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Wave mixing equations describing the interaction of short-wavelength sound waves
and entropy waves in two-fluid cosmic ray hydrodynamics in a non-uniform, large-
scale, background flow in one Cartesian space dimension are investigated. The wave
interaction coefficients depend on large-scale gradients in the background flow, and
consist of two physically distinct components. The first component consists of wave-
damping terms due to the diffusing cosmic rays, plus squeezing instability terms
associated with the large-scale cosmic ray pressure gradient. These effects were first
investigated by Drury and Dorfi in a study of the propagation of short-wavelength
WKB sound waves in cosmic-ray-modified flows and shocks. The second component
describes gas dynamical wave mixing effects due to gradients of the gas entropy S
and the gas dynamical Riemann invariants (R±) of the background flow. A Green
function solution is used to illustrate the coupling of the backward and forward
sound waves for the case of a uniform background flow, in which the coupling
coefficients depend on the parameter α = a2

c/2κ, where ac is the cosmic-ray ‘sound
speed’ and κ is the hydrodynamical cosmic-ray diffusion coefficient. Analytical
WKB approximation methods and numerical simulations are used to investigate
the modifications of the cosmic ray squeezing instability by wave mixing in cosmic-
ray-modified shocks and pressure balance structures. Astrophysical applications to
instabilities in supernova remnant shocks are discussed.

1. Introduction
The initial work on diffusive acceleration of energetic charged particles at plane
shocks, without losses (Krymsky 1977; Axford et al. 1977; Bell 1978; Blandford
and Ostriker 1978) showed that energetic test particles (cosmic rays) were acceler-
ated into a power-law momentum spectrum from scattering backward and forward
across the shock. For strong shocks, with compression ratio of four, the steady-state
particle pressure in the test particle solutions diverged, indicating the need for a
nonlinear analysis taking account of the reaction of the energetic particles back
on the flow. In applications of the theory to real astrophysical shocks, due account
needs to be taken of the finite time scale for diffusive shock acceleration and particle
energy losses (see e.g. Drury 1983). The energy density of the accelerated particles
in strong shocks may increase to such an extent that the energetic particle pressure
gradient acts back on the upstream flow, thus leading to modification of the shock
by the cosmic rays.

https://doi.org/10.1017/S0022377898007466 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898007466


554 G. M. Webb, A. Zakharian and G. P. Zank

Two-fluid hydrodynamical models of diffusive shock acceleration were developed
by Axford et al. (1977), Drury and Völk (1981) and Axford et al. (1982) in order to
account for the back reaction of the energetic particles on the flow. An alternative,
nonlinear model that takes into account the energetic particle momentum spectrum
and the modification of the flow by the energetic particles has been developed by
Ellison (1981, 1985) (see the review by Jones and Ellison 1991).

Drury and Falle (1986) and Zank and McKenzie (1987) investigated in detail a
short-wavelength instability for backward-propagating sound waves upstream of a
cosmic-ray-modified shock, in which the gas density perturbations were amplified
by the cosmic ray pressure gradient (see also Berezhko 1986; Chalov 1988; Webb
1989; Kang et al. 1992). McKenzie and Völk (1982) and Völk et al. (1984) developed
an Alfvénic two-fluid model, in which the Alfvén waves scattering the cosmic rays
and the cosmic-ray streaming instability were included as integral components.
The cosmic-ray-generated Alfvén waves in this model were shown by McKenzie
and Webb (1984), Zank (1989), Begelman and Zweibel (1994) and Ko and Jeng
(1994) to drive one of the modified slow magneto-acoustic waves unstable. More
general analyses of instabilities of obliquely propagating magnetosonic modes in
cosmic-ray-modified flows have been investigated by Zank et al. (1990), who showed
that the waves could be destabilized by squeezing and stratification effects and by
particle drifts.

Webb et al. (1997a) considered the role of wave–wave interactions between the
short-wavelength entropy wave and the backward and forward sound waves in
cosmic-ray-modified flows and shocks in one Cartesian space dimension. In the lin-
ear wave regime, the waves are coupled via gradients in the large-scale background
flow, and also by cosmic ray diffusive effects. The equations are similar in form
to the wave mixing equations for Alfvén waves and Alfvénic turbulence in the so-
lar wind (see e.g. Heinemann and Olbert 1980; Zhou and Matthaeus 1990). In the
WKB limit, the waves are decoupled, and the equations reduce to those derived
by Drury and Falle (1986) and Zank and McKenzie (1987) for WKB sound waves
in cosmic ray shocks. Webb et al. (1997a) also considered weakly nonlinear wave
interactions, namely the Burgers self wave interactions for sound waves and three-
wave resonant interactions in which a sound wave is resonantly scattered off an
entropy wave disturbance to produce a reverse sound wave.

The main aim of this paper is to investigate wave mixing and instabilities of
short-wavelength waves in cosmic-ray-modified shocks by using the wave inter-
action equations for sound waves and entropy waves developed by Webb et al.
(1997a,b,c). It is important at the outset to note the physical limitations of using a
fluid-dynamical description, rather than a collisionless, kinetic plasma description
(note that this criticism also applies to Monte Carlo models). In particular, the model
does not incorporate Landau damping of magnetoacoustic modes due to wave par-
ticle interactions (see e.g. Barnes 1966, 1979). The damping rates γL = −=(ω)/<(ω)
(where ω is the wave frequency) of the magnetoacoustic waves in general increase
with the plasma beta (see e.g. Fig. 4 of Barnes (1979), where γL is plotted as a
function of the angle θ between the wave vector k and the background magnetic
field B for the cases β = 1 and β = 5). The Landau damping for the fast-mode
wave exhibits two peaks associated with stochastic heating of the thermal protons
(θ ≈ 10◦) and heating of the electrons (θ ≈ 85◦–90◦) in β ≈ 1 plasmas. For perpen-
dicular propagation (θ = 90◦), there is no linear Landau damping of the fast mode
(this corresponds to waves propagating normal to the shock in a perpendicular,
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cosmic-ray-modified shock). In collisionless plasma theory, the entropy-wave-like
modes with <(ω) = 0 are Landau-damped (Barnes 1979). In general, it is difficult
to assess whether the cosmic ray squeezing instability is sufficiently vigorous to
overcome Landau damping, without carrying out detailed calculations. In a more
complete theory, one should also take into account the full momentum spectrum
of the cosmic rays, obtained by solving the cosmic ray transport equation (see e.g.
Parker 1965) consistent with the total momentum equation for the system, in which
the cosmic rays exert a force on the background flow via their pressure gradient.
Further work on the wave mixing equations for the magnetohydrodynamic (MHD)
wave modes in MHD models of cosmic-ray-modified shocks is described in Webb et
al. (1999).

In Sec. 2, the equations for the two-fluid model are introduced. Section 3 dis-
cusses the wave mixing equations for short-wavelength waves in a non-uniform
large-scale background flow. Section 4 considers the form of the wave interaction
equations for the case of a uniform background flow. In this case, the backward
and forward sound waves are coupled by cosmic ray interaction effects, via the
parameter α = a2

c/2κ, where ac = (γcpc/ρ)1/2 is the cosmic ray sound speed (pc and
γc denote the cosmic ray pressure and adiabatic index, and ρ denotes the density
of the thermal gas), and κ is the hydrodynamical cosmic ray diffusion coefficient.
Analytical solutions of the wave interaction equations are obtained correspond-
ing to initial conditions in which the sound wave density perturbations consist of
Dirac delta distributions. The solutions consist of decaying delta function pulses
located on the backward and/or forward sound wave characteristics, plus a wake of
particles trapped between the characteristics arising from wave–wave interactions.
In Sec. 5, a WKB analysis of the Fourier-transformed wave mixing equations for
the case of a steady non-uniform background flow is developed. Two methods are
used. In the first, the WKB analysis is based on a differential equations approach,
whereas in the second method, an integral equation formulation of the equations is
used. WKB expansion of the iterated solutions of the integral equations are used
to reveal the lowest-order correction to the WKB solutions due to wave mixing.
Section 6 presents numerical solutions of the two-fluid equations illustrating the
the role of wave mixing and instabilities in cosmic-ray-modified shocks and flows.
Depending on the characteristics of the background flow, the waves may grow to
nonlinear amplitudes (see also Webb et al. 1997a,c). We present calculations of
wave interactions and instabilities in a non-uniform background flow (a) by using
a spectral code to solve the wave mixing equations and (b) by solving the ordi-
nary differential equations for waves of a single frequency in a steady non-uniform
background flow (the differential equation system is also solved by iterating the
equivalent integral equation system). The results obtained in (a) and (b) are com-
pared with WKB results for high-frequency waves. Wave propagation problems in
cosmic-ray-modified shocks and pressure balance structures are studied. Section 7
discusses the role of the cosmic ray squeezing instability and wave mixing in super-
nova remnant shocks propagating through the warm interstellar medium (WISM)
and hot interstellar medium (HISM). Section 8 concludes with a summary and
discussion.

2. The model and equations
The two-fluid model of cosmic-ray-modified flows and shocks (Axford et al. 1977,
1982; Drury and Völk 1981) was initially developed to describe the self-consistent
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modification of astrophysical shocks by energetic particles accelerated at the shock
by the first-order Fermi mechanism. The cosmic rays are assumed to be a hot low-
density gas, with negligible mass flux. The cosmic rays are scattered by waves or
turbulence in the background flow, and the phase velocity of the waves is assumed
to be negligible compared with the fluid speed.

For the case of flows in one Cartesian space dimension, the two-fluid cosmic ray
hydrodynamical equations may be written in the form

∂ρ

∂t
+
∂

∂x
(ρu) = 0, (2.1)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

(
∂pc
∂x

+
∂pg
∂x

)
, (2.2)

∂pg
∂t

+ u
∂pg
∂x

+ γgpg
∂u

∂x
= 0, (2.3)

∂pc
∂t

+ u
∂pc
∂x

+ γcpc
∂u

∂x
− ∂

∂x

(
κ
∂pc
∂x

)
= 0. (2.4)

Here ρ, u, pg, and γg denote the density, fluid velocity, pressure and adiabatic index
for the thermal gas, and pc, γc and κ denote the cosmic ray pressure, adiabatic index
and hydrodynamical diffusion coefficient.

An alternative, equivalent set of equations for the model consists of the overall
mass, momentum and energy equations for the two fluids, supplemented by the
cosmic ray energy equation:

∂

∂t

(
pc

γc − 1

)
+
∂

∂x

(
γcpc
γc − 1

u− κ

γc − 1
∂pc
∂x

)
= u

∂pc
∂x

, (2.5)

which describes the interaction of the cosmic rays with the background flow (see
e.g. Axford et al. 1977; Webb et al. 1997a). Equation (2.5) is derived by taking the
kinetic energy moment of the cosmic ray transport equation obtained by Krym-
sky (1964), Parker (1965), Gleeson and Axford (1967) and Dolginov and Toptygin
(1967), describing energetic-particle transport in the solar wind. Equation (2.5),
which is equivalent to (2.4), shows that the background flow does work on the
cosmic rays at the rate u∂pc/∂x. The entropy advection equation

∂S

∂t
+ u

∂S

∂x
= 0, (2.6)

is equivalent to the co-moving gas energy equation (2.3), where

S = Cv ln
(
pg
ργg

)
, (2.7)

is the entropy of the thermal gas and Cv is the specific heat at constant volume.
By making use of the mass continuity equation (2.3), the entropy equation may be
cast in the conservative form

∂

∂t
(ρS) +

∂

∂x
(ρuS) = 0. (2.8)

Hence the entropy is advected with the flow, except at gas subshocks, where S
jumps discontinuously. The entropy equation, (2.6) or (2.8), may be replaced by
the total energy equation

∂

∂t

(
1
2ρu

2 +
pg

γg − 1
+

pc
γc − 1

)
+
∂

∂x

[
ρu

(
1
2u

2 +
γgpg

(γg − 1)ρ

)
+ Fc

]
= 0, (2.9)
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where

Fc =
γcpc
γc − 1

u− κ

γc − 1
∂pc
∂x

, (2.10)

is the cosmic ray energy flux. Equations (2.1)–(2.4) may be combined with the total
energy equation (2.9) to yield the entropy equation (2.6).

The cosmic rays may be scattered both by resonant wave–particle interactions,
and by random walk of the field lines (see e.g., Jokipii 1971). The general form of
the energetic particle diffusion coefficient kxx in the kinetic transport equation for
cosmic rays (see e.g. Krymsky 1964; Parker 1965) is of the form

kxx = κ‖ cos2 θBn + κ⊥ sin2 θBn, (2.11)

where κ‖ and κ⊥ are the particle diffusion coefficients parallel and perpendicular
to the background magnetic field B, and θBn is the angle between the background
magnetic field and the x axis, or shock normal. The parallel diffusion coefficient
κ‖ is determined by resonant wave–particle interactions whereas the perpendicular
diffusion coefficient κ⊥ is determined both by resonant wave particle interactions,
and by random walk of the field lines. For slab turbulence, in which the mag-
netic fluctuations are perpendicular to B, κ⊥ is determined by random walk of the
field lines. In this case, one finds κ‖ ∝ 1/Pw, where Pw = (δB)2/8π is the Alfvén
wave pressure, whereas the perpendicular diffusion coefficient κ⊥ is proportional to
the power at zero frequency. The hydrodynamically averaged diffusion coefficient
κ is an average of kxx over the energetic particle momentum spectrum (see e.g.
Drury and Völk 1981). Drury and Falle (1986) note that if resonant wave–particle
interactions are the main scattering mechanism then the hydrodynamically aver-
aged diffusion coefficient κ ∝ 1/Pw. From the compression of pre-existing Alfvén
waves, Pw ∝ ρ3/2, suggesting κ ∝ ρ−3/2 for the case where kxx is dominated by
κ‖. However, Alfvén wave excitation by the resonant streaming instability will also
contribute to Pw (see e.g. McKenzie and Völk 1982).

On the other hand, in a quasiperpendicular shock, kxx ≈ κ⊥ (θBn ≈ 1
2π in (2.11)).

If κ⊥ is dominated by random walk of the field lines (Jokipii 1971, equation (65))
one can show that κ⊥ ∝ (δB/B)2. From the wave mixing equations for Alfvén
waves (see e.g. Zhou and Matthaeus 1990), one can show that δB ∝ ρ in a quasi-
perpendicular shock. Because both δB ∝ ρ and B ∝ ρ, it follows that κ ≈ const in a
quasiperpendicular shock. The present purely fluid-dynamical model strictly only
applies to shocks in which the plasma β is sufficiently large that the background
magnetic field plays no dynamical role.

