ ︷︷ ︸

Interior Cooling

+ (1 + TB)2

2
∂δSt

∂t︸ ︷︷ ︸
Increased δSt

= 1
δSt

.︸︷︷︸
Outward Heat Flux

(4.5)

Appendix A provides a derivation of (4.5). We can see from (4.5) that a fraction of the
heat loss is derived from the cooling of the interior fluid. The remainder of the heat loss is
given by an increase in the boundary-layer thickness δSt. The surface heat loss is controlled
by the boundary-layer thickness δSt.
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Building on § 3.1, the average temperature within the domain is TB such that

dTB

dt
= −σTB. (4.6)

As convection greatly enhances the vertical flux of temperature, we find that σ 
 1.
We continue a discussion of σ later. To leading order in O(1/σ), the dominant balance
between the interior cooling and the outward heat flux determines that

δSt ∼ 1
σTB

, F = 1
δSt

∼ σTB, σ 
 1. (4.7a–c)

4.2. TKE
Similar to (4.4), the volume-integrated TKE density (TKE = 1

2 u′ · u′) evolution equation
is written

d〈TKE〉V

dt
= −Ra0 Pr〈w′ρ′〉V − ε, ε = Pr〈∇u′ : ∇u′〉V . (4.8a,b)

The (:) operator is the double dot product. Unlike the case of a linear EOS, the vertical
buoyancy flux (w′ρ′) is not directly proportional to the vertical temperature flux (w′T ′).
For a quadratic EOS, the vertical buoyancy flux is the sum of two components,

w′ρ′ = −2w′T ′ T̄ − w′T ′T ′. (4.9)

Along with the mixing coefficient (Γ , the ratio of the vertical buoyancy flux to viscous
dissipation), we define a buoyancy flux ratio (λ) to quantify the relative contribution of
each buoyancy flux term. These are defined as

Γ = −Ra0 Pr〈w′ρ′〉V

ε
, λ = −〈w′T ′T ′〉V

〈2w′T ′ T̄〉V
. (4.10a,b)

Assuming self-similarity of TKE, we can show that (see Appendix B for details)

〈TKE〉V ∼ 1
2

(
Γ −1 − 1

)
(1 − Λ) Ra0 PrT2

B, σ 
 1, (4.11a,b)

where Γ is assumed constant and

Λ = 2
T2

B

∫
TB

T ′λ(T ′) dT ′. (4.12)

This model for the kinetic energy is consistent with the empirical Reynolds number scaling
found in Wang et al. (2019).

Which parameters control the heat flux out of the water surface? The scaling laws
(4.7a–c) and (4.11a,b) depend on three undetermined coefficients: the decay rate σ , the
buoyancy flux ratio λ and the mixing coefficient Γ . These three coefficients are, as we
show, functions of the three parameters Ra0, Pr and TB. In the next section, we derive the
functional form of σ , λ and Γ , and show that the models provided here agree well with
the simulated quantities.
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5. Model comparison

As discussed previously, TB initially decays exponentially with time. Figure 5(a) is a plot
of TB as a function of time on a semi-log axis for all five of the nonlinear EOS simulations
listed in table 1. We compute the instantaneous decay rate as

σ = −1
TB

dTB

dt
, (5.1)

and we observe (figure 5b) that, after an initial transient, σ is nearly constant over a
range of TB, with σ 
 1 (TB � 0.37). During this period we perform a linear regression
to determine the Ra0-number dependence of the flow. Figure 5(c) is a plot of σ , scaled
by Ra0.28

0 , which collapses the data for all of the simulations with a nonlinear EOS. For
lower values of TB (TB � 0.37), σ decreases with TB. Once the system has achieved a
quasi-steady state, we fit piecewise curves to the different cases and approximate

σ = 0.97Ra0.28
0

⎧⎪⎨
⎪⎩

1, TB � 0.37(
TB

0.37

)0.63

, TB < 0.37
. (5.2)

We find a regime change at TB ≈ 0.37, between a constant exponential decay (TB � 0.37),
and when σ rapidly decreases (TB � 0.37). We note that the model presented in § 4 is
applicable only for σ 
 1. As TB → 0, σ decreases and higher-order corrections are
increasingly significant. It is also worth noting that case 1 (Ra0 = 9.0 × 104) has the lowest
value of σ and Ra0, and does not collapse as well as the other cases.

