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NEW INSIGHTS FROM THE
CANONICAL RAMSEY–CASS–
KOOPMANS GROWTH MODEL

ERIC NÆVDAL
Ragnar Frisch Centre for Economic Research

The present article presents novel results on the Ramsey–Cass–Koopmans growth model.
It is shown that the shadow price of capital goes to infinity as the capital stock goes to
zero even if all functions are bounded with finite derivatives and that imposing the Inada
condition of infinite derivative of the per capita production function at zero stock is
irrelevant. It is also shown that unless marginal utility at zero consumption is infinity,
there will be a non-empty interval where the Keynes–Ramsey rule does not hold. The
paper also shows that the stable saddle path in a phase diagram with the state variable and
the shadow price has an unrecognized economic interpretation that enables us to illustrate
the value function as the integral of the stable saddle path.
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Stable Saddle Path.

1. INTRODUCTION

The Ramsey–Cass–Koopmans (RCK) growth model is one of the corner stones
of economic growth theory and as such studied by the majority of economics
graduate students.1 It still forms the basis of much theoretical and empirical work
(Becker and Mitra (2012), Guo and Jiang (2017), Biljanovska (2019)). Given its
ubiquity in text books and journal articles, one could be forgiven for thinking that
economists have gleaned all the insights that may be acquired from the standard
RCK growth model. However, one issue is usually overlooked. A number of text-
books illustrate the phase diagram for the standard RCK model and they all fail to
draw complete stable saddle paths or even discuss the problem of the behaviour of
the stable saddle path close to the axes2 (Romer (2006, p. 60), Acemoglu (2009,
p. 303), Bénassy (2011, p. 149)).3,4 Blanchard and Fischer (1989) also draw a
phase diagram where the stable saddle path is left dangling in the interior of the
phase diagram, but they do discuss the issue and claim that where the stable saddle
path intersects the k-axis depends on the elasticity of substitution. Below it is
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shown that this is only correct as far as the elasticity of substitution depends on
marginal utility.

One may think that this is a trifling issue, but in examining the behaviour of
the stable saddle path a number of other results become apparent. One impor-
tant insight that has been overlooked in the literature is that if the solution to an
optimal control problem is illustrated in a phase diagram with the state variable
along the x-axis and the shadow price along the y-axis, the stable saddle path has
an interesting economic interpretation. One may think of the stable saddle path
as a function that takes the state variable as an argument and the shadow price
along the optimal path as the output. It follows that the stable saddle path is in
fact the derivative of the value function. It follows further that in the RCK model
if zero capital stock implies that if the value function is a finite number, typically
zero, one can illustrate the value function as the integral under the stable sad-
dle path.5 The paper also proves the following results: (1) The shadow price of
capital will always go to infinity as the capital stock goes to zero even if instan-
taneous marginal utility and/or productivity have finite derivatives at the origin
and the production and utility functions are bounded. (2) Imposing the familiar
Inada condition that the derivative of the per capita production function at zero
stock is infinity is in fact an irrelevant assumption. As long as an interior steady
state exists, this particular condition can be integrated out of the optimal solution.
(3) Marginal instantaneous utility equal to infinity at zero consumption is a neces-
sary and sufficient condition for consumption to be positive for all positive capital
levels and thus conversely that marginal instantaneous utility less than infinity
implies that for sufficiently low levels of the capital stock, consumption per capita
is zero.

These results will hopefully make the exposition of the RCK model in text-
books more complete and benefit researchers who are working on extending the
RCK model in their research.