These arguments suggest that

κ = κ(ρ) (2.12)

is a function of the background density ρ. It turns out that the squeezing instability
for short-wavelength sound waves in cosmic-ray modified shocks, first investigated
in detail by Drury and Falle (1986), is sensitive to the form of κ(ρ). More specifically,
the squeezing instability depends on the value of the parameter

ζ =
∂ ln κ
∂ ln ρ

. (2.13)

The instability growth rate also depends on the cosmic ray pressure gradient, and
is substantially enhanced for a low-temperature background thermal gas. This is
discussed in further detail in the next section.
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3. Short-wavelength waves in non-uniform flows
From Webb et al. (1997a), linear short-wavelength waves in the two-fluid model
propagating through a non-uniform background medium satisfy linear wave evo-
lution equations of the form

∂ρi
∂t

+
∂

∂x
(λiρi) +

3∑
j=1

Λijρj = 0, i = 1, 2, 3, (3.1)

where the {ρi : i = 1, 2, 3} are the density perturbations for the backward sound
wave (ρ1), entropy wave (ρ2) and forward sound wave (ρ3) respectively. The phase
speeds of the waves are

λ1 = u− ag, λ2 = u, λ3 = u + ag, (3.2)

where ag = (γgpg/ρ)1/2 is the thermal gas sound speed. The density perturbations
ρ1, ρ2 and ρ3 may be expressed in terms of the perturbations ρ1, u1 and S1 of the
gas density, velocity and entropy, by the equations

ρ1 =
1
2

(
ρ1 +

ρS1

γgCv
− ρu1

ag

)
, (3.3a)

ρ2 = − ρS1

γgCv
, (3.3b)

ρ3 =
1
2

(
ρ1 +

ρS1

γgCv
+
ρu1

ag

)
. (3.3c)

The velocity perturbations for the sound waves are v1 = −agρ1/ρ and v3 = agρ3/ρ.
The entropy wave has zero velocity perturbation. Note that ρ1 = ρ1 + ρ2 + ρ3 and
u1 = ag(ρ3 − ρ1)/ρ.

In the applications of the wave mixing equations (3.1) to cosmic-ray-modified
shocks (Secs 5–7), we adopt the convention that x → ∞ far upstream (x → −∞
far downstream). In the upstream reference frame, u→ 0 as x→∞. The forward-
propagating sound wave has velocity Vp3 = (u + ag)ex and propagates into the
upstream medium away from the shock, whereas the backward sound wave in
the upstream medium has phase velocity Vp1 = (u − ag)ex and propagates in the
negative x direction towards the advancing shock.

The wave interaction coefficients depend on the gradients of the non-uniform
background flow, and have the form

Λ11 =
1
2

(
(3− γg)

2
R+
x −

agSx
(γg − 1)Cv

+
a2
c

κ
+
ζ + 1
ρag

∂pc
∂x

)
, (3.4a)

Λ12 =
1
2

(
R+
x −R−x

2
− agSx
γg(γg − 1)Cv

+
ζ + 1
ρag

∂pc
∂x

)
≡ − 1

2ag

du

dt
+

ζ

2ρag

∂pc
∂x

, (3.4b)

Λ13 =
1
2

(
γg − 3

2
R−x +

(γg − 2)agSx
γg(γg − 1)Cv

+
ζ + 1
ρag

∂pc
∂x
− a2

c

κ

)
, (3.4c)

Λ21 = −Λ23 =
agSx
γgCv

, (3.4d)

Λ22 = 0, (3.4e)

Λ31 =
1
2

(
γg − 3

2
R+
x −

(γg − 2)agSx
γg(γg − 1)Cv

− ζ + 1
ρag

∂pc
∂x
− a2

c

κ

)
, (3.4f)
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Λ32 = −Λ12, (3.4g)

Λ33 =
1
2

(
3− γg

2
R−x +

agSx
(γg − 1)Cv

+
a2
c

κ
− ζ + 1

ρag

∂pc
∂x

)
, (3.4h)

where the parameter β is defined in (2.13), du/dt = ∂u/∂t + u∂u/∂x is the acceler-
ation vector of the fluid and

R± = u± 2ag
γg − 1

, (3.5)

are the Riemann invariants of isentropic gas dynamics. The coefficients {Λ3j : j =
1, 2, 3} for the forward sound wave are obtained by making the substitutions 1↔ 3
and ag ↔ −ag in the backward sound wave coefficients {Λ1j} (note that R− ↔ R+

under this transformation). The wave mixing coefficients {Λij} in (3.4) are slightly
more general than those presented in Webb et al. (1997a,b,c) where the coefficients
were given for the case of a constant diffusion coefficient with β ≡ ∂ ln κ/∂ ln ρ = 0.

The terms involving ∂pc/∂x in (3.4) correspond to the cosmic ray squeezing
instability investigated by Dorfi and Drury (1985), Drury and Falle (1986) and
Zank and McKenzie (1987). Note that the character of the instability depends on
whether ζ < −1, ζ = −1 or ζ > −1, where ζ = ∂ ln κ/∂ ln ρ. Note also that the
squeezing instability terms are proportional to (∂pc/∂x)/ρag. Hence the instability
is enhanced if ∂pc/∂x is large or if the thermal gas temperature is small, so that ag
is small. The a2

c/κ terms correspond to damping of the sound waves by the diffusing
cosmic rays, where ac = (γcpc/ρ)1/2 is the ‘cosmic ray sound speed’.

Using (2.1)–(2.4), R− and R+ satisfy the equations

∂R−

∂t
+ λ1

∂R−

∂x
=
∂R+

∂t
+ λ3

∂R+

∂x
=

a2
g

γg(γg − 1)Cv

∂S

∂x
− 1
ρ

∂pc
∂x

. (3.6)

For isentropic gas flows (with no cosmic rays) the Riemann invariantR− is constant
on the backward sound wave characteristic, whereas R+ is constant on the forward
sound wave characteristic. In an R+ simple wave background flow in the absence
of cosmic rays R+ = const. and S = const. and Λ11 = Λ21 = Λ31 = 0. An R+ simple
wave is a backward-moving nonlinear sound wave in which du = −agdρ/ρ and R+ is
constant. In such a flow, the backward linear sound perturbation does not interact
with the other wave modes.

From the background flow equations (2.1)–(2.4) and the wave interaction equa-
tions (3.1), the linearized continuity equation and entropy flux equation may be
written in the conservative forms

(ρ1 + ρ2 + ρ3)t + (λ1ρ1 + λ2ρ2 + λ3ρ3)x = 0, (3.7)[
S(ρ1 + ρ2 + ρ3)− γgCvρ2

]
t

+
[
S(λ1ρ1 + λ2ρ2 + λ3ρ3)− γgCvλ2ρ2

]
x

= 0, (3.8)

where the subscripts x and t denote partial derivatives with respect to x and t.
Similarly, the perturbed momentum equation may be written in the form

(λ1ρ1 + λ2ρ2 + λ3ρ3)t + (λ2
1ρ1 + λ2

2ρ2 + λ2
3ρ3)x = QP , (3.9)

where

QP =
ζ

ρ

∂pc
∂x

(ρ1 + ρ2 + ρ3)− ρa
2
c

κ
(v1 + v3). (3.10)
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The sourceQP in (3.9) and (3.10) consists of a squeezing instability term (∝ ∂pc/∂x)
and a diffusive cosmic ray damping term (∝ a2

c/κ), and corresponds to the short-
scale terms in a multiple-scales analysis of (2.1)–(2.4). It is straightforward to write
down the linearized total energy equation for the system, which in the gas dynam-
ical case has a conservative form.

Discussions of the canonical wave energy equation and wave action equations
associated with the wave mixing equations (3.1) are given in Webb et al. (1997a,b).
Webb et al. (1998) consider the case of wave mixing in adiabatic gas dynamics
in the absence of cosmic rays. In the latter paper, Lagrangian and Hamiltonian
formulations of the wave mixing equations are developed, and the form of the
canonical and physical stress energy tensors for the waves and the background
flow are discussed.

In the following sections, we consider both analytical and approximate solutions
of the wave mixing equations (3.1) (Secs 4 and 5). Numerical solutions of the two-
fluid equations (2.1)–(2.4) and of the wave mixing equations (3.1) are explored
in Sec. 6. Unless otherwise indicated, the analysis applies to the case of constant
diffusion coefficient κ = const. Case (a) corresponds to the expected dependence of κ
if the scattering wave field is due to pre-existing Alfvén waves upstream of a quasi-
parallel shock. As noted in (3.5) et seq., there are two distinct behaviours expected
for the cosmic ray squeezing instability, depending on the density dependence of
κ(ρ). In case (a), the forward-propagating sound wave upstream of a cosmic-ray-
modified shock is driven unstable by the cosmic ray squeezing instability, whereas
in case (b), the backward sound wave is driven unstable. Case (b) corresponds to
a perpendicular shock configuration in which κ⊥ is due to random walk of the
field lines, and for which δB and B are both proportional to ρ (see the discussion
following (2.11)).

4. Wave evolution equations for a uniform background state
For a uniform background state, the wave mixing equations (3.1) for the backward
and forward sound waves reduce to

∂ρ1

∂t
+ λ1

∂ρ1

∂x
+ α(ρ1 − ρ3) = 0, (4.1)

∂ρ3

∂t
+ λ3

∂ρ3

∂x
+ α(ρ3 − ρ1) = 0, (4.2)

where

α =
a2
c

2κ
(4.3)

is a characteristic frequency describing the coupling and damping of the sound
waves. In this section, we consider the solution of the initial value problem for (4.1)
and (4.2) in which

ρ1(x, 0) = N1δ(x), ρ3(x, 0) = N3δ(x), (4.4)

and |ρ1| → 0, |ρ3| → 0 as |x| → ∞. The solution of the initial value problem
(4.1)–(4.4) is of interest in describing the coupling of the sound waves far up-
stream and far downstream of a cosmic-ray-modified shock, where the flow is
uniform.
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The initial value problem (4.1)–(4.4) may be posed as an initial value problem in
the fluid frame as

∂ρ̂1

∂t
− ag ∂ρ̂1

∂x′
= αρ̂3, (4.5)

∂ρ̂3

∂t
+ ag

∂ρ̂3

∂x′
= αρ̂1, (4.6)

where

x′ = x− ut, ρ̂1(x′, t) = exp(αt) ρ1(x, t), ρ̂3(x′, t) = exp(αt) ρ3(x, t), (4.7)

and

ρ̂1(x′, 0) = N1δ(x′), ρ̂3(x′, 0) = N3δ(x′), (4.8)

are the initial conditions. Substituting for ρ̂3 from (4.5) into (4.6) yields the Klein–
Gordon-type equation

∂2ρ̂1

∂t2
− a2

g

∂2ρ̂1

∂x′2
− α2ρ̂1 = 0, (4.9)

for ρ̂1. Exactly the same Klein–Gordon equation is satisfied by ρ̂3. Equations (4.5),
(4.6) and (4.9) are similar to the idealized wave mixing equations for Alfvén waves
in the solar wind, studied by Hollweg (1996).

The solution of the initial value problem (4.1)–(4.4) or (4.5)–(4.9) may be obtained
by means of Laplace transforms (Appendix A). The solution for ρ1(x, t) is

ρ1(x, t) = N1δ(x− x1) exp(−αt)

+
α exp(−αt)

2ag

(
N1

∣∣∣∣x3 − x
x− x1

∣∣∣∣1/2

I1(z) +N3I0(z)
)

×[H(x− x1)−H(x− x3)], (4.10)

where

z =
α

ag
|(x− x1)(x3 − x)|1/2, (4.11)

x1 = λ1t, x3 = λ3t. (4.12)

The corresponding solution for ρ3(x, t) is

ρ3(x, t) = N3δ(x− x3) exp(−αt)

+
α exp(−αt)

2ag

[
N3

∣∣∣∣x− x1

x3 − x
∣∣∣∣1/2

I1(z) +N1I0(z)
]

×[H(x− x1)−H(x− x3)], (4.13)

where I0(z) and I1(z) are modified Bessel functions of orders 0 and 1, and H(x)
is the Heaviside step function. The solutions (4.11)–(4.13) for ρ1(x, t) and ρ3(x, t)
apply for subsonic, sonic and supersonic flow.

Note that the solutions (4.10)–(4.13) are only non-zero between the sound wave
characteristics x = x1 and x = x3. Figure 1 shows schematically the region between
the backward and forward sound wave characteristics t = x/λ1 and t = x/λ3 where
the solutions are non-zero, for the cases of (a) subsonic flow (0 < M < 1), (b) sonic
flow (M = 1), and (c) supersonic flow (M > 1), whereM = u/ag is the Mach number.
The solutions (4.10) and (4.13) for ρ1(x, t) and ρ3(x, t) consist of delta function
source terms located on the backward and forward sound wave characteristics,
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Figure 1. Schematic of the region between the backward and forward sound wave charac-
teristics t = t1 and t = t3, where t1 = x/λ1 and t3 = x/λ3, for the cases of: (a) subsonic
flow (M < 1); (b) sonic flow (M = 1) and (c) supersonic flow (M > 1). The Green-function
solutions (4.9) and (4.12) are non-zero in the shaded regions.

which are exponentially damped, plus a diffusive wake of particles represented by
the modified Bessel functions.

Figure 2 shows examples of the solutions (4.10) and (4.13) for ρ1 and ρ3 for
a case where ρ1(x, 0) = N1δ(x) and ρ3(x, 0) = 0. The parameters describing the
background flow are u = 0, γc = 4

3 , γg = 5
3 , and pc = pg = ρ = κ = 1. For this

set of parameters, α = 2
3 and ag = 1.291. The solutions are shown at three time

instants t1 = 0.4, t2 = 1.2 and t3 = 5.2. The main point to note is that the solution
for ρ1 consists of an exponentially damped Dirac delta distribution pulse on the
backward sound wave characteristic x = x1 = λ1t and a wake of particles extending
between the characteristics x = x1 and x = x3. The solution for ρ3 consists of a
wake of particles extending between the characteristics. At early times t = t1, the
backward wave consists primarily of the delta function pulse, with a very small
wake. The delta function pulse integral is represented by the height of the vertical
line on the left of the ρ1 profile. Note that the top hat pulse of particles in the
forward wave wake, which has been produced by wave coupling, is substantially
larger than the backward wave wake. At the intermediate time t = t2, the backward
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Figure 2. The Green-function solutions (4.9) and (4.12) describing the coupling of the back-
ward (ρ1) and forward (ρ3) sound wave density perturbations for a uniform background flow.
Initial conditions are ρ1(x, 0) = N1δ(x) and ρ3(x, 0) = 0. The parameters used are u = 0,
γc = 4

3 , γg = 5
3 , pc = pg = ρ = κ = 1. These values yield α = 0.667 and ag = 1.291. The

density perturbations are shown at times (a) t1 = 0.4, (b) t2 = 1.2 and (c) t3 = 5.2.

sound wave wake grows in amplitude, and becomes comparable in magnitude to
the forward sound wave wake. Note the asymmetry in the backward wave wake. At
late times t = t3, the Dirac delta function representing the initial particles decreases
exponentially with time t, and the two wakes dominate the solution. As t → ∞,
the two wakes become more similar, and approach the same bell-shaped profile.

