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A problem of plane inertial motion of an ideal incompressible fluid with a free boundary, which

initially has a quadratic velocity field, is studied by semi-analytical methods. A conformal

mapping of the domain occupied by the fluid onto a unit circle is sought in the form of a power

series with respect to time. Summation of series is performed by using Padé approximants.

Key words: Conformal mapping; Padé approximant; Free boundary flow; Ideal incompress-

ible fluid

1 Introduction

A plane unsteady potential flow of an ideal incompressible fluid with a free boundary is

considered. In the case considered, there are no external forces and no surface tension.

At each time t, the fluid occupies a certain bounded simply connected domain in the

plane of the complex variable Z = x + iy. The domain boundary is free, and a zero

pressure is maintained on this boundary. The domain at the initial time t = 0 is known.

The subsequent motion of the fluid has a purely inertial nature and is induced by a given

initial velocity field. The goal is to find the domain shape and the velocity field at t > 0.

Such a problem with a free boundary does not have many examples of exact solutions.

The only known class of non-one-dimensional exact solutions contains flows with a linear

velocity field (the velocity components u and v are linear functions of x and y). This

class of flows was discovered by Dirichlet in 1857 [6]. The fluid was assumed to be self-

gravitating; a particular case without gravity was later studied in [15–17, 20, 22, 27]. For

plane potential flows with a linear velocity field, the free surface in the absence of gravity

is a second-order curve: hyperbola, ellipse, parabola, or straight line in the degenerate

case.

A small number of exact solutions may suggest that not all exact solutions have been

found. This is confirmed by a large number of exact solutions in similar flows with a free

boundary for viscous fluids: Hele-Shaw flows and plane Stokes flows. The first examples

of such exact solutions were obtained in 1945 [8, 26]. Some of the numerous subsequent

examples were presented in [4].
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An attempt to find new exact solutions in a plane problem of motion of an ideal fluid

with a free boundary and a nonlinear velocity field was made in [14] and in this work.

The main idea of these two investigations was to use simple initial conditions. In both

works, the initial complex velocity U = u − iv is identical: it is a quadratic function of

Z , but the initial domains occupied by the fluid are different: a wedge in [14] and a unit

circle in this work. The exact solution was found in [14], but the exact solution of the

problem considered below is still unavailable. Its semi-analytical solution is demonstrated

in this paper.

A quadratic initial velocity field is indeed the simplest case. If a linear initial ve-

locity is taken for a wedge or a circle, the solution is trivial: the wedge transforms

with time to another wedge (the wedge apex angle is a function of time), and the

circle transforms into an ellipse. In both cases, the velocity field remains linear for all

time.

An exact solution of the problem of deformation of a fluid wedge with an apex angle

α, which has a quadratic initial velocity field, was found in [14] by using a technique

successfully used previously in the problem of gravity waves on a fluid surface [12, 13].

This technique is based on an analytical continuation of the unknown function beyond the

boundary of the domain of definition of the function. After multiple passing around the

wedge apex, different branches of the sought function become related, generally speaking,

by an infinite system of ordinary differential equations. It was demonstrated that the

system becomes finite if α/π is a rational number. For some angles α, the solution of this

system could be found in an explicit form. A new class of self-similar flows with a free

boundary whose velocity field differs from a linear field was found.

This present work is based on three ideas previously put forward by various researchers:

• application of conformal mapping for describing plane flows;

• presentation of the solution in the form of power series in time;

• application of semi-analytical methods.

Let there be a certain canonical domain in an auxiliary plane ζ. We search for a

conformal mapping of this domain onto the domain occupied by the fluid. This approach

offers some advantages over traditional methods. Instead of the boundary-value problem

in an unknown domain with a moving boundary, we obtain a boundary-value problem

with a fixed boundary in the plane ζ.

The boundary conditions for two sought functions, i.e., the conformal mapping Z(ζ, t)

and complex potential Φ(ζ, t), were obtained in [24]. It turned out that they are cubically

nonlinear conditions, which is not very convenient for seeking the solution in the form of

power series with respect to time: recurrent formulas for sequentially finding the terms of

the series contain double sums.

It was noted [10] that the boundary conditions become quadratically nonlinear if

another pair of function is used: the conformal mapping Z(ζ, t) and complex velocity

U(ζ, t) = Φζ/Zζ . This is more convenient because the recurrent formulas become simpler:

they contain only single sums.