In connection with the linear EOS, we might expect that σ should scale with an effective
Rayleigh number (Raeff ) (as was highlighted in Anders et al. 2020). This is partially
correct. To justify this statement, we approximate equation (5.2) as

σ

σ0
≈ min

{
Ra0.28

max , Ra0.28
eff

}
, Ramax = Raeff (TB = Tmax), (5.3a,b)

where σ0 = 0.97T−0.63
max and Tmax = 0.37. That is, the temperature decay rate σ does

increase with Raeff below some threshold value. For large enough Raeff , the convection
is sufficiently turbulent that σ remains constant. Thus, the convection is self-limiting.
We believe this results from the increased diffusion at the top boundary owing to the
stable thermal layer that is not present in a linear EOS. Importantly, as highlighted in
Toppaladoddi & Wettlaufer (2017) and Wang et al. (2019), a third parameter must be
defined to characterise the convection. We define this third parameter as TB.

The mixing coefficient Γ and buoyancy flux ratio λ, defined in (4.10a,b), are also
functions of the non-dimensional parameters. Figure 6 is a plot of (a) λ and (b) Γ as a
function of TB. We find that λ increases as TB decreases. Fitting λ as a function of TB with
piecewise-functions, we estimate that while in quasi-steady state,

λ = 0.24

{
T−1/2

B , TB � 0.35,

1, TB < 0.35.
(5.4)

As the data are noisy, our estimated power-law dependencies are approximate
approximations, preferentially weighting the fit values of the higher Ra0 cases. We
anticipate future work to illuminate a theoretical prediction for the appropriate scaling
laws. In addition, it is important to note that case 1 (Ra0 = 9.0 × 104) does not follow
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Ra0 = 4.5 × 106

Ra0 = 9.0 × 106
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σ
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8

(b)

(a)

(c)

Figure 5. (a) Plot of the bottom water temperature TB with time for all numerical runs with a nonlinear EOS.
(b) Plot of the instantaneous decay rate (σ ) as a function of TB. (c) Plot of the scaled decay rates (σ ), which
collapse on to a single curve. We include the scaling (5.2) as a dotted black line in panel (c). We plot in grey
the initial transition period before reaching a quasi-equilibrium state. Note that the x-axis has been reversed in
panels (b,c), with TB decreasing towards the right such that it reads in the same direction as time.

the trend of the other cases. For case 1, the low Rayleigh number results in a significant
diffusive contribution to the total heat flux and is in a weakly unstable regime. As in (5.2),
we find that there is a regime change that occurs at TB ≈ 0.37. Similarly, we find that

Γ ≈ 0.96 (5.5)

for all Ra0, though large fluctuations are present. This value of Γ indicates that the rate
of viscous dissipation is nearly equal to the vertical buoyancy flux. In steady state, by
definition, Γ = 1 which is consistent with our observation that the cooling box is nearly
in steady state.

5.1. Model agreement
Can we predict the vertical heat transport and kinetic energy produced by the turbulent
convection? In § 4, we derived scaling laws for δSt, F and TKE as a function of Ra0, Pr
and TB. Figure 7 is a comparison plot between the model equations (4.7a–c) and (4.11a,b)
and the numerically computed (a) δSt, (b) F and (c) TKE. The model agrees well with the
data from the direct numerical simulations. We have scaled the y-axes by the appropriate
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Ra = 9.0 × 104

Ra = 9.0 × 105

Ra = 4.5 × 106

Ra = 9.0 × 106

Ra = 4.5 × 105

4 × 10–1
1.4

1.2

1.0

0.8

0.6

3 × 10–1

2 × 10–1

10–1

10–1 100 10–1 100

TBTB

λ
 =

–
〈w

′ T
′ T

′ 〉
〈2T

 w
′ T

′ 〉

Γ
  =

–
Ra

0
 P

r〈w
′ ρ

′ 〉
ε

(b)(a)

Figure 6. Plots of (a) the buoyancy flux ratio λ and (b) the mixing coefficient Γ as a function of TB. We
include the fit of (5.4) as a dashed line in (a). We further include a dashed line at Γ = 0.96 in (d). We plot in
grey the initial transition period before reaching a quasi-equilibrium state.

powers of Ra0 and Pr. Note that the scaling coefficient 0.02 in panel (c) is equivalent to
Γ = 0.96. The parameters σ and Λ are defined using the fit equations (5.2) and (5.4),
respectively.