5. WKB approaches to wave mixing
In this section, we develop a WKB analysis of the wave mixing equations applicable
to steady background flows and cosmic-ray-modified shocks. We extend the work
of Webb et al. (1997a) on WKB analyses of wave mixing in cosmic-ray-modified
flows and shocks.

Section 5.1 considers the form of the wave mixing equations, for waves of a single
frequency ω in a steady background flow. In Sec. 5.2, a WKB analysis of the wave
mixing equations is developed based on a differential equations approach. In par-
ticular, we study the interaction of sound waves in a steady isentropic background
flow, when there are no entropy waves present. We correct some errors in the anal-
ysis of Webb et al. (1997a), and provide a more exact matching procedure for the
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backward and forward sound waves. Section 5.3 considers an integral equation ap-
proach to wave mixing. Accurate solutions of the wave mixing equations may be
obtained from the integral equations by iteration. One can also obtain approximate
WKB solutions from the iterated solutions of the integral equations, which yield
further insight into the effects of wave mixing. The integral equation approach has
the virtue that initial value data and boundary data are automatically included
in the integral equations, so that further analysis is not needed to ensure that the
solutions for the different wave modes are properly meshed together. One defect of
the integral equation approach to WKB expansions is that the Neumann expansion
is non-uniform (Nayfeh 1973, Chap. 7), but this can, in principle, be remedied by
renormalization techniques. In any event, the integral equation formulation leads
to sufficiently accurate WKB expansions in a limited space domain, and yields
physical insight into the wave mixing process. We compare the WKB expansions
with accurate numerical solutions in Sec. 6.

We use the same normalized variables as Webb et al. (1997a). Length and time
are normalized to characteristic length (L1) and time (T1) scales of the background
flow, where ag0 = L1/T1 is a characteristic value of the gas sound speed. Velocities
are normalized by ag0, pressures are normalized by pg0, the density is normalized
by ρ0, and the cosmic ray diffusion coefficient is normalized by ag0L1.

Two physical problems are studied in detail:

(a) the wave mixing of sound waves in a steady background flow, in the absence of
entropy waves;

(b) the generation of sound waves by wave mixing arising from entropy waves
initially present in the flow.

5.1. The wave mixing equations

From Webb et al. (1997a), the wave mixing equations (3.1) for steady, isentropic
background flows may be reduced to the equations

∂ρ2

∂t
+
∂

∂x
(uρ2) = 0, (5.1)

∂f

∂t
+ λ1

∂f

∂x
= λ1(ν11f + ν12ρ2 + ν13g), (5.2)

∂g

∂t
+ λ3

∂g

∂x
= λ3(ν31f + ν32ρ2 + ν33g), (5.3)

where the variables

f =
λ1v1

(ag/ρ)1/2
≡ −λ1

(
ag
ρ

)1/2

ρ1,

g =
λ3v3

(ag/ρ)1/2
≡ λ3

(
ag
ρ

)1/2

ρ3, (5.4)

describe the backward (f ) and forward (g) sound waves. In (5.1)–(5.3) the interac-
tion coefficients {νij} are given by

ν11 = − 1
2λ1

(
a2
c

κ
+
ζ + 1
ρag

∂pc
∂x

)
, (5.5a)

ν12 = ν32 = − 1
2(agρ)1/2

du

dt
≡ − uux

2(agρ)1/2
, (5.5b)
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ν33 = − 1
2λ3

(
a2
c

κ
− ζ + 1

ρag

∂pc
∂x

)
, (5.5c)

ν13 =
∂ψ

∂x
+ ν33, (5.5d)

ν31 =
∂ψ

∂x
+ ν11, (5.5e)

ψ = − 1
2 ln
(
ag
ρ

)
, (5.5f)

and λ1 = u − ag, and λ3 = u + ag denote the speeds of the backward and forward
sound waves. For waves of a single frequency ω, (5.1)–(5.3) have solutions of the
form

η = <{η̄ exp(−iωt)}, (5.6)

where <{z} denotes the real part of the complex number z, and η represents a
wave perturbation quantity (e.g. f , g, and ρ2). Equations (5.1)–(5.3) in Fourier
space reduce to

u
dρ̄2

dx
+
(
du

dx
− iω

)
ρ̄2 = 0, (5.7)

df̄

dx
−
(
iω

λ1
+ ν11

)
f̄ = ν12ρ̄2 + ν13ḡ, (5.8)

dḡ

dx
−
(
iω

λ3
+ ν33

)
ḡ = ν31f̄ + ν32ρ̄2. (5.9)

The entropy wave equation (5.7) has the explicit solution

ρ̄2(x, ω) = ρ̄20(ω)
u0

u(x)
exp(iωφ2), φ2 =

∫ x

x0

dx′

u(x′)
. (5.10)

Thus (5.7)–(5.9) reduce to two first-order differential equations (5.8) and (5.9) for
the sound waves, in which the entropy wave solution ρ̄2 appears as a source term.
Introducing auxiliary functions F̄ (x, ω) and Ḡ(x, ω) for the backward and forward
sound waves,

F̄ (x, ω) = f̄ exp(−iωφ1 − γ1), (5.11a)

Ḡ(x, ω) = ḡ exp(−iωφ3 − γ3), (5.11b)

where

φj =
∫ x

x0

dx′

λj
, γ1 =

∫ x

x0

ν11 dx
′, γ3 =

∫ x

x0

ν33 dx
′. (5.12)

and using the notation

φ = φ3 − φ1, γ = γ3 − γ1, (5.13)

(5.8) and (5.9) may be written in the form

dF̄

dx
= AḠ +Q1, (5.14)

dḠ

dx
= BF̄ +Q3, (5.15)

where

A = ν13 exp(S), B = ν31 exp(−S), S = iωφ + γ, (5.16a)
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Q1 = ν12 exp(−iωφ1 − γ1)ρ̄2, Q3 = ν32 exp(−iωφ3 − γ3)ρ̄2. (5.16b)

Equations (5.14) and (5.15) may be combined to yield second order differential
equations for F̄ and Ḡ

F̄xx −Dx(lnA)F̄x −ABF̄ = SF , (5.17)

Ḡxx −Dx(lnB)Ḡx −ABḠ = SG, (5.18)

where

SF = Q1x −Dx(lnA)Q1 +AQ3, (5.19a)

SG = Q3x −Dx(lnB)Q3 +BQ1, (5.19b)

are the source terms in (5.17) and (5.18). The source terms SF and SG depend on
the presence of entropy waves in the flow. The second-order differential equations
(5.17) and (5.18) formed the basis of the WKB analysis of wave mixing by Webb et
al. (1997a). It is of interest to note that the differential equations (5.14) and (5.15)
may be cast in Hamiltonian form, in which F̄ and Ḡ are the canonical variables
(Webb et al. 1997a).

5.2. WKB analysis: a differential equations approach

A standard WKB analysis of the second-order differential equations (5.17) and
(5.18) for F̄ and Ḡ was carried out by Webb et al. (1997a). Our main purpose is to
provide a relatively accurate WKB formulation of wave mixing for high-frequency
waves that improves upon the development of Webb et al. (1997a). We illustrate
the method for the case of sound wave propagation in a steady background flow in
the absence of entropy waves.

5.2.1. Sound waves in the absence of entropy waves. In the absence of entropy waves,
(5.14) and (5.15) describing the backward and forward sound waves reduce to

dF̄

dx
= AḠ, (5.20a)

dḠ

dx
= BF̄ . (5.20b)

Equations (5.20) may be combined to yield the homogeneous, second-order differ-
ential equations (5.17) and (5.18) with zero entropy wave source terms SF and SG.
The homogeneous equations (5.17) and (5.18) have approximate WKB solutions of
the form:

F̄ = exp

(
1
ε

∞∑
n=0

εnSn

)
, (5.21a)

Ḡ = exp

(
1
ε

∞∑
n=0

εnTn

)
, (5.21b)

where, for high-frequency waves, the perturbation parameter ε = 1/ω. Substitu-
tion of the expansions (5.21) into the homogeneous forms of (5.17) and (5.18), and
equating powers of ε, yields a set of ordinary differential equations for the {Sn}
and {Tn}. Some typographical errors in the equations for the {Sn} presented in
Webb et al. (1997a) are pointed out in Appendix B.
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The general solution of the homogeneous differential equations (5.17) and (5.18)
for F̄ and Ḡ may be written as

F̄ = c1F̄1(x, ω) + c2F̄2(x, ω), (5.22a)

Ḡ = d1Ḡ1(x, ω) + d2Ḡ2(x, ω). (5.22b)

Approximate WKB solutions for F̄1 and F̄2, from Webb et al. (1997a), are

F̄1(x, ω) = exp
(
i

ω

∫ x

x0

ν13(y)ν31(y)
φy

dy

+
1
ω2

∫ x

x0

ν13(y)ν31(y)
φ2
y

µ′31(y)dy + · · ·
)
, (5.23)

F̄2(x, ω) = exp

{
iωφ + µ13(x)− µ13(x0)

+
i

ω

(
µ′13(x)
φx

− µ′13(x0)
φx(x0)

−
∫ x

x0

ν13(y)ν31(y)
φy

dy

)
+

1
ω2

([
ν13(y)ν31(y)

φ2
y

− 1
2

(
µ′13(y)
φy

)2

− 1
φy
Dy

(
µ13(y)
φy

)]y=x

y=x0

+
∫ x

x0

ν13(y)ν31(y)
φ2
y

µ′13(y)dy

)
+ · · ·

}
, (5.24)

where

µ13 = ln
[
ν13

φx
exp(γ)

]
, µ31 = ln

[
ν31

φx
exp(−γ)

]
, (5.25)

and the primed superscripts on µ13(x) and µ31(x) in (5.23) and (5.24) denote deriva-
tives with respect to x. The operator Dy in (5.24) denotes differentiation with
respect to y. Similarly, the approximate WKB solutions for Ḡ1(x, ω) and Ḡ2(x, ω)
are given by the formulae

Ḡ1(x, ω) = exp
(
− i
ω

∫ x

x0

ν13(y)ν31(y)
φy

dy

+
1
ω2

∫ x

x0

ν13(y)ν31(y)
φ2
y

µ′13(y)dy + · · ·
)
, (5.26)

Ḡ2(x, ω) = exp

{
− iωφ + µ31(x)− µ31(x0)

+
i

ω

(
µ′31(x0)
φx(x0)

− µ′31(x)
φx

+
∫ x

x0

ν13(y)ν31(y)
φy

dy

)
+

1
ω2

([
ν13(y)ν31(y)

φ2
y

− 1
2

(
µ′31(y)
φy

)2

− 1
φy
Dy

(
µ31(y)
φy

)]y=x

y=x0

+
∫ x

x0

ν13(y)ν31(y)
φ2
y

µ′31(y)dy

)
+ · · ·

}
. (5.27)

Note that the formulae for Ḡ1 and Ḡ2 in (5.26) and (5.27) may be obtained from
the formulae (5.23) and (5.24) for F̄1 and F̄2 by making the replacements φ → −φ
and 1↔ 3.
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Now consider solutions for F̄ and Ḡ of (5.20), satisfying the initial conditions

F̄ (x0) = F̄0, Ḡ(x0) = Ḡ0, (5.28)

at x = x0. This is equivalent to finding the constants c1, c2, d1 and d2 that ensure
F̄ and Ḡ satisfy the coupled first-order differential equations (5.20) and the initial
conditions (5.28). One can obtain the required solution for F̄ by solving the equiv-
alent initial value problem for F̄ in which F̄ (x0) = F̄0, and F̄ ′(x0) = F̄ ′0 at x = x0

where F̄ ′0 ≡ A0Ḡ0 and A0 ≡ A(x0). In this way, we find

c1 =
W (F̄2, F̄ )0

W (F̄2, F̄1)0
, c2 =

W (F̄1, F̄ )0

W (F̄2, F̄1)0
, (5.29a)

d1 =
W (Ḡ2, Ḡ)0

W (Ḡ2, Ḡ1)0
, d2 =

W (Ḡ1, Ḡ)0

W (Ḡ2, Ḡ1)0
, (5.29b)

where

W (y1, y2) = y1y
′
2 − y2y

′
1 (5.30)

denotes the Wronskian of y1(x) and y2(x), and the subscript 0 in (5.29) denotes
evaluation at x = x0.

Using the results (5.29) and (5.30) in (5.22) yields the WKB solutions

F̄ =
F̄0

W (F̄2, F̄1)0
[F̄ ′10F̄2(x, ω)− F̄ ′20F̄1(x, ω)]

+
A0Ḡ0

W (F̄2, F̄1)0
[F̄20F̄1(x, ω)− F̄10F̄2(x, ω)], (5.31)

Ḡ =
Ḡ0

W (Ḡ2, Ḡ1)0
[Ḡ′10Ḡ2(x, ω)− Ḡ′20Ḡ1(x, ω)]

+
B0F̄0

W (Ḡ2, Ḡ1)0
[Ḡ20Ḡ1(x, ω)− Ḡ10Ḡ2(x, ω)] (5.32)

for F̄ and Ḡ. Note that the parameters A0 = A(x0) ≡ ν13(x0) and B0 = ν31(x0) in
(5.31) and (5.32) describe the coupling of the backward and forward sound waves.
Using the transformations (5.4) and (5.11), the solutions for ρ1 and ρ3, for a single-
frequency wave, are given by the equations

ρ1 = −<{exp[iω(φ1 − t) + γ1]F̄}
(ag/ρ)1/2λ1

, (5.33a)

ρ3 =
<{exp[iω(φ− t) + γ3]Ḡ}

(ag/ρ)
1
2λ3

, (5.33b)

where F̄ and Ḡ are given by (5.31) and (5.32). The results (5.31)–(5.33) are useful
in determining fairly accurate WKB solutions (see Sec. 6). In the next subsection,
we consider an integral equation approach to WKB expansions that yields more
physically revealing, results than (5.31)–(5.33).

