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Quasi-geostrophic vortex solutions over isolated
topography
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Analytical solutions of barotropic, quasi-geostrophic vortices over an axisymmetric bottom
topography are presented. The solutions are based on independent azimuthal modes
adapted to the shape of the topography. Modes 0 (circular monopoles) and 1 (asymmetric
dipoles) are evaluated for different topographic profiles that represent either submarine
mountains or valleys. The interior fields are matched with an exterior flow with streamlines
enclosing the vortices, so the structures remain trapped over the topographic feature. The
solutions are steady in a reference frame attached to the rotation of the vortices around
the topography. The main features of trapped vortices as a function of the topographic
parameters, such as the structure, strength and angular speed, are discussed through
numerical simulations initialised with theoretical vorticity fields. The model results
reproduce reasonably well the analytical solutions when the topographic effects are strong
enough to inhibit the dipole self-propagation. In contrast, very intense dipolar modes may
escape from the influence of the topography.
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1. Introduction

The motion of large-scale flows in rotating planets is mostly confined in a two-dimensional
(2-D) surface perpendicular to gravity. For instance, oceans are often modelled as a 2-D
flow on a sufficiently large plane tangent to the Earth’s surface, and planetary atmospheres
are considered to flow over a spherical shell (see e.g. Vallis 2017, p. 66). Although
many geophysical flows are highly turbulent and show complicated patterns, they often
present coherent structures that can be represented with analytical solutions of 2-D vortex
models. Classic examples are the nonlinear solutions of the 2-D Euler equations for
monopolar (Rankine, Kirchoff), dipolar (Lamb, Chaplygin) and elliptical (Kida) vortices.
A comprehensive account of some of these structures was given by Meleshko & van
Heijst (1994). In the quasi-geostrophic (QG) context, Stern (1975) (see also Flierl, Stern &
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Whitehead 1983) derived the so-called ‘modons’, which turn out to be a particular class of
the Chaplygin dipole (Meleshko & van Heijst 1994). Recently, Viúdez (2019a,b) provided
azimuthal-mode solutions of multipolar 2-D Euler and baroclinic QG vortices.

In this paper, we discuss analytical nonlinear solutions of vortices trapped over variable
topography. In a rotating reference frame, inviscid topography effects promote the
formation of vortices owing to the conservation of potential vorticity (Huppert & Bryan
1976). Over a submarine mountain, for instance, anticyclonic vorticity is generated on the
summit owing to squeezing effects, whereas fluid columns moving downward are stretched
hence generating cyclonic vorticity (Verron & Le Provost 1985). The flow dynamics are
usually incorporated in shallow-water models (Grimshaw, He & Broutman 1994). When
the topographic variations are small with respect to the mean fluid depth, the model is
reduced to the barotropic QG equations (Carnevale et al. 1995). A review of the 2-D
dynamics with topography and several experimental applications can be found in Zavala
Sansón & van Heijst (2014).

Organised motions over the topography may remain trapped during long periods while
maintaining a well-defined structure. Such a striking phenomenon led Hide (1961) to
suggest that Jupiter’s Great Red Spot might be a manifestation of a columnar vortex over
a ‘topographical feature’ of the surface underlying the atmosphere (a hypothesis that was
soon discarded). More recently, Zavala Sansón, Aguilar & van Heijst (2012) performed
laboratory experiments in a large rotating tank, in which cyclonic vortices approached
a submerged mountain. The most relevant result was the formation of an asymmetric
cyclone–anticyclone pair rotating around the mountain. The authors noted that such a
structure was similar to mode-1 topographic waves around an axisymmetric topography
(Zavala Sansón 2010).

The most relevant solutions in this study are dipolar vortices over isolated topographies
in a QG flow. The structures are similar to the Chaplygin vortex, which may be either
symmetric and moving along a straight line, or asymmetric and drifting on a circular
path (Meleshko & van Heijst 1994). Dipoles may be asymmetric owing to bottom friction
effects, as shown in more recent experimental, numerical and theoretical studies (Zavala
Sansón, van Heijst & Backx 2001; Makarov 2012). In contrast, the asymmetry in our case is
due to the shape of the variable bottom, and the dipoles remain attached to the topography
while slowly rotating around it. To obtain the solutions, we follow a similar approach to
that of Viúdez (2019a): using polar coordinates, the interior (over the topography) stream
function is separable, where an infinite set of azimuthal modes comprises the azimuthal
part. The crucial difference in our approach is the consideration of an additional term
associated with the presence of an axisymmetric bump or depression. The dipoles are
steady, nonlinear solutions of the QG dynamics in a reference frame that rotates with
the vortex. The rotary motions of the dipole depend entirely on the characteristics of the
topography.

The paper is organised as follows. In § 2, we present the interior solutions for multipolar
vortices; then, we introduce the exterior flow for modes m = 0 and 1. Explicit formulae are
derived for the angular speed of dipolar modes and the condition to remain trapped around
the topography. Section 3 evaluates the structure of monopolar and dipolar solutions for a
specific set of topographies. In addition, numerical solutions are performed to evaluate the
analytical results. In § 4 the results are summarised and discussed.