We further find that as the bottom water TB → 0, the simulated values of δ and F appear
to diverge from the model. We recall the model equations (4.7a–c) are valid for σ 
 1.
As the decay rate σ increases with Ra0, the larger values of Ra0 show better agreement
between the model and the simulated data. Similarly, case 4 (Ra0 = 9 × 104) exhibits the
largest deviation from the model fit as it also is the lowest Ra0 simulation. As the bottom
water temperature decreases (TB → 0) σ decreases rapidly. The first-order approximation
(4.7a–c) is not expected to perform well in that limit. Higher-order corrections can account
for this discrepancy, but that is outside the scope of this paper.

The flow transition that occurs at TB ≈ 0.37 (see (5.2) and (5.4)) results in a ‘kink’ in the
modelled predictions, as seen in figure 7. We do not yet have a prediction for this limiting
temperature value of Tmax = 0.37. However, this transition is important in the evolution of
δSt, F and, to a lesser extent, TKE.

6. Conclusions

We considered a box of warm fluid, cooled from the surface through a fixed-temperature
boundary condition. In the box, the density is quadratic with temperature. The top
boundary temperature and the initial domain temperature are selected to be on opposite
sides of the temperature of maximum density, leading to the generation of convection
and the formation of an upper stable layer and a lower convectively unstable layer. As
the convection mixes the lower-layer fluid, its near homogeneous temperature decreases
(TB → 0).
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Figure 7. Plots of the scaled (a) boundary-layer thickness δSt, (b) surface heat flux F and (c) TKE, density, as
a function of TB. The black dashed lines denote the predictions of (4.7a–c) and (4.11a,b).

We developed a model for our system and scaling laws for δSt, F and TKE as follows,

δSt ∼ 1
σTB

, F = 1
δSt

∼ σTB, σ 
 1, (6.1a–c)

〈TKE〉V ∼ 1
2

(
Γ −1 − 1

)
(1 − Λ) Ra0 Pr T2

B. (6.2)

Analysing the numerical simulations, we determined the Ra0 and TB dependence of the
decay σ and the integrated-buoyancy flux ratio Λ. We showed that the mixing coefficient
Γ was effectively constant over the whole range of parameters considered here. Once
determined, the model equations agreed well with the numerically computed δSt, F and
TKE.

The main goal of this paper was to understand how convection is changed when the EOS
is nonlinear. We have shown that:

918 A6-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.319


J. Olsthoorn, E.W. Tedford and G.A. Lawrence

(i) the surface heat flux is dramatically different, in both magnitude and parameter
dependence, between a nonlinear and linear EOS;

(ii) in addition to the Rayleigh and Prandtl number, convection with a quadratic EOS
depends on a third non-dimensional parameter, the bottom water temperature TB;

(iii) our model (6.1a–c) and (6.2) accurately predicts the heat flux (F), boundary-layer
thickness (δSt) and TKE based on these three parameters.

This work forms a crucial step towards understanding how a nonlinear EOS modifies
convection. The quadratic EOS limits the vertical heat flux and the kinetic energy,
compared with a linear EOS, and depends on an additional non-dimensional parameter
TB. We are in the process of constructing a cold convection facility, capable of
convectively cooling the surface of a fresh body of water, to run complementary laboratory
experiments. This work provides a framework, including the essential parameters and
model considerations, to understand much more complicated systems and, subsequently,
freshwater systems in the environment.
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Appendix A. Derivation of the scaling law for δSt

First, assuming a piecewise-linear profile for T̄ , we can establish that

δBL = (1 + TB) δSt. (A1)

The rate of change of the total temperature within the domain is then

d
dt

∫ 1

0
T̄ dz = d

dt

(∫ 1−δBL

0
TBdz +

∫ 1

1−δBL

(
−1 − 1

δSt
(z − 1)

)
dz

)
(A2)

= dTB

dt
(1 − δBL) − 1

2
δ2

BL

δ2
St

∂δSt

∂t
. (A3)

Noting that the top temperature gradient prescribes the rate of change of heat within the
domain, and including (A1), we arrive at

dTB

dt
(1 − (1 + TB) δSt) − (1 + TB)2

2
∂δSt

∂t
= − 1

δSt
. (A4)