5.3. Wave mixing integral equations and WKB analysis

An alternative WKB analysis of the Fourier-space wave mixing equations (5.14)–
(5.19) may be developed from an integral equation formulation of the equations. The
WKB solutions are obtained from taking the high-frequency limit of the iterated
solutions of the integral equations. We are interested in obtaining approximate
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WKB solutions of the initial value problem for (5.14) and (5.15) for which F̄ = F̄0

and Ḡ = Ḡ0 at x = x0.

5.3.1. Integral equations. By directly integrating (5.14) and (5.15) from x′ = x0 to
x′ = x, we obtain the integral equations

F̄ (x, ω) = F̄ 0(x, ω) +
∫ x

x0

dy

∫ y

x0

dz K(y, z)F̄ (z, ω), (5.34)

Ḡ(x, ω) = Ḡ0(x, ω) +
∫ x

x0

dy

∫ y

x0

dz K(z, y)Ḡ(z, ω), (5.35)

where

K(y, z) = A(y)B(z), (5.36)

F̄ 0(x, ω) = F̄0 + Ḡ0

∫ x

x0

dy A(y) +
∫ x

x0

dy Q1(y) +
∫ x

x0

dy

∫ y

x0

dz A(y)Q3(z), (5.37)

Ḡ0(x, ω) = Ḡ0 + F̄0

∫ x

x0

dy B(y) +
∫ x

x0

dy Q3(y) +
∫ x

x0

dy

∫ y

x0

dz B(y)Q1(z). (5.38)

The integral equations (5.34)–(5.35) may be solved by iteration:

F̄ j+1 = F̄ 0 +
∫ x

x0

dy

∫ y

x0

dz K(y, z)F̄ j(z, ω), (5.39)

Ḡj+1 = Ḡ0 +
∫ x

x0

dy

∫ y

x0

dz K(z, y)Ḡj(z, ω), (5.40)

where j = 0, 1, 2, . . ., etc., yielding the Neumann series for the integral equations.
To obtain the lowest order WKB solutions, we use the solutions for F 1 and G1,
namely

F̄ 1 = F̄ 0(x, ω) +
∫ x

x0

dy

∫ y

x0

dz K(y, z)F̄ 0(z, ω), (5.41)

Ḡ1 = Ḡ0(x, ω) +
∫ x

x0

dy

∫ y

x0

dz K(z, y)Ḡ0(z, ω), (5.42)

where F̄ 0 and Ḡ0 are given by (5.37) and (5.38). In the high-frequency limit, in-
tegration by parts in the solutions for F̄ 1 and Ḡ1 yields the desired approximate
solutions. Alternative sets of integral equations describing the system are discussed
in Appendix C.

5.3.2. Wave mixing of sound waves in the absence of entropy waves. In the absence of
entropy waves, Q1 = Q3 = 0 in the approximate solutions (5.41) and (5.42) for F
andG. One can use the approximate integral equation solutions (5.41) and (5.42) to
determine high-frequency solutions for F̄ and Ḡ. Use of the transformations (5.4)
and (5.11) then yields high-frequency solutions for ρ1 and ρ3 in (x, t) space in the
form

ρ1 = − 1
λ1(ag/ρ)1/2

<
{
F̄0 exp[−iω(t− φ1) + γ1]

(
1 +

i

ω

∫ x

x0

dy
ν13(y)ν31(y)

φy
dy

)
− iḠ0

ω

(
ν13(x)
φx

exp[−iω(t− φ3) + γ3]− ν13(x0)
φx(x0)

exp[−iω(t− φ1) + γ1]
)}

, (5.43)
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ρ3 =
1

λ3(ag/ρ)1/2
<
{
Ḡ0 exp[−iω(t− φ3) + γ3]

(
1− i

ω

∫ x

x0

dy
ν13(y)ν31(y)

φy

)
+i
F̄0

ω

(
ν31(x)
φx

exp[−iω(t− φ1) + γ1]− ν31(x0)
φx(x0)

exp[−iω(t− φ3) + γ3]
)}

. (5.44)

If, for example, F0 = 1 and G0 = 0 then the solution (5.43) may be regarded as
the primary wave, and the solution (5.44) for ρ3 represents the generated wave.
Note, however, that both ρ1 and ρ3 have generated wave components, which have
amplitude O(1/ω) that of the primary wave. Near x = x0, the solution for ρ3 has a
phase shift of approximately − 1

2π relative to that of the primary wave solution for
ρ1. The above solutions consist of a primary wave, plus wakes produced by wave–
wave interactions, which is reminiscent of the solutions (4.9)–(4.12) of Sec. 4 with
Dirac delta initial conditions.

5.3.3. Sound waves generated from entropy waves. In the absence of entropy waves,
F0 = G0 in the approximate solutions (5.41) and (5.42) for F̄ 1 and Ḡ1. Taking the
high-frequency approximation of (5.41) and (5.42) and using the results (5.4)–(5.11),
we obtain

ρ1 = −<
{
i

ω

ρ̄20(ω)u0

2λ1(ag/ρ)1/2

(
ν12(x)

λ1

ag
exp[−iω(t− φ2)]

−ν12(x0)
λ1(x0)
ag(x0)

exp[−iω(t− φ1) + γ1]
)}

, (5.45)

ρ3 = −<
{
i

ω

ρ̄20(ω)u0

2λ3(ag/ρ)1/2

(
ν32(x)

λ3

ag
exp[−iω(t− φ2)]

−ν32(x0)
λ3(x0)
ag(x0)

exp[−iω(t− φ3) + γ3]
)}

, (5.46)

for the generated backward and forward sound wave density perturbations. The
primary entropy wave has the density perturbation

ρ2 =
u0

u(x)
<{ρ̄20(ω) exp[−iω(t− φ2)]}. (5.47)

Note that ρ1 = ρ3 = 0 at x = x0. Note that the the solution for ρ1, for example,
consists of an exponential term that has the same phase as the entropy wave, plus
a further term that has the phase one would expect for a backward sound wave.
The density perturbations ρ1 and ρ3 in (5.45) and (5.46) have amplitudes that are
O(1/ω) that of the primary entropy wave in (5.47). Alternative formulae for the
generation of sound waves from entropy waves were derived in Webb et al. (1997a);
these were based on WKB solutions of the differential equations (5.17) and (5.18).
These latter formulae show that the generated sound waves consist of integrals
over entropy wave source terms, in which the phase of the generated waves are
± 1

2π out of phase with the entropy wave source at the point of generation, with
characteristic change in the wave phase and amplitude between the generation, and
observation points.

6. Numerical examples
In this section, we present numerical examples of the interaction of short-
wavelength sound waves and entropy waves in cosmic-ray-modified flows. The
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main emphasis is on wave mixing and instabilities in cosmic-ray-modified shocks
(Sec. 6.1). We compare spectral code solutions of the linear wave mixing equations
(3.1), with fully nonlinear solutions of the two-fluid model equations (2.1)–(2.4)
with the same initial conditions. The numerical and spectral code solutions are
also compared with the WKB solution results of Sec. 5. It is important to note
that the linear wave mixing equations (3.1) do not contain the effects of nonlinear
wave interactions. Webb et al. (1997a) derived weakly nonlinear versions of the
wave mixing equations (3.1), which contain further nonlinear terms describing (a)
Burgers self-wave steepening terms for the sound waves, (b) mean wave field inter-
action terms, and (c) three-wave resonant interaction terms in which a sound wave
resonantly interacts with an entropy wave to produce a reverse sound wave, pro-
vided the conditions for three-wave resonant interactions are satisfied. Section 6.2
considers wave propagation in cosmic-ray-modified pressure balance structures of
the type considered by Webb et al. (1995). Cosmic ray pressure balance structures
were also obtained in the numerical simulations of Donohue and Zank (1993) of the
interaction of an interplanetary travelling shock with the solar wind termination
shock.

6.1. Waves in cosmic-ray-modified shocks

6.1.1. Numerical simulations. In this subsection, we present numerical solutions of
the nonlinear two-fluid equations (2.1)–(2.4) that illustrate wave interactions and
instabilities in cosmic-ray-modified shocks. The basic strategy in solving the initial
value problem for the time-dependent equations (2.1)–(2.4) consists of two steps:

(a) solve the cosmic ray energy equation (2.4) for pc for a given flow velocity profile
(for example by using a Crank–Nicholson scheme, or by using an explicit scheme
with subcycling);

(b) solve (2.1)–(2.3) using a fluid code, such as Zeus 2D, suitably modified by the
inclusion of an extra force term in the fluid momentum equation (2.2) due to
the cosmic ray pressure gradient.

Figure 3 shows sample calculations of the density perturbations for sound waves
and entropy waves in a smoothed cosmic-ray-modified shock. The diffusion coeffi-
cient in Fig. 3 has the form

κ = κ0

(
ρ

ρ0

)−3/2

, (6.1)

where the subscript 0 denotes the values of physical quantities far upstream. This
corresponds to the expected dependence of κ arising from the compression of a
pre-existing Alfvén wave field upstream of a quasiparallel shock (see also (3.10)
et seq.). In the left panels, a backward sound wave (ρ1) is initially specified far
upstream. To ensure that the initial data for the wave corresponds to a backward-
propagating sound wave, the thermal gas pressure variations are specified using
the isentropic form of the adiabatic gas law, and requiring that the velocity and
density variations u1 and ρ1 satisfy the appropriate eigenrelation ρ1 = −ρu1/ag.
The initial amplitude of the velocity fluctuations is taken to be one-tenth of the
sound speed. The distance x is measured in units of the diffusion length scale
κ0/u0. As initial conditions for the background flow we used a steady-state shock
structure profile obtained by integrating the steady-state shock structure equation
(see e.g. Axford et al. 1982), in which the upstream long-wavelength Mach number
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Figure 3. The density perturbations for the backward (ρ1), and forward (ρ3) sound waves and
entropy wave (ρ2) in a smooth, steady-state, cosmic-ray-modified shock. In the left panels, a
backward sound wave is initially incident upon the shock from far upstream, whereas in the
right panels, a forward sound wave is initially incident. The upstream long-wavelength Mach
number Ml0 = 18.26 and pc0/pg0 = 1 as x→ ∞. The diffusion coefficient κ = κ0(ρ/ρ0)−3/2,
where κ0 = const (in computational units, κ0 = 1). The density profile ρ and the perturbations
ρ1, ρ2 and ρ3 are shown at time t = 10κ0/u

2
0.

Ml0 = u0/(a2
g0+a2

c0)1/2 = 18.26, and pc0/pg0 = 1.0 and κ0 = 1 far upstream (x→∞).
The adiabatic indices for the cosmic rays and the thermal gas are taken as γc = 4

3
and γg = 5

3 . The figure shows a snapshot of the density profile ρ and the density
perturbations ρ1, ρ2 and ρ3 at time t = 10τd, where τd = κ0/u

2
0 is the diffusion time

scale.
The initial backward-propagating sound wave (ρ1) is damped (left panels of

Fig. 3), but in the process generates the forward sound wave (ρ3) via wave cou-
pling. As the sound waves enter the shock precursor, the forward wave undergoes
substantial growth, and regenerates the backward wave. Pure WKB theory would
predict damping of ρ1 with no coupling to ρ3 and ρ2. In the present linear theory,
the entropy waves are generated only if there is a non-zero background entropy
gradient Sx (note that Sx is zero for the steady-state smooth shock transition used
in the initial conditions for the background flow).

The right panels of Fig. 3 show the evolution of the waves when the forward sound
wave (ρ3) is initially specified far upstream of the shock. The forward sound wave is
driven unstable owing to the cosmic ray squeezing instability. Wave coupling leads
to the generation of the backward sound wave. The amplitude of the forward wave
in the middle of the shock (x ≈ 5.5) is about three times that of the backward sound
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Figure 4. The density perturbations for the backward and forward sound waves (ρ1 and ρ3)
and entropy wave (ρ2) for the smoothed cosmic-ray-modified shock of Fig. 3, for the case
where an entropy wave is initially specified upstream of the shock. The diffusion coefficient
is the same as in Fig. 3.

wave. The generation of the entropy wave occurs in the region where the cosmic
ray pressure gradient is large (x ≈ 5.5), and the sound waves become nonlinear.

The entropy waves in Fig. 3 are only generated when the backward sound wave
becomes sufficiently large in amplitude, suggesting that entropy waves are gener-
ated when the sound waves steepen into shocklets, or are generated by nonlinear
coupling effects (Webb et al. 1997a). Substantially larger wave growth occurs for
the case where only forward sound waves are initially present (right panels of Fig. 3)
than for the case of backward sound wave initial conditions (left panels in Fig. 3).
Far downstream, the large pressure of the accelerated cosmic rays and large damp-
ing rate a2

c/2κ leads to an effective quenching of the waves.
Figure 4 shows the corresponding results when only entropy waves are initially

present. Both backward and forward sound waves are generated via wave mixing.
As the waves progress through the shock, the sound waves grow owing to the the
cosmic ray squeezing instability for the forward sound wave, and owing to wave
coupling. The sound waves are strongly damped owing to the large damping rate
a2
c/2κ, far downstream. The WKB expansion results (5.45)–(5.47) for ρ1, ρ3 and ρ2

indicate that the entropy wave generates both the backward and forward sound
waves, but the entropy wave in turn is not affected by the sound waves because
the coupling coefficients, which depend on Sx, are zero (see the shock precursor
region x > 7). Further up the shock ramp (x 6 7), entropy waves are gener-
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Figure 5. The density perturbations for the backward and forward sound waves (ρ1 and
ρ3) and the entropy wave (ρ2) in a smooth, steady-state, cosmic-ray-modified shock. The
upstream long-wavelength Mach numberMl0 = 18.26, pc0/pg0 = 1 as x→∞, and κ = κ0 = 1.
In the left panels, a backward sound wave is initially incident upon the shock from far
upstream, whereas a forward sound wave is initially incident in the right panels. The profiles
are shown at time t = 10κ0/u

2
0.

ated when the sound waves become nonlinear and shock-up. The forward sound
wave profile ρ3 has a larger amplitude than the the backward sound wave (ρ1).
The form of ρ1 in (5.45) consists of two components: a component that has phase
−iω(t− φ2) characteristic of structures advected with the fluid, plus a further com-
ponent with phase −iω(t − φ1) corresponding to the backward sound wave with
spatial growth rate γ1. The solution (5.46) for ρ3 has a similar structure consisting
of an advected component plus a further component with the phase of the forward
sound wave.

