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The single-mode Richtmyer–Meshkov instability is investigated using a first-order
perturbation of the two-dimensional Navier–Stokes equations about a one-dimen-
sional unsteady shock-resolved base flow. A feature-tracking local refinement scheme
is used to fully resolve the viscous internal structure of the shock. This method
captures perturbations on the shocks and their influence on the interface growth
throughout the simulation, to accurately examine the start-up and early linear growth
phases of the instability. Results are compared to analytic models of the instability,
showing some agreement with predicted asymptotic growth rates towards the inviscid
limit, but significant discrepancies are noted in the transient growth phase. Viscous
effects are found to be inadequately predicted by existing models.
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1. Introduction
The Richtmyer–Meshkov (RM) instability, named for the foundational work on

this problem by Richtmyer (1960) and Meshkov (1969), occurs when a shock collides
with a perturbed interface between fluids of different density. The problem is shown
schematically in figure 1 for the planar reflected-shock case, where it is assumed that
the incident shock travels from the light fluid into the heavy fluid (ρ0′ >ρ0) in a
two-dimensional Cartesian geometry.

The initial growth of the interface perturbation is driven by vorticity deposited
at the interface by baroclinic torque, a result of the misalignment of the pressure
gradient across the shock with the density gradient across the interface. The focus of
this work will be on the early-time evolution of the RM instability, which exhibits
damped oscillation in the growth rate (Yang, Zhang & Sharp 1994; Wouchuk 2001;
Herrmann, Moin & Abarzhi 2008), as a result of acoustic waves trapped between the
reflected and transmitted shocks and the vorticity field behind the decaying shock front
perturbations. At later times, the perturbation grows larger, distorting the interface
and leading to formation of ‘bubbles’ and ‘spikes’ that excite secondary instabilities
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Figure 1. Schematic of the reflected shock RM problem, before (a) and after (b) interaction
of the incident shock with the interface at t = 0. Fluid states are labelled 0′ and 0 through 3.

and eventually result in chaotic mixing of the light and heavy fluids (Zhang & Sohn
1997; Collins & Jacobs 2002; Hill, Pantano & Pullin 2006; Herrmann et al. 2008).

The simplest model of the RM instability is the impulsive model of Richtmyer
(1960). This models the shock impact on the contact discontinuity as an impulsive
acceleration of a sinusoidally perturbed interface of zero thickness between two
inviscid incompressible fluids. For small-amplitude perturbations, this predicts a linear
growth rate in time for the interface amplitude, which was validated by Richtmyer’s
own simulations. This has been shown to agree at least qualitatively with experimental
investigations of the instability, first by Meshkov (1969) and by many authors
subsequently for weak shocks (see e.g. Brouillette & Sturtevant 1994; Jones & Jacobs
1997; Collins & Jacobs 2002), where the linear growth rate is achieved in an asymptotic
sense. For stronger shocks, however, the assumptions of the impulsive model break
down and the growth rate is no longer accurately predicted (Yang et al. 1994).

More advanced models of the instability fall generally into one of two categories.
The first covers analytic improvements to the simple impulsive model, where its
various assumptions are generalized to improve the growth rate prediction under
certain conditions. Those considered in this study include the effect of a distributed
initial interface (Saffman & Meiron 1989; Mikaelian 1991; Brouillette & Sturtevant
1994), viscosity (Mikaelian 1993; and in more advanced form, Carlès & Popinet 2001)
and finite proximity of the reflected and transmitted shocks (Lombardini 2008).

Models in the second category are based on linearization of the Euler equations
about the one-dimensional Riemann solution of the shock-interface problem in the
small-amplitude approximation. These obtain estimates for the asymptotic growth
rate either (semi-) analytically by series expansion (Wouchuk & Nishihara 1997 and
Wouchuk 2001 are considered here) or by numerical solution (Yang et al. 1994). It
is this latter approach that leads into the method used for the simulations presented
in this work.

A fundamental challenge encountered with simulation of the RM instability is the
numerical treatment of the shocks in the domain. Since the shock thickness is of the
order of the gas mean free path length, which is two to three orders of magnitude
smaller than the next smallest scale in the simulation, full resolution of the shock
structure has, until now, been impossible. Furthermore, because of the weak influence
of viscosity in most problems of interest, an inviscid fluid assumption is often made.
In both cases, shock capturing or tracking methods are generally used (e.g. Hill et al.
2006; Herrmann et al. 2008) and so potentially suffer first-order error at the shock
(Engquist & Sjögreen 1998).
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Examples of high-order simulation of the RM instability are limited, in part for this
reason. The recent work of Yee & Sjögreen (2007) uses a shock-capturing sixth-order
filter method in their Navier–Stokes (NS) simulation, and as far as the authors are
aware, no attempt has been made to resolve the full NS shock structure in the context
of an RM simulation until this work. Resolution of the shock and thin contact region
is achieved here by multiple levels of local refinement using the stable high-order
grid-interface closures developed in Kramer, Pantano & Pullin (2007).

This high-fidelity simulation permits a detailed investigation of the start-up and
linear growth phases of the instability. The distributed interaction of the shock
and interface is observed and perturbations developed by the shocks are tracked
throughout the simulation. These features, along with physical viscous effects, are
found to result in transient growth effects not predicted or observed by existing
inviscid models and simulations.

2. Linearized Navier–Stokes equations
In this investigation of the RM instability, the two-dimensional NS equations are

linearized about a fully resolved numerical solution for the base flow, in a frame
of reference in which the interface is stationary for t < 0. Shocks and the interface
are treated as continuous features, and it is assumed that the perturbation amplitude
remains small throughout the simulation. The problem is also simplified by considering
a single fluid, such that γ0 = γ0′ = γ . The time origin t = 0 is defined as the time at
which the shock reaches the interface in the inviscid Riemann problem for the base
flow.

Starting with the general compressible NS equations for a Newtonian fluid with
zero bulk viscosity and Fourier heat conduction, two-dimensional Cartesian axes
(x, y) are defined such that the shocks propagate initially in the direction parallel
to the x-axis. It is further assumed that viscosity and conductivity are constant, an
acceptable approximation for weak shocks where the change in temperature is small.
In the strongest shock case considered in this work, MI =2.20, the constant-viscosity
assumption results in a velocity profile that is within 10 % of the varying viscosity
solution.