2. THE MODEL

Assume that instantaneous utility depends on consumption, c, and is given by
U(c), where 0 < U′(c) ≤ ∞ and U′′(c) < 0. The cases U′(0) < ∞ and U′(0) = ∞
will be discussed separately. Assume further that production per worker is given
by f (k), where k is the capital intensity and 0 ≤ f ′(k) ≤ ∞ and f ′′(k) < 0. We shall
assume that f (k) − (n + δ)k is bounded and that f(0) = 0. Note that Inada condi-
tions for f(0) are not explicitly imposed. It is well known that one can derive the
following differential equation for k:

k̇ = f (k) − (n + δ)k − c, k(0) = k0 > 0 (1)

Here, n is the labour force growth rate, and δ is the rate of capital depreciation.
(B&F set δ to zero. This does not matter conceptually for the arguments below,
and δ is included for generality.) It is assumed f(k) − (n + δ)k has the property that
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if k is large enough we have that k̇ < 0 for all positive values of c. The discount
rate is assumed to be fixed and given by ρ. The problem to be solved is:6

V (k0) = max
c(t)≥0∀t

∞∫
0

U(c)e−ρtdt (2)

subject to (1). V(·) is of course the value function. The maximum principle yields
the following conditions for the optimality of a triple (c, k, μ):

U′(c) − μ ≤ 0 ∀t (= 0 if c > 0) (3)

μ̇ = ρμ − [
f ′(k) − (n + δ)

]
μ (4)

From (3) it is immediately clear that if c goes to zero and U′(0) = ∞, then μ

must go to infinity as well. However, if U′(0) < ∞, then it is not possible to see
from (3) whether μ goes to infinity or not as c goes to zero. Equation (3) may be
rewritten as:

μ(t) ≥ U′(0) ⇔ c(t) = 0, μ(t) < U′(0) ⇒ U′[c(t)
] = μ(t) (5)

Note that the last inequality and the implication is a statement about the rela-
tionship between U′(0) and μ(t). If μ(t) is lower than U′(0), the inequality in (3)
holds with equality and has an interior solution with strictly positive c(t). As U′(·)
is strictly decreasing, it has an inverse so we may write (5) as:

c = max
[
U′−1 (μ) , 0

]
(6)

Additionally, we must impose transversality conditions and k must be determined
by (1). The optimality conditions can be used to construct phase diagrams. These
are typically drawn in (k, c) coordinates, but the phase diagram drawn here will
use (k, μ) coordinates as this helps illustrate results. By combining the condition
(6) in with (1), we get the following expression for the isocline where k̇ = 0:

μ = U′ [f (k) − (n + δ)k
]

(7)

In the illustrations below, it is assumed there exists a k̄ such that
f (k̄) − (n + δ) k̄ = 0. This does not matter for the results but helps in drawing
the phase diagram as it then holds that:

U′ [f (0) − (n + δ) × 0
] = U′ [f (k̄) − (n + δ)k̄

] = U′(0) (8)

Equation (8) implies that when constructing phase diagrams we only need to draw
it for 0 ≤ k ≤ k̄. The isocline for μ̇ = 0 is given by:

μ = 0 and k = f ′−1 (ρ + n + δ) (9)

Here, f ′−1(·) is the inverse function of f ′(·). Note that we must assume that there
actually exist a value k∗, such that f ′(k∗) = ρ + n + δ. From (6) and (7), it follows
that μ∗ is determined by:

μ∗ = U′ [f (k∗) − (n + δ)k∗] (10)
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Data Source: The diagram on the left is straight forward and consistent with, for example, a constant
elasticity of substitution utility function. As U′ (0) = ∞, the isocline for k̇ = 0 goes to infinity for k =
0 and k = k̄. The stable saddle path, illustrated by the dashed line, must lie above the isocline for k̇ = 0
for all k lower than the steady state level and the saddle path therefore goes to infinity as k goes to
zero. Note that the shape of the stable saddle path confirms that μ(k) is a decreasing function of k so
the value function is concave. As μ(k) is the derivative of the value function, V(k), we can illustrate
the value function as the sum of V(0) and the integral of μ(.) over [0, k]. This is only possible if
V(0) �= −∞. But even if V(0) = –∞, we can illustrate the difference V(k2) − V(k1) as the integral of
μ(k) over [k1, k2] as illustrated by the shaded area. When U′ (0) < ∞ as in the phase diagram on the
right, things are less clear. There are two possible stable saddle paths that satisfy directional derivatives
in the interior of the (k, μ)-space. One lies everywhere below the line μ = U′ (0) except at k = 0 and
one where the saddle path lies above the line μ = U′ (0) for k sufficiently small. Proposition 3 below
proves that also in this case will the stable saddle path in fact go to infinity as k goes to zero.

