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We use nonparametric and parametric demand analysis to empirically estimate a credit
card-augmented monetary asset demand system, based on the Minflex Laurent flexible
functional form, and a sample period that includes the 2007–2009 global financial crisis
and the COVID-19 pandemic. We also use multivariate copulae in an attempt to capture
various patterns of dependence structures. In doing so, we relax the joint normality
assumption of the errors of the demand system and estimate the model without having to
delete one equation as is usually the practice. We show that the Minflex Laurent
copula-based demand system produces a higher income elasticity for credit card
transaction services and higher Morishima elasticities between credit card transaction
services and monetary assets compared to the traditional estimation of the Minflex
Laurent demand system. We also show that credit cards are substitutes for monetary
assets and that there is lower tail dependence between the demand for credit card
transaction services and transaction balances.

Keywords: Credit Card-Augmented Divisia Monetary Aggregates, Minflex Laurent
Functional Form, Copulae

1. INTRODUCTION

Background. According to the 2019 Diary of Consumer Payment Choice, cash,
credit cards, and debit cards have consistently made up approximately 95%
of the overall payment preferences, with the growth rate of the preference for
credit cards surpassing those for cash and other methods of payment. Indeed, the
credit card is a leading payment method among all noncash payment methods in
terms of both the number of transactions and total payment value. As shown in
Figure 1, the use of credit card transaction services, increasing at 8% per year,
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FIGURE 1. Number of noncash payments.

has led the growth in the number of payments among noncash payment methods,
and constituted more than 40% of the total number of the noncash transactions
by 2018 (see the Federal Reserve Payments Study: 2019 Annual Supplement).
Figure 2 shows that the total payment value of credit card transactions has grown
steadily since the financial crisis of 2007–2009, with an annual growth rate
of 10%.

Despite the widespread use of credit cards, credit card transaction services have
only recently been included in monetary aggregates, because of accounting con-
ventions, which do not permit adding liabilities, such as credit card balances, to
assets, such as currency and demand deposits. However, Barnett et al. (2016)
use economic aggregation theory and statistical index number theory to explicitly
measure the service flows from credit card transactions and money and produce
new definitions of the money supply, the credit card-augmented Divisia mone-
tary aggregates, currently available at the Center for Financial Stability (CFS).
In Figures 3 and 4, we highlight the differences between the simple-sum mone-
tary aggregate (Sum M1), the conventional Divisia monetary aggregate (Divisia
M1), and the credit card-augmented Divisia monetary aggregate (Divisia M1A) at
the M1 level of monetary aggregation. As can be seen from Figures 3 and 4, the
differences between the credit card-augmented Divisia M1A aggregate and the
Sum M1 and conventional Divisia M1 aggregates are more pronounced during
the COVID-19 crisis.

By including the joint (liquidity and transactions) services of credit cards and
monetary assets, the new credit card-augmented CFS Divisia monetary aggre-
gates seem conceptually more relevant to macroeconomic research as measures
of monetary services in the economy, and can shed some light on the Barnett
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FIGURE 2. Value of credit card payments.

FIGURE 3. Log level of monetary aggregates.

https://doi.org/10.1017/S1365100521000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000262


2164 JINAN LIU AND APOSTOLOS SERLETIS

FIGURE 4. Year-over-year growth rates of monetary aggregates.

critique—the measurement problems associated with the failure to find signifi-
cant relations between money and key macroeconomic variables. In this regard,
Liu et al. (2020) use cyclical correlation analysis and Granger causality tests and
find that during, and in the aftermath of the 2007–2009 global financial crisis,
the credit card-augmented Divisia measures of money are more informative when
predicting real economic activity than the conventional (CFS) Divisia monetary
aggregates. Also, Liu and Serletis (2020) conclude that the balance sheet target-
ing monetary policies after the global financial crisis should pay more attention
on the broad credit card-augmented Divisia aggregates to address economic and
financial stability.

Contribution. The main objective of this paper is to study the demand for
credit card transaction services and the liquidity services of traditional mone-
tary assets (transactions balances and checkable deposits) over a sample period
that includes the 2007–2009 global financial crisis and the COVID-19 pandemic.
Since the credit card-augmented monetary aggregates are relatively new, no
attempt has been made to systematically empirically investigate the substi-
tutability/complementarity relationship between credit card transaction services
and monetary assets. In this regard, Duca and Whitesell (1995) provide cross-
sectional evidence that credit card ownership is associated with lower holdings
of monetary transactions balances and Barnett et al. (2016, p. 2) conjecture that
“credit card services are a substitute for the services of monetary transactions
balances, perhaps to a much higher degree than the services of many of the
assets included in traditional monetary aggregates.” Barnett and Su (2019) and
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Barnett and Liu (2019) use the CAPM and CCAPM, respectively, to study how
to include credit card transaction services into liquidity measures under risk. This
is the first paper to use the microeconomics approach to empirically estimate the
demand system of the credit card-augmented monetary aggregates and thus sub-
stantiate the microeconomic foundations of the credit card-augmented monetary
aggregates.

We employ both “nonparametric” and “parametric” approaches to demand
analysis. The nonparametric approach, fully developed by Varian (1982, 1983),
deals with the raw data itself using techniques of finite mathematics. The
parametric approach follows the innovative works by Diewert (1974), Donovan
(1978), and Barnett (1978, 1980, 1983) and utilizes the flexible functional forms
approach to investigating the interrelated problems of estimation of monetary
asset demand functions and monetary aggregation. Our approach allows the
estimation of a monetary asset demand system, augmented with credit card trans-
actions services, based on the effectively globally regular Minflex Laurent flexible
functional form, introduced by Barnett (1983) and Barnett and Lee (1985). We
treat the concavity property as a maintained hypothesis to produce inference
consistent with theoretical regularity.

A feature of all of the existing monetary asset demand studies is that they
assume joint multivariate normality of the errors in the estimation of the demand
system. See, for example, Ewis and Fisher (1984), Serletis and Robb (1986),
Serletis (1988, 1991), Fisher and Fleissig (1997), Fleissig and Swofford (1997),
Serletis and Shahmoradi (2005, 2007), and Jadidzadeh and Serletis (2019), among
others. In this paper, we relax the joint normality assumption in the estima-
tion of the Minflex Laurent flexible demand system by using the vine copula
approach. The vine copula approach does not require a strictly defined covariance
matrix, and it allows the demand system errors to be from different families of
distributions. By doing so, we are able to capture the various nonlinear depen-
dence structures as well as tail dependence between the credit card transaction
services and the monetary assets. Copulae have been widely used in the finan-
cial literature—see, for example, Patton (2006), Jondeau and Rockinger (2006),
Rodriguez (2007), and Ning (2010)—and have been first introduced to the
demand systems literature by Velasquez-Giraldo et al. (2018) and more recently
by Serletis and Xu (2021).

We show that the copula-based Minflex Laurent demand system provides a
better fit to the data than when the model is estimated under the joint multivariate
normality assumption. We find that credit card transaction services are substitutes
for traditional monetary assets and there is lower tail dependence between the
demand for credit card transaction services and transaction balances, as well as
lower tail dependence between the demand for transaction balances and OCDs,
meaning that during bad times, the dependencies between those pairs of monetary
services are stronger. We find that most of the elasticities of substitution exhibit
large swings during the global financial crisis of 2007–2009 and the COVID-19
pandemic. We also find the Minflex Laurent model, when estimated under the
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joint multivariate normality assumption, tends to underestimate the income elas-
ticity of credit card transaction services, as well as the Morishima elasticities of
substitution between credit card transaction services and monetary assets.

From the perspective of monetary policy, the substitutability between credit
card transaction services and monetary assets we found in this paper provides
evidence of the necessity to use the Divisia method of aggregation to include
credit card transaction services into monetary aggregates. The current simple-
sum approach to monetary aggregation used by the Federal Reserve cannot
include credit card transaction services into monetary aggregates due to account-
ing conventions. Moreover, the simple-sum approach requires that the monetary
aggregate components are perfect substitutes for each other and the elasticities of
substitution between each other to be very high (perhaps infinite). The moderate
elasticities of substitution we find between credit card transaction services and
monetary assets provide empirical evidence of the superiority of the Divisia mon-
etary aggregation method over the simple-sum monetary aggregation method. We
also find that the Morishima elasticity of substitution between transactions bal-
ances and credit card transaction services has remained relatively stable during
the COVID-19 pandemic, but that most of the other Morishima elasticities of
substitution declined during the pandemic, indicating that the asset demand func-
tions have become more stable and predictable, enhancing the Fed’s ability to
target key monetary aggregates.

Layout. The structure of the paper is as follows. Section 2 discusses the microe-
conomic foundations of the traditional Divisia monetary aggregates and the new
credit card-augmented Divisia monetary aggregates. Section 3 presents the neo-
classical monetary problem and Section 4 discusses the data. In Section 5, we use
the nonparametric techniques of revealed preference analysis to test for consis-
tency with preference maximization and the existence of consistent new credit
card-augmented Divisia monetary aggregates. Section 6 presents the Minflex
Laurent flexible functional form and the demand system. Section 7 discusses
estimation issues and motivates the use of the copula method in the estimation
of demand systems. In Section 8, we present the estimation results. Section 9
discusses the income and price elasticities and addresses the substitutability rela-
tionship between credit card transaction services and traditional monetary assets.
Section 10 investigates the dynamics of the demand monetary services during
the COVID-19 pandemic in terms of the time-varying Morishima elasticities of
substitution. The final section concludes the paper.

2. MONETARY AGGREGATION ISSUES

2.1. Simple-sum aggregates

Central banks around the world use the simple-sum index to construct monetary
aggregates, as follows:

M =
n∑

i=1

ma
i ,
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where M is the monetary aggregate and ma
i is one of the n monetary assets of the

monetary aggregate, M. Currently, the Federal Reserve constructs two monetary
aggregates: the narrow Sum M1 and broad Sum M2 aggregates.

Although the simple-sum index has considerable advantages as an account-
ing measure of the stock of nominal monetary wealth, it has severe problems
as a monetary aggregate index to track the liquidity services in the economy.
Simple-summation monetary aggregation implies that all monetary components
are perfect substitutes, and thus are equally weighted in the final liquidity mea-
sure. Simple-summation monetary aggregation cannot distinguish the changes in
monetary service flow and the pure substitution between monetary components.
In this regard, Fisher (1922) found the simple-sum index to be the worst known
index number formula. The index number formula that Fisher found to be the
best is the Fisher ideal index. Another attractive alternative to the simple-sum
index is the (Tornqvist) discrete time approximation to the continuous Divisia
index.