For the equation of state, a perfect gas is specified such that

p = ρRT, (2.1)

e = CV T =
1

γ − 1

p

ρ
. (2.2)

A non-dimensionalization is defined in terms of reference parameters ρ0 and p0 at
state 0, using the incident shock velocity UI for the velocity scale. A global length
scale is provided by the mean free path in state 0, �0, given by

�0 = ν0

8

5

√
2

πRT0

, (2.3)

where ν0 is the kinematic viscosity of the fluid in state 0. This is clearly a viscous
length scale. For state 0 having standard atmospheric conditions listed in table 1, the
mean free path length is �0 = 6.65 × 10−8 m, with a corresponding global time scale
�0/UI of O(10−10) s. In the post-shock regime, a characteristic sound speed ã may be
defined in terms of an averaged kinematic viscosity ν = (μ2 + μ3)/(ρ2 + ρ3) as

ã ≡ ν

�0

=
μ2 + μ3

ρ2 + ρ3

1

�0

. (2.4)
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γ 1.4
ρ0 (kg m−3) 1.205
p0 (kPa) 101.3
�0 (m) 6.65 × 10−8

MI 1.05 1.21 2.20
UI (m s−1) 360.2 415.1 754.7
ΔI (m) 3.29 × 10−6 7.82 × 10−7 1.37 × 10−7

�0/UI (s) 1.85 × 10−10 1.60 × 10−10 8.81 × 10−11

Table 1. Dimensional parameters and scalings for each Mach number case considered.
Non-dimensional variables are normalized by the length scale �0 and time scale �0/UI .

This will be used to define a Reynolds number for the instability in § 5.1. For
expediency, from this point onward throughout this work, all variables refer to
non-dimensional values without change in notation, unless otherwise indicated.

The solution to the NS equations for a small single-mode sinusoidal perturbation
in the y direction of a one-dimensional base flow is presumed to take the form

u = ū(x, t) + εu′(x, t)eiky, (2.5)

v = εv′(x, t)eiky, (2.6)

ρ = ρ̄(x, t) + ερ ′(x, t)eiky, (2.7)

p = p̄(x, t) + εp′(x, t)eiky, (2.8)

where the small parameter ε � 1, the overbar indicates the base flow variables that are
one-dimensional but generally unsteady, and prime quantities denote the first-order
perturbation variables. The wavenumber k is generally complex and normalized by
the scale 1/�0. This approach differs from standard stability analysis in that the base
flow depends on time according to the viscous nonlinear shock-resolved dynamics.
Substituting (2.5)–(2.8) into the general nonlinear equations and expanding in powers
of ε, at order ε0 the base flow equations are obtained:

∂ρ̄

∂t
= −∂(ρ̄ū)

∂x
, (2.9)

∂(ρ̄ū)

∂t
= − ∂

∂x

(
p̄

γM2
I

+ ρ̄ū2 − 4

3

1

Re

∂ū

∂x

)
, (2.10)

∂

∂t

(
p̄

γM2
I

+ βρ̄ū2

)
= − ∂

∂x

(
p̄ū

M2
I

+ βρ̄ū3 − 1

PrReM2
I

∂T̄

∂x
− 4

3

γ − 1

Re
ū

∂ū

∂x

)
, (2.11)

where β = (γ −1)/2. These are the familiar (nonlinear) one-dimensional compressible
NS equations. At order ε, the following system is derived:

∂ρ ′

∂t
= − ∂

∂x
[ρ̄u′ + ρ ′ū] − ikρ̄v′, (2.12)

∂

∂t

(
ρ̄u′ + ρ ′ū

)
= − ∂

∂x

[
p′

γM2
I

+ ρ ′ū2 + 2ρ̄ūu′ − 1

Re

(
4

3

∂u′

∂x
+

1

3
ikv′

)]

− ikρ̄ūv′ − 1

Re
k2u′, (2.13)
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∂

∂t

(
ρ̄v′) = − ∂

∂x

[
ρ̄ūv′ − 1

Re

(
∂v′

∂x
+

1

3
iku′

)]
− ik

p′

γM2
I

− 1

Re

4

3
k2v′, (2.14)

∂

∂t

(
p′

γM2
I

+ β(ρ ′ū2 + 2ρ̄ūu′)

)

= − ∂

∂x

[
p′ū + p̄u′

M2
I

+ β(ρ ′ū3 + 3ρ̄ū2u′) − 1

PrReM2
I

∂T ′

∂x
− 4

3

γ − 1

Re

(
ū

∂u′

∂x
+ u′ ∂ū

∂x

)]

− ikv′
(

p̄

M2
I

+ βρ̄ū2

)
− 1

PrRe
k2 T ′

M2
I

+
γ − 1

Re
ū

(
1

3
ik

∂v′

∂x
− k2u′

)
. (2.15)

Equations (2.12)–(2.15) for the first-order perturbations form a linear system of partial
differential equations with variable coefficients (that are the base flow solution).

This system depends on four parameters: the incident shock Mach number MI , γ

and the Reynolds and Prandtl numbers, Re and Pr . For consistency with the analytic
NS shock solution used for the initial condition, the Reynolds number for these
equations is based on the molecular viscosity derived from kinetic theory, such that

Re =

√
γM2

I

k2

, where k2 =
5

8

√
π

2
.

Similarly, for the Prandtl number, Pr = 3/4 is required (Whitham 1974). Note that
for a real wavenumber k, provided that the initial perturbed fields ρ ′, u′ and p′ are
real and v′ has zero real part, the solution to (2.9)–(2.15) will evolve to have v′ purely
imaginary, and all other fields purely real.

The inviscid version of the base flow describes a Riemann problem, which may be
solved analytically to obtain speeds and locations for the shocks and interface in the
inviscid limit. Solutions to the Riemann problem for the parameter values chosen for
simulation are shown in table 2. The pre-shock Atwood number A and post-shock
Atwood number A+ are defined in terms of the density solution by

A =
ρ0′ − ρ0

ρ0′ + ρ0

and A+ =
ρ3 − ρ2

ρ3 + ρ2

.