FIGURE 1. Phase diagrams for the RCK model.

We can draw these isoclines in a phase diagram in the standard manner.
Depending on whether U′(0) = ∞ or U′(0) < ∞, this diagram takes one of two
possible forms.

The two cases are illustrated in Figure 1 and discussed in the caption. We also
need a procedure to compute the stable saddle path. The stable saddle path is a
function that gives the shadow price as a function of k along the optimal path
and is here denoted μ(k) as opposed to the function μ(t | k0) usually analysed
in optimal control models which gives the optimal shadow price as a function
of time. μ(k) can be calculated by eliminating time as a variable and reducing
the differential equations in (1) and (4) to a single differential equation with the
steady state (k, μ) = (k∗, μ∗) as the initial condition (Judd (1998, Ch. 10.7)).

μ̇

k̇
= dμ

dk
= ρμ − [

f ′(k) − (n + δ)
]
μ

f (k) − (n + δ)k − c
, μ(k∗) = μ∗ (11)

The function μ(k) that solves (11) is the stable saddle path and it should be clear
that this function is the derivative of the value function.
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As mentioned above, there is a ubiquitous failure to identify the intersection
of the stable saddle path. The diagrams simply fail to identify what values the
control should take if the state variable is close to zero. If U′(0) = ∞, the issue
may be settled by examining the phase diagram as explained in Figure 1. The
stable saddle path drawn in (k, μ)-space will go to infinity as consumption, which
cannot be positive if there is no capital, goes to zero. We shall here show that the
stable saddle path always goes to infinity when k goes to zero. We shall prove this
in a few steps, one of which is to prove that if U′(0) < ∞, then c is always zero
for sufficiently low values of k.

PROPOSITION 1. Assume that U′(0) < ∞ and f ′(0) < ∞, then the stable
saddle path will not intersect the μ-axis at μ ≤ U′(0).

Proof. It is not possible for the stable saddle path to intersect the μ-axis at
μ-values below U′(0) as this is inconsistent with (3). If the proposition is false,
therefore μ(0) = U′(0). If μ(0) = U′(0), the slope of the stable saddle path at
(k, μ) = (

0, U′(0)
)

is given by:

dμ

dk k=0,μ=U′(0)
= μ̇

k̇ k=0,μ=U′(0)
=

[
ρ + δ + n − f ′(0)

]
U′(0)

f (0) − (n + δ) × 0
= −∞ (12)

However, the slope of the isocline k̇ = 0 at (k, μ) =
[
0, U′(0)

]
can be calculated

from (7) to be U′′(0)
[
f ′(0) − (δ + n)

]
which is finite. This implies that if the

stable saddle path originates at (k, μ) = [
0, U′(0)

]
, it enters the region, where

k̇ < 0 which is a contradiction as the stable saddle path cannot be located in that
region. �

Proposition 1 assumed that f ′(0) < ∞. The case f ′(0) = ∞ can also be proved.
As long as U′(0) < ∞, the stable saddle path has a slope given by (12) if it origi-
nates in (k, μ) = [

0, U′(0)
]
. Inspection of (12) and the slope of the isocline k̇ = 0

reveals that, roughly speaking, when k → 0, the slope of the stable saddle path is
proportional to the slope of the isocline k̇ = 0 divided by zero which implies that
the stable saddle path has a steeper slope very close to k = 0 which again implies
it would enter the region where k̇ < 0. Below is a numerical model illustrating the
particular case where U′(0) < ∞ and f ′(0) = ∞.

Using Proposition 1 we can prove the following trivial but important result.