2.2. Divisia aggregates

Over the years, Barnett (1978, 1980, 2016) argued that the simple-sum monetary
aggregates are consistent with economic aggregation theory only if the monetary
assets are perfect substitutes with the same user cost. However, monetary assets
yield interest while currency does not. Thus, the assumption that the simple-sum
monetary aggregates are based on is unreasonable. The Divisia monetary aggre-
gates do not assume the perfect substitution between component assets, and hence
permit different user costs of the component assets.

Because monetary assets are durable goods that do not perish during the period
from use, their prices are their user costs. The formula for the real user cost of a
monetary asset i, pa

it (the superscript a is used to denote monetary assets), derived
by Barnett (1978), can be written as

pa
it =

Rt − ra
it

1 + Rt
, (1)

where Rt is the benchmark asset rate of return, and ra
it is the own rate of return

on monetary asset i during period t. The benchmark asset is defined to provide
no services other than its expected yield, Rt, which motivates holding of the asset
solely as a means of accumulating wealth. According to Barnett et al. (2013), the
benchmark rate is the theoretical rate of return on pure capital producing no liq-
uidity services other than investment yield, and the benchmark rate should not be
less than the yield on any monetary assets that provide monetary services. It is
approximated as the upper envelope over the own rates of return on the compo-
nents of the broadest monetary aggregate, M4. The user cost of monetary asset pa

it
can also be interpreted as the opportunity cost of holding a dollar’s worth of the
ma

it asset.
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With the user cost and quantity data, the expenditure share on monetary asset
i is

sa
it =

pa
itm

a
it∑I

i=1 pa
itm

a
it

, (2)

where ma
it denotes the real balances of monetary asset i during period t. A Divisia

monetary aggregate computes the growth rate of the aggregate as the share-
weighted average of its monetary asset component growth rates as follows:

d log Mt =
I∑

i=1

sa
itd log ma

it. (3)

Barnett (1978, 1980) demonstrated that the Divisia monetary aggregates repre-
sent a superior measurement of liquidity services compared to the simple-sum
monetary aggregates. As a result, all the modern formal investigations of the
impact of money on economic activities are carried out using the Divisia mone-
tary aggregates such as Belongia (1996), Serletis and Gogas (2014), Hendrickson
(2013), Keating et al. (2019), Dai and Serletis (2019), Liu et al. (2020), and Dery
and Serletis (2021), among others. All these works show that the Divisia mone-
tary aggregates are superior to the simple-sum monetary aggregates in tracking
liquidity services and have stronger explanatory power to economic activities.
Moreover, Jadidzadeh and Serletis (2019) provide evidence that supports and rein-
forces Barnett’s (2016) assertion that we should use, as a measure of money, the
broadest Divisia M4 monetary aggregate, as opposed to narrower aggregates such
as Divisia M1 or Divisia M2. All these studies emphasize that the choice of proper
monetary measure matters in inference.

2.3. Credit card-augmented Divisia aggregates

The volume of credit card transaction services has more than doubled in the
past decade. Over 80% of American households with credit cards are currently
borrowing and paying interest on credit cards [Barnett and Su (2019)]. The
simple-sum monetary aggregates are not able to include credit card transaction
services due to accounting conventions. However, the Divisia monetary aggre-
gates measure flows of services and are not based on accounting conventions.
Using index number theory, the transaction services of credit cards and monetary
assets can be aggregated jointly.

Barnett et al. (2016) derive the credit card-augmented Divisia monetary aggre-
gates. Under the assumption of risk neutrality, they derive the user cost of credit
card transaction services, pc

lt, as

pc
lt =

elt − Rt

1 + Rt
, (4)

where elt is the expected interest on the credit card transaction l and Rt is, as
before, the rate of return on the benchmark asset. The credit card-augmented
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Divisia monetary aggregate is then computed (in growth rate form) as

d log Mt =
I∑

i=1

sa
itd log ma

it +
L∑

l=1

sc
ltd log mc

lt, (5)

where

sa
it =

pa
itm

a
it∑I

i=1 pa
itm

a
it +

∑L
l=1 pc

ltm
c
lt

,

is the user-cost-evaluated expenditure share of monetary asset, ma
it, and

sc
lt =

pc
ltm

c
lt∑I

i=1 pa
itm

a
it +

∑L
l=1 pc

ltm
c
lt

,

is the user-cost-evaluated expenditure share of credit card transaction services,
mc

lt. It is to be noted that mc
lt is the credit card transaction volume (and not the credit

card transaction balances) in period t, reflecting the liquidity services provided by
credit card transaction services—see Barnett et al. (2016) for a more detailed
discussion. Also, comparing equation (5) to equation (3), we see that the credit
card-augmented Divisia monetary aggregate has an extra term,

∑L
l=1 sc

ltd log mc
lt,

to capture the liquidity services provided by credit card transaction services.
The interest rate and risk on credit cards transactions are high and volatile.

Barnett and Su (2019) and Barnett and Liu (2019) extend the theoretical
credit card-augmented Divisia monetary aggregates under uncertainty, and more
recently Barnett et al. (2021) further extend the existing theory of monetary
services aggregation under risk to decisions under Knightian uncertainty. The
credit card user cost under risk with intertemporal nonseparability is still ongoing
research. The credit card-augmented Divisia monetary aggregates supplied by the
CFS program Advances in Monetary and Financial Measurement (AMFM) are
based on the assumption of risk neutrality as derived by Barnett et al. (2016).

According to Barnett et al. (2016), elt in equation (4) is the interest rate aver-
aged over both those consumers who maintain rotating balances, and hence pay
interest on contemporaneous credit card transactions (volumes), and also those
consumers who pay off such credit card transactions balances before the end of
the period, and hence do not pay explicit interest on the credit card transactions.
According to Barnett et al. (2016), more than 80% of the American credit card
holders pay interest on credit card transaction services, and the interest rate is as
high as 25%. For consumers with high rewards and no interest, it is beneficial to
transfer their spending to credit cards and only pay their balances before the end
of the interest-free period (convenience users). For those consumers who have
revolving outstanding balances, it would be best to not use their cards at all, as
they accrue interest charges immediately; and it would be best to pay down the
credit card debt as the interest rates on bank accounts are much lower. Telyukova
and Wright (2008) call such coexistence of debit and credit as the “credit card
debt puzzle,” and their hypothesis is simply that households need to have money
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or some liquid assets readily available for contingencies where it may be difficult
or costly to use credit.

3. THE NEOCLASSICAL MONETARY PROBLEM

We assume that the representative agent’s utility function is

U = u(c, l, x), (6)

where c is a vector of the services of consumption goods, � is leisure time, and x is
a vector of the services of conventional monetary assets and credit cards, included
in the broadest CFS credit card-augmented Divisia monetary aggregate, Divisia
M4A, and described in Table 1. We assume that the agent faces the following
maximization problem:

max
{c,l,x}

u(c, l, x) subject to q′c + wl + p′x = I, (7)

where q′ is a vector of the prices of the consumption goods, w is the price of
leisure time (assumed to be the wage rate), and I is the expenditure on the services
of consumption goods, leisure, and monetary services.

It is to be noted that our budget constraint does not include credit constraints,
since we are assuming interior solutions. If credit limits are binding, then there is
a corner solution. It is normal to assume interior solutions for the representative
consumer, aggregated over all consumers. It would be necessary to extend the
theory to include credit constraints, if applied to a smaller group of consumers,
such as low-income consumers who might borrow up to their credit limits.

4. THE DATA

Two sets of data are used in our analysis. We use the total personal consump-
tion expenditures (PCE) series and the corresponding (chain-type) price index
(PCEPI) from the Federal Reserve Bank of St. Louis FRED database. According
to the Bureau of Economic Analysis, PCE is a measure of imputed household
expenditures, and although PCE contains services such as owner-occupied hous-
ing, for which payment never really happens, it is the most commonly used series
to capture households’ expenditure. We also use the total private average weekly
hours of production and nonsupervisory employees (AWHNONAG) series and
the corresponding average hourly earnings (AHETPI) series from FRED.

Regarding the data on monetary asset and credit card services, and their user
costs, we use the recently produced data for the USA by Barnett et al. (2016),
and maintained within the CFS program Advances in Monetary and Financial
Measurement (AMFM), as shown in Table 1. It is to be noted that we are aggre-
gating over consumers, including consumers who default and consumers who
pay on time and hence pay no interest on their credit cards. The interest rate
we are using is not the higher interest rate paid only by those consumers who
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TABLE 1. Components and monetary aggregates in the USA

CFS credit card-augmented Divisia monetary aggregates

Liquid asset M1A M2MA MZMA M2A ALLA M3A M4A- M4A

x1 Transaction balances
√ √ √ √ √ √ √ √

Currency
Travelers’ checks
Demand deposits

x2 OCDs at commercial banks
√ √ √ √ √ √ √ √

+ OCDs at thrifts institutions
x3 Credit card transaction services

√ √ √ √ √ √ √ √
x4 Saving deposits at banks including

MMDAs

√ √ √ √ √ √ √

x5 Saving deposits at thrifts including
MMDAs

√ √ √ √ √ √ √

x6 Retail money market funds
√ √ √ √ √ √ √

x7 Small time deposits at commercial banks
√ √ √ √ √

x8 Small time deposits at thrift institutions
√ √ √ √ √

x9 Institutional money-market funds
√ √ √ √ √

x10 Large time deposits
√ √ √

x11 Repurchase agreements
√ √ √

x12 Commercial paper
√ √

x13 T-bills
√
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are paying interest. We are using the interest rate data on the average inter-
est collected by the credit card issuers. That interest rate is averaged over all
kinds of consumers, including those who pay on time and hence pay no inter-
est. It is lower than the interest paid only by those consumers who do pay
interest on their credit cards. For a detailed discussion of the CFS data and
the methodology for the calculation of user costs, see Barnett et al. (2016) and
http://www.centerforfinancialstability.org.