In all cases, both light (hot) and heavy (cold) gases are air where state 0 (the reference
state) is at standard atmospheric conditions having density ρ0 = 1.205 kgm−3 and
pressure p0 = p0′ = 101.3 kPa. Velocities are normalized relative to the incident shock
velocity UI .

3. Numerical method
For simulation of the linearized RM instability, the strategy is to solve the base

flow equations (2.9)–(2.11) and the first-order perturbation equations (2.12)–(2.15)
simultaneously. The numerical solution obtained for (2.9)–(2.11) is the unsteady one-
dimensional base flow, corresponding to the viscous version of the shock-interface
interaction problem. The solution to (2.12)–(2.15) proceeds using the (x, t)-dependent
coefficients from the base flow, and describes the first-order perturbation of the RM
instability.

The basic numerical method uses a fourth-order explicit finite-difference scheme to
approximate the spatial derivatives, with local refinement (described in § 3.3) using the
one-dimensional grid interface schemes from Kramer et al. (2007). Interpolation to
advance or create refined region(s) of the grid between time steps uses the sixth-order
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MI 1.05 1.05 1.21 1.21 2.20 2.20
A 0.2 0.6 0.2 0.6 0.2 0.6

MT 1.0552 1.0672 1.2333 1.2884 2.3570 2.7493
UT 0.8205 0.5082 0.8322 0.5324 0.8748 0.6248
MR 1.0049 1.0161 1.0183 1.0616 1.0633 1.2232
UR −0.8951 −0.9060 −0.6321 −0.6703 0.002562 −0.09645

u1 0.07748 0.07748 0.2642 0.2642 0.6612 0.6612
ρ1 1.0840 1.0840 1.3590 1.3590 2.9512 2.9512
p1 1.1196 1.1196 1.5415 1.5415 5.4800 5.4800
ΔU 0.06965 0.05166 0.2376 0.1764 0.5978 0.4518
ρ2 1.0928 1.1132 1.4005 1.4999 3.2655 4.0781
p2 1.1323 1.1621 1.6079 1.7699 6.3149 8.6517
ρ3 1.63914 4.4526 2.0992 5.9818 4.7369 14.445
A+ 0.19999 0.59998 0.1996 0.5991 0.1839 0.5597
ã 0.4616 0.3127 0.0752 0.2266 0.1463 0.0325

Table 2. Riemann solutions for the parameter sets used in the simulations of the RM
instability. Values shown are normalized by ρ0, p0 and UI , as appropriate, using the values
from table 1. Subscripts correspond to the states shown in figure 1. The parameter ã is defined
by (2.4) and is shown normalized by UI .

scheme of Fornberg (1988), a higher order method than the finite-difference scheme
that minimizes the truncation error at newly refined regions. Second derivatives are
evaluated by applying the first derivative scheme twice. Time integration uses the
third-order Runge–Kutta (RK32) scheme from Butcher (2003), with uniform time
stepping. This approach can be shown to be numerically stable and contribute no
numerical dissipation (Kramer et al. 2007). The lack of artificial dissipation in the
numerical method ensures that only physical viscous effects are observed in the
simulation results. Convergence of the method is also demonstrated (see § 3.4).

3.1. Boundary conditions

Characteristic boundary conditions are implemented using the simultaneous approxi-
mation term (SAT) method of Carpenter, Gottlieb & Abarbanel (1994). The method
for the one-dimensional base-flow equations follows closely that proposed by Svärd,
Carpenter & Nordström (2007) for the NS equations. For the two-dimensional first-
order equations, because these are linear (though with non-constant coefficients) and
have the same characteristics as the base flow, the implementation of characteristic
boundary conditions is straightforward. Additional boundary conditions for the
NS equations are given by zero-gradient conditions on temperature (upstream) and
velocity (downstream) for both fields. Full details of the method are given in Kramer
(2009).

For all time, the boundary state at the left (upstream) end is state 1, and at the right
(downstream) end, state 0′. The computational domain is chosen to be large enough
to contain the reflected and transmitted shocks (including tails) until the end of the
simulation. Note that both boundary states are constant throughout the simulation.

3.2. Initial condition

A discontinuous density interface with a sinusoidal perturbation, given in terms of
an initial amplitude h0 by

ρ(x, y, t = 0) =

{
ρ0, x < h0 sin(ky),

ρ0′, x >h0 sin(ky),
(3.1)
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where the interface is centred at x = 0, is unstable in this numerical implementation,
as the step-function discontinuity introduces Gibbs-type oscillation that cannot be
dissipated by the numerical method and grows with time. The alternative is to model
the contact surface more realistically with a diffuse density interface, using the solution
from Duff, Harlow & Hirt (1962),

ρ(x, y, t = 0) =
ρ0′ + ρ0

2
+

ρ0′ − ρ0

2
erf(x + h0e

iky). (3.2)

Closely related is the alternative profile

ρ(x, y, t = 0) =
ρ0′ + ρ0

2
+

ρ0′ − ρ0

2
tanh(x + h0e

iky), (3.3)

which is easier to analyse, and under the appropriate scaling, differs from the
error function profile by less than 3.5 % (Mikaelian 1991). Comparison of solutions
initialized with each initial profile also show that this choice has little influence on
the post-shock-interface shape or position (Kramer 2009).

For the problem described by (2.9)–(2.15), the perturbed interface given in (3.3) is
approximated within the constraints of the form of the linearization, ρ̄ + ερ ′(x, t)eiky .
Generalizing the profile for a thickness ΔC , the Taylor expansion of (3.3) about x for
small-amplitude h0 yields the initial condition

ρ̄(x, t = 0) =
ρ0′ + ρ0

2
+

ρ0′ − ρ0

2
tanh(2x/ΔC), (3.4)

ερ ′(x, t = 0) =
ρ0′ − ρ0

2

2h0

ΔC

sech2(2x/ΔC), (3.5)

where for consistency with the linearization assumption (2.7), we require ε = h0/

ΔC � 1. All other fields are initialized to be constant across the interface region.
The incident shock is initialized using the constant-viscosity NS shock solution for

the given incident Mach number MI , based on the implementation in Kramer et al.
(2007) of the solution from Whitham (1974). The domain upstream of the shock,
state 1, is uniform and initialized to the Rankine–Hugoniot conditions based on the
incident shock strength. In the remainder of the computational domain, downstream
of the interface and shock, the initial condition is the quiescent state 0′.