Figures 5 and 6 show similar examples of the interaction of sound waves and
entropy waves with a cosmic-ray-ray modified shock with the same upstream con-
ditions as in Figs 3 and 4, except that the hydrodynamical diffusion coefficient

κ = κ0, (6.2)

is taken to be constant throughout the shock structure (κ0 = 1 in the units used in
the computations). A constant value of κ is consistent with a perpendicular, cosmic-
ray-modified shock configuration, in which particle diffusion across the magnetic
field is due to random walk of the field lines (see Jokipii (1971) and the discussions
following (2.11) and (3.10)). The left (right) panels of Fig. 5 correspond to the case
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Figure 6. Profiles of ρ, and the wave density perturbations ρ1, ρ2 and ρ3, for the smooth
transition shock of Fig. 5 in which an entropy wave (ρ2) is initially specified upstream of the
shock. The diffusion coefficient κ = κ0 = 1. The profiles are shown at time t = 10 κ0/u

2
0.

where a backward (forward) sound wave is initially specified far upstream of the
shock. The plots in Fig. 5 show the wave density profiles for ρ1, ρ2 and ρ3 at time
t = 10τd, where τd is the convection diffusion time scale. The results are similar to
those in Fig. 3, except that the backward sound wave is now driven unstable owing
to the cosmic ray squeezing instability, whereas the forward sound wave is damped.
The difference in the behaviour of the sound waves in Figs 3 and 5 is in accord
with the wave mixing coefficient formulae (3.4), which show that the cosmic ray
squeezing instability terms depend on (ρag)−1(ζ +1)∂pc/∂x, where ζ = ∂ ln κ/∂ ln ρ
(see also Drury and Falle (1986), for a discussion of the dependence of the squeezing
instability on ζ for the case of WKB sound waves). In Fig. 3, ζ = −1.5, whereas
ζ = 0 in Fig. 5. In Fig. 6, an entropy wave is initially specified far upstream of the
shock. The figure shows the generation of the backward and forward sound waves
at time t = 10τd, from the initial entropy wave due to wave mixing. The results are
similar to those in Fig. 4, except that the backward sound wave now becomes the
dominant wave at late times.

Figures 7 and 8 show examples of wave interactions in a cosmic-ray-modified
shock with an embedded subshock for the case (6.2) where κ = κ0 = 1, correspond-
ing to a diffusion coefficient appropriate for a quasiperpendicular shock. The initial
conditions correspond to the cases of (a) a backward sound wave incident upon
the shock from far upstream (left panels), and (b) a forward sound wave incident
upon the shock (right panels). The upstream flow parameters are Ml0 = 5.48 and
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Figure 7. The density perturbations for the backward and forward sound waves (ρ1 and ρ3)
and the entropy wave (ρ2) in a cosmic-ray-modified shock, with an embedded subshock. The
upstream long-wavelength Mach number M`0 = 5.48, pc0 = pg0 = 1 far upstream (x → ∞)
and κ = 1. The wave amplitudes are shown at time t = 0.1. The left panels correspond to the
case where a backward sound wave is initially incident upon the shock from far upstream,
whereas in the right panels, a forward sound wave is initially specified far upstream.

pc0/pg0 = 1 (x → ∞), γc = 4
3 and γg = 5

3 . The density perturbations ρ1, ρ2 and ρ3

of the sound waves and the entropy wave, and the density profile ρ(x, t), are shown
at times t = 0.1 ≡ 0.111τd (Fig. 7), and at time t = 0.6 ≡ 0.666τd (Fig. 8), where
τd = κ0/u

2
0 is the diffusive time scale.

At the earlier time (Fig. 7), the wave profiles of the initial wave (ρ1 in the left
panels and ρ3 in the right panels) behave as one would expect from the squeezing
instability predictions of WKB theory. The generated forward sound wave profile ρ3

on the left grows as one approaches the shock – as one would perhaps expect, since
it is slaved to the larger-amplitude backward wave, which grows with decreasing
x. Note that the generated waves (ρ3 on the left and ρ1 on the right) are about an
order of magnitude smaller than the initial wave. The entropy wave fluctuations
are negligible compared with the amplitudes ρ1 and ρ3 for the sound waves. The
waves in Fig. 7 behave as one would expect from linear wave mixing theory.

Now consider the wave profiles at the later time (t = 0.6) in Fig. 8. For the
case on the left, the backward wave shows moderate growth due to the squeezing
instability. The wave has steepened owing to self wave interaction (Burgers wave
steepening) into a sequence of shocklets, with an N-wave profile (for a discussion of
nonlinear versions of the wave mixing equations (3.1), see Webb et al. 1997a). The
corresponding generated forward sound wave (ρ3) has a cusped profile, in which
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Figure 8. The evolution of the waves in Fig. 7 at a later time t = 0.6. Note the development
of N-wave profiles for the primary incident waves due to nonlinear wave steepening (incident
backward sound wave in the left panels, and incident forward sound wave in the right panels),
and the cusped profiles of the generated waves.

the cusps appear at the shocklet locations for the backward wave (ρ1). There is
a jump in the wave amplitudes at the subshock (x ≈ 6), and entropy waves are
generated downstream of the subshock. The structure of the subshock, which is not
obvious in the figure, is determined by numerical viscosity in the Zeus 2D code. The
generation, transmission and reflection of sound waves, entropy waves and vorticity
waves at gas-dynamical shocks has been studied by McKenzie and Westphal (1968)
and McKenzie and Bornatici (1974). These effects are clearly evident in the figure,
where there are jumps in the wave amplitudes across the subshock.

For the case of an incident forward sound wave (right panels), the forward sound
wave is damped by the squeezing instability and generates the backward wave
(ρ1) by wave mixing. Wave steepening results in the formation of shocklets in the
forward wave profile (ρ3), with corresponding jumps in the entropy wave profile (ρ2)
at the shocklets. Note that there is a sharp jump in the ρ3 amplitude at x ≈ 6.5.
This corresponds to the trailing edge of the initial forward sound wave with phase
speed λ3 = u + ag, which has not yet been overtaken by the subshock. The large
jump in ρ3 at x ≈ 6 at the subshock is a numerical artefact.

It is important to note that more refined kinetic theory models of cosmic-ray-
modified shocks (see e.g. Jones and Ellison 1991; Malkov 1997) predict that there
are no totally smoothed solutions. However, if the subshock is very weak, the profile
of the shock transition may appear to be smooth.
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Figure 9. A comparison between spectral code solutions of the wave mixing equations (3.1)
(dashed curves) and numerical solutions of the two-fluid equations (2.1)–(2.4) (solid curves
and dotted curve), for the smooth transition cosmic ray shock of Fig. 5, with Ml0 = 18.26,
pc0/pg0 = 1, γg = 5

3 , γc = 4
3 , and κ = 1. A forward sound wave is initially specified far

upstream at time t = t1 = 0. The two lower panels show the solutions at times t = t2 = 0.06
and t = t3 = 0.09.

6.1.2. Linear wave mixing solutions and WKB solutions. In this subsection, we com-
pare the results obtained using numerical solutions of the linear wave mixing equa-
tions (3.1), WKB solutions (Secs 5.3 and 5.4) and the nonlinear simulations (Figs
3–8). Figure 9 shows a comparison of spectral code solutions of the linear wave mix-
ing equations (3.1) (dashed curves) and numerical solutions of the fully nonlinear
two-fluid equations (2.1)–(2.4), for the smooth transition shock of Fig. 5, in which
κ = 1, Ml0 = 18.26, pc0/pg0 = 1, γg = 5

3 and γc = 4
3 . Figure 9 shows the density

perturbations ρ1, ρ2 and ρ3 at two time instants t = t2 = 0.06 and t = t3 = 0.09
that result when a forward sound wave train (ρ3) is initially specified far upstream
at time t = t1 = 0. The numerical solutions of the two-fluid equations (2.1)–(2.4)
for ρ1 and ρ3 are shown by the solid curves. Note that the entropy wave density
perturbation ρ2 ≡ 0 in both the fully nonlinear solutions and the spectral code
solutions. In the present example, linear wave mixing theory predicts that ρ2 = 0,
since the entropy S of the background flow is constant (i.e. Sx = 0). In this case, the
wave mixing coefficients Λ21 and Λ23 linking the entropy wave to the sound waves
are both zero, and no entropy wave perturbations can be generated from the initial
sound wave train. The figure shows that there is excellent agreement between the
spectral code solutions of the wave mixing equations (3.1) and the fully nonlinear
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Figure 10. Uniform WKB solutions (5.33), for waves with a constant frequency ω, corre-
sponding to the case where ρ3(x, 0) = ρ30, and ρ1 = ρ2 = 0 at x = x0 = 25, for the same back-
ground flow as in Fig. 5. The diffusion coefficient κ = 1. In the top panels (a), 15 < x < 22.
The bottom panels (b) show an expanded view of the solutions in the region 20 < x < 25.

numerical solutions of the two-fluid equations (2.1)–(2.4). The agreement between
the two sets of solutions is expected, since the amplitude of the initial sound wave
is sufficiently small for linear theory to apply. One expects linear theory to break
down at large times, when the sound waves steepen and become nonlinear. The
results in Fig. 9 are similar to the numerical simulation results in the right panels
of Fig. 5, where the initial forward sound wave is damped, and generates the un-
stable backward sound wave by wave coupling. At late times (t = t3), the generated
backward sound wave is dominant.

Figure 10 shows uniform WKB solutions (5.33) for waves with a constant fre-
quency ω, corresponding to the case where ρ3 = ρ30, ρ1 = ρ2 = 0 at x = x0 = 25, the
diffusion coefficient κ = 1, and for the same background flow as that in Figs 5 and
6. The top panels (a) show the wave profiles for 15 < x < 22, whereas the lower
panels (b) show an expanded view of the waveforms in the far-upstream region
20 < x < 25. The WKB solutions show excellent agreement with the correspond-
ing solutions obtained by iterating the wave mixing integral equations (5.34) and
(5.35) for x > 17. The results are similar to those in Figs 5 and 9, in which a forward
sound wave is specified far upstream (F0 = 0 and G0� 0 in (5.31) and (5.32)). The
backward wave ρ1 in the lower panels (b) shows the phenomenon of wave beating.
An inspection of (5.31) and (5.33) shows that, far upstream, the WKB solution for
ρ1 consists of two complex exponential terms exp[iω(φ1± φ3− t)] of roughly equal
amplitudes, where φ1 and φ3 are the phases of the backward and forward waves in
(5.12). The wave beating phenomenon is clearly a result of wave mixing between
the backward and forward sound waves.

6.2. Wave mixing in cosmic ray pressure balance structures

A cosmic ray pressure balance-solution of the two-fluid equations (2.1)–(2.4) is an
equilibrium structure in which the acceleration vector of the fluid is zero (i.e. the
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fluid velocity u is a constant vector), and the sum of the cosmic ray and thermal
gas pressures is constant throughout the structure. The solution corresponds to a
travelling wave solution in which pg, ρ, S and pc are all functions of

x̄ = x− ut, (6.3)

and the fluid speed u is a constant. The entropy advection equation (2.6) allows
solutions for S = S(x̄) with S a non-trivial function of x̄. The cosmic ray pressure
pc(x̄) is obtained from solving the cosmic ray energy equation (2.4), which reduces
to a steady-state diffusion equation:

d

dx̄

(
κ
dpc
dx̄

)
= 0, (6.4)

where the cosmic ray diffusion coefficient κ is assumed to be a function of x̄. For
the case

κ = κ0 cosh2
(
x̄

L

)
, (6.5)

we obtain a solution of (6.4) of the form

pc = p−c∞ + 1
2 (p+

c∞ − p−c∞)
[
1 + tanh

(
x̄

L

)]
, (6.6)

where pc → p−c∞ as x̄ → −∞ and pc → p+
c∞ as x̄ → +∞. The gas pressure pg is

given by

pg = P0 − pc(x̄), (6.7)

where P0 = pc + pg is the constant total pressure. Other forms of pressure balance
structures (PBS) may be obtained by using other functional forms for the diffusion
coefficient κ(x̄) in (6.5).

6.2.1. Wave mixing. In this subsection, we consider the propagation of short-
wavelength sound waves and entropy waves through the steady pressure balance
structure described by (6.3)–(6.7). In a convenient abuse of notation, we use x to
denote the position variable in the frame of the pressure balance structure (i.e. we
use x to replace x̄ in the present section). The short-wavelength wave interaction
equations (3.1) have a simpler form for steady pressure balance structures, because

Λ12 = Λ22 = Λ32 = 0, (6.8)

(because u = const in a PBS). In the frame of the PBS, u = 0, and the wave
interaction equations (3.1) reduce to

∂ρ2

∂t
+ Λ21(ρ1 − ρ3) = 0, (6.9)

∂ρ1

∂t
− ag ∂ρ1

∂x
+
(

Λ11 − ∂ag
∂x

)
ρ1 + Λ13ρ3 = 0, (6.10)

∂ρ3

∂t
+ ag

∂ρ3

∂x
+ Λ31ρ1 +

(
Λ33 +

∂ag
∂x

)
ρ3 = 0 (6.11)

for the entropy wave, backward sound wave and forward sound wave respectively.