2. QG solutions with axisymmetric topography

Consider a barotropic, incompressible and inviscid fluid in a QG regime on the f -plane,
above a localised axisymmetric submarine mountain or valley (see figure 1). Using a
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H0
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2

f0

Figure 1. Side view of a homogeneous fluid layer over an axially symmetric submarine mountain or valley
b(r), on an f -plane with mean depth H0.

polar coordinate system (r, θ), the potential vorticity equation is (see e.g. Vallis 2017,
pp. 207–211)

∂

∂t
∇2ψ + J[ψ,∇2ψ + h(r)] = 0, (2.1)

where ω = ∇2ψ is the relative vorticity with ψ a stream function, h(r) = f0b(r)/H0 is the
ambient vorticity with b(r) the topography centred at r = 0, f0 the Coriolis parameter and
H0 the average depth of the fluid layer. The Jacobian operator is J(a, b) ≡ (arbθ − aθbr)/r
and the Laplacian ∇2a = arr + ar/r + (1/r2)aθθ , where the r, θ subscripts indicate partial
derivatives. The radial and azimuthal components of the velocity are defined as u =
−ψθ/r and v = ψr, respectively. The potential vorticity is defined as

q = ∇2ψ + h = ω + h. (2.2)

According to (2.1), q is materially conserved.

2.1. Azimuthal modes over topography
We seek solutions of the vorticity equation (2.1) based on the azimuthal-mode
decomposition used by Viúdez (2019a) (hereafter referred to as V19), who studied the
purely 2-D case, i.e. with h(r) = 0. In the presence of topography, h(r) /= 0, we propose a
stream function with two terms

ψm(r, θ) = ψVm(r, θ)+ φ(r), (2.3)

where

ψVm(r, θ) = Re
[
ψ̂mJm(c0r)eimθ

]
(2.4)

are the V19 steady solutions for azimuthal modes m (= 0, 1, . . .) in the absence of
topography, J(ψVm,∇2ψVm) = 0. The complex amplitudes ψ̂m define the vortex strength
and orientation, Jm is the Bessel function of the first kind of order m and c0 a scaling
factor for the radial coordinate with units 1/length. The topography effects are included in
φ(r), which is assumed purely radial owing to the symmetry of the submarine mountain
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or valley. To obtain an explicit expression for φ(r), we replace (2.3) in the vorticity
equation (2.1), which yields

− ∂ψVm

∂θ

d
dr

(
d2φ

dr2 + 1
r

dφ
dr

+ c2
0φ + h

)
= 0, (2.5)

where we have used that ∇2ψVm = −c2
0ψVm. Hence, to satisfy this expression for any

mode m it is sufficient that function φ(r) obeys the second-order equation

d2φ

dr2 + 1
r

dφ
dr

+ c2
0φ + h = h0, (2.6)

where h0 is a constant. In terms of the dimensionless coordinate s = c0r, equation (2.6)
transforms into

d2φ

ds2 + 1
s

dφ
ds

+ φ = h0 − h(s)

c2
0

≡ H(s). (2.7)

The function H(s) contains the information about the topography, and its magnitude is
of order h0/c2

0 (with the same units as the stream function). It is convenient to choose
h0 = h(0) so that H is zero at the origin. In addition, note that H = 0 in the absence of
topography.

The general solution of (2.7) is the sum of the homogeneous and a particular solution.
The homogeneous form of (2.7) is a Bessel equation, whose general solution is a linear
combination of the zero-order Bessel functions of the first and second kind, J0(s) and
Y0(s), respectively. We require the solutions to be finite at s = 0, so the homogeneous
solution only involves J0(s). In addition, a particular solution of (2.7) can be obtained via
the standard method of variation of parameters. Thus, the general solution is

φ(s) = h0

c2
0

CJ0(s)+ Y0(s)
∫ s

0

H(s′)J0(s′)
W [J0(s′),Y0(s′)]

ds′ − J0(s)
∫ s

0

H(s′)Y0(s′)
W [J0(s′),Y0(s′)]

ds′,

(2.8)

where W = J0Y′
0 − Y0J′

0 is the Wronskian. The first term represents the homogeneous
solution, which is an axisymmetric structure with amplitude h0/c2

0 modulated by the
arbitrary, dimensionless constant C. For convenience, we assume that this constant is
different for each mode m and will be denoted as Cm.

The last two terms are a particular solution, which can be rewritten applying the
Wronskian identity of the Bessel functions, W[J0(s),Y0(s)] = 2/πs (Watson 1986, p. 76).
Thus,

φ(s) = h0

c2
0

CmJ0(s)+ π

2
Y0(s)

∫ s

0
H(s′)J0(s′)s′ ds′ − π

2
J0(s)

∫ s

0
H(s′)Y0(s′)s′ ds′. (2.9)

Using (2.9) in (2.3), we obtain steady solutions of the QG model with axisymmetric
topography over the whole plane. However, to obtain a physically meaningful vortical
structure with bounded vorticity, it is required to restrict the solutions within an interior
region above the localised topography and to determine a suitable potential flow in the
exterior domain.
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2.2. Interior flow
The interior vortex solutions (denoted with subindex I) within a circular region with radius
sl (defined in the following) are

ψIm(s, θ) = Re
[
ψ̂mJm(s)eimθ

]
+ h0

c2
0

CmJ0(s)+ π

2
Y0(s)

∫ s

0
H(s′)J0(s′)s′ ds′

− π

2
J0(s)

∫ s

0
H(s′)Y0(s′)s′ ds′, s ≤ sl. (2.10)

The velocity field (expressed in terms of the unit vectors êr and êθ ) and the relative vorticity
are calculated directly:

uIm(s, θ)
c0

= −m
s

Re
[
iψ̂mJm(s)eimθ

]
êr +

[
Re
[
ψ̂mJ′

m(s)e
imθ
]

− h0

c2
0

CmJ1(s)