3.3. Refinement tracking

Local refinement of the computational domain is used in the vicinity of the shocks
and the interface to efficiently resolve the full solution. Because one or more flow
features are necessarily in motion relative to the solution reference frame, the local
refinement scheme for the RM problem must be designed to track each feature of
interest with time, i.e. an adaptive mesh refinement (AMR) scheme is necessary. In
the general case, AMR requires complicated solution gradient detection algorithms
to ensure that adequate refinement occurs where it is needed. For the RM problem,
however, a simpler approach may be adopted, using the one-dimensional Riemann
solution to give an a priori indication of where refinement of the solution will be
required. Thus the inviscid Euler solution may be used to design a refinement scheme
that tracks the solution features of interest, with a relatively simple algorithm that
shifts the refinement regions based on the known locations of the shocks and interface.
This is demonstrated by figure 2, which shows the refinement scheme in (x, t) space,
overlaying the x–t diagram of the Riemann solution.

Two levels of refinement are used at the transmitted shock and the interface, each
of factor two with respect to the previous level, for an overall refinement of a factor
of 4. A single refinement level was usually sufficient to resolve the much weaker
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0
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200t
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2x refinement

Figure 2. A two-level grid refinement scheme for MI =1.21 and A =0.2, overlaying the
x–t diagram for this problem. The shaded areas show how the refined regions follow the
flow features based on the Riemann solution; the darker regions indicates a second level of
refinement.

reflected shock. Grid movement occurs at a rate specified by the speed of each feature
as determined from the inviscid Riemann solution. To preserve the integrity of the
grid, a shift is performed only once the feature has travelled a distance equivalent to
at least one coarse cell, so the refinement advances in appropriate multiples of the
coarse grid spacing. Additionally, to ensure that the interface perturbation remains
properly resolved, the refinement region gradually extends while it convects to follow
the slow diffusion of the interface.

In the case of MI = 2.20 and A= 0.6, an additional level of refinement was required
to resolve a very steep gradient that appears during interaction of the incident shock
with the interface. Otherwise, this sharp peak resulted in non-physical oscillation
at the trailing corner of the transmitted shock for the remainder of the simulation.
With a small region of additional refinement at the transmitted shock, this oscillation
disappeared and the solution remained smooth for all time.

3.4. Verification

Verification of the discrete implementation of the two-dimensional system (2.9)–(2.15)
was performed using the method of manufactured solutions to provide reference
solutions for the numerical method. Details of this study are given in Kramer (2009).
For the RM problem, convergence was tested by performing a sequence of uniform-
grid simulations for the case of MI = 2.20 and A= 0.2. Because no analytic solution
exists to this problem, comparison is made to a more refined numerical solution of
resolution Δx = 1/16.

Table 3 shows that the expected fourth-order convergence rate is achieved
asymptotically as the grid is refined, for both base and perturbed solutions. For
the coarsest grids, the transmitted shock is under-resolved, which causes non-physical
oscillation at its trailing edge and is detrimental to the convergence rate. Oscillation
in the transmitted shock was generally found to be a good indicator of sufficient
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Error based on ρ̄ Error based on ρ ′

Δx log10(L2) Rate log10(L∞) Rate log10(L2) Rate log10(L∞) Rate

1/2 −0.667 −0.730 −1.965 −2.083
1/4 −1.527 2.86 −1.378 2.15 −2.588 2.07 −2.507 1.41
1/8 −2.614 3.61 −2.350 3.23 −3.578 3.29 −3.324 2.71
1/12 −3.424 4.60 −3.143 4.50 −4.365 4.47 −4.086 4.33

Table 3. Convergence performance of the uniform-grid RM simulation, compared to the
reference numerical solution on a grid of Δx =1/16, for both L2 (average) and L∞ (uniform)
norms.

resolution. Detailed testing of the local refinement scheme is described in Kramer
et al. (2007).

3.5. Amplitude measurement

The fundamental quantity of interest for investigation of the RM instability is the
amplitude of the perturbation on the density interface h(t) defined most generally as

h(t) =
1

2
|xC,peak − xC,trough |, (3.6)

where xC(y, t) is the centreline of the interface perturbation (Lombardini 2008). In the
linearized theory, the amplitude is recovered directly from the definition xC = −h(t)eiky .
For the present distributed case, defining the normalized density function ψ ,

ψ(x, y, t) =
ρ(x, y, t) − ρa

ρb − ρa

, (3.7)

having the linearized form

ψ(x, y, t) ≈ ψ̄(x, t) − ψ ′(x, t)eiky, (3.8)

where the reference densities ρa and ρb are chosen such that ψ̄ ∈ [0, 1], the interface
amplitude h(t) is given by the integral definition

h(t) =

∫ xr

−xl

ψ ′dx. (3.9)

The limits [−xl, xr ] are chosen such that the interface perturbation is wholly contained
within the window of integration and the neighbouring shock perturbations are
avoided. Simple algebra will show that this definition recovers the appropriate per-
turbation amplitude for both distributed and discontinuous interfaces (Kramer 2009).

The definition of amplitude by (3.9) causes some difficulty near t = 0, during
interaction of the shock with the interface, when the interface becomes indistin-
guishable from the shock(s). This is illustrated in figure 3. Shock-interface interaction
in the viscous problem is a distributed process, beginning when the head of the
incident shock reaches the tail of the interface, and continuing until the tails of both
reflected and transmitted shocks separate from the interface. Through this time, an
integration window for (3.9) cannot be defined that does not also include the shock;
thus h(t) is undetermined near t = 0.