Using one more pair of functions R(ζ, t) = 1/Zζ and U(ζ, t) was proposed in [7]. In

this case, using the boundary conditions, one can derive cubically nonlinear operator
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equations resolved with respect to the derivatives Rt and Ut. Therefore, there is no need

to use division operations in calculating Rt and Ut. The algorithm for solving the problem

is substantially simplified. This approach is widely used for studying long-time evolution

of water waves [7, 33].

The problem of a spherical bubble ascending in a liquid was studied in [23] with the

use of power series in time. The convergence of the series in this problem was proved

in [3]. The possibility of using power series in time for conformal mapping is based

on the theorems of existence and uniqueness proved in [24]. Various plane problems

of ascending or inertial motion of a cylindrical bubble with the use of power series

in time were considered in [2, 9, 11, 21]. Both conformal mapping and semi-analytical

methods were used in this articles. Cumulative jets were observed to form in all problems

of bubble motion. Cumulation is a phenomenon of energy concentration either in a

certain place or in a certain direction. In the problem considered below, there are three

cumulative jets, which induce significant deformation of the free boundary. Other examples

of cumulative jet formation in a liquid obtained by finite-difference methods can be found

in [25].

Semi-analytical methods (the name was proposed by M. Van Dyke [30–32]) are mainly

methods of computer processing of power series. They occupy an intermediate position

between numerical and analytical methods. In addition to high accuracy of calculations,

semi-analytical methods sometimes provide unique analytical information, which can be

difficult to obtain by purely numerical and by purely analytical methods; sometimes

obtaining this information is impossible altogether. Semi-analytical methods are mainly

used to solve two problems: analytical continuation of the power series beyond the circle

of its convergence and finding the locations and types of singularities. Padé approxim-

ants, continued fractions, Padé diagrams, Domb-Sykes test, algorithms for convergence

acceleration, and other methods are used to solve these problems.

There are numerous examples of effective applications of semi-analytical methods in

problems with a free boundary. For instance, in the problem of water waves, the first

publication was [18], and one of the most recent examples is [5]. In [18], semi-analytical

methods were used to discover nonmonotonicity of wave parameters due to amplitude

variations. In [5], fine nonlinear effects for waves with an almost-highest amplitude were

studied. These effects were previously detected earlier, in [19], by finite-difference methods.

The conformal mapping and complex velocity are sought below in the form of power

series in time. The convergence of the power series and the accuracy of the calculation

are carefully analyzed. A new algorithm is used to find the radius of convergence.

This is based on finding the zeroes of the partial sums of the series. With the use

of the Padé approximants, the power series are summed up to times that are ten-fold

greater than the radius of convergence. The free surface and the velocity of the fluid are

found.

Conformal mappings have the following inherent defect. If the domain experiences

significant deformations, then the function performing the conformal mapping becomes a

rapidly changing function and can be hard to use in numerical modelling. In this work,

we demonstrate a method for correcting this defect in the case where the solution is

sought in the form of a power series in time. The method is based on a certain change of

variables, also in the form of a power series.
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2 Conformal mapping

Let us consider a unit circle |ζ| < 1 in an auxiliary plane ζ. We search for a function

Z(ζ, t), which is a conformal mapping of the circle |ζ| < 1 onto the domain occupied by

the fluid (see Figure 1), and for the complex velocity U(ζ, t). There are two boundary

conditions on the free boundary |ζ| = 1.

The first (kinematic) boundary condition means that the projection of the velocity U

of the fluid particle located on the free boundary onto the normal to the free boundary

coincides with the projection of the velocity of the boundary itself Zt to the same normal.

In other words, the vector Zt − U is directed tangentially to the free surface. As ζ = eiθ

on the free surface, the normal vector is iZθ , and the scalar product of the vectors Z1

and Z2 is given by the formula ReZ1Z2, then we obtain the kinematic condition in the

following form:

Im [Zθ(Zt − U)] = 0. (2.1)

The second (dynamic) boundary condition can be obtained from the condition of

orthogonality of acceleration to the free surface. For convenience, we denote the times

in the Eulerian and Lagrangian coordinates by τ and T , respectively. Then the dynamic

condition can be written in the following form:

ReZθUT = 0. (2.2)

Let us find the acceleration UT . As Z and τ are independent variables, we obtain

Zτ = Zt + Zζζτ = 0.

Therefore, we have

∂

∂τ
=

∂

∂t
+ ζτ

∂

∂ζ
=

∂

∂t
− Zt

Zζ

∂

∂ζ
.