− πY1(s)
2

∫ s

0
H(s′)J0(s′)s′ ds′ + πJ1(s)

2

∫ s

0
H(s′)Y0(s′)s′ ds′

]
êθ , s ≤ sl,

(2.11)

ωIm(s, θ)

c2
0

= −Re
[
ψ̂mJm(s)eimθ

]
− h0

c2
0

CmJ0(s)− π

2
Y0(s)

∫ s

0
H(s′)J0(s′)s′ ds′

+ π

2
J0(s)

∫ s

0
H(s′)Y0(s′)s′ ds′ + H(s), s ≤ sl. (2.12)

Note from (2.10) and (2.12) that the vorticity is

ωm(s, θ) = c2
0 [−ψm(s, θ)+ H(s)] . (2.13)

Substituting H(s) from (2.7) it is also found that the potential vorticity is proportional to
the stream function:

q(s, θ) ≡ ωm(s, θ)+ h(s) = −c2
0ψm(s, θ)+ h0. (2.14)

Later we will examine scatter plots to verify that the analytical solutions indeed obey a
linear q versus ψ relationship.

Following V19, the radial distance sl to confine the vortex can be chosen as one of
the n (≥ 1) zeros of the m-Bessel function, jm,n. A suitable choice is sl = j1,1 = 3.8317
(the first zero of J1), because there the radial velocity component becomes zero (see (2.11)).

Modes m = 0 and 1 represent monopolar and dipolar vortices modified by the
topography, which are the relevant cases to study from now on. In the 2-D case, the
monopoles may be cyclonic (ψ̂0 < 0) or anticyclonic (ψ̂0 > 0), with ψ̂0 real. For dipoles,
the real and imaginary parts of ψ̂1 indicate the vortex amplitude and orientation.

2.3. Complete solutions for mode m = 0
To complete the solutions, one needs to add an exterior flow, so the interior vorticity
distribution remains confined over the topography. For the monopolar mode m = 0, we
set the exterior stream function as the sum of an irrotational (logarithmic) profile and
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a constant-vorticity, quadratic term (V19). The exterior axisymmetric solution (denoted
with subindex E) is

ψE0(s) = a0 + a1 ln s + a2s2, s ≥ sl, (2.15)

where the coefficients are chosen to satisfy the continuity of the stream function, the
azimuthal velocity and the vorticity.

The matching conditions at the boundary sl are

ψI0|sl = ψE0|sl,

ψ ′
I0|sl = ψ ′

E0|sl,[
ψ ′′

I0 + 1
s
ψ ′

I0

]
sl

=
[
ψ ′′

E0 + 1
s
ψ ′

E0

]
sl

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.16)

(where primes indicate complete s-derivatives). Using (2.10) and (2.15) in (2.16), we obtain
the coefficients a0, a1 and a2 in terms of the somewhat cumbersome constants f00 and f01
shown in Appendix A. Hence, the exterior fields for mode 0 are

ψE0(s) = f00 +
[
−f01sl + 1

2
( f00 − H(sl))s2

l

]
ln
(

s
sl

)
− f00 − H(sl)

4

(
s2 − s2

l

)
(2.17)

uE0(s)
c0

=
[
−f01

sl

s
+ 1

2
( f00 − H(sl))

s2
l − s2

s

]
êθ (2.18)

ωE0

c2
0

= −[ f00 − H(sl)]. (2.19)

To check for dimensional consistency, note that the units of f00, f01 and H(sl) are those of
the stream function (length2/time). The exterior vorticity ωE0 is constant, corresponding
with the added rotation.

The complete solution for mode m = 0 is

ψ0(s) =
{
ψI0(s), s ≤ sl,

ψE0(s), s ≥ sl,
(2.20)

which is stationary in a coordinate system that rotates with angular speed 2a2.
In fact, equation (2.20) is a family of circular vortices expressed in different coordinate

systems rotating according to the value of a2 (which depends on constants H(sl) and f00,
see (2.19)). In particular, the exact solution in the original f -plane is

ψ0(s) =
{
ψI0(s)− a0 − a2s2, s ≤ sl,

a1 ln s, s ≥ sl,
(2.21)

in which the exterior vorticity is zero.

2.4. Complete solutions for mode m = 1

For convenience, hereafter we use the dipole amplitude as ψ̂1 = −|ψ̂1|i, so the V19 mode
is |ψ̂1|J1(s) sin(θ). This case corresponds with a dipole initially oriented in the horizontal
direction and pointing to the left in a planar system.
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Before discussing the exterior solution, we assume first that the whole dipolar mode
rotates steadily around the topography. We therefore seek solutions at a rotating reference
frame such that ψ = ψ(s, θ +Ωt), where the rotation is clockwise (anticlockwise) for
Ω > 0 (Ω < 0). For the moment, Ω remains unknown. The vorticity equation becomes
(Flierl et al. 1983)

J

[
ψ(s, θ)+ Ω

2c2
0

s2,∇2ψ(s, θ)+ h(s)

]
= 0, (2.22)

keeping in mind that now θ corresponds to the rotated azimuthal coordinate. Thus, the
solutions for mode 1 are of the form

ψ1(s, θ) =

⎧⎪⎨⎪⎩
ψI1(s, θ)− Ω

2c2
0

s2, s ≤ sl,

ψE1(s, θ), s ≥ sl,

(2.23)

where ψE1(s, θ) is the exterior field. The vorticity is

ω1(s, θ) =
{
ωI1(s, θ)− 2Ω, s ≤ sl,

−2Ω, s ≥ sl.
(2.24)

Now we can construct the exterior solution with the desired properties. The exterior
field is proposed as the sum of a non-axisymmetric potential component and a symmetric
flow similar to (2.15):

ψE1(s, θ) = U0

c0

(
s − s2

l
s

)
sin θ + d0 + d1 ln s + d2s2, s ≥ sl, (2.25)

where U0 is an additional constant to be determined, and coefficients d0, d1 and d2 are
chosen to ensure that the flow variables are continuous at sl. An equivalent procedure was
first proposed by Chaplygin (1903) to derive steady solutions of 2-D asymmetric dipoles
travelling along circular paths with speed U0 (Meleshko & van Heijst 1994). In the present
case, the whole dipolar mode may rotate but cannot translate because it remains attached
to the topography.