The initial post-shock perturbation amplitude h(0+), required for comparison to
the analytic models of the instability, is given by the estimate due to Meshkov (1969),
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Parameters h(0+) by (3.10) Simulation h(0+)

MI = 1.05, A = 0.2 0.930350 0.930343
MI = 1.05, A = 0.6 0.948345 0.948290
MI = 1.21, A = 0.2 0.762441 0.762353
MI = 1.21, A = 0.6 0.823618 0.823527
MI = 2.20, A = 0.2 0.402234 0.402303
MI = 2.20, A = 0.6 0.548190 0.548037

Table 4. Comparison of estimates for h(0+) obtained from k = 0 simulations and the
approximation (3.10). To three or four significant figures, the measures are identical.
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Figure 3. Demonstration of the ambiguity during the shock-interface interaction: (a, c)
solution at a time during interaction, where interface and shock are indistinguishable; (b, d ) at
later time, where interface and shocks have separated. The base flow density solution is shown
in (a, b) and the first-order perturbation in (c, d ). The Euler interface location is indicated by
the dot-dashed line, and shock locations by the dashed lines.

which models the compression of the perturbation by the incident shock:

h(0+) =

(
1 − ΔU

UI

)
h(0−). (3.10)

Agreement of this measure with that obtained from simulations with k =0 is shown
in table 4. These simulations have finite ρ ′ and therefore a measurable amplitude h(t),
but physically represent a planar ‘perturbation’ of the interface that has no instability,
the numerical equivalent to the null experiments of Collins & Jacobs (2002). The use
of the estimate (3.10) avoids the problem of the shock/interface ambiguity at early
times.
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4. Models of the instability
4.1. Impulsive model

The simplest model for the RM instability, proposed originally by Richtmyer (1960),
approximates the problem by an impulsively accelerated perturbed interface of zero
thickness between two inviscid and incompressible fluids. If the interface is assumed
to have small amplitude, the velocity perturbations in each fluid are also small and
the problem may be linearized. From this model, the familiar linear growth in time
prediction for the interface perturbation amplitude is obtained:

h(t) = h(0+)
[
1 + A+ΔUkt

]
, (4.1)

where h(0+) is the initial post-shock amplitude of the perturbation (taking into
account compression of the interface by the shock), ΔU is the post-shock speed of
the interface, k is the wavenumber of the perturbation and A+ is the post-shock
Atwood number. The underlying assumptions of this model break down as the
incident shock strength increases, resulting in significantly less accurate growth rate
predictions in these cases (Yang et al. 1994; Wouchuk & Nishihara 1997).

The post-linear regime is beyond the scope of this study, but nonlinear models do
exist (e.g. Zhang & Sohn 1997; Herrmann et al. 2008), and experimental evidence
points to the growth becoming nonlinear at late times (Collins & Jacobs 2002;
Jacobs & Krivets 2005). At this point, the interface has transitioned from sinusoidal
through the appearance of ‘bubbles and spikes’ to the onset of turbulence. In this
work, the focus is on the start-up and early-time linear behaviour of the interface
perturbation.

4.2. Viscous model corrections

Viscous effects on the RM instability are often ignored, with the few exceptions of
models by Mikaelian (1993) and Carlès & Popinet (2001), and some recent simulations
(e.g. Yee & Sjögreen 2007). In each case, viscosity damps the growth of the instability,
though the models disagree strongly as to the extent of the attenuation. The models
of Mikaelian (1993) and Carlès & Popinet (2001) begin with a linearization of
the incompressible viscous NS equations, but use different approaches to solve the
resulting equations. The Mikaelian model assumes the same x-velocity profile in each
fluid as the impulsive model, thus ignoring any contribution from viscosity in the x

direction, while Carlès and Popinet approximate viscous effects at the interface using
a boundary layer-type approximation with matched asymptotic expansions to extend
the solution to the outer inviscid region. Carlès and Popinet demonstrate that their
model is superior to that of Mikaelian, which is verified in the present results.

The model of Carlès & Popinet (2001) gives the amplitude estimate

h(t) = h(0)

[
(1 + AΔUkt) − 16

3
√

π

√
ρ2μ2

√
ρ3μ3

(ρ2 + ρ3)(
√

ρ2μ2 +
√

ρ3μ3)
AΔUk2t3/2

]
, (4.2)

where an additional higher order term of the second mode (e2iky) has been neglected,
since this cannot be expressed in the present first-order formulation unless it is
extended to second order. The neglected term is of order k3t2; vanishingly small in
the cases considered here. Following the impulsive model, the initial amplitude h(0)
and Atwood number A are taken as the post-shock values.

4.3. Characteristic start-up time

In Lombardini (2008), a modified version of the impulsive theory is used to
characterize the start-up process of the RM instability, leaving the asymptotic growth
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rate ḣ∞ as a parameter of the model. The key extension of this model is the imposition
of moving plane boundaries at the trailing edges of each shock, recognizing that in the
early growth phase of the instability, the proximity of the reflected and transmitted
shocks will trap waves in the interface region and alter the initial growth rate. At
later times, the effect of these finite boundaries diminishes as the shocks move further
away, and so the model approaches the infinite-boundary state of the impulsive
theory.

The key result is a characteristic time scale τ , during which the proximity of the
shocks strongly influences the interface growth rate. This is defined by

τ =
1

2k

(
1 − A+

−(UR − u2)
+

1 + A+

UT − u3

)
, (4.3)

where A+ is the post-shock Atwood number, UR is the reflected shock speed, UT

is the transmitted shock speed and u2 = u3 = ΔU is the speed of the interface. Note
that (UR − u2) < 0 and (UT − u3) > 0 are the shock speeds in the post-impact frame
in which the interface is stationary for t > 0. For time t 
 τ , the linear asymptotic
growth rate is recovered.

4.4. Asymptotic linear theory

Detailed comparison of our linearized NS simulation results will be made to the
model of Wouchuk (2001). This is an inviscid model that uses a truncated series
expansion of the linearized RM problem, and captures the main physical phenomena
driving the instability: the initial deposition of vorticity on the interface by the
incident shock, bulk vorticity generated behind the reflected and transmitted shocks,
and reverberation of sound waves between the shock fronts. This model has been
shown to accurately predict asymptotic growth rates for intermediate-strength shocks
in the inviscid approximation or in shock-capturing NS simulations (Wouchuk 2001;
Herrmann et al. 2008; Lombardini 2008).