If we further evaluate
dTB

dt
∼ −σTB, δSt � 1, σ 
 1, (A5a–c)

then to leading order

δSt ∼ 1
σTB

, σ 
 1. (A6a,b)
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Appendix B. Derivation of the scaling law for TKE

We first recall the Reynolds decomposition

u = 0 + u′, T = T̄ + T ′. (B1a,b)

The density flux is then written out as

ρ = −T2 = −
(

T̄2 + 2T̄T ′ + T ′T ′
)

=⇒ w′ρ′ = −2w′T ′ T̄ − w′T ′T ′. (B2)

For z < 1 − δBL, the temperature stratification is well mixed, and thus

T ′w′ = −dTB

dt
z = σTBz, z < 1 − δBL =⇒ 〈2w′T ′ T̄〉V ≈

∫ 1

0
2σT2

Bz dz = σT2
B,

δBL � 1.

⎫⎪⎬
⎪⎭

(B3a–c)

The approximations can be formalised by performing the full integrals and expanding the
δBL as a perturbation series in 1/σ . Therefore, the TKE equation reduces to

d〈TKE〉V

dt
= −

(
Γ −1 − 1

)
(1 − λ) σT2

B. (B4)

The final step in deriving equation (4.11a,b) is to use self-similarity to determine

d〈TKE(Ra0, Pr, TB)〉V

dt
= d〈TKE〉V

dTB

dTB

dt
. (B5)

Substituting for Γ and Λ and integrating with respect to TB, results in

〈TKE〉V ∼ 1
2

(
Γ −1 − 1

)
(1 − Λ) Ra0 Pr T2

B, σ 
 1, (B6a,b)

where Γ is assumed constant and

Λ = 2
T2

B

∫
TB

T ′λ(T ′) dT ′. (B7)

Appendix C. Linear stability analysis

The initial evolution of the temperature profiles described in § 3 is diffusive. For a deep
box, the diffusive temperature solution is

T̄ = −1 − (1 + TB) erf
( z
δ

)
, δ =

√
4t, (C1a,b)

where TB is fixed for the purposes of this stability analysis. Here, as we have a deep box,
we redefine z = 0 as the top boundary with the domain of interest below. In this analysis,
we need to include diffusion of this background profile in the linear stability. We follow
the approach of Nijjer, Hewitt & Neufeld (2018) and define the similarity variable

ξ = z√
t
, (C2)

such that the background density profile is

T̄ = −1 − (1 + TB) erf
(

ξ

2

)
. (C3)
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Figure 8. (a) Contour plot of the growth rate (λ) of the linear instability as a function of t0 and wavenumber
(k). (b) Plot of the maximum growth rate for all k as a function of t0 for decreasing TB. Both (a,b) are computed
for Ra = 106 and Pr = 9. (c) Plot of the minimum time to instability t0min below which the system is stable
as a function of TB. We include a vertical line at TB = 0.35 to show a similar regime change to the nonlinear
dynamics. (d) Plot of the maximum growth rate for all k and δ as a function of TB. (e) Plot of the minimum TB
below which the system is linearly stable versus Ra.

We want to know the growth rate of infinitesimal modal perturbations to the diffusive
background state. The linear vertical velocity (wε) and temperature (Tε) perturbations are
assumed to have the form [

wε

Tε

]
=
[

ŵ
T̂

]
τ(t) exp [ik · x] . (C4)

Following the approach of Drazin & Reid (2004), we linearise the equations of motion
(2.4)–(2.6), which will result in a linear eigenvalue problem of the form

A
[

ŵ
T̂

]
= λB

[
ŵ
T̂

]
, (C5)

where A, B are matrix operators and λ = (1/τ)(dτ/dt|t=t0) is the growth rate of the
perturbations at some time t0. The solutions to these eigenvalue equations are a function
of five parameters: t0, k, Ra, Pr and TB. We solve these equations using an in-house
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Figure 9. (a) Plot of the kinetic energy as a function of time for case 3 (Ra0 = 9.0 × 105). The inset presents
a subset of the data on a log-linear axis to show the initial TKE growth. The vertical dashed line indicates
the time of minimum kinetic energy (tmin). (b) Plot of tmin as a function of Rayleigh number (cases 1–5). The
scaling law (C9) is included as a dashed black line in (b).

built eigenvalue solver using Chebyshev differentiation matrices. We found that 50 grid
points were sufficient to determine the growth rate of the system. We impose the same
top boundary conditions as in the numerical simulations. Spurious solutions that did not
satisfy the appropriate boundary conditions were removed.