From (2.23), the matching conditions are

ψI1|sl − Ω

2c2
0

s2
l = ψE1|sl,

∂sψI1|sl − Ω

c2
0

sl = ∂sψE1|sl,[
∂ssψI1 + 1

s
∂sψI1 + ∂θθψI1

]
sl

− 2Ω
c2

0
=
[
∂ssψE1 + 1

s
∂sψE1 + 1

s2 ∂θθψE1

]
sl

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.26)

The form of the exterior flow (2.25) ensures that the condition for the θ -derivative of the
stream function is identically satisfied. System (2.26) is solved to obtain the coefficients
of the exterior field, as shown in Appendix B. In particular, it is found that coefficient
d2 is predetermined by the rotation Ω , such that d2 = −Ω/(2c2

0), which can be proved
immediately from (2.24) and (2.25). An additional consequence is that the constant C1
found in the interior solution must have a specific value given by (B6) to satisfy continuity
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of the vorticity. The other coefficients, d0 and d1, depend on constants f10 and f11,
which contain integrals of H(s) and therefore they are of order h0/c2

0. In addition, U0

is proportional to the amplitude |ψ̂1|, see (B4). The exterior fields are

ψE1(s, θ) = 1
2
|ψ̂1|J′

1(sl)

(
s − s2

l
s

)
sin θ + f10 − f11sl ln

(
s
sl

)
− Ω

2c2
0

s2, (2.27)

uE1(s, θ)
c0

=
[
−1

2
|ψ̂1|J′

1(sl)

(
1 − s2

l

s2

)
cos θ

]
êr

+
[

1
2
|ψ̂1|J′

1(sl)

(
1 + s2

l

s2

)
sin θ − f11

sl

s
− Ω

c2
0

s

]
êθ , (2.28)

ωE1

c2
0

= −2Ω. (2.29)

Dipolar solutions imply a special restriction for the topography because the exterior field
evaluated in the vorticity equation (2.22) yields

J

[
U0

c0

(
s − s2

l
s

)
sin θ, h(s)

]
= 0, s > sl. (2.30)

Therefore, the exterior dipolar solutions are valid for isolated topographic features
vanishing outwards:

dh(s)
ds

= 0, s > sl. (2.31)

In other words, the topography must decay rapidly within the vortex interior. Note that this
restriction does not apply for the axisymmetric mode 0.

2.5. Angular speed of dipolar modes
The angular speed of the dipole on the f -plane is −Ω . To obtain Ω , it is noted that the
total circulation of the interior region (2.24) must be zero. The circulation is calculated as
the area integral of the interior potential vorticity:

ΓI =
∫ 2π

0

∫ sl

0
[ωI1(s, θ)− 2Ω + h(s)] c−2

0 s ds dθ. (2.32)

The first integral is calculated as the line integral of the tangential velocity:∫ 2π

0

∫ sl

0
ωI1(s, θ)c−2

0 s ds dθ =
∮
∂sψI1(sl, θ)sl dθ = −2πslf11, (2.33)

where constant f11 is defined by (B3). Solving the other integrals, the circulation is

ΓI = −2πslf11 − πs2
l c−2

0 2Ω + 2πc−2
0

∫ sl

0
h(s)s ds. (2.34)

Setting ΓI = 0 and after straightforward calculations, it is found that

Ω =
[
− f11c2

0
sl

+ 1
s2

l

∫ sl

0
h(s)s ds

]
. (2.35)

It must be remarked that Ω depends on the shape and properties of the topography.
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2.6. Dipole entrapment
Now we examine the conditions that determine the attachment of the dipolar mode
to the topography. This entrapment is equivalent to the problem of a rotating cylinder
of radius rl with circulation Γ in a potential exterior flow with far-field velocity U0
(Batchelor 1967, pp. 539–540). The azimuthal velocity at the cylinder is v(rl, θ) =
2U0 sin θ − Γ/(2πrl), so there may be stagnation points over the cylinder when sin θ =
Γ/(4πU0rl). The absence of stagnation points requires |Γ/(4πU0rl)| > 1 for any θ , that
is, the circumferential velocity of the cylinder is always greater than 2U0 (Spurk & Aksel
2008, p. 367).

In the present case, in which we have introduced an additional rotation to the reference
system, the tangential velocity at the boundary given by the exterior field is

v(sl, θ) = c0
∂

∂s
ψE1(sl, θ) = 2U0 sin θ + d1c0

sl
− Ωsl

c0
. (2.36)

The absence of stagnation points implies that∣∣∣∣−d1c0/sl +Ωsl/c0

2U0

∣∣∣∣ > 1. (2.37)

Substituting d1 = − f11sl (see (B5)) and using (2.35), this condition may be rewritten as

γ ≡
∣∣∣∣ 1
2U0sl

∫ sl

0
h(s)s ds

∣∣∣∣ > 1. (2.38)

The physical parameters of the dipolar mode are restricted to satisfy (2.38) to guarantee
the capture of the vortex over the topography. The restriction depends on the ratio
between the integral of the topographic term and the vortex strength (proportional to U0).
Thus, the dipole remains trapped as long as the topographic effect is sufficiently strong to
prevent its propagation.