From Wouchuk & Nishihara (1997), the asymptotic growth rate of the perturbation
amplitude is given exactly (in the linear theory) by

ḣ∞ =
−ρ3v3(0

+) + ρ2v2(0
+)

ρ3 + ρ2

+
ρ3F3 + ρ2F2

ρ3 + ρ2

, (4.4)

where the state numbering follows figure 1, and v2(0
+) and v3(0

+) are the tangential
velocities at the interface (in the limiting sense of x → 0) in each fluid immediately
after impact. The functions F2 and F3 are central to the improved prediction of this
model, as they represent the sonic interactions between the shocks and the interface.
These functions have not been calculated analytically, so are approximated by a
truncated series expression.

For weak shocks, the first term of (4.4) is dominant, the model giving results
similar to the impulsive model (4.1). The second term becomes more important as
shock strength increases (or for highly compressible fluids), adding a correction for
the vorticity generated by the shocks upon impact. Table 5 compares predictions of
asymptotic growth rate ḣ∞/kh(0−) from (4.1) and (4.4) for each of the parameter
cases considered. Also shown is the start-up time scale τ , scaled by wavenumber,
defined by (4.3).
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Incident shock MI 1.05 1.05 1.21 1.21 2.20 2.20
Pre-shock A 0.2 0.6 0.2 0.6 0.2 0.6
Post-shock A+ 0.19999 0.59998 0.1996 0.5991 0.1839 0.5597

Impulsive model ḣ∞ 0.01295 0.02934 0.03616 0.08703 0.04421 0.1386
Wouchuk model ḣ∞ 0.01341 0.03010 0.04058 0.09303 0.06030 0.1556

kτ from (4.3) 1.2137 1.9612 1.4688 2.4826 2.8224 4.9086

Table 5. Predictions for the asymptotic growth rate ḣ∞/kh(0−), using the impulsive model and
Wouchuk (2001) model, and the characteristic start-up time proposed by Lombardini (2008),
for the cases presented in this work in dimensionless form. The start-up time kτ is normalized
by the scale 1/UI .

5. Results
5.1. Approaching the inviscid limit

To characterize the viscous RM problem, relevant length scales are identified as the
incident shock thickness ΔI , the interface thickness ΔC , the interface wavelength
λ= 2π/k, and the mean free path in the state 0 fluid �0 = ν/ã, where ν is the averaged
kinematic viscosity ν = (μ2 + μ3)/(ρ2 + ρ3), and ã is the characteristic sound speed
defined by (2.4). Note that ΔI ∼ �0, and is a known function of the incident shock
Mach number. The interface thickness ΔC is a parameter of the initial condition.

A Reynolds number at the interface is defined (in terms of dimensional quantities)
by

ReI ≡ ΔUλ

ν
, (5.1)

where ΔU is the interface velocity. It is expected that as ReI increases, the inviscid
limit is approached and the simulation results should approach the predictions of the
inviscid models. Equation (5.1) can be expressed in non-dimensional form in terms of
the wavenumber k, using the same length scale �0 as before, according to

ReI =

(
ΔU

ã

)
2π

k
. (5.2)

The term of (5.2) in parentheses is determined by the initial conditions of the incident
shock, while the second term is a free parameter of the simulation and controlled by
the choice of k for a given initial condition. The dimensionless length scales

η ≡ kΔC and ζ ≡ ΔC/ΔI

specify the relative initial diffusiveness of the interface and the thickness of the
interface relative to the shock. To approach the inviscid limit of ReI → ∞, a sequence
of simulations is performed with decreasing k and increasing ΔC such that η is
held constant (but small). This necessarily implies that ζ increases with ReI in each
sequence. This is a subtly different distinguished limit from that encountered with
discontinuous interface treatments, where ΔC → 0 is implicit, but the exploration of
the parameter space shown in the following sections does yield information on both
limits. Note also that the growth and start-up time scale (4.3) of the instability scales
strongly with k, increasing with ReI the simulation time required to reach the linear
growth phase.
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Figure 4. Plots of normalized perturbation amplitude h(t)/h(0+) − 1 against time scaled by
the start-up time τ from Lombardini (2008), with comparison to the impulsive model growth,
for the case MI = 1.05, A = 0.2, across a range of Reynolds numbers.
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Figure 5. Similar plots to figure 4, this for the case MI = 1.21, A = 0.2. See § 5.4 for further
discussion of the case ReI = 746, where viscosity has a significant effect.

5.2. Start-up phase

We begin presentation of the simulation results with examination of the start-up
time scale proposed by Lombardini (2008) and defined in (4.3). Figures 4–6 show
plots of perturbation amplitude (h(t)/h(0+) − 1) against time scaled by τ for a range
of Reynolds numbers. These show collapse of the growth profiles in the inviscid
limit, demonstrating a time scaling for the instability on kt . At lower Reynolds
numbers, deviation from the analytic models is evident, but towards the inviscid
limit, growth follows the impulsive model prediction closely for t > τ in the weak
to intermediate shock strength examples. In the strong shock case, growth follows
instead the asymptotic model prediction of Wouchuk (2001).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

19
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991911


Navier–Stokes simulation of Richtmyer–Meshkov instability 435

0 1 2 3 4 5

0

1

2

3

4

5

t/τ

Re = 8737, ζ = 0.49 

Re = 17 474, ζ = 0.97 

Re = 34 948, ζ = 1.9 

Re = 69 896, ζ = 3.9 

Wouchuk model

N
o
rm

al
iz

ed
 a

m
p
li

tu
d
e 

h(
t)

/h
(0

+
) 

–
 1

Figure 6. Similar plots to figure 4, this for the case MI = 2.20, A = 0.6. Comparison here is
to the asymptotic model growth of Wouchuk (2001).