PROPOSITION 2. Assume that U′(0) < ∞. Then there exists an interval [0, k̃],
where optimal c is given by 0.

Proof. An immediate consequence of Proposition 1 and (3) is that stable saddle
path must intersect the μ = U′(0) line at some positive value of k from here on
denoted as k̃ and from (3) it follows that c = 0 for k ≤ k̃. �

We can now examine the stable saddle path in more detail. As noted above,
the stable saddle path is calculated by solving (11). In general this equation has
no closed form solution but must be solved numerically. But from Proposition 2
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we have the existence of an interval [0, k̃] where we can write (11) as separable
differential equation:

1

μ

dμ

dk
= (ρ − n) − [

f ′(k) − (n + δ)
]

f (k) − (δ + n) k
, μ(k̃) = U′(0) (13)

Equation (13) may be solved in the following steps:

−
k̃∫

k

1

μ

dμ

dy
dy =

k∫
k̃

ρ

f (y) − (δ + n) y
dy −

k∫
k̃

f ′(y) − (n + δ)

f (y) − (δ + n) y
dy

−ln
μ(k)

U′(0)
=

k∫
k̃

ρ

f (y) − (δ + n) y
dy −

f (k)−(δ+n)k∫
f (k̃)−(δ+n)k̃

1

z
dz

(14)

Note, from (14) that when the last integral is solved through integration by sub-
stitution f ′(k) disappears which implies that f ′(0) = ∞ is an irrelevant assumption
as long as f ′(k∗) − (n + δ) > 0. A few further calculations yield:

μ(k) = U′(0)
f (k̃) − (δ + n) k̃

f (k) − (δ + n) k
exp

[
−

∫ k̃

k

ρ

f (y) − (δ + n) y
dy

]
(15)

This expression is valid for any functional form of f(k) and clearly is independent
of the shape of U(c) except for the dependence on U′(0). We can now prove that
μ(k) goes to infinity when k goes to zero.

PROPOSITION 3. limk↓0 μ(k) = ∞
Proof. If U′(0) < ∞ and the integral in (15) converges, the proposition is a

trivial consequence of the denominator f(k) − (δ + n)k going to zero as k goes to
zero. If the integral does not converge, we can use L’Hôpital’s rule and calculate
that:

lim
k→0

μ(k) = U′(0)
[
f (k̃) − (δ + n) k̃

] lim
k→0

d
dk exp

⎡
⎣−

k̃∫
k

ρ
f ( y)−(δ+n)y dy

⎤
⎦

lim
k→0

d
dk [f (k)−(δ+n)k]

= ρ

f ′(0)−(δ+n)
lim
k→0

{[
U′(0) f (k̃)−(δ+n)k̃

f (k)−(δ+n)k

]
exp

[
−

k̃∫
k

ρ

f ( y)−(δ+n)y dy

]} (16)

The last equality implies that:

lim
k→0

μ(k) = ρ

f ′(0) − (δ + n)
lim
k→0

μ(k) (17)

As f ′(0)− (δ+n)> f ′ (k∗) − (δ+n)=ρ, it follows that ρ/
[
f ′(0) − (δ + n)

] �= 1,
so limk→0μ(k) is either 0 or infinity. As μ(k) is a decreasing function of k, which
can be affirmed by inspecting (13), limk→0μ(k) = ∞ follows. �
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Data Source: The parameters used are a = 1, b = 1, α = 0.7, and n + δ = 0.45. This implies a maxi-
mum value of k at 14.32. The stable saddle path seems to go to infinity as k goes to zero. For k = 10−50,
we have that μ(10−50) = 3.7327 × 1034. For k < k̃, we have that μ(k) > U′ (0) so c = 0 for all k ∈ [0, k̃]
where k̃ ≈ 0.75. As the value function at k = 0 is zero and the stable saddle path is the derivative of
the value function, the gray area gives the numerical value of the value function at k = k̃. The figure is
generated by a Matlab program available from the author upon request.