3. Trapped vortices over mountains and valleys

To examine the structure of the mode solutions we choose the mean depth H0 = 1 and the
Coriolis parameter f0 = 1 with arbitrary units. The radial length scale is set to c0 = 1. The
solutions are valid for any arbitrary bottom topography b(r) as long as it is axisymmetric
and isolated (i.e. it tends to zero at large r, as in figure 1). Hereafter, we consider
topographies of the form

b(s) = ±b0e−(s/st)
α

, (3.1)

where +b0 (-b0) is the height (depth) of the submarine mountain (valley), st is the
dimensionless width and α is a real number that measures the shape of the topography.
For α = 2 the topography is Gaussian; for α � 2 the topography is almost flat near the
origin and changes abruptly to zero for s > st. The relative topographic amplitudes b0/H0
are varied between ±0.3 (therefore the same for h0 = f0b0/H0).

3.1. Monopolar modes m = 0
The solutions for m = 0 are monopolar circular structures centred above a submarine
mountain or valley. The sense of rotation depends on the sign of the real amplitude
ψ̂0 of the V19 mode and the topographic terms proportional to h0/c2

0, including the
arbitrary, dimensionless constant C0. To facilitate the analysis, the solutions are evaluated
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Figure 2. Vorticity profiles for mode m = 0 over Gaussian mountains (b0 > 0) using positive (blue) and
negative (red) amplitude ψ̂0 = ±0.3. The case of a flat bottom b0 = 0 is also shown: (a) C0 = 0 and
b0/H0 = 0, 0.07, 0.2 and 0.3; (b) C0 ± 2 and fixed b0/H0 = 0.2. The vertical dashed line indicates the radius
of the interior–exterior boundary sl.

for Gaussian topographies (α = 2) with the same horizontal size as the vortices, st = sl ≡
3.8317.

Figure 2 presents the radial vorticity profiles of vortices with ±ψ̂0 over mountains with
(a) different amplitude ±b0 and fixed C0 = 0, and (b) different constant ±C0 and fixed
b0 = 0.2. The profiles of cyclones and anticyclones for a given b0 intersect at the first
zero of J0, s = 2.4048, located in the interior region. Figure 2(a) shows that the profiles
have the same value at s = 0, but are shifted upward for s > 0. Thus, the vorticity is not
symmetric with respect to the sign of ψ̂0 (compare the blue and red curves), except for
the flat bottom case b0 = 0. The radius of the zero crossing is smaller for anticyclones
than for cyclones. Beyond that distance, the vorticity values are higher when ψ̂0 > 0 in
comparison with the corresponding case with ψ̂0 < 0. At the exterior region, s > sl, the
vorticity reaches a constant value that corresponds with the negative of twice the rotation
speed of the reference system in which all vortex modes are stationary.

Figure 2(b) presents the effect of C0 /= 0 for ±ψ̂0. For C0 > 0, the vorticity profile of
the anticyclone is amplified at both the core and the exterior (relative to the case C0 = 0 in
panel a), whereas the cyclone is weakened (dashed lines). The opposite occurs for C0 < 0
(continuous curves): the anticyclone (cyclone) is weakened (amplified). On a valley (b0 <

0), the vorticity profiles are equivalent to those in figure 2 when using −ψ̂0 and the same
C0. Thus, cyclones are intensified over valleys.

To reinforce the soundness of the proposed solutions, we examine scatter plots (q
versus ψ) to verify the functional relationship between the potential vorticity and the
stream function. Figure 3 shows well-defined q–ψ curves for all the solutions presented
in figure 2: in each case, the linear relation corresponds to the interior region (s < sl)
predicted by (2.14), whereas the horizontal section is given by the exterior region (s > sl).

3.2. Dipolar modes m = 1
Now we examine the structure of steady dipolar vortices over the topography. Figure 4
shows representative vorticity distributions on a mountain (a,b) and a valley (c,d), using
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Figure 3. Scatter plots q–ψ for modes m = 0 shown in figure 2. In (a), values in the interior region are
indistinguishable for a given b0 (mountain, h0C0/c2

0 = 0). In (b), all the interior regions are superposed
(mountain, b0/H0 = 0.2).

the same vortex strength and topographic amplitude. The solutions differ on the shape
and width of the topography: in (a,c) the topography decays abruptly before sl, whereas
in (b, d) the topography is Gaussian and narrow. In all cases, the vortices are asymmetric
dipoles with different characteristics. Over the mountain, the dominant part of the dipole
at the origin may be cyclonic when the topography is abrupt (a) or anticyclonic for the
narrow mountain (b). In both cases, the exterior vorticity −2Ω is negative, which indicates
that the system has been rotated clockwise (Ω > 0) to obtain steady solutions. Over the
valley, dipoles have opposite attributes (panels c,d) so the structures rotate anticlockwise.
Figure 5 presents the scatter plots of previous examples, in which it is verified the linear
q–ψ relationship in the interior region.