In addition, taking into account that

∂

∂T
=

∂

∂τ
+ ZT

∂

∂Z
=

∂

∂τ
+ U

∂

∂Z
,

∂

∂Z
=

1

Zζ

∂

∂ζ
,

we obtain the following formula for acceleration:

UT = Ut − Zt

Zζ

Uζ +
U

Zζ

Uζ.

Substituting it into (2.2) and then replacing the operator ∂/∂θ by iζ∂/∂ζ in (2.1) and

(2.2), we obtain

Im ζ(ZζUt − UζZt + UζU) = 0, Re (ζZζU − ZtZζ/ζ) = 0, |ζ| = 1 . (2.3)

Thus, there are two boundary conditions (2.3) for finding two analytical functions Z(ζ, t)

and U(ζ, t).

The solution is sought in the form of a power series in time:

Z(ζ, t) = Z (0)(ζ) + Z (1)(ζ)t + Z (2)(ζ)t2 + · · · , (2.4)
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p= 0

Z

1

Z ( ),t

Figure 1. Conformal mapping of a unit circle in the plane ζ onto the flow domain in the physical

plane Z . A zero pressure p is maintained on the free surface.

U(ζ, t) = U(0)(ζ) + U(1)(ζ)t + U(2)(ζ)t2 + · · · . (2.5)

The series coefficients with index zero, which define the initial shape of the domain and

the initial velocity field, take the form

Z (0)(ζ) = ζ, U(0)(ζ) = ζ2.

Thus, the initial domain occupied by the fluid is a unit circle, and we have a quadratic

initial velocity field. The streamlines and the velocity vector at t = 0 are shown in

Figure 2. The absolute value of the velocity vector on the free surface is independent of

position and equal to unity; it is only the velocity direction that changes.

The subsequent coefficients Z (n+1) and U(n+1) are found from the recurrent boundary

conditions

(n + 1)Im ζU(n+1)Z
(0)
ζ

= Im ζ

⎛
⎝ n∑

j=0

(j + 1)U(n−j)
ζ Z (j+1) −

n−1∑
j=0

(j + 1)Z (n−j)
ζ U(j+1) −

n∑
j=0

U(n−j)U
(j)
ζ

⎞
⎠ , (2.6)

(n + 1)ReZ (n+1)Z
(0)
ζ /ζ

= Re ζ

⎛
⎝ n∑

j=0

Z
(n−j)
ζ U(j) −

n∑
j=1

(n − j + 1)Z (n−j+1)Z
(j)
ζ

⎞
⎠ . (2.7)

Boundary conditions (2.6) and (2.7) are obtained by substituting series (2.4), (2.5) into

(2.3).

Using consecutively (2.6) and (2.7), we obtain

Z(ζ, t) = ζ + ζ4t + (−2ζ + 3ζ7)t2 + (−12ζ4 + 12ζ10)t3 + · · · , (2.8)

U(ζ, t) = ζ2 + 2ζ5t + (−7ζ2 + 7ζ8)t2 + (−36ζ5 + 30ζ11)t3 + · · · . (2.9)

If we eliminate ζ in series (2.8), (2.8) we can obtain a representation of U(Z, t) in the

form of a power series with respect to t:

U(Z, t) = Z2 − 3Z2t2 − 2Z5t3 + 18Z2t4 +
108

5
Z5t5 −

(
536

5
Z2 − 6Z8

)
t6 + · · · .
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Table 1. Coefficients of the power series for conformal mapping

Z(ζ, t) ζ1 ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ25

t0 1

t1 0 1

t2 −2 0 3

t3 0 −12 0 12

t4 29
2

0 −71 0 55

t5 0 782
5

0 −430 0 273

t6 − 568
5

0 2681
2

0 −2652 0 1428

t7 0 − 65 826
35

0 374 708
35

0 −16 576 0 7752

t8 235 577
280

0 − 1 520 431
70

0 5 758 467
70

0 −104 652 0 43 263

x

y

Figure 2. Streamlines of the flow and direction of the velocity vector at the initial time.

It turns out that the velocity field remains quadratic with accuracy to O(t3) at small values

of t.

The subsequent coefficients of the power series (2.8), (2.9) are presented in Tables 1

and 2. A total of 600 terms of these power series were found in rational numbers (the

computation on a laptop lasted for two days).

Beginning from the 601st term, the computations by recurrent formulas were performed

in real numbers with the initial mantissa length of 1000 decimal digits. In long-time

computations, the accuracy gradually decreases because of rounding errors. We managed

to find 1100 terms of the series, and the last terms had the accuracy already of 100 decimal

digits (one day of computations). The idea to obtain as many coefficients as possible has

a simple explanation: the greater the number of coefficients found, the greater the time

for which the solution can be constructed.