Figure 8(a) is a plot of the growth rate (λ) of the linear instability as a function of
wavenumber k and t0 for Ra = 106, Pr = 9 and TB = 1. We first note that there exists
a minimum t0min, below which the system is linearly stable. For t > t0min, the system is
unstable for a finite range of wavenumbers and a peak λ at t 
 t0min. Figure 8(b) is a plot
of the maximum λ over all wavenumbers, for each time t0 at different TB. The maximum
λ decreases with TB until the system becomes stable at finite TB.

By computing t0min, we determine the earliest time at which the diffusive system
becomes linearly unstable. Figure 8(c) is a plot of t0min as a function of TB for different
Ra. Fitting the data, we find that

t0 = Ra−2/3

⎧⎨
⎩4T−3/2

B , TB < 0.35

3T−5/4
B , TB � 0.35

(C6)

This fit is included as dashed/dotted lines in figure 8(c). As with the nonlinear simulations,
we observe that there exists a critical regime change that occurs around TB ≈ 0.35. Further,
there is a minimum TB [TB,min], where the system is linearly stable for all time and
wavenumbers. Figure 8(d) is a plot of the maximum growth rate (λmax) for all k and t0
as a function of TB. For TB close to 1, the growth rate of the system follows

λmax ≈ 0.4Ra2/3T4/3
B = 0.4Ra1/3

eff . (C7)

Again, this fit is included as dashed lines in figure 8(d). As TB → TB,min, λmax diverges
from the fit (C7), decreasing rapidly to zero.

For a linear EOS, we know that there is a minimum Rayleigh number below which
the system is stable. Similarly, we have found a minimum condition for instability with a
quadratic EOS that depends on both Ra and TB. Figure 8(e) is a plot of TB,min for different
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Figure 10. Similar to figure 5, we demonstrate that the decay rate of change is similar for different sized
domains.

values of Ra. Note that this panel has been rotated so that TB,min can be easily compared
with panels (c,d). We estimate

TB,min ≈ 0.5Ra−0.44. (C8)

Note that in terms of Raeff , this suggests that the convection is stable where Raeff � 1
4 .

There exists a minimum stability condition below which the system is linearly stable for
these diffusive temperature profiles for all time.

For Raeff larger than this minimum stability criterion, the analysis highlights that there
still exists a t0min (or equivalently a minimum interface thickness), below which the system
remains linearly stable. For t > t0min, perturbations about the base state will grow and
result in convective mixing of the temperature field. We can compare this minimum time
with the numerical simulations.

Figure 9(a) is a plot of the volume-integrated TKE density. As with the linear stability,
the initial temperature stratification is stable, such that TKE initially decays (see figure 9(a)
inset). Once the top boundary layer is sufficiently deep, flow instability results in a large
peak in the kinetic energy, which quickly decays back to an equilibrium value. From there,
the TKE slowly decays. We define the time when the kinetic energy reaches a minimum
(vertical dashed line in figure 9(a), inset) as tmin. Note that this is only an approximation
for the time when the system becomes linearly stable. Figure 9(b) is a plot of tmin as a
function of the Rayleigh number. A fit of the data to the expected power-law suggests that,
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Figure 11. Similar to figure 5, we demonstrate that the simulation resolution is sufficient to resolve the rate of
change of temperature.

for the numerical simulations,

tmin ≈ 4.4Ra−2/3
0 , (C9)

which is close to that expected from linear theory from (C6) with TB = 1.

Appendix D. Resolution and domain-size verification

D.1. Domain dependency
As mentioned in the text, we verified that the present results are not dependent on the
box size of the numerical simulations. Figure 10 is similar to figure 5, with data from
two different sized domains. We show that when we double the numerical domain, the
temperature decay rate is nearly identical, despite the different initial random noise.

D.2. Resolution sufficiency
To demonstrate that the numerical simulations are indeed resolved, we have run an
additional low-resolution simulation. We reran case 3 (Ra0 = 9 × 105), but with a grid
resolution of Nx × Ny × Nz = 128 × 128 × 128, or half the resolution in each direction.
Figure 11 is a comparison plot between the full-resolution case 3 and the low-resolution
run described here. We observe that the rate of change of temperature is essentially
unchanged with one-eighth the number of grid points.
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