Since currency, traveler’s checks, and demand deposits have the same user
cost, we use simple summation to get the transactions balances subaggregate, x1.
Because OCDs at commercial banks and OCDs at thrift institutions have similar
user costs, we use simple summation to get the OCDs subaggregate, x2, and aver-
age the user costs of OCDs at commercial banks and OCDs at thrift institutions
to get the user cost of the x2 subaggregate, p2. Note that x3 is the real expendi-
ture with credit card transactions during a month. In the jargon of the credit card
industry, those contemporaneous expenditures are called “volumes.” That is, x3

is not the rotating real balances which contains transactions in previous periods.
Constructing these subaggregates from the original monetary components enables
us to reduce the dimension of the system.

Although the data on monetary asset quantities and user costs is available since
1967, the user cost of the credit card transaction services is only available since
July 2006. Thus, our sample period is from July 2006 to August 2020 (a total of
170 monthly observations), including the extreme economic events of the 2007–
2009 financial crisis and the 2020 COVID-19 crisis. Finally, as we require real
per capita quantities for the empirical work, we divide each quantity series by
the CPI (all items) and total population, both series obtained from the FRED
database. We also multiply the real user costs by the CPI to get nominal user costs.
In Figure 5, we show the income normalized user costs of transaction balances,
OCDs, and credit card transaction services. As can be seen, the user costs of
transaction balances and OCDs are very close, and are much higher than that of
the credit card transaction services.

5. REVEALED PREFERENCE ANALYSIS

Revealed preference methods can be applied prior to parametric demand analysis
as a means of verifying whether the data can be rationalized by a well-behaved
utility function—see Barnhart and Whitney (1988) and Fisher and Fleissig (1997).
In this section, we deal with the utility relation expressed in the direct form
equation (6), and use the nonparametric approach for demand analysis, devel-
oped by Varian (1982, 1983). This approach deals with the raw data itself,
consisting of observed prices and quantities for a set of consumer goods, using
techniques of finite mathematics—see also Swofford and Whitney (1987, 1988).
We consider monthly data on leisure, �, and real per capita data on consump-
tion, c, and real per capita data on the 13 monetary assets and credit card
transaction services, as shown in Table 1. We address three issues concerning
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FIGURE 5. Income normalized user costs of monetary assets and credit card transaction
services.

consumer behavior: (i) consistency with the generalized axiom of revealed prefer-
ence (GARP); (ii) consistency with the homothetic axiom of revealed preference
(HARP); and (iii) weak separability of the representative agent’s utility func-
tion. In doing so, we use the Demetry et al. (2020) Stata command checkax
which implements Varian’s (1982) algorithm. The command provides information
regarding the number of observations that violate the hypothesis.

As pointed out by Hjertstrand and Swofford (2019), a single violation of tests
(i)–(iii) can result in a rejection of the GARP and HARP hypothesis. Thus, besides
reporting the fraction of violations, we also follow Hjertstrand and Swofford
(2019) and use the Afriat efficiency index (AEI), introduced by Varian (1990),
to measure the goodness of fit. If AEI equals to one, then the consumer has to
spend 100% of the income to obtain the current level of utility. If AEI is less than
one, then the consumer only needs to spend a fraction of the expenditure as given
by the index to obtain the current level of utility.

5.1. GARP tests

The first problem considered is whether the utility maximization hypothesis could
be established for consumption, leisure, and the CFS credit card-augmented def-
initions of money, as shown in Table 1—M1A, M2MA, MZMA, M2A, ALLA,
M3A, M4A-, and M4A. A set of observed data on prices and quantities is con-
sistent with rational choice only if the data satisfies certain revealed preference
axioms. GARP for the entire data set is a necessary and sufficient condition for
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the utility maximization problem in (7) to have a solution. We use the Demetry
et al. (2020) Stata command checkax to implement Varian’s (1982) GARP test—
see also Hjertstrand et al. (2016). The command provides information regarding
the number of observations that violate the hypothesis. In a data set of T obser-
vations, the total possible number of GARP violations is T(T − 1)—see Demetry
et al. (2020).

In panel A of Table 2, we report the fraction of violations of the GARP test in
column 3 and the AEI values of the GARP test in column 5. As can be seen in
column 3, there is no violation of GARP for consumption, leisure, and money at
all levels of monetary aggregation, except for M1A and M4A- with the fraction of
violations of 0.02% and 0.01%, respectively. However, when we look at the AEI
values of the GARP tests in column 5, consumption, leisure, and money pass the
GARP tests at all levels of monetary aggregation.

5.2. HARP tests

Because many money demand studies (based on the parametric approach) have
used homothetic functional forms for the underlying aggregator function, we also
test the homothetic axiom of revealed preference (HARP). According to Varian
(1983), “a function f : Rn → R is homothetic if it is a positive monotonic trans-
formation of a function that is homogeneous of degree 1, that is, if f (x) ≡ g(h(x))
where h(x) is homogeneous of degree 1 and g(h) is positive monotonic.” Again,
we use the Demetry et al. (2020) Stata command checkax to implement the
HARP test as described in Varian (1983). In a data set of T observations, the
total possible number of HARP violations is T .

In panel A of Table 2, we report the fraction of violations of the HARP tests in
column 4 and the AEI values of the HARP tests in column 6. Column 4 shows that
the fraction of HARP violations is 100% for consumption, leisure, and money, at
all levels of monetary aggregation. However, when we look at the AEI values of
the GARP tests in column 6, consumption, leisure, and money satisfy the HARP
test at all monetary aggregation levels, if we allow for a 1% error (as the AEI
values of all HARP tests are 0.999).

Panel B of Table 2 shows that the fraction of violations of the HARP test is
100% at all levels of monetary aggregation. However, when we look at the AEI
values of the HARP tests in column 6, the AEI value of the HARP test for M2MA
is 1, meaning that there is no violation of HARP. Moreover, if we only allow for
errors of 0.097 or less (as MZMA has the lowest AEI value of HARP of 0.903),
then all the monetary aggregates can be rationalized by the homothetic weak sepa-
rability model. This is generally consistent with Hjertstrand and Swofford (2019)
that monetary aggregates can be approximated by homothetic preferences.

5.3. Weak separability tests

Finally, we test a number of hypotheses to see if weakly separable groupings
could be established for the CFS credit card-augmented definitions of money, as
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TABLE 2. Utility maximization and weak separability tests

A. Utility maximization

Monetary GARP HARP AEI of AEI of
aggregates Utility maximization hypothesis violations violations GARP HARP

1. M1A: u(c, l, x1, x2, x3) 0.020 100 1.000 0.999
2. M2MA: u(c, l, x1, x2, x3, x4, x5, x6) 0.000 100 1.000 0.999
3. MZMA: u(c, l, x1, x2, x3, x4, x5, x6, x9) 0.000 100 1.000 0.999
4. M2A: u(c, l, x1, x2, x3, x4, x5, x6, x7, x8) 0.000 100 1.000 0.999
5. MALL: u(c, l, x1, x2, x3, x4, x5, x6, x7, x8, x9) 0.000 100 1.000 0.999
6. M3A: u(c, l, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) 0.000 100 1.000 0.999
7. M4A-: u(c, l, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 0.010 100 1.000 0.999
8. M4A: u(c, l, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13) 0.000 100 1.000 0.999

B. Weak separability

Monetary GARP HARP AEI of AEI of
aggregates Separability hypothesis violations violations GARP HARP

1. M1A: u(c, l, g(x1, x2, x3)) 0.020 100 1.000 0.992
2. M2MA: u(c, l, g(x1, x2, x3, x4, x5, x6)) 0.380 100 0.997 1.000
3. MZMA: u(c, l, g(x1, x2, x3, x4, x5, x6, x9)) 0.070 100 0.998 0.903
4. M2A: u(c, l, g(x1, x2, x3, x4, x5, x6, x7, x8)) 0.440 100 0.997 0.984
5. MALL: u(c, l, g(x1, x2, x3, x4, x5, x6, x7, x8, x9)) 0.040 100 0.999 0.936
6. M3A: u(c, l, g(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)) 0.100 100 0.997 0.933
7. M4A-: u(c, l, g(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)) 0.230 100 0.996 0.921
8. M4A: u(c, l, g(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13)) 0.160 100 0.997 0.916

Note(s): Sample period, monthly July 2006–August 2020 (T = 170).
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shown in Table 1—M1A, M2MA, MZMA, M2A, ALLA, M3A, M4A-, and M4A.
Among all the monetary aggregates, the M1A aggregate has the smallest fraction
of violations, that is 0.020. All the other groupings of assets fail the separability
tests with a larger number of violations. However, when we look at the AEI values
of the GARP tests as shown in column 5, if we allow for an error of 4% (as M4A-
has the lowest AEI value of GARP), then all monetary aggregates satisfy GARP,
suggesting that all monetary aggregates are weakly separable from consumption
and leisure.

It is to be noted that testing the overall data set and subgroup data set given
in Panel B of Table 2 are only necessary tests but not sufficient. It may well be
that weak separability is violated although the GARP tests in Panel B are sat-
isfied approximately, that is, with a large AEI. With this in mind, considering
that the M1A monetary aggregate appears generally consistent with a representa-
tive economic agent maximizing a separable utility function, we assume that the
economic agent’s direct utility function (6) is weakly separable as follows:

U = u(c, l, g(x1, x2, x3)),

so that we can focus on the details of the demand for the services of monetary
assets and credit cards, ignoring the services of consumption goods, c, and leisure,
�, as in the following monetary problem:

max
{x1,x2,x3}

g (x1, x2, x3) subject to p1x1 + p2x2 + p3x3 = y,

where p1, p2, and p3 are the user costs corresponding to x1, x2, and x3, respectively,
and y is the expenditure on the services of monetary assets and credit cards, x1, x2,
and x3, determined in the first stage (that of budgeting) of the (implicit) two-stage
optimization.

In what follows, we apply the parametric approach for demand analysis
and investigate the substitutability/complementarity relation between traditional
monetary assets and credit card transaction services. In particular, we model
the demand system for the monetary assets that are included in the narrowest
credit card-augmented M1A monetary aggregate—transaction balances (cur-
rency, traveler’s checks, and demand deposits), x1, other checkable deposits
(OCDs) at commercial banks and thrift institutions, x2, and credit card transaction
services, x3.