Based on figures 4 and 5, a simple model for amplitude growth rate that accounts
for start-up of the instability is proposed:

ḣ(t)

h(0+)
=

{
0, t � τ,

A+ΔUk, t > τ.
(5.3)

This has the form of a shifted time origin for the impulsive model, and appears to
closely approximate the simulated growth profiles in the inviscid limit. For stronger
shocks, the impulsive model growth rate assumption may be inappropriate: compare
figure 6, where the model of Wouchuk (2001) is substituted instead. In this case also
the linear regime appears to be reached in a time somewhat less than τ . Note that
for most physical problems, the start-up time scale is very small; here τ ∼ 10−7 s.

5.3. Analytic model comparisons

A more precise comparison between the simulation results and analytic models is
made by examining the growth rate of the instability. Shown in figures 7–9 are the
growth rates of the interface perturbation, scaled by wavenumber, for a range of
cases. Both the impulsive model and that of Wouchuk (2001) predict that growth
rate under this scaling should approach a constant value in the inviscid limit. The
simulation results show this trend. Oscillation observed in the amplitude growth rate is
qualitatively similar to that observed by, among others, Yang et al. (1994); Wouchuk
(2001); Herrmann et al. (2008). The amplitude of this oscillation decreases strongly
with increasing Reynolds number, indicating that the oscillatory effect is amplified
by viscous effects, across all incident shock strengths. The frequency of oscillation is
found to be weakly dependent on Reynolds number.

Evidence that the inviscid limit is properly approached in figures 7–9 by the
method outlined in § 5.1 is given by figure 10. This shows amplitude growth rates,
scaled by wavenumber, for a range of similar Reynolds numbers and two values for
the interface wavelength to thickness ratio η. The similarity of scaled growth rates
(at comparable Reynolds numbers) for different η indicates that the same limit is
approached independently of η as the shock becomes thin relative to the interface.
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Figure 7. Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against dimensionless
scaled time kt , for the case MI = 1.05, A = 0.2 with varying Reynolds number. Comparison is
to the asymptotic growth rate predicted by the impulsive model (4.1).
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Figure 8. Similar growth rate plots to figure 7, for the case MI = 1.21, A = 0.6. Comparison
is to the asymptotic growth rate predicted by the impulsive model (4.1).

Figures 11–13 focus on a particular Reynolds number simulation for each of three
cases: a weak shock MI = 1.05 with A= 0.6, an intermediate shock MI = 1.21 with
A= 0.6, and a strong shock MI = 2.20 and A= 0.2. Amplitude growth rates ḣ(t)/h(0+)
are compared to the time evolution model of Wouchuk (2001). Wave numbers quoted
are non-dimensional values.

In the weak shock case, figure 11 confirms that the impulsive model is a good
approximation of the asymptotic growth rate of the instability under these conditions.
The average scaled growth rate from the simulation, after the initial transient, is
1.244 × 10−5, compared to 1.240 × 10−5 for the impulsive model prediction. The
simulation growth rate evolution generally agrees well with the Wouchuk (2001)
model, sharing many features of the time history. Asymptotically, however, the
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Figure 9. Similar growth rate plots to figure 7, for the case MI = 2.20, A = 0.6. Comparison
is to the asymptotic growth rate prediction from Wouchuk (2001).
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Figure 10. Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against dimensionless
scaled time kt , for the case MI = 1.21, A = 0.2. Both Reynolds number and interface wavelength
to thickness ratio η vary in this case.

simulation tracks a little lower than the model; it is possible that this is due to a
small attenuating viscous effect present at this Reynolds number.

The intermediate case shown in figure 12 has similar parameters to the experiments
of Collins & Jacobs (2002): MI = 1.21 and A= 0.6. The simulation results show
that long-term growth rate is centred closely on the impulsive model prediction,
a conclusion supported by the good agreement shown by this model in figures 8
and 12 for all but the lowest Reynolds number cases. Upon correcting for diffuse
interface effects, the experiments of Collins & Jacobs (2002) come to a similar
conclusion (for the linear regime). In this case, the model of Wouchuk (2001) appears
to slightly overestimate the asymptotic growth rate. It is notable also that the model
underpredicts the amplitude of the first peak in the growth rate calculated from the
simulation, for both this case and MI = 1.05. Further, after this peak, there appears
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Figure 11. Plot of non-dimensional amplitude growth rate ḣ(t)/h(0+), for MI = 1.05, A = 0.6
and physical wavenumber k = 6018 m−1, with asymptotic growth rate predictions shown
for impulsive and Wouchuk (2001) models. Overlaid also is the time history predicted by
Wouchuk’s theory.
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Figure 12. Plot of non-dimensional amplitude growth rate ḣ(t)/h(0+), for MI = 1.21, A = 0.6,
and physical wavenumber k = 24070 m−1, with asymptotic growth rate predictions shown
for impulsive and Wouchuk (2001) models. Overlaid also is the time history predicted by
Wouchuk’s theory.

to be a phase difference between our results and the model, which we speculate may
be due to very early start-up effects detected only by full resolution of the shock and
interface, as in the present study.

Some evidence for this theory may come from Herrmann et al. (2008) (cf. figure 4
in particular). This compares the result of a two-dimensional NS simulation of the
instability at MI = 1.21 (at a Reynolds number in the inviscid range) with Wouchuk’s
model, to excellent agreement. Their simulation uses a shock capturing/tracking
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Figure 13. Plot of non-dimensional amplitude growth rate ḣ(t)/h(0+), for MI = 2.20, A = 0.2
and physical wavenumber k = 37610 m−1, with asymptotic growth rate predictions shown
for impulsive and Wouchuk (2001) models. Overlaid also is the time history predicted by
Wouchuk’s theory.

method and treats the interface as a level set scalar, so it is discontinuous for all time.
This implies that the fundamental assumptions of the Herrmann et al. simulations
are more similar to Wouchuk’s inviscid model than these results at the early growth
stages of the instability; neither can capture the early time effects observed in the
present simulations.