To better appreciate the structure of the solutions, figure 6 presents the stream function
and the velocity fields corresponding to the dipoles shown in figure 4. The exterior vectors
indicate the rotation seen from the reference frame fixed with the dipole. We added
three ψ contours with values [0.9, 1, 1.1]ψE1(sl), which are useful to verify whether
the streamlines enclose the vortex interior or they intersect the circular boundary at sl
(magenta circle). In the former case, the vortices satisfy condition (2.38), so they are
expected to remain attached to the topography. In contrast, when the flow parameters do
not meet condition (2.38), then the vortices may escape and the solutions may not hold.
In the examples with abrupt topographies (a,c), the streamlines enclosing the vortex are
semi-circular, being slightly elongated in the vertical direction. In contrast, the streamlines
in the examples over narrow topographies in (b,d) intersect the vortex boundary so that
they may escape. The trapping condition is further explored with numerical simulations.

3.3. Numerical simulations
In this subsection, we present numerical experiments initialised with analytical vorticity
fields. The analyses are mainly devoted to the dipolar mode m = 1 on the f -plane. The goal
is to demonstrate that the analytical dipoles indeed rotate around the topography, clockwise
over mountains and anticlockwise over valleys. We evaluate the theoretical angular speed
and explore the behaviour of the solutions for different vortex and topography parameters.
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Figure 4. Relative vorticity distributions of dipolar modes over different topographies. (a,b) Mountains with
height b0 = 0.2: (a) abrupt mountain; (b) narrow mountain. (c,d) Valleys with depth b0 = −0.2: (c) abrupt
valley; (d) narrow valley. For abrupt (narrow) topographies: st = 0.8sl, α = 12, C1 = −1.59 (st = 0.4sl,
α = 2, C1 = 0.63). In all cases the vortex strength is |ψ̂1| = 0.3. The black circumference corresponds to
the interior–exterior vortex boundary at sl. The radius of the magenta circle is the length scale of the topography
st.
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Figure 5. Scatter plots q–ψ for modes m = 1 corresponding to the examples shown in figure 4:
(a) mountains; (b) valleys. Black (magenta) dots correspond to abrupt (narrow) topographies.
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Figure 6. Stream function distributions and velocity fields of the dipolar modes shown in figure 4: (a) abrupt
mountain; (b) narrow mountain; (c) abrupt valley; (d) narrow valley. Black and magenta circles as in figure 4.
Thin black lines indicate ψ-contours near the boundary with values [0.9, 1, 1.1]ψE1(sl).

3.3.1. Numerical code and flow parameters
The QG vorticity equation (2.1) is solved with a finite differences code analogous to those
used in several previous studies on flows over variable bottom topography (Zavala Sansón
& van Heijst 2014). A brief account is given here.

Initially, the vorticity distribution of a theoretical solution is prescribed on a square
grid of length L, with Cartesian coordinates {x, y| − L ≤ x ≤ L,−L ≤ y ≤ L} and spatial
resolution of 257 × 257 points. The initial stream function is obtained by inverting the
Laplacian operator. Then, the time evolution of the vorticity is solved through a third-order
Runge–Kutta scheme. Given the f -plane rotation period T = 4π/f0, the time step is chosen
as dt = T/100 to get sufficient temporal resolution for fluid motions within a ‘day’ T .
The typical duration of the simulations is 20T . Once the new relative vorticity has been
obtained, the process is repeated for subsequent times.

In all examples shown in the following, we set the basic parameters as in previous
section: f0 = 1, H0 = 1 and the dimensionless vortex radius sl = 3.8317. The scaled length
is L = 16, so the walls are sufficiently far away (about 4.2sl from the origin) to minimise
the image effect due to the free-slip boundaries. The initial condition is the vorticity field
on the f -plane, which is obtained by subtracting the exterior vorticity −2Ω to the steady
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Figure 7. Sequence of numerically calculated vorticity distributions on the f -plane of the asymmetric dipolar
vortex shown in figure 4(a). The topography is an abrupt mountain (b0 = 0.2, st = 0.8sl, α = 12). The dipole
rotation is clockwise. The predicted angular speed is −Ω = −0.0934 with a period of 5.4 days.

solutions (2.24). Thus,

ω1(s, θ, t = 0) =
{
ωI1(s, θ), s ≤ sl,

0, s ≥ sl.
(3.2)

3.3.2. Trapped vortices
The cases shown in this subsection satisfy condition (2.38), so the vortices remain trapped
over the topography. The vortex solution for a steep mountain shown in figure 4(a) (also
presented in figures 5a and 6a) is a representative example of a steady dipole rotating
around the topography on the f -plane. The trapping condition is γ = 1.88 > 1. Figure 7
presents snapshots of the calculated vorticity distribution every two days, which illustrate
the clockwise rotation of the whole structure. The expected rotation period is 5.4T . As the
initial configuration is almost recovered at day 6, this sequence shows that the numerical
dipole rotates at a slightly lower speed. The steady vortex rotation during an extended
period (20 days) is shown in Supplementary Movie 1 available at https://doi.org/10.1017/
jfm.2021.85.

We repeated the experiment for the same dipole but now over an equivalent valley (i.e.
by setting b0 = −0.2, as shown in figure 4c). The evolution of the vorticity distributions
on the f -plane is shown in figure 8. As the remaining parameters are the same (including
the trapping condition γ = 1.88), the vortex angular speed is also the same, but now the
rotation around the topography is anticlockwise. The 20 days simulation is presented in
Supplementary Movie 2.
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Figure 8. Sequence of vorticity distributions as in figure 7 but now for the dipolar mode shown in figure 4(c).
The topography is an abrupt valley (b0 = −0.2, st = 0.8sl, α = 12). The dipole rotation is anticlockwise.