6.2.2. WKB analysis. Suppose the waves have a single frequency ω, so that

ρj = <{ρ̄j exp(−iωt)}, j = 1, 2, 3. (6.12)
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Following the development of the wave mixing equations for the cosmic-ray-
modified shock case of Section 5.1, the wave interaction equations (6.9)–(6.11)
reduce to two coupled ordinary differential equations:

df̄

dx
=
(
ν11 − i ω

ag

)
f̄ + ν13ḡ, (6.13)

dḡ

dx
= ν31f̄ +

(
ν33 + i

ω

ag

)
ḡ, (6.14)

where

f̄ = ρ̄1I, ḡ = ρ̄3I, (6.15a)

I = (ag)(3γg−5)/2(γg−1)exp
(

S

2(γg − 1)Cv

)
. (6.15b)

The interaction coefficients {νij : i, j = 1, 3} in (6.13) and (6.14) are given by the
equations

ν11 =
1

2ag

(
a2
c

κ
+

ag
γgpg

∂pc
∂x

)
, (6.16a)

ν33 = − 1
2ag

(
a2
c

κ
− ag
γgpg

∂pc
∂x

)
, (6.16b)

ν13 = Φx + ν33, (6.16c)

ν31 = Φx + ν11, (6.16d)

Φ =
(γg − 2)S

2γg(γg − 1)Cv
− γg − 3

2(γg − 1)
ln(ag). (6.16e)

Equations (6.13)–(6.16) describe the sound waves. The solution for the entropy
wave,

ρ̄2 =
i

ω
Λ21(ρ̄3 − ρ̄1), Λ21 =

agSx
γgCv

, (6.17)

may be constructed once the sound wave solutions have been determined.
Equations (6.13) and (6.14) have the same form as (5.8) and (5.9) for cosmic-ray-

modified shocks, except that ν12 = ν32 = 0 for the PBS solution. Furthermore, the
interaction coefficients {νij : i, j = 1, 3} in (6.16) are analogous to (5.5), but with
the mapping u 7→ 0 and ψ 7→ Φ relating the coefficients νij in (5.5) to those in
(6.16). Hence (6.13) and (6.14) for f̄ and ḡ may be reduced to the equations

dF̄

dx
= AḠ, (6.18a)

dḠ

dx
= BF̄ , (6.18b)

where

F̄ = exp(−iωφ1 − γ1)f̄ , (6.19a)

Ḡ = exp(−iωφ3 − γ3)ḡ. (6.19b)

The interaction coefficients A and B have the form

A = ν13 exp(iωφ + γ), B = ν31 exp(−iωφ− γ), (6.20a)

φ = φ3 − φ1, γ = γ3 − γ1, (6.20b)
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φj =
∫ x

x0

dx′

λj
, γj =

∫ x

x0

dx′ νjj , j = 1, 3, (6.20c)

where λ1 = −ag and λ3 = ag.
From (6.15) and (6.19), we have

ρ̄1 =
exp(iωφ1 + γ1)

I
F̄ , (6.21a)

ρ̄3 =
exp(iωφ3 + γ3)

I
Ḡ. (6.21b)

Using an integral equation formulation of (6.18) (see Sec. 5.3), it is straightforward
to obtain WKB expansions for F̄ and Ḡ for high-frequency waves, and the required
WKB solutions for the ρj then follow from (6.12) and (6.21). The net results of this
analysis are solutions for the ρj of the form

ρ1 = <{ρ̂1(x, t)}, (6.22a)

ρ3 = <{ρ̂3(x, t)}, (6.22b)

ρ2 =
Λ21

ω
<{i(ρ̂3 − ρ̂1)}, (6.22c)

where

ρ̂1(x, t) =
1
I

[
F̄0 exp[−iω(t− φ1) + γ1]

(
1 +

i

ω

∫ x

x0

dy
ν13(y)ν31(y)

φy

)
− i
ω
Ḡ0

(
ν13(x)
φx

exp[−iω(t− φ3) + γ3]

− ν13(x0)
φx0

exp[−iω(t− φ1) + γ1]
)]

, (6.23)

ρ̂3(x, t) =
1
I

[
Ḡ0 exp[−iω(t− φ3) + γ3]

(
1− i

ω

∫ x

x0

dy
ν13(y)ν31(y)

φy

)
+
i

ω
F̄0

(
ν31(x)
φx

exp[−iω(t− φ1) + γ1]

− ν31(x0)
φx(x0)

exp[−iω(t− φ3) + γ3]
)]

, (6.24)

where F̄0 ≡ F̄ (x0) and Ḡ0 ≡ Ḡ(x0) are the integration constants in the solutions
for F̄ and Ḡ.

The main difference between the WKB wave mixing solutions (6.21)–(6.24) and
the corresponding results (5.43) and (5.44) for sound waves in cosmic-ray-modified
shocks is that the entropy S is a function of x in the pressure balance solutions
(6.21)–(6.24), but S = const in the modified shock case. Note also that u = 0 in the
PBS wave mixing solutions, whereas u(x) is a function of x in the modified shock
case. In the PBS wave mixing solutions, the non-zero entropy gradient (Sx � 0)
allows the linear entropy wave to be generated from the sound waves (i.e. Λ21� 0 in
(6.22)). The integrating factor I, (6.15), and the sound wave interaction coefficients
{νij : i, j = 1, 3} for the PBS solutions also depend on S(x).

6.2.3. Numerical examples of waves in pressure balance structures. An example of the
interaction of a sound wave with a cosmic ray pressure balance structure in which
there is a large-scale entropy gradient is illustrated in Figs 11 and 12. The left panels
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Figure 11. Schematic profiles of ρ, pg and pc in a steady cosmic ray pressure balance structure
(left panels). The right panels show initial conditions in which a backward sound wave is
incident upon the structure from the right. These initial conditions and background state
are used in the wave mixing solution examples in Fig. 12.

in Fig. 11 show the density profile (ρ = const), gas pressure profile pg(x) and cosmic
ray pressure profile pc(x) in a steady state pressure balance structure described by
(6.3)–(6.7). The right panels in Fig. 11 show that at time t = 0, a backward sound
wave is incident on the structure from the right (ρ1). At time t = 0, the entropy
wave (ρ2) and the forward sound wave (ρ3) perturbations are identically zero.

Figure 12 illustrates how the backward sound wave (ρ1) initially incident upon
the structure generates both the entropy wave (ρ2) and forward sound wave (ρ3) by
the combined effect of instabilities and wave mixing, at two time instants t = 4.5
(left panels) and at time t = 7.5 (right panels). The results in Fig. 12 were obtained
by solving the wave mixing equations (6.9)–(6.11) as an initial value problem using
a spectral code, in which the a backward sound wave is initially incident on the PBS
from the right (see Fig. 11). Note that in this linear wave interaction description,
the waves do not modify the background flow. The backward sound wave (ρ1) in
Fig. 12 shows wave growth as the wave progresses through the structure, which
is due in part to the cosmic ray squeezing instability, but also depends on wave
mixing with the other waves. The generated entropy wave (ρ2) has a significantly
larger amplitude than the generated forward sound wave at the later time (t = 7.5).
The generated forward sound wave and the entropy wave ρ2 are approximately π
out of phase in Fig. 12.
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Figure 12. Spectral code solutions of the wave mixing equations (6.9)–(6.11) for the cosmic
ray pressure balance structure in Fig. 11, in which a backward sound wave is initially incident
on the structure from the right. The diffusion coefficient is given by (6.5). The figure shows
the profiles of ρ1, ρ2 and ρ3 at times t = 4.5 (left panels) and t = 7.5 (right panels). The
entropy wave (ρ2) and the forward sound wave (ρ3) are generated by wave mixing.

7. Diffusion coefficient estimates and applications
Now consider the possible application of the results in Figs 3–7 to wave instabilities
in cosmic-ray-modified supernova remnant (SNR) shocks. A useful discussion of
constraints on particle acceleration in supernova remnant shocks is given by Axford
(1981). In particular, Axford argues that in order to preserve the spectral form of
the secondary nuclei, the bulk of energetic particle acceleration must occur in the
hot interstellar medium, and that the primaries are accelerated in relatively strong
SNR shocks that occupy less than a few percent of the galactic confining volume.
Since the particle acceleration time and confinement time in the galaxy depend on
the cosmic ray diffusion tensor K, this implies numerical constraints on K.

In Sec. 7.1, we discuss diffusion coefficient estimates, which we use in Sec. 7.2 to
estimate growth rates, and wave mixing rates in cosmic-ray-modified SNR shocks.

7.1. Diffusion coefficient estimates

The magnetohydrodynamic turbulence and waves surrounding supernova remnant
shocks, which determine the energetic particle diffusion coefficient K(r,p) (where r
is position and p is the energetic particle momentum), are not well known. Some
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authors (e.g. Berezhko and Völk 1997) use a modified form of the Bohm diffusion
coefficient:

K = κB
ρs
ρ
, κB = 1

3vrg, (7.1)

where κB is the Bohm diffusion coefficient, v is the particle speed, rg = pc/ZeB is
the energetic particle gyro-radius, and ρs denotes the value of the density ρ at the
shock. For a T = 1 GeV proton in a galactic magnetic field of B = 10−6 G, (7.1)
yields

κB(T = 1 GeV) = 4.95× 1022 cm2 s−1, rg = 5.65× 1012 cm (7.2)

as typical values for the Bohm diffusion coefficient and gyro-radius rg.
The value of the diffusion coefficient parallel to the background magnetic field

B = B0ez in quasilinear theory (see e.g. Jokipii 1971; Fisk et al. 1974) depends
sensitively on the correlation length Lc of the turbulence, the particle momentum
p, the amplitude of the turbulence (i.e. δB/B, where (δB)2 is the mean square mag-
netic field fluctuation) and the wavenumber (k) dependence of the turbulent power
spectrum. The localized turbulence upstream of a supernova remnant shock, which
should be due in part to cosmic-ray-generated waves in front of the shock (see e.g.
Lerche 1967; Skilling 1975; McKenzie and Völk 1982), will have significantly differ-
ent characteristics than the diffuse, large-scale turbulence present in the interstellar
medium (see e.g. Spangler et al. 1987; Armstrong et al. 1995; Achterberg and Ball
1994). Below, we estimate the diffusion coefficient KIS , associated with the diffuse
interstellar turbulence, and the more relevant diffusion coefficient KSNR upstream
of a supernova remnant shock.

Using the results of Jokipii (1971), a crude estimate of the diffusion coefficientK‖
parallel to the background magnetic field B = B0ez due to resonant wave–particle
interactions (cyclotron resonance) is

K‖ =
vλ‖
3

= κBN

(
δB

B

)−2
rg
Lc

[
H(rg − Lc) +

(
rg
Lc

)−n
H(Lc − rg)

]
. (7.3)

In (7.1), v is the particle speed, rg is the particle gyro-radius, λ‖ is the particle mean
free path parallel to B, κB = 1

3vrg is the Bohm diffusion coefficient, H(x) is the
Heaviside step function and N is a normalization constant given below. In (7.1),
the power spectrum Pxx(k) of the turbulence has the form Pxx(k) = A(k/kc)−n for
k > kc, and Pxx(k) = A (A = const) for k < kc, where kc = 1/Lc is the wavenumber
corresponding to the correlation length Lc. Equation (7.3) is based on equations
(46) and (57) of Jokipii (1971), and the normalization constant N and δB in (7.3)
are given by the equations

N =
10n

π(n− 1)
, δB2 =

2
π

∫ ∞
0

Pxx(k) dk (7.4)

(note that the equation for δB2 in (7.4) is a consequence of the definition of Pxx(k)
used by Jokipii 1971).

As parameters characterizing diffuse interstellar turbulence, we take

Lc = 1019 cm,
δB

B
= 0.3, n = 5

3 , (7.5)

which yields

K = KIS = 6.4× 1028 cm2s−1, λ‖ = 7.31× 1018 cm ≡ 2.37 pc (7.6)

https://doi.org/10.1017/S0022377898007466 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898007466


586 G. M. Webb, A. Zakharian and G. P. Zank

as typical values forK and λ‖ for T = 1 GeV protons in aB = 10−6 G magnetic field
(note that n = 5

3 corresponds to Kolmogorov turbulence). For rg < Lc, K ∝ vp1/3,
but K ∝ vp2 for rg > Lc. It is of interest to note that a diffusion coefficient of
K ≈ 1028 cm2 s−1 is also required to explain the abundance of secondary nuclei
(e.g. Be and B) in galactic cosmic rays (Berezinskii et al. 1990).

Taking Lc = 5.65× 1012 cm, and δB/B = 0.3 for the localized turbulence in the
vicinity of a supernova remnant shock, (7.3) yields

K‖ = KSNR = 4.4× 1024 cm2 s−1, λ‖ = 5.03× 1014 cm (7.7)

for the diffusion coefficient KSNR and mean free path λ‖ for T = 1 GeV protons in
a B = 10−6 G magnetic field upstream of the shock. This value of K is intermediate
between the Bohm diffusion value for K in (7.2) and the value of K = 1026 cm2 s−1

at T = 1 GeV and K ∝ p0.25 used by Kang and Jones (1991) in their numerical
study of of diffusive particle acceleration at supernova remnant shocks. The dif-
fusion coefficient KSNR in (7.7) is about four orders of magnitude smaller than
the diffusion coefficient KIS in (7.6) associated with large-scale transport of cosmic
rays in the galaxy. It is important to note that it is difficult to constrain the values
of K‖ and λ‖ upstream of supernova remnant shocks without detailed observations
of individual supernova remnants. For example, Spangler et al. (1987) found from
low-frequency observations of the radio source 1503 + 467 that an upper limit on
the thickness of the foreshock region ∆R of the supernova remnant HB9 is less
than 3.5% of the shock radius R = 22 pc (i.e. ∆R < 0.77 pc).

7.2. Wave mixing and instability growth rates

In order to assess the role of wave mixing and instabilities in supernova remnant
shocks, we first rewrite the wave mixing equations in the form

∂ρi
∂t

+ λi
∂ρi
∂x

=
3∑
j=1

Ωijρj , i = 1, 2, 3, (7.8)

where

Ωii = −Λii − ∂λi
∂x

, Ωij = −Λij (i� j) (7.9)

and the {Λij} are given in (3.4). The coefficients {Ωij} have the dimensions of
[time]−1. The coefficients Ω11 and Ω33 are associated with WKB growth rates of
the backward and forward sound waves due to the squeezing instability. For the
case of a steady background flow, the wave mixing equations (3.1) may be combined
to yield the wave-action-like equation

∂

∂t
(ω1A1 + ω3A3) +

∂

∂x
(λ1ω1A1 + λ3ω3A3)

= −ρ2

ρ

du

dt
(λ1ρ1 + λ3ρ3) + τ−1

A1

(
ω1A1 − ag

ρ
λ3ρ1ρ3

)
+τ−1

A3

(
ω3A3 +

ag
ρ
λ1ρ1ρ3

)
, (7.10)

where

τ−1
A1 = −

(
a2
c

κ
+
ζ + 1
ρag

∂pc
∂x

)
, (7.11a)
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τ−1
A3 = −

(
a2
c

κ
− ζ + 1

ρag

∂pc
∂x

)
, (7.11b)

are the growth rates for the wave action densities

A1 = − ρv2
1

k1ag
, (7.12a)

A3 =
ρv2

3

k3ag
, (7.12b)

for the backward (A1) and forward (A3) sound waves, du/dt = ut + uux is the
acceleration vector for the background flow, and ζ = ∂ ln κ/∂ ln ρ. In (7.10)–(7.12),
ω1 = k1λ1 and ω3 = k3λ3 are the dispersion equations for the backward and forward
sound waves. Equation (7.10) generalizes the WKB wave action equations

∂Aj

∂t
+
∂

∂x
(λjAj) =

Aj

τAj
, j = 1, 3, (7.13)

obtained by Drury and Falle (1986) and Zank and McKenzie (1987) describing
sound wave instabilities in cosmic-ray-modified flows.