In the strong shock case, the simulation results point unambiguously to Wouchuk’s
model being the best estimate of the asymptotic growth rate. Figures 9 and 13
confirm this, with the plot of growth rate showing oscillation about the Wouchuk
prediction. However, comparison of the time histories in figure 13 shows that the
model considerably underpredicts the magnitude of oscillation in the growth rate.
This implies that the amount of acoustic energy trapped between the shocks in the
interface region is underestimated by the model, caused by the difficulty involved
in calculating the contribution from the transmitted shock by the truncated series
method. The present simulation results confirm that this is a significant effect under
these conditions: integrating to compare the amplitude predictions indicates that
although early-time agreement is good, the effect of the oscillations in growth rate
contribute to an overprediction of the amplitude by the model at later times.

5.4. Influence of viscosity

Based on the present results, we can conclude that contact with the inviscid limit has
been made. The primary Reynolds number effect that is observed is simply due to the
dependence of ReI on the wavenumber k; this is confirmed by the majority of results
and the collapse of amplitude histories when the effect of k has been scaled out. In
the cases where viscous effects are seen, attenuation of the growth rate is observed
when compared to the inviscid models.

Figures 14 and 15 show some particular examples where viscous effects are
significant. For the case ReI =239 in figure 14, viscous attenuation is large enough
to cause decay of the interface perturbation, suppressing the instability. The model
of Carlès & Popinet (2001) predicts that decay occurs in this case, but overestimates
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Figure 14. Plots of non-dimensional perturbation amplitude for MI =1.21 and η = 0.02, for
low Reynolds numbers. Dashed lines show the predictions of the Carlès & Popinet (2001)
model for each case. At low enough ReI , viscous effects are sufficient to cause decay of the
perturbation.
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Figure 15. Plots of non-dimensional perturbation amplitude growth rate ḣ(t)/kh(0+) against
scaled time kt for MI = 1.21, for low-ReI cases affected by viscosity. Comparisons are made
to the growth rate predictions of the Carlès & Popinet (2001) model and the impulsive model.

the maximum amplitude and the time scale of the decay. Figure 15 compares
growth rates from the present simulations with the Carlès and Popinet model for
low Reynolds numbers. In this case, the decay envelope is captured with reasonable
accuracy, particularly for ReI = 1492 where the oscillation in the growth rate is closely
centred on the model prediction. Note that the model cannot be expected to capture
oscillations in the growth rate as no attempt is made to estimate effects caused by
proximity of the shocks.

Comparison of viscosity-influenced cases from the present results suggests some
bounds on the Reynolds numbers at which viscous effects are significant. Based
on the present simulations, for ReI < 1000, viscosity has a significant attenuating

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

19
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991911


Navier–Stokes simulation of Richtmyer–Meshkov instability 441

0 10 20 30 40

–0.15

–0.10

–0.05

0

kt

T
ra

n
sm

it
te

d
 s

h
o
ck

 p
er

tu
rb

at
io

n
 a

m
p
li

tu
d
e

Re = 746
Re = 1492
Re = 2984

Figure 16. Transmitted shock perturbation amplitude plotted against dimensionless scaled
time kt , for the case of MI = 1.21 and A = 0.2, showing collapse of the curves across Reynolds
number.

influence on the amplitude growth rate. In the range 1000< ReI < 5000, there may
be a small viscous effect, but attenuation is small enough that the inviscid models are
an acceptable approximation. Beyond this, the asymptotic behaviour of the interface
amplitude is essentially indistinguishable from the inviscid approximation. This is in
qualitative agreement with Yee & Sjögreen (2007).

5.5. Shock perturbations

Upon interaction with the interface perturbation, the reflected and transmitted shocks
develop perturbations of their own. These perturbations are stable (Landau &
Lifshitz 1959; Erpenbeck 1962), unlike the interface perturbation, and are expected
to decay with time. This is confirmed by the simulation results, which show that the
perturbation amplitude oscillates within a decaying envelope at both the reflected and
transmitted shocks. Also notable is that the amplitude perturbation passes through
zero multiple times as it decays, and that the reflected shock amplitude is initially of
opposite sign to the transmitted shock amplitude.

The collapse of the interface perturbation amplitude curves when plotted against
time scaled by the perturbation wavenumber (kt) suggests that a similar scaling may
apply to the shock perturbations. For the transmitted shock perturbation, this is
generally true, illustrated by the example in figure 16, where collapse is very good
except at the lowest Reynolds number cases. On the other hand, the reflected shock
perturbation does not appear to collapse similarly when plotted against kt (figure 17).
The spatial frequency of the reflected shock perturbation is necessarily k by the form
of the linearization, and the reason for a different time frequency dependence for the
reflected shock is unclear.

6. Conclusions
The start-up and linear growth phases of the RM instability have been investigated

using a novel high-order shock-resolved NS simulation. By assuming a linearized
form for the solution with a perturbed interface, where the base flow is the solution
to the nonlinear one-dimensional NS equations for a shock incident on a density
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Figure 17. Reflected shock perturbation amplitude plotted against dimensionless scaled time
kt , for the case MI =1.21 and A = 0.2, showing that similar collapse does not occur with this
scaling.

interface, the problem could be reduced to a spatially one-dimensional configuration.
To efficiently resolve the full internal structure of the shocks, the high-order grid
interface closures of Kramer et al. (2007) were employed in a refinement scheme
that tracked the solution features based on the inviscid Riemann solution. This
numerical method ensures that observed viscous effects are caused only by physical
viscosity.

Results from the simulations show that for weak and intermediate strength shocks,
the impulsive model is adequate for prediction of the asymptotic growth rate of the
perturbation. For strong shocks, the model from Wouchuk (2001) accurately predicts
the asymptotic growth rate. The characteristic start-up time proposed by Lombardini
(2008) is verified as a good estimate of the time for the instability to enter the linear
growth regime. Transient growth shows general agreement with Wouchuk’s model for
weaker shocks, though some new features are observed, while for stronger shocks the
same model significantly underestimates the amplitude of oscillation in the growth
rate. The extent of the influence of viscosity is predicted by a Reynolds number based
on the perturbation wavenumber. Existing models of viscous attenuation are found
to unreliably predict the growth rate of the instability in most cases.

This work was supported by the ASC programme of the Department of Energy
under subcontract number B341492 of DOE contract W-7405-ENG-48. The authors
would like to thank Gustavo Wouchuk for his valuable assistance for providing details
of his model.
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