3 Direct summation of power series

Let us consider the power series (2.4) on the free surface, i.e., at ζ = eiθ . For a given value

of the parameter θ, we find 150 terms of series (2.4). Summing them up at a certain value
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Table 2. Coefficients of the power series for the complex velocity

U(ζ, t) ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ26

t0 1

t1 0 2

t2 −7 0 7

t3 0 −36 0 30

t4 63 0 −209 0 143

t5 0 2757
5

0 −1262 0 728

t6 − 2817
5

0 22 414
5

0 −7787 0 3876

t7 0 − 261 224
35

0 243 931
7

0 −48 736 0 21 318

t8 335 669
70

0 − 2 803 172
35

0 9 217 184
35

0 −308 142 0 120 175

of t, we obtain a point in the plane Z . As θ changes from 0 to 2π, this point describes a

closed curve in the plane Z . These curves are shown in Figure 3.

The free surface remains smooth as long as the numerical power series for each point

of the free surface remain convergent. As soon as this condition is violated at a certain

point of the free boundary, the partial sum of the series becomes a large number. Then

there is a significant deformation of the free surface in the vicinity of this point, which

has no physical meaning. The emergence of such rapidly growing distortions of the free

boundary testifies to divergence of the series.

It is seen that the series converges at t = 0.06. The free surface is smooth everywhere,

and the initial circumference is slightly deformed. The greatest time at which the series

converges at all points of the free surface is t = 0.123. The deformation is greater now,

although it still remains rather small. At t = 0.125, the series diverges at those points of

the free boundary where the values of the parameter θ is close to π/6 + πk/3, k ∈ �.

Distortions on the free surface appear and then increase at t = 0.126. With a further

increase in time, the distortions rapidly grow and completely cover the free boundary

areas where the power series converges. To see these areas, we sum up the series only at

180 points of the free boundary (θ = jπ/90; j = 0, 1, . . . , 180). Each summation yields a

complex number, which is shown as a small circle in Figure 3. At t = 0.15, the free surface

“falls apart”: it ceases to be smooth, and most of the points go outside the figure. This

means that the series diverges. The greatest radius of convergence of the series is observed

at six points with the minimum and maximum curvature of the free surface. There are

small isles of stability here: the circles are grouped into smooth lines. At t = 0.19, an even

greater number of circles are outside the figure, but it is still possible to guess the overall

contour of the free surface.

For an arbitrary power series

f(t) = a0 + a1t + a2t
2 + a3t

3 + . . . (t ∈ �) (3.1)

the radius of convergence is equal to the distance from the origin of the coordinate

system t = 0 to the nearest singular point. The location of such a singular point is

estimated by using either the Padé diagram or the well known theorem: if there is a limit

limn→∞ an−1/an = t0, then t0 is a singular point of series (3.1).
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t=0.06 t=0.123

t=0.126

t=0.15

t=0.125

t=0.19

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Figure 3. Free surface obtained by summation of the power series at different times.

https://doi.org/10.1017/S0956792514000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000242
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Re t

Im t

Figure 4. Zeros of partial sums of the series.

In this work, we propose a new graphical method based on the Jentzsch theorem [29].

According to this theorem, for all power series, each point of the boundary of the circle

of convergence is a limiting point for zeroes of the partial sums of this series.

Figure 4 shows the roots of the equations

Z (0)(eiθ) + Z (1)(eiθ)t + Z (2)(eiθ)t2 + · · · + Z (100)(eiθ)t100 = 0

for various values of θ in the plane of the complex time t. The roots are lined up uniformly

along circumferences (approximately, but with good accuracy). This is a clear and precise

method of visual presentation of the circles of convergence.

The radius of convergence of series (2.4) on the free surface is an even function of

θ, which is periodic with a period π/3. Figure 4 shows the behaviour of the radius

of convergence over a half period at θ ∈ [0, π/6]. The greatest radius of convergence

is reached at θ = 0. After that, with a small increase in θ, the radius of convergence

drastically decreases and reaches a minimum at θ = π/6.