Alternative expressions for τ−1
A1 and τ−1

A3 for steady shocks are

τ−1
A1 = −a

2
c

κ
− ag(ζ + 1)(M 2 − 1)

d ln ρ
dx

, (7.14a)

τ−1
A3 = −a

2
c

κ
+ ag(ζ + 1)(M 2 − 1)

d ln ρ
dx

, (7.14b)

where M = |u/ag| is the sonic Mach number of the flow in the shock frame. The
results (7.14) are a consequence of the steady-state shock structure equations (see
e.g. Axford et al. 1982). The results (7.14) emphasize the role of the sonic Mach
number on the instability growth rates.

The wave mixing coefficients {Ω1j} and {Ω3j}, j = 1, 2, 3, and wave action growth
rates τ−1

A1 and τ−1
A3 for the smooth transition cosmic-ray-modified shock of Fig. 3

are displayed in Fig. 13. The diffusion coefficient has the form (6.1) (i.e. κ ∝ ρ−3/2),
which is probably a reasonable form for the dependence of κ for a quasiparallel
shock. The corresponding results for the the same shock, but with κ = κ0 = const,
thought to be appropriate for a quasiperpendicular shock, are shown in Fig. 14.
The figures show how the dimensionlesss wave mixing coefficients Ω̄1j = τdΩ1j and
Ω̄3j = τdΩ3j and wave action growth rates τ̄−1

Aj = τdτ
−1
Aj vary throughout the shock

structure, where τd = κ0/u
2
0 is the diffusive time scale and u0 is the shock speed.

The wave action growth rates have approximately twice the amplitudes of the wave
interaction coefficients {Ωij}, which are of order τ−1

d in the present examples.
The coefficients {Ω1j : j = 1, 2, 3} and the wave action growth rate τ−1

A1 for the
backward sound wave in the left panels of Fig. 13 are negative in the upstream
shock precursor, where ∂pc/∂x is significant. The coefficients are all of the same
order of magnitude, and are dominated by the cosmic ray pressure gradient contri-
butions in the centres of the profiles. Far upstream and downstream of the shock,
where the gradients are negligible, Ω11 ≈ Ω33 = −a2

c/2κ, Ω13 ≈ Ω31 = a2
c/2κ, and

Ω12 = Ω32 ≈ 0, where ac is the cosmic ray sound speed. Similar results are obtained
for the forward sound wave (the right panels of Fig. 13), except that the wave mix-
ing coefficients just upstream of the shock are now positive. This implies that a
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Figure 13. Wave mixing coefficients {Ω1j : j = 1, 2, 3} and wave action growth rate τ−1
A1 for

the backward sound wave (left panels), and the corresponding coefficients {Ω3j : j = 1, 2, 3}
and rate τ−1

A3 for the forward sound wave (right panels) for the smooth transition, cos-
mic-ray-modified shock in Fig. 3. The diffusion coefficient κ = κ0(ρ/ρ0)−3/2, with κ0 = 1
in computational units. The rates are given in units of τ−1

d , where τd = κ0/u
2
0 is the convec-

tion diffusion time scale, and the abscissa x is given in units of the convection diffusion scale
ld = κ0/u0.

forward sound wave upstream of the shock is driven unstable owing to the cosmic
ray squeezing instability.

The corresponding results for κ = κ0 = const, appropriate for a perpendicular
shock, in Fig. 14 show that the backward wave upstream of the shock is driven
unstable, whereas a forward sound wave upstream of the shock is damped. This is
opposite to the predictions for a quasiparallel shock (Fig. 13), where the forward
sound wave is unstable, and the backward sound wave is damped. The difference
between the results in Figs 13 and 14 is due solely to the difference in the density
dependence of the diffusion coefficient κ in the two cases.

As an application of the above results, consider the propagation of a cosmic-ray-
modified SNR shock in the warm interstellar medium with

T = 104 K, n = 0.2 cm−3, B = 10−6 G, κ = KSNR

(
ρ

ρ0

)−3/2

cm2 s−1,

(7.15)
where T and n denote the temperature and number density of the thermal gas
far upstream of the shock and KSNR = 4.4 × 1024 cm2 s−1, as in (7.7). Using the
above parameters as typical of the upstream medium and assuming pc0 = pg0, we
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Figure 14. Same as Fig. 13, except for the cosmic-ray-modified shock of Fig. 5, with κ = 1,
in computational units. Far upstream, Ml0 = 18.26 and pc0/pg0 = 1.

obtain pc0 = pg0 = 5.52 × 10−13 dyn cm−2 upstream of the shock. The cosmic
ray sound speed ac0, gas sound speed ag0, and Alfvén speed VA0 have the values
ac0 = 14.84 km s−1, ag0 = 15.84 km s−1 and VA0 = 6.3 km s−1. Although the two-
fluid model in this paper does not include the role of the magnetic field, a rough
estimate of its effect can be obtained by using the modified long-wavelength sound
speed a∗0 = (a2

g0 + a2
c0 + V 2

A0)1/2. In the present case, a∗0 ≈ 22.6 km s−1.
For the shock in Fig. 3, with long-wavelength Mach number Ml0 = 18.26, we

obtain u0 = 413 km s−1 as the shock speed. The convection diffusion time scale
τd = κ0/u

2
0, length scale ld = κ0/u0 and cosmic ray damping time τcr = κ0/a

2
c0 then

have the values

τd ≈ 8.184× 101 years, ld ≈ 0.0345 pc, τcr ≈ 6.16× 104 years. (7.16)

The maximum growth rate in Fig. 13 is Ω33 ≈ 1.6τ−1
d . Using the estimate for τd

in (7.16), this implies Ω33 < 1.97 × 10−2 year−1, or a minimum growth time of
τ33 = 1/Ω33 ≈ 50.9 years. Note that this growth time is approximately 103 times
smaller than τcr, indicating vigorous wave growth in the upstream shock precursor.

Now consider a shock with Ml0 = 5.48, the above values for pc0 and pg0, and a
diffusion coefficient and upstream parameters as in (7.15). In this case, we obtain

u0 ≈ 123.8 km s−1, τd = 9.06× 102 years, ld ≈ 0.115 pc. (7.17)

The maximum growth rate in this case is Ω33 ≈ 0.6τ−1
d = 6.69×10−4 year−1, which

corresponds to to a minimum growth time τ33 ≈ 1.49 × 103 years. This growth
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Table 1. Instability growth rates and characteristics of the cosmic-ray-modified shock in
Fig. 3 and for a shock with Ml0 = 5.48, (7.17), in which the diffusion coefficient κ ∝ ρ−3/2

for the warm ISM model (7.15). The maximum growth rate (Ω33) and minimum growth time
(τ33) for the forward sound wave are given in the last two columns.

Ml0 u0 (km s−1) τd (yr) ld (pc) Ω33 (yr−1) τ33 (yr)

18.26 413 81.84 3.45× 10−2 1.97× 10−2 50.9
5.48 124 906.0 0.115 6.69× 10−4 1.495× 103

Table 2. Same as Table 1, except for the hot ISM model (7.18).

Ml0 u0 (km s−1) τd (yr) ld (pc) Ω33 (yr−1) τ33 (yr)

18.26 3475 1.155 4.1× 10−3 1.386 0.722
5.48 1043 12.82 1.36× 10−2 4.69× 10−2 21.34

rate is substantially smaller than the the growth rates for the higher-Mach-number
shock with Ml0 = 18.26 of Figs 3 and 13. A summary of these results is given in
Table 1.

It is of interest to compare the instability characteristics in Table 1 for the warm
ISM model (7.15) with the growth rates expected if the shocks were propagating
through the hot interstellar medium (HISM). The characteristic parameters that
we adopt for the HISM (e.g. Axford 1981) are

T = 7× 105 K, n = 3× 10−3 cm−3,

B = 10−6 G, κ = KSNR

(
ρ

ρ0

)−3/2

cm2s−1, (7.18)

where KSNR = 4.4 × 1024 cm2 s−1. Taking pc0 = pg0 far upstream of the shock,
we obtain pc0 = pg0 = 5.8× 10−13 dyn cm−2. This corresponds to the values ag0 =
139 km s−1, ac0 = 124 km s−1, VA0 = 39.85 km s−1 and a∗0 = 190.3 km s−1 for
the characteristic wave speeds upstream of the shock. Because the shock speeds
(u0 = 3475 km s−1 for Ml0 = 18.26, and u0 = 1043 km s−1 for Ml0 = 5.48) are
larger than for the warm ISM model (7.15) by a factor of order 10, τd and ld are
roughly smaller by factors of 10−2 and 10−1 respectively compared with the warm
ISM model values in Table 1. The characteristics of the instability for the HISM
model (7.18) are summarized in Table 2. It is worth noting that for the case of a
very cold upstream gas, the instability growth rate Ω33 can be many times τ−1

d (see
e.g. Webb (1989), where examples with Ω33 ≈ 100τ−1

d were obtained).

8. Discussion and concluding remarks
The main aim of this paper has been a study of short-wavelength instabilities, wave
mixing and nonlinear wave interactions in cosmic-ray-modified shocks.

The short-wavelength squeezing instability for sound waves upstream of a cosmic-
ray-modified shock was first investigated by Drury and Falle (1986), Dorfi and
Drury (1985) and Zank and McKenzie (1987). Webb et al. (1997a,b,c) (see also
Sec. 3) discussed the modification of the squeezing instability by wave mixing,
nonlinear wave steepening and nonlinear wave interactions.

The wave mixing equations indicate that, even for a uniform background flow,
the backward and forward sound waves are coupled and damped by the cosmic
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rays. The coupling coefficient in this case is α = a2
c/2κ̄, where ac = (γcpc/ρ)1/2 is

the cosmic ray sound speed and κ̄ is the hydrodynamical cosmic ray diffusion coef-
ficient. A Green-function solution illustrating the coupling of the sound waves for a
uniform background flow has been investigated in Sec. 4. An initial delta function
density spike for the backward wave ρ1 results in the generation of an approxi-
mately top-hat density profile ρ3 for the forward sound wave, and the generation of
a backward sound wave density wake, due to wave interactions. The wakes are lim-
ited to the region between the backward and forward sound wave characteristics,
and at late times assume bell-shaped profiles (Fig. 2).

High-frequency WKB expansions describing wave mixing in non-uniform flows
have been developed in Sec. 5. In the high-frequency limit (ω → ∞), the WKB
results for the squeezing instability are obtained. In this limit, the waves are decou-
pled and the instability results of Drury and Falle (1986), Dorfi and Drury (1985)
and Zank and McKenzie (1987) are obtained. Both a differential equations ap-
proach and an integral equation approach to WKB expansions of the wave mixing
solutions have been developed for the case of a steady background flow. The integral
equation approach, in its simplest form, yields more physically transparent formu-
lae for wave generation due to wave mixing, but the solutions are non-uniform,
and are only accurate close to the point where the waves are first generated from
the primary wave. The differential equations approach yields more accurate, uni-
form WKB expansions, but results in less physically transparent formulae. Nayfeh
(1973, Chap. 7) discusses resummation or renormalized perturbation techniques to
obtain uniform perturbation expansions.

For the case of the propagation of sound waves in an inhomogeneous, isentropic,
background flow, in which there are no entropy waves present, the lowest-order
WKB solution consists of the primary WKB sound wave (the backward sound
wave, say) plus a secondary wave generated by wave mixing (the forward sound
wave), with amplitude O(1/ω) that of the primary wave, and with a phase shift
of approximately ± 1

2π relative to the primary wave near the point of generation:
(5.43) and (5.44). Similar WKB results have been obtained for the generation of
backward and forward sound waves from entropy waves, (5.45) and (5.46), in a
steady, isentropic background flow.

Numerical simulations of wave interactions in cosmic-ray-modified shocks with
both smooth and subshock transitions have been investigated in Sec. 6 (Figs 3–
10). Two diffusion coefficient cases were considered, namely (a) κ = κ0(ρ/ρ0)−3/2

and (b) κ = κ0 = const. Case (a) corresponds to a quasiparallel shock config-
uration in which κ ∝ 1/Pw, where the Alfvén wave pressure Pw of the scat-
tering wave field in the upstream medium varies as Pw ∝ ρ3/2. Case (b), with
κ = const, corresponds to a quasiperpendicular shock, in which the diffusion of
particles across the field is due to random walk of the field lines (see e.g. Jokipii
1971). The character of the cosmic ray squeezing instability depends on the density
dependence of κ(ρ), via the parameter ζ = ∂ ln κ/∂ ln ρ. For cases where ζ < −1
(see e.g. Figs 3 and 4, where κ ∝ ρ−3/2), the forward sound wave upstream of a
cosmic-ray-modified shock is driven unstable by the squeezing instability, whereas
the backward sound wave is damped. A forward sound wave initially incident
upstream of the shock in Fig. 3 (κ ∝ ρ−3/2, right panel), is amplified by the
squeezing instability, and the backward sound wave is generated by wave mix-
ing. If there is no large-scale entropy gradient, the linear theory predicts that
entropy waves cannot be generated from the sound waves by wave mixing. This
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result is verified by the numerical simulations. However, if the sound waves become
nonlinear, entropy wave disturbances are generated. In the case where a back-
ward sound wave is initially present in the upstream medium and κ ∝ ρ−3/2, the
initial sound wave is damped by the squeezing instability, and generates a for-
ward sound wave by wave mixing. The forward sound wave is subsequently driven
unstable by the squeezing instability (Fig. 3, left panel). Figures 5–8 illustrate
wave interactions for the diffusion coefficient case κ = κ0 = const. In this case,
ζ > −1 (in fact, ζ = 0), and the backward sound wave is driven unstable by
the squeezing instability, and the forward sound wave is damped. Nonlinear wave
steepening in the subshock examples (Figs 7 and 8) leads to N-wave type profiles
for the initial sound wave, and distorted, cusped wave profiles for the generated
waves.