6. PARAMETRIC DEMAND ANALYSIS

The parametric approach to demand analysis requires that we postulate parametric
forms for the aggregator function and fit the derived demand functions to observed
data. The estimated demand functions can then be used to estimate price and sub-
stitution elasticities. We use the indirect utility function to derive the demand
system in budget share form, using Roy’s identity, because our estimation is sig-
nificantly simplified [see Barnett (1983)]. Also, as Varian (1982, p. 945) put it,
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the parametric approach “will be satisfactory only when the postulated paramet-
ric forms are good approximations to the ‘true’ demand functions.” We tackle this
problem by using a flexible functional form.

6.1. The minflex Laurent flexible functional form

We follow Barnett (1983) and Barnett and Lee (1985) and use the Minflex Laurent
reciprocal indirect utility function to approximate the dual direct utility function,
g (x1, x2, x3). The Minflex Laurent reciprocal indirect utility function is written as
a function of income normalized prices, νi = pi/y, for i = 1, 2, 3, as

h (v) = c + 2δ′√v +
3∑

i=1

diiνi +
3∑

i=1

3∑
j=1,j�=i

d2
ijν

1
2

i ν
1
2

j −
3∑

i=1

3∑
j=1,j�=i

β2
ijν

− 1
2

i ν
− 1

2
j , (8)

where v is the vector of income normalized prices, c is a constant, and δ =
(δ1, δ2, δ3)′, dij and βij are all parameters.

By applying Roy’s identity, the share equations of the monetary assets and
credit card transaction services can be obtained

si =
δiν

1
2

i + diiνi +
n∑

j=1,j�=i
d2

ijν
1
2

i ν
1
2

j +
n∑

j=1,j�=i
β2

ijν
− 1

2
i ν

− 1
2

j

δ′√v +
n∑

i=1
diiνi +

n∑
i=1

n∑
j=1,j�=i

d2
ijν

1
2

i ν
1
2

j +
n∑

i=1

n∑
j=1,j�=i

β2
ijν

− 1
2

i ν
− 1

2
j

, (9)

for i = 1, 2, 3. Because the share equations are homogeneous of degree zero in the
parameters, a normalizing restriction is needed—see Barnett (1983). We follow
Barnett and Lee (1985) and impose the normalization

3∑
i=1

dii + 2
3∑

i=1

δi +
3∑

i=1

3∑
j=1,j�=i

d2
ij −

3∑
i=1

3∑
j=1,j�=i

β2
ij = 1.

Barnett (1983) has shown that the above reciprocal indirect utility function
has more free parameters than is needed to acquire local flexibility in the
Diewert (1976) sense. To reduce the number of free parameters, without los-
ing the flexibility property, we follow Barnett (1983) and impose the following
restrictions:

dij = dji , βij = βji, dijβij = 0, i �= j.

Therefore, we obtain the minimal of the Minflex Laurent model, in the sense that
imposing any further restrictions would eliminate its flexibility property.

6.2. Elasticity measures

In the demand systems approach to the estimation of economic relationships,
the primary interest, especially in policy analysis, is in the elasticity measures.
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Once the demand system is estimated, we can calculate different elasticity mea-
sures from the Marshallian demand functions, xi(v), i = 1, 2, 3—see Barnett and
Serletis (2008) for more details. In particular, to assess how changes in expendi-
ture affect the quantities demanded for each asset, for each asset we compute the
income elasticity, ηiy, as

ηiy = y

xi

∂xi

∂y
.

We can also compute the Marshallian demand elasticities, ηij, as

ηij = ∂xi

∂vj

vj

xi
, i, j = 1, 2, 3.

In addition, we can use the Allen–Uzawa and Morishima elasticities of sub-
stitution to investigate substitutability/complementarity relationships among the
assets. The Allen elasticity provides comparative static information about the
effect of price changes on absolute demand shares. Following Serletis and Feng
(2010), the Allen partial elasticity of substitution can be calculated as

σ a
ij = ηiy + ηij

sj
,

where sj is the share of asset xj. If σ a
ij > 0 (that is, an increase in the price of

xj induces an increase in the optimal quantity demanded of xi), then xi and xj

are Allen–Uzawa (net) substitutes. Alternatively, if σ a
ij < 0, then they are Allen–

Uzawa (net) complements. The Allen elasticities are symmetric, in other words,
σ a

ij = σ a
ji , for all i and j.

However, the Allen–Uzawa elasticity of substitution may be uninformative in
the case with more than two goods—see Blackorby and Russell (1989) for more
details. In that case, the Morishima elasticity of substitution is the correct measure
of substitution. The Morishima elasticity of substitution, σ m

ij , can be calculated as

σ m
ij = sj

(
σ a

ij − σ a
jj

)
,

and looks at the impact on the ratio of two assets, xi/xj, when there is a change
in the price of asset j. Assets will be Morishima substitutes (σ m

ij > 0) if an
increase in pj causes xi/xj to increase and Morishima complements (σ m

ij < 0) if
an increase in pj causes xi/xj to decrease.

7. ESTIMATION MATTERS

7.1. Stochastic specification

In order to estimate the demand system (9), a stochastic version is specified,
assuming that the observed share in the ith equation deviates from the true share
by a disturbance term εi. It is typically assumed that εt = (ε1t, ε2t, ε3t)

′ is a vector
of disturbance terms from a jointly normal distribution. Then the density function
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of s = (s1, s2, s3) is

f (s) =
3∏

i=1
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⎞⎟⎟⎟⎠
= f (ε1)f (ε2)f (ε3), (10)

where f (εi) is the density function of εi. The corresponding log-likelihood
function is

L (θ , f ) = ln f (ε1) + ln f (ε2) + ln f (ε3), (11)

where θ represents all the parameters in the Minflex Laurent demand system.

7.2. Traditional estimation

The traditional approach to demand systems estimation further assumes that the
elements of εt follow a joint standard normal distribution. Because the sum of
the shares equals 1, the demand system as shown in equation (9) is a singular
system and there is singularity in the covariance matrix of the residuals under
the joint normality assumption. The singularity of the distribution of εt is due
to the fact that the components of εt identically add up to zero. It is also to
be noted that recently Serletis and Xu (2020) address the estimation of singular
demand systems with heteroscedastic disturbances, relaxing the homoscedasticity
assumption and instead assuming that the covariance matrix of the errors of the
demand system is time-varying.

Since Barten (1969), to estimate the demand system and the corresponding log-
likelihood function (11), one of the share equations in (9) is arbitrarily deleted.
That is, one of ln f (εi) is deleted from the log-likelihood function (11) due to the
assumption of joint normality and the resulting vector has a non-singular distribu-
tion. As Barten (1969) shows, under the joint normality assumption, the parameter
estimates obtained by trace minimization are invariant to the equation deleted.

7.3. A copula approach

The joint normality assumption is restrictive. For monetary assets and credit card
transaction services, it is likely that there are dependencies among the disturbance
terms, εi, i = 1, 2, 3, and, moreover, such dependence structures could be non-
linear. Copulae are a powerful tool for modeling nonlinear dependence between
random variables, and in particular dependence in the tails of the distributions
(known as “tail dependence”).

According to Sklar (1973), copulae can be used to express a multivariate dis-
tribution in terms of its marginal distributions. In particular, we can use copulae
to piece together joint distributions when only marginal distributions are known
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(Trivedi and Zimmer (2007 p. 11)). Let F12(ε1, ε2) be an unknown joint dis-
tribution function of (ε1, ε2). Then there is a unique copula function, C, such
that

F12(ε1, ε2) = C (F1(ε1), F2(ε2)) = C(u1, u2),

where u1 = F1(ε1) and u2 = F2(ε2) are the marginal cumulative distribution
functions of ε1 and ε2, respectively. The joint density function f12(ε1, ε2) is

f12(ε1, ε2) = ∂2F12(ε1, ε2)

∂ε1∂ε2
, (12)

= ∂2C(u1, u2)

∂u1∂u2

∂F1(ε1)

∂ε1

∂F2(ε2)

∂ε2

= c(u1, u2)f1(ε1)f2(ε2),

where c(u1, u2) = ∂2C(u1, u2)/∂u1∂u2 and f1(ε1) and f2(ε2) are the probability
density functions of F1(ε1) and F2(ε2), respectively. For independent copulae,
C(u1, u2) = u1u2 and c(u1, u2) = 1.

Let ε = (ε1, ε2, ε3) ∼ F with marginal distribution functions F1(ε1), F2(ε2), and
F3(ε3) and the corresponding density functions f1(ε1), f2(ε2), and f3(ε3), respec-
tively. According to Aas and Berg (2009, p. 6) and Brechmann and Schepsmeier
(2013, p. 3), by recursive conditioning we can write

f (ε1, ε2, ε3) = f3(ε3)f (ε2|ε3)f (ε1|ε2, ε3), (13)

f (ε2|ε3) = f (ε2, ε3)

f3(ε3)
, (14)

f (ε1|ε2, ε3) = f (ε1, ε2, ε3)

f3(ε3)f (ε2|ε3)
= f (ε1, ε2|ε3)

f (ε2|ε3)
. (15)

By Sklar’s theorem, (12), we have

f (ε2, ε3) = c2,3(F2(ε2), F3(ε3))f2(ε2)f3(ε3). (16)

Plugging equation (16) into equation (14) yields

f (ε2|ε3) = f (ε2, ε3)

f3(ε3)
(17)

= c2,3(F2(ε2), F3(ε3))f2(ε2)f3(ε3)

f3(ε3)

= c2,3(F2(ε2), F3(ε3))f2(ε2).
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Similarly, from equation (15) and equation (12), we obtain

f (ε1|ε2, ε3) = f (ε1, ε2|ε3)

f (ε2|ε3)
(18)

= c1,2|3(F(ε1|ε3), F(ε2|ε3))f (ε1|ε3)f (ε2|ε3)

f (ε2|ε3)

= c1,2|3(F(ε1|ε3), F(ε2|ε3))f (ε1|ε3)

= c1,2|3(F(ε1|ε3), F(ε2|ε3))
f (ε1, ε3)

f3(ε3)

= c1,2|3(F(ε1|ε3), F(ε2|ε3))
c1,3(F1(ε1), F3(ε3))f1(ε1)f3(ε3)

f3(ε3)

= c1,2|3(F(ε1|ε3), F(ε2|ε3))c1,3(F1(ε1), F3(ε3))f1(ε1),

where F(ε1|ε3) = ∂C13(ε1, ε3)/∂ε3 and F(ε2|ε3) = ∂C23(ε2, ε3)/∂ε3—see Aas and
Berg (2009, p. 6). The three-dimensional joint density as shown in equation (13)
can, therefore, be represented in terms of bivariate copulae C1,3, C2,3, and C1,2|3
with densities c1,3, c2,3, and c1,2|3, respectively. These pair copulae can be chosen
independently of each other to achieve a wide range of different dependence struc-
tures. By carefully choosing component copulae C1,3, C2,3, and C1,2|3 and their
mixture, we can construct a model that is simple yet flexible enough to generate
most dependence patterns in the data.