4 Padé approximants

The most famous and most popular method of analytical continuation of the power series

beyond the circle of convergence is based on the use of the Padé approximants. Are two

functions that have identical first terms of the Taylor series close to each other? The

answer here is yes. If we take an arbitrary function and a polynomial that is a partial sum

of its Taylor series, these two functions are close to each other in the circle of convergence

of the Taylor series. If we take a more complicated function, e.g., a ratio of polynomials,

instead of the polynomial, then the domain of closeness is not necessarily a circle; it can

be greater than the circle of convergence.
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The Padé approximant is the ratio of polynomials of power L and M such that the

first L+M + 1 terms of the Taylor series are identical for the Padé approximant and the

sought function. For an arbitrary function f(t), we have the following definition of the

Padé approximant:

f(t) =

∞∑
n=0

ant
n = [L/M] + O(tL+M+1),

where the symbol [L/M] is used to denote the Padé approximant:

[L/M] =
PL(t)

QM(t)
.

The numbers L and M can be arbitrary, and all Padé approximants are grouped into the

Padé table:

[0/0] [0/1] [0/2] ...

[1/0] [1/1] [1/2] ...

[2/0] [2/1] [2/2] ...

..............................................

The greater the values of L and M, the higher the accuracy with which the Padé

approximant describes the function f(t). The case with L = M is considered most

frequently.

The Padé summation for power series is usually understood as considering the diagonal

of the Padé table:

[0/0], [1/1], [2/2], [3/3], ... .

Such a diagonal sequence often tends to the function even outside the circle of convergence;

therefore, the function can be estimated by taking the Padé approximant of a sufficiently

high order.

Theorems of convergence of the Padé approximants were obtained for various classes

of functions. For instance, the Stahl’s theorem considers the case where the function

has a finite number of branching points [28]. In this case, the function is multi-valued.

However, the function can be made single-valued by drawing cuts from singular points.

The Stahl theorem states that, if these cuts are drawn in a special manner (all cuts consist

of a finite number of piecewise-analytical arcs), then the diagonal sequence of the Padé

approximants converges to a function in the exterior of these cuts. For instance, for

the function f(z) = 1/
√
z2 − 1, the convergence occurs in the exterior of the segment

connecting the points z = ±1. The exact formulations of the Stahl theorem and other

theorems can be found in the review [1].

Let us first study the convergence of the Padé approximants for series (2.4) at the free

surface point ζ = 1:

Z(1, t) = 1 + t + t2 − 3

2
t4 − 3

5
t5 +

29

10
t6 +

6

5
t7 − · · · .
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Table 3. Diagonal sequence of the Padé approximants for the function Z(1, t) at t = 1

[40/40] 2.46106 00251846022457

[50/50] 2.46106 48872561470996

[60/60] 2.4610650 806608559623

[70/70] 2.46106507 88733588925

[80/80] 2.46106507913 15438477

[90/90] 2.461065079137 8731968

[100/100] 2.461065079137 8819368

[110/110] 2.46106507913793 57731

[120/120] 2.46106507913793 62611

[130/130] 2.46106507913793 29822

[140/140] 2.461065079137933021 8

[150/150] 2.461065079137933021 6

[160/160] 2.4610650791379330217

1

1

2

3

4

5

6

1 2 3

-

Z

t

Z( ,t)1

Z(- ,t)1

Figure 5. Motion of two opposite points on the free surface.

We transform this numerical series to the Padé approximant. Table 3 shows the diagonal

sequence {[L/L]} taken at t = 1. The correctly computed digits are printed in bold. Good

convergence of the sequence is observed as L → ∞. At t > 1, convergence also occurs, but

at a slower rate. Similarly, it is possible to check that convergence also occurs at ζ = −1.

Figure 5 shows the coordinates of the point ζ = 1 and the opposite point ζ = −1 as

functions of time. At ζ = 1, the curve has an inclined asymptote. Thus, at very large

times, the point ζ = 1 moves with a constant velocity. The dependence of velocity on

time is shown in Figure 6. The following limits are found: limt→∞ U(1, t) = 1.5734 and

limt→∞ U(−1, t) = 0. The approximants [300/300] were used to construct Figures 5 and 6.

Is a cusp formed on the free surface? The time evolution of the maximum curvature of

the free surface k reached at the point ζ = 1 is shown in Figure 7 in a logarithmic scale.

The curve is smooth everywhere, and a cusp is not formed at least until the time t = 11.

The approximant [500/500] was used to construct Figure 7.
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0.5

1.0

1.5

0 1 2 3

U( ,t)1

U( ,t)-1

U

t

1.57344

Figure 6. Velocity at two points of the free surface versus time.

2 4 6 8 10

1

2

3

4

5

log
10

k

t

Figure 7. Curvature of the free surface k at the point ζ = 1 versus time.