A third example is presented in figure 9, which shows a similar sequence of vorticity
fields but now for a weaker dipole over a narrow, Gaussian mountain (inner circle). The
trapping is condition γ = 1.52. The vortex steadily rotates clockwise and, as expected,
the angular speed is slower than in previous case. Although the vortex remains trapped,
it becomes clear that the structure is slightly distorted as time progresses. After several
days, the main configuration remains though the structure continues eroding. Apparently,
the mountain slope affects the structure of the analytical solution, probably due to the
generation of topographic waves (in contrast with the nearly flat-topped mountain in
figure 7). This point is discussed further in § 4.

3.3.3. Escaping vortex
When the analytical solutions do not satisfy the trapping condition (2.38), the vortices may
escape away from the topography. This behaviour is shown in the sequence presented in
figure 10 for a strong vortex over a mountain with a short height (b0 = 0.1). The vortex
is sufficiently strong to overcome the topography effects, so the dipole drifts outside the
interior region at early times. The emerging dipole is asymmetric, and its trajectory is
bent towards the cyclonic side. Regardless of the fate of the dipole, it is evident that the
analytical solution does not hold.

4. Discussion and conclusions

We have derived new analytical solutions for the nonlinear problem of an inviscid, f -plane
QG flow over isolated topography with axial symmetry. The solutions consist of an
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Figure 9. Sequence of vorticity distributions for a dipolar mode with |ψ̂1| = 0.1. The topography is a narrow
Gaussian mountain (b0 = 0.2, st = 0.4sl, α = 2, C1 = 0.63). The dipole rotation is clockwise. The predicted
angular speed is −Ω = −0.0381 with a period of 13.1 days.

interior part over the topography, matched with an appropriate solution in the exterior
region, where the topography becomes flat. The interior stream function is the sum of the
azimuthal modes recently derived by Viúdez (2019a) for a 2-D flow and an axisymmetric
function φ(s) representing the effects of the topography. The vortical structures are circular
monopolar (m = 0) and dipolar (m = 1) modes. The corresponding V19 solutions are
recovered when the bottom is flat, i.e. φ(s) → 0. A family of solutions is obtained from the
competition between the vortex strength and the influence of the topographic parameters
contained in φ(s). The number of possible solutions for m = 0 is sensibly enhanced
because φ(s) is composed by a circular structure with arbitrary amplitude (h0/c2

0)C0, and
additional terms involving the shape of the topography.

To illustrate the solutions, we used an exponential submarine mountain or valley with
radial profile proportional to exp(−sα), where α is an arbitrary real number larger than
one. These topographic features may be Gaussian (α = 2) or decay abruptly (α � 2). The
solutions also depend on both the height b0 and width st of the mountain or valley. For
dipolar solutions, the topography must decay rapidly within the vortex interior.

The solutions are stationary in a reference frame that rotates with a constant angular
speed depending on the topography. Monopolar modes are a special case because the
sum of their circular flow and any other axisymmetric function is also a solution. As a
consequence, the stream function may be expressed in any rotating system determined by
a quadratic term imposed in the exterior field (a2s2, see (2.15)).

Mode 1 solutions, on the other hand, consist of asymmetric dipolar vortices whose
structure may be tuned by varying the flow parameters. The method to find the exterior
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Figure 10. Sequence of numerically calculated vorticity distributions of an asymmetric dipolar vortex (|ψ̂1| =
0.6) over a short mountain (b0 = 0.1, st = 0.4sl, α = 2). The trapping condition (2.38) is not satisfied: γ =
0.127.

field (far from the topography) is based on the procedure used originally by Chaplygin
(1903), who derived steady solutions of asymmetric dipoles travelling along circular paths.
Meleshko & van Heijst (1994) showed the equivalence of this problem with that of a
rotating cylinder immersed in a potential flow. An essential difference of the present results
is that the dipoles remain trapped over the topography while rotating as a whole around
the origin. An appropriate condition for having closed streamlines trapping the vortex
(i.e. without stagnation points) was obtained in (2.38). The topography predetermines
the rotation of the vortices. In general, dipoles rotate clockwise over mountains and
anticlockwise over valleys. The sense of rotation is related with the local ‘westward’
direction imposed by the topography: along depth contours with shallow water to the right
(for a Coriolis parameter f0 > 0). The angular speed −Ω depends on the topographic
parameters, as shown by (2.35).

The analytical solutions have been tested in two ways. First, by showing scatter plots that
illustrate the linear dependence between the potential vorticity and the stream function
predicted by (2.14). Second, through numerical simulations that solve the f -plane, QG
model initialised with analytical vorticity fields. We have presented examples of dipoles
that remain trapped as predicted while rotating steadily around a mountain or valley
(figures 7 and 8, and the supplementary movies), and also one case in which a dipole
escapes from the influence of the topography (figure 10). In the latter example, the flow
parameters did not satisfy criterion (2.38), so the self-propagating mechanism of the dipole
was strong enough to overcome the topography effects.
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A close inspection of the numerically calculated vorticity fields reveals that the shape
of trapped vortices is slightly deformed. As a consequence, there was a short delay in
the expected dipole rotation. Such effects were almost negligible over abrupt topographies
and more evident over less steep slopes (as in figure 9). The simulations indicate that flow
motions in the latter case are susceptible to perturbations that may trigger topographic
Rossby waves, which are the natural oscillations in the QG dynamics with topography
(Rhines 1969; Zavala Sansón, González-Villanueva & Flores 2010). Topographic waves
are highly dispersive and, as a result, the erosion of dipoles over gentle slopes may
be produced as the vortices radiate this type of oscillations. An equivalent process is
well-known regarding the disintegration of translating monopolar vortices on the β-plane
owing to the radiation of planetary Rossby waves (see e.g. Carnevale, Kloosterziel &
van Heijst 1991). The origin of weak perturbations in our simulations may be associated
with unavoidable numerical errors or to the resulting exterior far-field, which is slightly
modified due to the straight boundaries of the square domain. Further analytical and
numerical investigations are required to elucidate the conditions that lead to the vortex
erosion, either due to wave radiation or to inherent instabilities of the analytical solutions.