The density function for the Minflex Laurent copula demand system can be
derived by plugging equations (17) and (18) into equation (13) to obtain

f (ε1, ε2, ε3) = f1(ε1)f2(ε2)f3(ε3) (19)

× c2,3(F2(ε2), F3(ε3))

× c1,3(F1(ε1), F3(ε3))c1,2|3(F(ε1|ε3), F(ε2|ε3)).

The corresponding log-likelihood function is

L (θ , f ; α) = ln f1(ε1) + ln f2(ε2) + ln f3(ε3) (20)

+ ln c2,3(F2(ε2), F3(ε3))

+ ln c1,3(F1(ε1), F3(ε3)) + ln c1,2|3(F(ε1|ε3), F(ε2|ε3)),

where θ represents (as before) all the parameters in the Minflex Laurent demand
system and α the parameters in the copulae functions. We assume that each of
ε1, ε2, and ε3 follows a univariate normal distribution, that is ε1 ∼ N(0, σ 2

1 ), ε2 ∼
N(0, σ 2

2 ), and ε3 ∼ N(0, σ 2
3 ).

According to Sklar’s theorem (see equation (12)), when ε1, ε2, and ε3 are inde-
pendent, c1,3(F1(ε1), F3(ε3)), c2,3(F2(ε2), F3(ε3)), and c1,2|3(F(ε1|ε3), F(ε2|ε3)) are
all equal to 1. When each of ε1, ε2, and ε3 is following a standard normal distri-
bution and ε1, ε2, and ε3 are independent of each other, the joint density function
in equation (19) collapses to (10) and the log-likelihood function (20) collapses
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to (11). Therefore, the estimation of the Minflex Laurent demand system under the
joint normality assumption for the errors is a special case of the Minflex Laurent
copula demand system.

As Berndt and Savin (1975, p. 937) put it, “by singular equation systems we
mean systems in which the sum of the regressands at each observation is equal to
a linear combination of certain regressors.” By relaxing the assumption of joint
normality in the disturbance terms, we allow nonlinear dependence across the
disturbance terms of the demand system equations, and the sum of the regressands
at each observation is no longer a linear combination of certain regressors, but a
nonlinear combination of certain regressors. Therefore, the distribution of ε t is
not singular when we allow nonlinear dependence across the disturbance terms
of the demand system equations. Thus, we do not need to arbitrarily delete any
equation in our maximum likelihood estimation of equations (9) to get a non-
singular distribution.

The estimates of our Minflex Laurent copula demand system are obtained
by solving the score equations ∂L/∂φ = 0, where φ = (θ , α) represents all the
parameters in the demand system and the copulae. These equations will be non-
linear in general, but standard quasi-Newton iterative algorithms are available
in most matrix programming languages. Let the solution be φ̂FML. According to
Trivedi and Zimmer (2007, p. 57), by standard likelihood theory under regularity
conditions, φ̂FML is consistent for the true parameter vector φ and its asymptotic
distribution is given by

√
n

(
φ̂FML − φ

) d−→N
[

0, −
(

p lim
1

n

∂2L (φ )

∂φ∂φ′

)−1

φ

]
. (21)

Quasi-likelihood estimation is preferred as it allows for possible misspecification
of the copula and the “sandwich” variance estimator is consistent.

The construction of the three-dimensional dependence copula we described
above from equations (13) to (19) is called pair-copula construction (PCC), origi-
nally proposed by Joe (1996) and later discussed in detail by Bedford and Cooke
(2001, 2002) and Kurowicka and Cooke (2006). The PCC is hierarchical in nature.
The modeling scheme is based on a decomposition of a multivariate density into
a cascade of bivariate copulae densities. For a κ-dimensional problem, the PCC
allows for the free specification of κ(κ − 1)/2 copulae. The bivariate copulae may
be from any family and several families may well be mixed in one PCC.

It is to be noted that a different method for building higher dimensional cop-
ulae, the nested Archimedean construction (NAC), is also commonly used. For
example, Serletis and Xu (2021) use NAC in their investigation of interfuel sub-
stitution in the USA with the Minflex Laurent demand system. However, the NAC
only allows for the modeling of up to κ − 1 bivariate copulae. Aas and Berg
(2009) compare the nested Archimedean construction and the pair-copula con-
struction and show that the former is much more restrictive than the latter in two
respects. In particular, the NAC has strong limitations on the degree of depen-
dence in each level of the NAC, and all the bivariate copulae in this construction

https://doi.org/10.1017/S1365100521000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000262


CREDIT CARDS AND MONETARY AGGREGATION 2183

have to be Archimedean. They claim that the PCC is more suitable than the NAC
for high-dimensional modeling.

The ways to write a trivariate probability density function in terms of the
conditional probability density functions and univariate probability density func-
tions are not unique. We first have to choose which variables to join at the first
level of the PCC. According to Aas and Berg (2009, p. 646), in empirical anal-
ysis, we usually join the variables that have the strongest tail dependence first.
Having chosen the order of the variables at the first level, we then can determine
which factorization to use. We discuss the steps of choosing copulae in detail in
Section 8.2.

8. EMPIRICAL EVIDENCE

8.1. Traditional estimation

All the estimations are performed in RATS 10.0. We first use the maximum log-
likelihood estimation method to estimate the Minflex Laurent demand system
based on the joint standard normality distribution assumption as shown in equa-
tion (11). We present the parameter estimates (together with p-values) in column
2 of Table 3. To check whether the assumption of joint normality of the residuals
holds, we perform the Shapiro–Wilk (1965) normality test. The data reject the
null hypothesis of the joint normal distribution of ε1, ε2, and ε3 with a p-value of
0.000. In other words, ε1, ε2, and ε3 are not jointly independent but are correlated.

In column 2 of Table 4, we present the linear correlation coefficients of the
(ε1, ε2), (ε1, ε3), and (ε2, ε3) pairs, conditional on the estimates of θ in equation
(11). As can be seen, the linear correlation coefficients of the (ε1, ε2), (ε1, ε3),
and (ε2, ε3) pairs are −0.757, 0.024, and −0.671, respectively. We find a sharp
increase in the linear correlation coefficients of (ε1, ε3) and (ε2, ε3) over the
recession periods compared to the correlation coefficients over the non-recession
period. Moreover, the sign of the correlation between ε1 and ε3 switched from
0.087 in the non-recession period to −0.524 in the recession period.

Poon et al. (2004) summarizes that the conventional dependence measure,
the linear correlation coefficient, calculated as the average of deviations from
the mean, assumes a linear relationship between variables which follow a joint
Gaussian distribution. The risk of joint extreme events could be underestimated.
Moreover, it cannot distinguish between positive and negative returns, neither the
large nor small values. Alternatively, both Kendall’s τ and Spearman’s ρ statistics
can describe the nonlinear tail dependence structure. Kendall’s τ is defined as

ρτ (ε1, ε2) = Pr[(ε1
1 − ε2

1)(ε1
2 − ε2

2) > 0] − Pr[(ε1
1 − ε2

1)(ε1
2 − ε2

2) < 0],

where (ε1
1, ε1

2) and (ε2
1, ε2

2) are two independent pairs of random variables. The first
term on the right, Pr[(ε1

1 − ε2
1)(ε1

2 − ε2
2) > 0], is referred to as Pr[concordance] and

the second term, Pr[(ε1
1 − ε2

1)(ε1
2 − ε2

2) < 0], as Pr[discordance]. Thus,

ρτ (ε1, ε2) = Pr [concordance] − Pr [discordance],
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TABLE 3. Minflex Laurent parameter estimates

Assets
1 = transaction balances
2 = OCDs at commercial banks and thrift institutions
3 = credit card transaction services

Parameter Normal Clayton Frank Mixture

δ1 0.362 (0.000) 0.316 (0.012) 5.406 (0.000) 0.458 (0.000)
δ2 0.000 (1.000) 0.000 (1.000) 11.120 (0.323) 0.000 (1.000)
δ3 0.000 (1.000) 0.027 (0.992) 0.056 (0.989) 0.041 (0.877)
d11 0.000 (1.000) 8.276 (0.591) 0.447 (0.678) 0.001 (0.999)
d12 0.000 (0.045) −0.228 (0.000) −0.076 (0.000) 0.106 (0.000)
d13 0.000 (0.000) −0.000 (0.525) 0.000 (0.000) −0.003 (0.000)
d22 0.109 (0.070) 0.086 (0.829) 20.131 (0.000) 0.123 (0.540)
d23 0.000 (0.998) 0.000 (0.000) 0.000 (0.922) 0.006 (0.584)
d33 0.203 (0.010) 0.182 (0.899) 54.960 (0.000) 0.199 (0.519)
β12 0.052 (0.026) −0.000 (0.000) 0.000 (0.000) 0.001 (0.000)
β13 −0.126 (0.000) 0.119 (0.000) −6.524 (0.000) 0.121 (0.000)
β23 0.000 (0.998) 0.007 (0.000) −3.905 (0.000) 0.001 (0.584)
α1 0.000 (0.920) 15.700 (0.000) 33.710 (0.000)
α2 0.918 (0.000) 81.082 (0.000) 28.485 (0.000)
α3 27.652 (0.000) 27.976 (0.000) 287.575 (0.000)
function value 927.762 1710.448 1104.146 1710.808
AIC value −1921.523 −3384.897 −2172.292 −3385.615
Note(s): Sample period, monthly July 2006–August 2020 (T = 170).
Numbers in parentheses are p-values.