FIGURE 2. Phase diagram for the model in (18).

3. NUMERICAL EXAMPLE

Armed with these propositions, we can draw a complete phase diagram. The exact
formulation is:

V [k(0)] = max
s∈[0,1]

∞∫
0

(
a − ae−bc

)
e−ρtdt

subject to : k̇ = kα − (δ + n) k − c, k(0) given

(18)

Here a > 0, b > 0, 0 < α < 1, δ > 0, and n > 0. Marginal utility at zero consump-
tion is finite and equal to ab. Marginal productivity at k = 0 is infinity. The
optimality conditions are straightforward to derive and are omitted. The solution
to (18) is illustrated in Figure 2 and discussed in the caption.

It is customary to draw phase diagrams with k along the x-axis and c along the
y-axis. The choice to here measure μ along the y-axis was motivated by making
the results easier to explain. It is easy to translate the results from this paper into
a phase diagram with c along the y-axis if so desired. However, by using (6), one
may draw level curves for combinations of k and μ in (k, μ) – space and show
how the control depends on the state variable and shadow price. Obviously, in the
RCK model such curves would be horizontal lines and make this process quite
straightforward.
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4. A COMMENT ON THE EXPOSITION OF THE RCK MODEL

The usual approach when presenting the RCK model is to assume that (3) holds
with equality and that one can therefore differentiate (3) and obtain U′′(c)ċ = μ̇

and by combining this expression with (3) and (4), one can derive the familiar
Keynes–Ramsey rule:

ċ = U′(c)

U′′(c)

(
ρ + δ + n − f ′(k)

)
(19)

An immediate consequence of Proposition 2 is that if U′(0) < ∞, then for some
values of k we have that c = 0 and therefore ċ = 0. In this case there exists an
interval [0, k̃) where the Keynes–Ramsey rule does not hold. This highlights the
danger of simply assuming interior solutions in dynamic economic models and
the importance of drawing complete saddle paths when illustrating dynamic mod-
els where the steady state is a saddle point. Of course, if U(c) exhibits constant
intertemporal elasticity of substitution, then U′(0) = ∞ and the solution to (19)
goes through the origin.

5. SUMMARY

The present paper has tidied up a few loose ends in the Ramsey–Cass–Koopmans
growth model. Some hitherto unnoticed results have been shown. We show that
the assumption that zero capital stock implies zero growth has some important
consequences for the shape of the stable saddle path. Also, the standard phase
diagram has been shown to contain more information than typically acknowl-
edged as the stable saddle path is in fact the derivative of the value function, thus
enabling us to illustrate the value function as the area under the stable saddle
path.

NOTES

1. Spear and Young (2014) provide a good historical treatment of the evolution of the RCK model
and argue convincingly that the Ramsey–Cass–Koopmans model or Cass–Koopmans model should be
renamed Cass–Malinvaud–Koopmans. I keep the original name to avoid confusion.

2. I cannot claim to have exhaustively examined the large number of books and articles discussing
the RCK model, but have checked quite a few. If I have missed some exposition that covers this topic
I apologize. My only excuse is that if this is the case I am not alone in being guilty of this omission.

3. Wikipedia’s entry on the Ramsey–Cass–Koopmans model has an easily accessible and typical
illustration of dangling stable saddle paths, Wikipedia contributors (2019).

4. This failure is not contained to the economic growth literature.
5. Indeed, any growth model where zero stock implies that the value function and the growth

function are zero has this property.
6. There are a number of formulations of the RCK model. The objective function is often spec-

ified as integrating U(c)e−(ρ−n)t implying Benthamite utilitarianism. Here, we follow the formulation
in Blanchard and Fischer (1989), pp. 39–41, where the objective represents the preferences of a rep-
resentative family. All results below hold for the instantaneous utility function U(c)e−(ρ−n)t, if ρ is
replaced by ρ − n and ρ − n is assumed positive.
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