Numerical solutions of the linear wave mixing equations in a steady, smooth
transition cosmic ray shock, in which the initial data includes small-amplitude
waves (Fig. 9), result in wave profiles that are in excellent agreement with the
fully nonlinear simulations. The uniform WKB wave mixing solutions (5.33) for
the sound waves also show excellent agreement with the numerical solutions of
the wave mixing equations, for the case of high-frequency sound waves initially
incident upstream of the shock. In the far-upstream region, wave beating effects
between the backward and forward sound waves occur (Fig. 10). The examples
of wave mixing in cosmic ray pressure balance structures (Figs 11 and 12) illus-
trate the role of a large-scale entropy gradient on the wave mixing of the entropy
wave.

An assessment of the role of wave mixing and the cosmic ray squeezing insta-
blity in supernova remnant shocks has been carried out (Sec. 7). The wave mix-
ing coefficients and wave action growth rates (Figs 13 and 14) are of order τ−1

d

(where τd = κ0/u
2
0 is the convection diffusion time associated with the cosmic-

ray-modified shock, where κ0 is the hydrodynamical cosmic ray diffusion coef-
ficient far upstream of the shock and u0 is the shock speed), for model param-
eters thought to be appropriate for the warm interstellar medium (WISM) and
the hot interstellar medium (HISM). The main results of interest are summarized
in Tables 1 and 2. Typical values of the minimum instability growth times for
shocks in the HISM are τ33 ≈ 0.72 years for the high-Mach-number shock example
(u0 = 3475 km s−1, Ml0 = 18.26, where Ml0 is the long-wavelength Mach number of
the shock), and τ33 ≈ 21 years for a lower-Mach-number shock (u0 = 1043 km s−1

and Ml0 = 5.48). Larger growth times (of order 10 times the above growth times)
were obtained for shocks with the same values for Ml0 propagating through the
warm interstellar medium. These results depend on the value of κ used in the
analysis. The diffusion coefficient κ ≡ κSNR associated with turbulence in the
vicinity of supernova remnant shocks is much smaller than the diffusion coeffi-
cient describing the large-scale transport of cosmic rays in the galaxy, which is
associated with the diffuse, large-scale turbulence in the interstellar medium (see
e.g. Spangler et al. 1987; Armstrong et al. 1995). In the examples, we assumed a
value of κSNR ≈ 4.4 × 1024 cm2 s−1 upstream of the shock, which is intermediate
between the values of κ ≈ 1022–1023 cm2 s−1, for Bohm diffusion for protons with
T = 1 GeV energy, and κ ≈ 1028 cm2 s−1 at T = 1 GeV, based on quasilinear
theory for cosmic ray diffusion (Jokipii 1971) and observations of the diffuse in-
terstellar turbulence (Armstrong et al. 1995). From radio observations, Spangler
et al. (1987), provide an upper limit for the thickness of the foreshock ∆R, of the
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supernova remnant HB9 of 3.5% of the shock radius R (R = 22 pc and ∆R = 0.77
pc). The thickness of the foreshock in our examples can be identified with the
precursor scale length upstream of the shock, ld = κ0/u

2
0. These measurements

help to delimit the range of acceptable diffusion coefficients κ0 upstream of SNR
shocks.

Our analysis of the cosmic ray squeezing instability neglects the role of Landau
damping of magnetosonic waves in high-beta (β > 1) collisionless plasmas (Barnes
1966, 1979) and the role of wave damping of Alfvén waves by ion–neutral friction
(Kulsrud and Pierce 1969). In a more self-consistent description, it is also necessary
to take into account the momentum spectrum of the cosmic rays. These effects are
difficult to include in the two-fluid model used in the present analysis.

The generation, transmission and reflection of sound waves, entropy waves and
vorticity eigenmodes at gas-dynamical shocks has been investigated by McKenzie
and Westphal (1968) and McKenzie and Bornatici (1974). Presumably, these re-
sults, and studies of the interaction of Alfvén waves with MHD shocks (McKenzie
and Westphal 1969; Scholer and Belcher 1971; McKenzie and Bornatici 1974), are
related to wave mixing phenomena, and must play a role at cosmic ray shocks with
embedded subshocks. These issues, and the interaction of MHD waves with cos-
mic ray modified shocks (e.g. at the solar wind termination shock or at supernova
remnant shocks) are worth further investigation.
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Appendix A
In this appendix, we discuss the derivation of the solutions (4.9)–(4.12). Introducing
the Laplace transforms

ρ̄j(x, s) =
∫ ∞

0
exp(−st)ρj(x, t) dt, j = 1, 3, (A 1)

the initial value problem (4.1)–(4.4) for the wave mixing equations (4.1) and (4.2)
reduces to solving the equations

d

dx

(
ρ̄1

ρ̄3

)
+ A

(
ρ̄1

ρ̄3

)
=
(
ρ1(x, 0)/λ1

ρ3(x, 0)/λ3

)
=
(
Q1

Q3

)
, (A 2)

where

A =

 α + s

λ1
− α

λ1

− α

λ3

α + s

λ3

 . (A 3)

The homogeneous system (A 2) has solutions(
ρ̄1

ρ̄3

)
= R exp(kx), (A 4)
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where

(A + kI) · R = 0. (A 5)

Equation (A 5) has non-trivial solutions for R if

det(A + kI) = k2 +
(s + α)(λ1 + λ3)

λ1λ3
k +

(s + α)2 − α2

λ1λ3
= 0. (A 6)

The eigenvalue equation (A 6) has solutions for k of the form

k = k1,2 =
−Mσ ∓ [σ2 + (M 2 − 1)α2]1/2

ag(M 2 − 1)
, (A 7)

where

M =
u

ag
, σ = s + α. (A 8)

To solve the inhomogeneous system (A 2), we also need to determine the left-
eigenvector solutions of (A 5) satisfying the equations

L · (A + kI) = 0, Lq · Rp = δpq, (A 9)

where δpq is the Kronecker delta. Searching for solutions of the inhomogeneous
equations (A 2) of the form

(ρ̄1, ρ̄3)T =
2∑
p=1

ApRp exp(kpx) (A 10)

yields the equations
2∑
p=1

exp(kpx) Rp
dAp
dx

= Q. (A 11)

Multiplying (A 11) on the left by the left-eigenvector Lm yields the compatibility
conditions

dAm
dx

= exp(−kmx) Lm · Q, m = 1, 2 (A 12)

with solutions of the form

Am(x) = cm +
∫ x

Lm · Q exp(−kmx′)dx′, m = 1, 2, (A 13)

where the integration constants are determined by the boundary conditions im-
posed on the solution (A 10) as |x| → ∞. The required solution for (ρ̄1, ρ̄3)T now
follows from (A 10) and (A 13).

The right- and left-eigenvectors of (A 5) and (A 9) for k = k1 are

R1 =
(

1,
σ − ∆1/2

α(M + 1)

)T

, (A 14a)

L1 =
1

2∆1/2
(σ + ∆1/2,−α(M + 1)), (A 14b)

where

k1 =
−Mσ − ∆1/2

ag(M 2 − 1)
, ∆ = σ2 + (M 2 − 1)α2. (A 15)
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The corresponding results for k = k2 are

R2 =
(

1,
σ + ∆1/2

α(M + 1)

)T

, (A 16a)

L2 =
1

2∆1/2
(∆1/2 − σ, (M + 1)α), k2 =

∆1/2 −Mσ

ag(M 2 − 1)
. (A 16b)

where

k2 =
∆1/2 −Mσ

a− g(M 2 − 1)
. (A 17)

A.1. Subsonic flow solution

For subsonic flow (0 < M < 1), k1 > 0 and k2 < 0. Since we require |ρ̄j | → 0 as
|x| → ∞ (j = 1, 3), (A 10) and (A 13) and the eigenvector results (A 14)–(A 17) yield
the solutions

ρ̄1 =
exp(σMx̃− ∆1/2|x̃|)

2∆1/2ag

(
αN3 +

σ − ∆1/2

1−M N1

)
+

N1

(1−M )ag
exp(σMx̃− ∆1/2|x̃|) H(−x), (A 18)

ρ̄3 = exp(σMx̃− ∆1/2|x̃|)
(
αN1 +

σ − ∆1/2

M + 1
N3

)
+

N3

(M + 1)ag
exp(σMx̃− ∆1/2) H(x), (A 19)

where

x̃ =
x

ag|1−M 2| (A 20)

and H(x) is the Heaviside step function.
Using the inverse Laplace transforms

L−1
{

exp[−b(p2 − α2)1/2]
(p2 − α2)1/2

}
= I0[α(t2 − b2)1/2]H(t− b), (A 21a)

L−1
{
exp[−b(p2−α2)1/2]

(
p

(p2−α2)1/2
− 1
)}

= α

(
t−b
t+b

)1/2

I1[α(t2 − b2)1/2]H(t− b),
(A 21b)

L−1{exp[−b(p2 − α2)1/2]− exp(−bp)} =
αb

(t2 − b2)1/2
I1[α(t2 − b2)1/2]H(t− b),

(A 21c)

L−1{exp(−pb)} = δ(t− b), (A 21d)

(Erdelyi et al. 1954, Vol. 1, p. 249, formulae 36, 38 and 35), the Laplace inversion
of (A 18) and (A 19) yields the solutions (4.10) and (4.13). In (A 21),

L−1{F (p)} =
1

2πi

∫ c+i∞

c−i∞
exp(pt) F (p) dp (A 22)

denotes the inverse Laplace transform of F (p).
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A.2. Supersonic flow case

For the supersonic flow case, we find 0 > k2 > k1, and the solution only exists
downstream of the source (i.e. for x > 0). The solutions for ρ̄1 and ρ̄3 for x > 0 are

ρ̄1 =
exp[−(σM + ∆1/2)x̃]

2ag

[
N1

M − 1

(
σ

∆1/2
+ 1
)
− αN3

∆1/2

]
+

exp[(∆1/2 − σM )x̃]
2ag

[
N1

M − 1

(
1− σ

∆1/2

)
+
αN3

∆1/2

]
, (A 23)

ρ̄3 =
exp[−(σM + ∆1/2)x̃]

2ag

[
N3

M + 1

(
1− σ

∆1/2

)
− αN1

∆1/2

]
+

exp[(∆1/2 − σM )x̃]
2ag

[
N3

M + 1

(
σ

∆1/2
+ 1
)

+
αN1

∆1/2

]
. (A 24)

The inverse Laplace transform of (A 23) and (A 24) again leads to the solutions
(4.10)–(4.13). The inversion of (A 22) and (A 23) involves some transforms not listed
in Erdelyi et al. (1954), which result in modified and ordinary Bessel functions
in the time domain. However, the ordinary Bessel function contributions to the
solution cancel, leading to the solutions (4.10)–(4.13).

Appendix B
In this appendix, we point out some misprints in Webb et al. (1997a). Equations
(5.53b) and (5.53d) of the above paper should read

S′′0 + 2S′0S
′
1 − (iφxS′1 +M13S

′
0) = 0, (B 1)

S′′2 + 2S′1S
′
2 + 2S′0S

′
3 − (iφxS′3 +M13S

′
2) = 0. (B 2)

As noted in the second paragraph of Sec. 5 of the present paper, some initial value
terms were missing in Webb et al. (1997a) in the matching of the backward and
forward sound wave solutions, for sound waves in an inhomogeneous flow, in which
there are no entropy waves present. The more exact matching conditions for the
backward and forward sound waves are given in (5.31)–(5.33) of the present paper.

Appendix C
In this appendix, we discuss alternative integral equation formulations for (5.14)–
(5.19). Probably the simplest integral equation formulation is to directly integrate
(5.14) and (5.15) to obtain the vector integral equation

Ψ(x, ω) =
∫ x

x0

M(y, ω) ·Ψ(y, ω) dy + Ψ0(x, ω), (C 1)

where

Ψ =
(
F
G

)
, M =

(
0 A
B 0

)
, (C 2)

and

Ψ0 = Ψ0 +
∫ x

x0

Q(y)dy, Q =
(
Q1

Q3

)
. (C 3)

Equation (C 1) is a Volterra integral equation for Ψ.
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Alternatively, starting from (5.17) and (5.18), we may obtain Volterra integral
equations for Φ = F̄xx and Γ = Ḡxx. To proceed, we first note

F̄xx = Φ, (C 4a)

F̄x =
∫ x

x0

Φ(y) dy + F̄ ′0, (C 4b)

F̄ =
∫ x

x0

(x− y)Φ(y)dy + xF̄ ′0 + F̄0, (C 4c)

where F̄0 = F̄ (x0) and F̄ ′0 = F̄ ′(x0) are the values of F̄ and dF̄ /dx at x = x0. From
(5.14),

F̄ ′0 = A(x0)Ḡ0 +Q1(x0). (C 5)

Equation (5.17) may now be expressed in the form of a Volterra integral equation:

Φ(x)−
∫ x

x0

M (x, y)Φ(y) dy = Φ0(x), (C 6)

where the kernel M (x, y) and source term Φ0(x) are given by the equations

M (x, y) = Dx(lnA) + (x− y)A(x)B(x), (C 7)

Φ0(x) = SF + F̄ ′0Dx(lnA) +A(x)B(x)(F̄0 + xF̄ ′0). (C 8)

Similarly, we find that Γ = Ḡxx satisfies the Volterra integral equation

Γ(x)−
∫ x

x0

N (x, y)Γ(y) dy = Γ0(x), (C 9)

where the kernel N (x, y) and the source Γ0(x) are given by

N (x, y) = Dx(lnB) + (x− y)A(x)B(x), (C 10)

Γ0(x) = SG + Ḡ′0Dx(lnB) +A(x)B(x)(Ḡ0 + xḠ′0), (C 11)

and the equations

Γ = Ḡxx, (C 12a)

Ḡx =
∫ x

x0

Γ(y) dy + Ḡ′0, (C 12b)

Ḡ =
∫ x

x0

(x− y)Γ(y) dy + xḠ′0 + Ḡ0, (C 12c)

Ḡ′0 = B(x0)F̄0 +Q3(x0) ≡ ν31(x0)F̄0 +Q3(x0) (C 12d)

relate Ḡ, Ḡx and Ḡxx to Γ and the initial conditions. Equations (C 6) and (C 9) can
be solved by iteration to find solutions for Φ(x) and Γ(x). The solutions for F̄ and
Ḡ then follow from (C 4) and (C 12).
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