TABLE 4. Bivariate dependence

Series Correlation Kendall Spearman

A. Full sample

(ε1,ε2) −0.757 −0.602 −0.824
(ε1,ε3) 0.024 −0.111 −0.040
(ε2,ε3) −0.671 −0.287 −0.407

B. Non-recession period
(ε1,ε2) −0.833 −0.624 −0.842
(ε1,ε3) 0.087 −0.168 −0.077
(ε2,ε3) −0.624 −0.209 −0.310

C. Recession period
(ε1,ε2) −0.197 −0.268 −0.277
(ε1,ε3) −0.524 −0.489 −0.394
(ε2,ε3) −0.732 −0.243 0.533
Note(s): Sample period, monthly July 2006–August 2020 (T = 170).
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FIGURE 6. Scatter plot of ε1 and ε2.

FIGURE 7. Scatter plot of ε1 and ε3.

is a measure of the relative difference between the two random variables.
Spearman’s ρ is defined as

ρs(ε1, ε2) = ρ(F1(ε1), F2(ε2)),

where ε1 and ε2 are two random variables, and F1 and F2 are the correspond-
ing distribution functions. Spearman’s ρ is the linear correlation between F1(ε1)
and F2(ε2), which are integral transforms of ε1 and ε2. Both Kendall’s τ and
Spearman’s ρ use the rankings of the data to measure the relationship between
two variables, while the linear correlation coefficient uses actual values to mea-
sure the relationship between the two variables. As demonstrated by Embrechts
et al. (2002), rank correlations are more robust measures of dependence than
linear correlation.

In columns 3 and 4 of Table 4, we report the Kendall’s τ and Spearman’s ρ

rank correlation coefficients, respectively. As can be seen, they are different across
pairs. There is negative dependence for almost all the pairs and the dependence
is the strongest between ε1 and ε2, with Kendall’s τ of −0.602 and Spearman’s ρ

of −0.824. The potential source of dependence can be unmeasured factors such
as shocks and innovations in the demand of each good. To explore the depen-
dence structure and the choice of the appropriate copula to use, we scatter plot
the (ε1, ε2), (ε1, ε3), and (ε2, ε3) pairs in Figures 6, 7, and 8. Clearly, the (ε1, ε2)
and (ε1, ε3) pairs exhibit negative dependence. Moreover, Figures 6 and 7 show
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FIGURE 8. Scatter plot of ε2 and ε3.

that the observations are clustered at the very left and these clusters are quite size-
able, indicating there could be lower tail dependence in the (ε1, ε2) and (ε1, ε3)
pairs. Figure 8 shows slight right tail dependence; the clustering of observations
and the tail dependence structure are less obvious than those of Figures 6 and 7.

The necessity to go beyond the traditional estimation of demand systems to
address dependence structures in the error terms has already been recognized.
For example, Serletis and Isakin (2017) and Serletis and Xu (2020), relax the
homoscedasticity assumption, assume that the covariance matrix of the errors of
the demand system is time-varying, and use time-varying parameterizations of the
variance model, such as the VECH, BEKK, and dynamic conditional correlation
(DCC) parameterizations. Moreover, Serletis and Xu (2019) use Markov regime
switching to accommodate structural breaks in the variance and Serletis and Xu
(2021) use the copula approach in their investigation of interfuel substitution. In
fact, in the finance literature, there is a general consensus on the contagion phe-
nomenon, known as a significant increase in cross-market linkages after a shock
to one market, especially a statistically significant increase in correlations over
economic contractions. As Bae et al. (2003) have pointed out, the intuition for
such contagion phenomena is that extremely bad events lead to excess volatility
and even panics.

8.2. The copula approach

An appropriate copula to use is one which best captures dependence features of
the outcome variables. The important consideration when selecting an appropri-
ate copula is whether dependence is accurately represented. Since Figures 6 and 7
show clear lower tail dependence, copulae that can only capture upper tail depen-
dence, such as the Gumbel (1960) and Joe (1993) copulae might be inappropriate.
In what follows , we focus on the Clayton (1978) copula, the Frank (1979) copula,
and the mixture of the Clayton and Frank copulae. As the Clayton copula is only
able to capture positive dependence, to be able to capture the negative dependence
of the (ε1, ε2) and (ε1, ε3) pairs, we transform F1(ε1) to 1 − F1(ε1), where F1 is
the CDF of ε1 ∼ N(0, σ 2

1 ).
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It is also important to note at this stage that the dependence measures discussed
so far are conditional on the explanatory variables and parameter estimates of
the Minflex Laurent demand system from equations (9) to (11). Consequently,
dependence conditional on the explanatory variables and parameter estimates of
the Minflex Laurent copula demand system as shown in equation (20) can be
different. As pointed out by Trivedi and Zimmer (2007, p. 79), “a valid empirical
approach is to estimate several different copulae and choose the model that yields
the largest penalized log-likelihood value.” In what follows, we choose the AIC
value as a measure of the goodness of fit.

8.2.1. Clayton copula. Consider the pair (ε1, ε2), where ε1 ∼ N(0, σ 2
1 ), ε2 ∼

N(0, σ 2
2 ), and u1 = F1(ε1) and u2 = F2(ε2) are the cumulative distribution func-

tions of ε1 and ε2, respectively. The bivariate Clayton copula of (ε1, ε2) is

C(u1, u2, α) = (u−α
1 + u−α

2 − 1)−1/α . (22)

The probability density function (PDF) for the bivariate Clayton copula is

c(u1, u2; α) = (1 + α)(u−α
1 + u−α

2 − 1)−
1
α −2

(u1u2)α+1
, (23)

where α > 0. The Clayton copula can capture positive lower tail dependence but
cannot capture negative dependence nor upper tail dependence.

Given the functional form of the Clayton copula, as shown in equations (22)
and (23), using pair-copula construction the PDF of the trivariate Clayton copula
can be derived according to equation (19). Specifically, according to equation
(23), we have

c1,3(F1(ε1), F2(ε3)) = (1 + α1)(u−α1
1 + u−α1

3 − 1)−
1
α1

−2

(u1u3)α1+1
, (24)

and

c2,3(F1(ε2), F3(ε3)) = (1 + α2)(u−α2
2 + u−α2

3 − 1)−
1
α2

−2

(u2u3)α2+1
, (25)

where ui = Fi(εi) and Fi is the cumulative distribution function (CDF) of εi ∼
N(0, σ 2

i ) for i = 1, 2, 3. α1 and α2 are the dependence parameters in c1,3 and c2,3.
Based on equation (23), we also have

c1,2|3(F(ε1|ε3), F(ε2|ε3)) = (1 + α3)(u−α3
4 + u−α3

5 − 1)−
1
α3

−2

(u4u5)α3+1
, (26)

where

u4 = F(ε2|ε3) = ∂C23(ε2, ε3)

∂ε3
= u−α2−1

3 (u−α2
3 + u−α2

2 − 1)−1/α2−1,
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and

u5 = F(ε1|ε3) = ∂C13(ε1, ε3)

∂ε3
= u−α1−1

3 (u−α1
3 + u−α1

1 − 1)−1/α1−1.

Plugging equations (24), (25), and (26) into (19), yields the PDF function of
the Minflex Laurent Clayton copula demand system

f (ε1, ε2, ε3) = f1(ε1)f2(ε2)f3(ε3) × c1,3(F1(ε1), F3(ε3)) (27)

× c2,3(F2(ε2), F3(ε3)) × c1,2|3(F(ε1|ε3), F(ε2|ε3))

= f1(ε1)f2(ε2)f3(ε3) × (1 + α1)(u−α1
1 + u−α1

3 − 1)−
1
α1

−2

(u1u3)α1+1

× (1 + α2)(u−α2
2 + u−α2

3 − 1)−
1
α2

−2

(u2u3)α2+1

× (1 + α3)(u−α3
4 + u−α3

5 − 1)−
1
α3

−2

(u4u5)α3+1
,

where εi ∼ N(0, σ 2
i ), fi(εi) are the PDFs, and ui = Fi(εi) are the corresponding

CDFs of εi, i = 1, 2, 3. αi are the copulae dependence parameters.

8.2.2. Frank copula. The cumulative distribution function of the Frank (1979)
copula of (ε1, ε2) is

C(u1, u2; α) = −α−1 ln

(
1 − e−α − (1 − e−αu1 )(1 − e−αu2 )

1 − e−α

)
.

The PDF for the Frank copula is

c(u1, u2; α) = α(1 − e−α)e−α(u1+u2)

[1 − e−α − (1 − e−αu1 )(1 − e−αu2 )]2
,

where the dependence parameter α can capture symmetric positive lower and
upper tail dependence. In particular, values of α < 0 and α > 0 correspond to
negative and positive dependence, respectively. When α approaches 0, u1 and u2

are independent.
Following a similar procedure as for the Clayton copula, we can obtain the PDF

function of the Minflex Laurent Frank copula demand system

f (ε1, ε2, ε3) = f1(ε1)f2(ε2)f3(ε3) × c1,3(F1(ε1), F3(ε3)) (28)

× c2,3(F2(ε2), F3(ε3)) × c1,2|3(F(ε1|ε3), F(ε2|ε3))

= f1(ε1)f2(ε2)f3(ε3) × α1(1 − e−α1 )e−α1(u1+u3)

[1 − e−α1 − (1 − e−α1u1 )(1 − e−α1u3 )]2

× α2(1−e−α2 )e−α2(u2+u3)

[1−e−α2−(1−e−α2u2 )(1−e−α2u3 )]2

× α3(1−e−α3 )e−α3(u4+u5)

(1−e−α3 − (1−e−α3u4 )(1−e−α3u5 ))2
,
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where

u4 = F(ε2|ε3) = ∂C23(ε2, ε3)

∂ε3
= (1 − e−α2u2 )e−α2u3

−(1 − e−α2u2 )(1 − e−α2u3 ) − e−α2 + 1
,

and

u5 = F(ε1|ε3) = ∂C13(ε1, ε3)

∂ε3
= (1 − e−α1u1 )e−α1u3

−(1 − e−α1u1 )(1 − e−α1u3 ) − e−α1 + 1
.

8.2.3. Clayton–Frank copula. The scatter plots of (ε1, ε2), (ε1, ε3), and (ε2, ε3) in
Figures 6, 7, and 8 reveal different patterns of clusters of observations, suggesting
that a finite mixture of copulae may provide a better fit than any single copula.
Each mixture component is roughly corresponding to a cluster of observations,
and the dependence structure may be different across mixture components. Finite
mixture copulae have been used in Hu (2006) and Chen and Fan (2006).