Finally, we would like to point out that the generation of trapped vortices over isolated
topography is a robust phenomenon observed in laboratory experiments. The formation
of asymmetric dipole-like vortices over a submarine obstacle was qualitatively described
in the rotating tank experiments of Carnevale et al. (1991). The structure was formed
by a cyclonic vortex drifting over a conical hill along a nearly circular trajectory and
a topographically generated anticyclonic patch over the summit. Similar experiments
using a much larger tank and velocimetry measurements, Zavala Sansón et al. (2012)
reported the formation of nonlinear, asymmetric dipoles trapped over a submerged
Gaussian mountain while rotating clockwise as a whole. The dipole asymmetry and the
subinertial angular speed found in the present solutions closely resemble the experimental
cases. For instance, the rotation periods of dipolar structures around the mountain in
two different experiments of Zavala Sansón et al. (2012) were approximately 10.6 and
4 ‘days’, where one day in the rotating platform was 30 s. The angular speeds were
approximately −0.05f0 and −0.125f0, respectively (with f0 = 0.42 s−1; see their figures
6b and 8). The angular speed of our analytical solutions is of the same order: in absolute
value, we obtain Ω between about 10−2f0 and 10−1f0. Some discrepancies are expected
because the experimental dipoles have a more irregular shape as they arise from a very
complex vortex–topography interaction. Thus, the observed vortices may not meet some
characteristics of the theoretical solutions, such as the perfectly circular shape of the dipole
atmosphere or the net-zero circulation over the mountain.

Considering the nonlinear nature of the experimental flows and the theoretical solutions,
a plausible hypothesis is that strong perturbations over mountains may generate dipolar
structures rotating clockwise. Consequently, the rotation of dipoles generated over valleys
would be anticlockwise. We hypothesise that the newly formed vortices over isolated
topography have a structure that is captured by the present solutions. This line of research
is currently under investigation (Zavala Sansón & Gonzalez 2021).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.85.
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Appendix A. Monopolar mode coefficients

The matching conditions (2.16) are written as

f00 = a0 + a1 ln sl + a2s2
l ,

− f01 = a1

sl
+ 2a2sl,

− f00 + H(sl) = 4a2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A1)

where coefficients f00 and f01 are

f00 = ψ̂0J0(sl)+
[

h0

c2
0

C0 − π

2
I2(sl)

]
J0(sl)+ π

2
Y0(sl)I1(sl), (A2)

f01 = π

2
Y1(sl)I1(sl), (A3)

with I1(sl) and I2(sl) the integrals involving the topography:

I1(sl) =
∫ sl

0
H(s′)J0(s′)s′ ds′, I2(sl) =

∫ sl

0
H(s′)Y0(s′)s′ ds′. (A4a,b)

The solution of system (A1) yields the following coefficients:

a0 = 1
4

{
f00(4 + s2

l )+ [4slf01 + 2s2
l (H(sl)− f00)] ln sl − H(sl)s2

l

}
,

a1 = 1
2 sl
[
sl( f00 − H(sl))− 2f01

]
,

a2 = 1
4(H(sl)− f00).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A5)

Appendix B. Dipolar mode coefficients

The boundary conditions (2.26) for mode m = 1 are

f10 − Ω

2c2
0

s2
l = d0 + d1 ln sl + d2s2

l ,

− f11 + |ψ̂1|J′
1(sl) sin θ − Ω

c2
0

sl = 2
U0

c0
sin θ + d1

sl
+ 2d2sl,

− f10 + H(sl)− 2Ω
c2

0
= 4d2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B1)

where f10 and f11 are

f10 =
[

h0

c2
0

C1 − π

2
I2(sl)

]
J0(sl)+ π

2
Y0(sl)I1(sl), (B2)

f11 = f01 = π

2
Y1(sl)I1(sl). (B3)
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The velocity U0 is obtained from the θ -dependent terms in the second equation in (B1):

U0 = c0

2
|ψ̂1|J′

1(sl) ≡ −c0

2
|ψ̂1|J2(sl). (B4)

Note that U0 < 0 owing to our choice of the dipole orientation (§ 2.4).
According to the solution in the rotated reference frame (2.24), the exterior vorticity

calculated with (2.25) implies that ∇2ψE1 = 4d2c2
0 = −2Ω . As a result, the terms

containing Ω in (B1) cancel out. Hence, the coefficients are

d0 = f10 + f11sl ln sl,

d1 = − f11sl,

d2 = − Ω

2c2
0
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B5)

The third equation in (B1) implies that f10 = H(sl). This condition is satisfied by
choosing the following constant C1 contained in f10 (defined by (B2)):

h0

c2
0

C1 = 1
J0(sl)

[
H(sl)+ π

2
I2(sl)J0(sl)− π

2
Y0(sl)I1(sl)

]
. (B6)
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