Since Figures 6 and 7 show that (ε1, ε2) and (ε1, ε3) have lower tail dependence,
we use the Clayton copula to model their dependence. The dependence structure
of (ε2, ε3) is not clear from Figure 8, so we use the Frank copula which is able
to capture weak lower and upper tail dependence to model the dependence of
(ε2, ε3). Then using similar procedures as for the Clayton and Frank copulae, we
derive the PDF function of the Minflex Laurent Clayton–Frank copula demand
system

f (ε1, ε2, ε3) = f1(ε1)f2(ε2)f3(ε3) × c1,3(F1(ε1), F3(ε3)) (29)

× c2,3(F2(ε2), F3(ε3)) × c1,2|3(F(ε1|ε3), F(ε2|ε3))

= f1(ε1)f2(ε2)f3(ε3) × (1 + α1)(u−α1
1 + u−α1

3 − 1)−
1
α1

−2

(u1u3)α1+1

× α2(1 − e−α2 )e−α2(u2+u3)

[1 − e−α2 − (1 − e−α2u2 )(1 − e−α2u3 )]2

× (1 + α3)(u−α3
4 + u−α3

5 − 1)−
1
α3

−2

(u4u5)α3+1
,

where

u4 = F(ε2|ε3) = ∂C23(ε2, ε3)

∂ε3
= (1 − e−α2u2 )e−α2u3

−(1 − e−α2u2 )(1 − e−α2u3 ) − e−α2 + 1
,

and

u5 = F(ε1|ε3) = ∂C13(ε1, ε3)

∂ε3
= u−α1−1

3 (u−α1
3 + u−α1

1 − 1)−1/α1−1.

We use the maximum likelihood method to estimate the Minflex Laurent
demand system with each of the Clayton, Frank, and mixture of the Clayton
and Frank copulae, based on the density functions in equations (27), (28), and
(29), respectively. Since we relax the joint normality assumption in the distur-
bance terms and allow for nonlinear dependence across equations, there is no
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singularity in the covariance matrix of the residuals in the copula-based demand
system. Thus, we do not need to delete any equations in our maximum likelihood
estimation of the Minflex Laurent copula-based demand system. In this regard, we
should note that Velasquez-Giraldo et al. (2018) use the maximum log-likelihood
method to estimate a copula-based demand system by arbitrarily deleting one
equation in the demand system. However, as Berndt and Savin (1975) has
demonstrated when certain cross-equation restrictions are imposed, the parameter
estimates obtained by trace minimization are not invariant to the equation deleted.
In other words, the copula-based demand system estimates in Velasquez-Giraldo
et al. (2018) are not invariant to the arbitrary deletion of one equation.

The results are presented in columns 3, 4, and 5 of Table 3. It seems that our
copula-based modeling of the Minflex Laurent demand system has been fruitful.
The copula parameters are statistically significant for all the copulae examined
and the AIC values of the Minflex Laurent copula demand system are all lower
than that under the traditional method of estimation (in the second column of
Table 3). Most of the copula parameter estimates of the Clayton, Frank, and mix-
ture of Clayton and Frank copulae are positive and statistically significant. Since
we transformed F1(ε1) to 1 − F1(ε1), the positive copula parameter estimates indi-
cate that the dependence is negative for transaction balances, x1, and OCDs (at
commercial banks and thrift institutions), x2, as well as for transaction balances
and credit card transaction services, x3, while the dependence is positive for OCDs
and credit card transaction services.

The mixture copula has the highest log-likelihood function value and lowest
AIC value, suggesting that the trivariate mixture copula-based Minflex Laurent
demand system has the best goodness of fit. The mixture copula indicates that
(ε1, ε2) and (ε1, ε3) exhibit lower tail dependence, while (ε2, ε3) exhibits upper tail
dependence. The lower tail dependence indicates that factors that cause negative
shocks in one monetary asset tend to also cause negative shocks in the other assets,
and vice versa. This phenomenon is similar to financial contagion—the spread of
shocks (mostly on the downside) from one market (or country) to another.

It is to be noted that we also attempted to use the Joe (1993) copula. However,
since the Joe copula does not permit lower tail dependence, but can only capture
upper tail dependence, we experience computational problems in the estimation
algorithm. With the Joe copula, the model fails to converge to any value. The
fact that the Joe copula fails to converge can be interpreted as further evidence
of misspecification that stems from using copulae that do not support nega-
tive dependence. As Trivedi and Zimmer (2007) argue, one might experience
computational difficulties when using a misspecified copula.

9. ELASTICITIES

The primary interest of policymakers is how the arguments of the underlying
functions affect the quantities demanded. In our context, this is expressed in terms
of income and price elasticities, as well as the elasticities of substitution.
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TABLE 5. Income and price elasticities at the mean

Assets
x1 = transaction balances
x2 = OCDs at commercial banks and thrift institutions
x3 = credit card transaction services

A. Mixture copula Minflex Laurent demand system

Income
elasticities Price elasticities

Assets i ηiy ηi1 ηi2 ηi3

x1 1.201 (0.000) −0.772 (0.000) −0.456 (0.000) −0.281 (0.000)
x2 0.645 (0.000) −0.079 (0.000) −0.258 (0.000) −0.103 (0.000)
x3 0.938 (0.000) −0.257 (0.000) −0.458 (0.000) −0.449 (0.000)

B. Minflex Laurent demand system under the joint normality assumption

Income
elasticities Price elasticities

Assets i ηiy ηi1 ηi2 ηi3

x1 1.181 (0.000) −0.797 (0.000) −0.561 (0.000) −0.344 (0.000)
x2 0.646 (0.000) −0.080 (0.000) −0.207 (0.000) −0.091 (0.000)
x3 0.866 (0.000) −0.211 (0.000) −0.369 (0.000) −0.383 (0.000)
Note(s): Sample period, monthly data July 2006–August 2020 (T = 170). Mean of the elasticities is reported in the
table. Numbers in parentheses are p-values.

In panel A of Table 5, we present the income elasticities, ηiy, for the three
monetary goods evaluated at the mean of the data, based on the estimates of
the mixture copula ML demand system. All the income elasticities are statisti-
cally significant. The income elasticity for transactions balances, η1y, is 1.201
with a p-value of 0.000, suggesting that transactions balances is a luxury good.
The income elasticities for credit card transaction services and OCDs are less
than 1—η3y = 0.938 with a p-value of 0.000 and η2y = 0.645 with a p-value of
0.000, respectively—suggesting that they are necessity goods. The literature has
not reached a consensus on the magnitude of the income elasticity yet. The quan-
tity theoretic money demand function implies a unitary income elasticity. Many
empirical studies report income elasticities close to 1 [see, e.g. Meltzer (1963),
Feige (1964), Lucas (1989), and Teles and Zhou (2005)], but recent work reports
both higher estimates [see Mulligan and Sala-i-Martin (1992)] as well as lower
estimates [see Ball (2001)].

For comparison purposes, in panel B of Table 5, we also present the income
elasticities based on the traditional estimation of the Minflex Laurent demand sys-
tem. As can be seen, under traditional estimation, the income elasticity of credit
card transaction services is also less than 1 (η3y = 0.866 with a p-value of 0.000),
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but lower than that under the mixture copula Minflex Laurent demand system esti-
mation. Panel B of Table 5 also shows that under the traditional Minflex Laurent
demand system estimation, the income elasticity of transaction balances, η1y, is
1.181 with a p-value of 0.000 and that of OCDs is η2y = 0.646 with a p-value of
0.000, both very close to those based on the copula estimation.

We also present the own- and cross-price elasticities in Table 5. They reveal a
pattern that is consistent with neoclassical consumer theory. That is, all own-price
elasticities in panels A and B of Table 5 are negative (and statistically significant),
consistent with the view that the demand for money is negatively related to the
opportunity cost of holding money. Also, all the assets are own-price inelastic as
|ηii| ≤ 1.

From the point of view of monetary policy, the elasticities of substitution
among the monetary assets are of prime importance. If the credit card transac-
tion services are substitutes to monetary assets, then it is necessary to include
credit card transaction services into monetary aggregates. The currently popular
simple-sum approach to monetary aggregation requires that the components of
the monetary aggregates are perfect substitutes to each other and that the elas-
ticities of substitution between each other are very high (perhaps infinite). In
Table 6 we show estimates of the Allen elasticities of substitution. We expect the
three diagonal terms, representing the own-elasticities of substitution for the three
assets, to be negative. This expectation is clearly achieved. Panel A shows that
the Allen own-elasticities of substitution for the mixture copula-based Minflex
Laurent demand system are σ a

11 = −0.342 with a p-value of 0.000, σ a
22 = −0.559

with a p-value of 0.000, and σ a
33 = −0.867 with a p-value of 0.000.

However, the Allen elasticity of substitution produces ambiguous results off-
diagonal, and we use the asymmetrical Morishima elasticity of substitution to
investigate the relation among the components of the M1A monetary aggregate.
Based on the Morishima elasticities of substitution of the mixture copula-based
Minflex Laurent demand system as shown in panel A of Table 6, all the assets are
Morishima substitutes. Moreover, all the mean Morishima elasticities of substitu-
tion are less than 1, with the highest being σ m

31 = 0.370. We are interested in how
changes in the user cost of credit card transaction services, p3, affect the quan-
tities demanded of the monetary assets, x1 and x2. As can be seen, σ m

13 = 0.299
and σ m

23 = 0.167, suggesting that a 1% increase in the user cost of credit card
transaction services induces a 0.299% decrease in the relative demand for trans-
action balances, x1/x3, and a 0.167% decrease in the relative demand for OCDs
at commercial banks and thrift institutions, x2/x3. It should also be noted that the
Morishima elasticities of substitution between credit card transaction services and
the monetary assets are larger under the mixture copula-based Minflex Laurent
demand system estimation compared to the traditional Minflex Laurent demand
system estimation (in panel B of Table 6). The positive elasticities of substitu-
tion between credit card transaction services and the monetary assets support the
Divisia approach to monetary aggregation.

https://doi.org/10.1017/S1365100521000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000262


C
R

ED
IT

C
A

R
D

S
A

N
D

M
O

N
ETA

RY
A

G
G

R
EG

ATIO
N

2193

TABLE 6. Elasticities of substitution at the mean

Assets
x1 = transaction balances
x2 = OCDs at commercial banks and thrift institutions
x3 = credit card transaction services

A. Mixture copula Minflex Laurent demand system

Allen elasticities Morishima elasticities

Assets i σ a
i1 σ a

i2 σ a
i3 σ m

i1 σ m
i2 σ m

i3

x1 −0.342 (0.000) 0.286 (0.000) 0.396 (0.000) 0.180 (0.000) 0.299 (0.000)
x2 −0.559 (0.000) −0.061 (0.000) 0.312 (0.000) 0.167 (0.000)
x3 −0.867 (0.000) 0.370 (0.000) 0.109 (0.000)

B. Minflex Laurent demand system based on joint normality assumption

Allen elasticities Morishima elasticities

Assets i σ a
i1 σ a

i2 σ a
i3 σ m

i1 σ m
i2 σ m

i3

x1 −0.197 (0.000) 0.207 (0.000) 0.335 (0.000) 0.128 (0.000) 0.260 (0.000)
x2 −0.529 (0.000) −0.088 (0.000) 0.231 (0.000) 0.156 (0.000)
x3 −1.028 (0.000) 0.310 (0.000) 0.078 (0.000)
Note(s): Sample period, monthly data July 2006–August 2020 (T = 170). Mean of the elasticities is reported in the table. Numbers in parentheses are
p-values.
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10. THE EFFECTS OF COVID-19 ON PAYMENT PREFERENCES

The sudden appearance of COVID-19 has been swiftly ravaging the USA and
global economy. The unemployment rate in the USA shot up to 14.7% in April
2020, while personal consumption expenditures were almost 20% lower than at
their peak in February 2020. This pandemic shock has reduced spending across
all methods of payment including cash, debit cards, and credit cards. At the mean-
time, the pandemic panic has led to an unprecedented demand for cash, and
an accelerated adoption of cards and contactless payments. Although it is not
surprising that the pandemic has led to a shift toward cash, the scale has been
unprecedented. According to a Federal Reserve survey of consumers taken in May
2020—see Kim et al. (2002)—during the pandemic, holdings of cash per person
increased by 17%, from $69 to $81; and the amount of cash stored at home or
elsewhere rose by nearly 90%, from $257 to $483. Even those consumers who
favor the use of debit and credit cards, they were holding more cash in May than
they were before the pandemic. The change in payment methods and demand for
monetary services during the pandemic could be driven by the COVID-19 circum-
stances along with the changes in consumption patterns. It could also be driven by
the changes in the opportunity costs of holding different monetary assets induced
by the reduced federal funds rate and the Fed’s unconventional monetary policy.

The literature on the change of payment patterns and demand for monetary
services during the pandemic is growing fast and has attracted attention from
both academia and central banks. Most studies use survey data and event studies.
Coibon et al. (2020) studies how COVID-19 causally affects household spending
and macroeconomic expectations using survey data. Krueger et al. (2020) study
how payment behavior has changed by the pandemic, given the dramatic increase
in the demand for currency, along with anecdotal evidence of changing consumer
payment practices during the pandemic. Similarly, Chen et al. (2020) survey the
Canadian data and analyze the effects of the pandemic on the demand for cash
and on the shift of payment methods in Canada, and find that cash in circulation in
Canada grew sharply in March and April 2020. Garratt et al. (2020) uses Google
searches data during the pandemic to demonstrate a shift in public interest from
cash-related terms to digital payment options.

We analyze the demand for monetary services during the pandemic by look-
ing at the dynamics of the time-varying Morishima elasticities of substitution.
The shift in payment methods and the demand for monetary services reflects the
rational reallocation of economic activity by economic agents. Since our demand
system estimators are obtained by using data starting from 2006 and the sample
size of the COVID-19 pandemic period is relatively small, the demand system
parameter estimates are likely to be dominated by the information before the
COVID-19 crisis. Yet, such an assumption is plausible as consumer payment pref-
erences are constrained by demographic and economic factors that are unlikely to
change overnight, but the user costs of monetary services can change overnight
in the financial markets. As Bullock (2020) and Brainard (2020) point out, there
is still a significant number of people in the population, such as older people or
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FIGURE 9. Morishima elasticities of substitution between transaction balances and OCDs.

people on lower incomes, who continue to use cash for face-to-face payments,
due to limited access to banking and technology. However, if the pandemic per-
sists and effective measures are put in place to overcome these barriers, with a
longer sample period of data, the demand system parameter estimates will be
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FIGURE 10. Morishima elasticities of substitution between transaction balances and credit
card services.

more influenced by the information set and the demand for monetary services
during the pandemic.

With this in mind, we investigate the stability of the time-varying Morishima
elasticities of substitution over the sample period. In this regard, from the
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FIGURE 11. Morishima elasticities of substitution between OCDs and credit card transac-
tion services.

perspective of monetary policy, policy decisions based on targeting the money
supply will be more effective if the Morishima elasticities of substitution are sta-
ble over time. In Figures 9, 10, and 11, we plot the Morishima elasticities of
substitution and also provide a comparison between those of the Minflex Laurent
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mixture copula demand system and those of the traditional Minflex Laurent
demand system. As can be seen, the Morishima elasticities of substitution are
always larger under the Minflex Laurent mixture copula estimation, than under the
traditional estimation, suggesting a slightly higher instability of the asset demand
functions.

We also find that under the Minflex Laurent mixture copula estimation, the
Morishima elasticity of substitution between transactions balances and credit card
transaction services has remained relatively stable during the pandemic, irrespec-
tive of changes in the user cost of transactions balances or credit card transaction
services (see Figure 10). The differences between credit card transaction services
and cash have been manifested during the COVID-19 pandemic and contribute to
the relatively stable elasticity of substitution between credit card transaction ser-
vices and transaction balances. Credit card transaction services can support social
distancing through online payment and phone payment, while cash cannot; cash
is a safe store of value during a crisis. The adoption of credit card transaction ser-
vices is accelerated due to its social distancing properties. In this regard, Krueger
et al. (2020) distinguish goods by their degree to which they can be consumed
at home rather than in a social (and thus possibly contagious) context, and show
that the decline in the demand for certain goods is simply due to rational realloca-
tion of economic activity, such as shifts from partying together in bars to talking
online, staying at home as opposed to congregating in restaurants. We observe
similar shifts in the consumption of monetary services and credit card transaction
services. The relatively stable Morishima elasticity of substitution between credit
card transaction services and cash highlights the distinct social distancing features
of credit card transaction services.

The other Morishima elasticities of substitution have declined significantly
during the COVID-19 pandemic, except for σ m

21 which increased (see the lower
panel of Figure 9), suggesting that increases in the user cost of transaction bal-
ances increased the relative demand for OCDs (the x2/x1 ratio). The Morishima
elasticity of substitution between transaction balances and OCDs when the user
cost of OCDs changes, σ m

12, as well as the Morishima elasticity of substitution
between OCDs and credit card transaction services, irrespective of which user
cost changes, fell significantly during the pandemic (see the first panel of Figure 9
and the two panels of Figure 11, respectively).

11. CONCLUSION

This paper contributes to the literature by investigating the demand for monetary
assets when credit card transaction services enter the representative consumer’s
utility function. We use recent advances in microeconometrics and an econo-
metric framework that allows the estimation of demand functions in a systems
context, using a flexible functional form for the utility function based on the dual
approach to demand system generation. We model the Minflex Laurent demand
system, introduced by Barnett (1983), paying explicit attention to theoretical
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regularity, as suggested by Barnett et al. (1992), and relax the joint normality
assumption of the disturbance terms of the demand system that has been used
in most of the empirical monetary demand systems literature. In doing so, we
use copula methods to capture the dependence of the disturbance terms across
the monetary components. In particular, we express the joint distribution of the
demand system error terms as a function of the marginals and copulae which
are able to capture the dependence structure of the innovation terms across the
demand system equations.

The empirical results, based on the Minflex Laurent demand system and
mixture copula, show that the Morishima elasticities of substitution among trans-
action balances, OCDs at commercial banks and thrift institutions, and credit card
transaction services are larger than those based on the estimation of the Minflex
Laurent demand system under the joint normality of the errors assumption. The
positive Morishima elasticities of substitution between credit card transaction ser-
vices and traditional monetary assets suggest that credit card transaction services
and traditional monetary assets are substitutes and that the credit card transac-
tion services should be included in the monetary aggregates. Our results support
Barnett et al. (2016), Barnett and Liu (2019), and Liu et al. (2020) who argue
that much of the policy relevance of the Divisia monetary aggregates could be
strengthened by the use of credit card-augmented Divisia monetary aggregates.

Finally, in terms of our framework, which is based on a strong link between
neoclassical microeconomic theory and econometric implementation, the varia-
tion in the Morishima elasticities of substitution during the COVID-19 pandemic
reflects the changes in preference structure for monetary services demand. The
lower and stable Morishima elasticities of substitution during the COVID-19
pandemic indicate that the asset demand functions have become more stable
and predictable, enhancing the Fed’s ability to target key monetary aggregates
to accommodate the demand for monetary services and affect general macroe-
conomic variations. During the global financial and coronavirus crises, central
banks use both conventional and unconventional monetary policies to support
their economies. Specifically, the Federal Reserve and central banks in many other
developed countries are using unconventional policy actions, such as quantitative
easing and forward guidance to lower long-term interest rates after policy rates hit
the zero lower bound. Such injections of liquidity could have been directed at sta-
bilizing the growth rate of a monetary aggregate in the face of severe shocks, and
an effective measure of liquidity services is needed in this regard—see, for exam-
ple, Belongia and Ireland (2018). By including the joint liquidity services of credit
cards and monetary assets, the new credit card-augmented CFS Divisia monetary
aggregates seem conceptually more relevant to macroeconomic research as mea-
sures of monetary services in the economy, and can shed some light on the Barnett
critique—see Barnett et al. (2016).

Finally, we would like to note that the credit card-augmented Divisia monetary
aggregates, derived by Barnett et al. (2016) and now provided by the Center for
Financial Stability, are based on the representative agent framework. However,
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the micro heterogeneity could affect the user cost of credit card transactions and
the estimated substitution patterns. These features include but not limited to cash-
back (or other types of) rewards, teaser rates (often 0%) on loans for a short (e.g. 6
months) period, and different interest rates on outstanding balances after the teaser
rates expire. Therefore, potentially productive future research, beyond the repre-
sentative agent framework (requiring different data and methods), could account
for the heterogeneity in the credit card users and increase the accuracy in the track
of liquidity services in the economy.
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