Figure 8 demonstrates the convergence of the Padé approximants at points of the free

boundary other than ζ = ±1. Here we specially choose two time instants that were already

used to construct the free surface by means of direct summation of the series in Figure

3. We again take 180 points (θ = jπ/90; j = 0, 1, . . . , 180) and construct a power series

(2.4) for each point. After that, for each series, we find the approximant [150/150] and

calculate it at t = 0.19. The resultant points are shown in Figure 8. In Figure 3, most of

the markers are outside the figure at t = 0.19. In Figure 8, all 180 markers “returned” to

their places: they are located along the free boundary. At t = 0.126, Figure 8 shows the

curve given by the Padé approximant [150/150] for a continuous change in θ from 0 to

2π. A comparison with Figure 3 shows that the Padé summation, in contrast to the usual

summation, “removes” regions of instability of the free boundary without changing the

smooth areas of the boundary.

https://doi.org/10.1017/S0956792514000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000242
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Figure 8. Free surface obtained by the Padé summation of the power series.

5 Replacement of variables

With increasing t, the rate of convergence of the Padé approximants decreases, but

in principle the Padé summation allows one to construct the free surface for all time.

However, finding the free boundary with acceptable accuracy may require an extremely

large number of terms of the initial power series.

A more series obstacle in constructing the free boundary is the problem noticeable

already at t = 0.19 in Figure 8. The points ζ are located uniformly on the unit circumfer-

ence |ζ| = 1, but the images of these points in the plane Z are arranged nonuniformly.

Moreover, there are few markers on those parts of the free boundary where the greatest

deformations are observed and where we would like to have more markers. This tendency

becomes even worse with increasing time. It is seen in Figure 9(a), which shows the

free surface constructed by the Padé summation at t = 1.5. Almost all 180 markers are

grouped along the smoothest part of the free boundary. There is only one marker in the

vicinity of the point ζ = 1 (point A in the figure). A large empty segment of the free

boundary, which is not filled by markers, is formed. How is it possible to construct the

free surface here?

One possible way is to arrange the points nonuniformly in the plane ζ. However, there

are two problems here. The first problem is the fact that it is necessary to know the

absolute value of the conformal mapping derivative |Zζ | to find out at which point of

the plane ζ the marker should be placed. This value is also given by a power series in

time, but this series is poorly converging. This is not surprising because of the value of

|Zζ | becomes very large at large deformations of the free boundary. For instance, we have

|Zζ | ∼ 1022 at the point ζ = 1 at t = 1.5. The second problem is the high sensitivity of the

free surface to microscopic changes in the angle θ. For instance, the entire empty segment

in Figure 9(a) in the vicinity of the point A corresponds to the change in the angle θ from

−10−22 to 10−22. In practice, it is possible to construct the free surface by means of direct

Padé summation of series (2.4) only up to t = 0.5. At t > 0.5, this summation already

requires significant computational effort.
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Table 4. Coefficients of the power series for the free surface after change of variables

Z(μ, t) μ−14 μ−11 μ−8 μ−5 μ−2 μ μ4 μ7 μ10 μ13 μ16

t0 1

t1 2
3

0 1
3

t2 11
36

0 2
9

0 17
36

t3 31
81

0 5
27

0 − 41
27

0 77
81

t4 2633
3888

0 − 1469
972

0 2203
1296

0 − 4487
972

0 4375
1944

t5 41 723
29 160

0 − 21 485
5832

0 1979
7290

0 35 126
3645

0 − 82 267
5832

0 170 617
29 160

In this paper, we propose a new method of constructing the free boundary. Instead of

series (2.4), we propose to use another series:

Z(μ, t) = μ + t

(
2

3μ2
+

μ4

3

)
+ t2

(
11

36μ5
+

2μ

9
+

17μ7

36

)
+ · · · . (5.1)

The subsequent coefficients of this series are listed in Table 4. A total of 200 terms of

series (5.1) in rational numbers were found (two days of computations on a laptop).

In the plane of the complex variable μ, we take 180 points μ = eiα (α = jπ/90; j =

0, 1, . . . , 180) uniformly arranged on the unit circumference |μ| = 1 and form a power

series (5.1) for each point. After that, for each series, we find the approximant [100/100]

and calculate it at t = 1.5. The thus-found points are shown in Figure 9(b). It is seen

that the resultant free surface coincides with the free surface in Figure 9(a). In contrast

to Figure 9(a), however, there are no empty places in the vicinity of the points A, B, and

C . Series (5.1) has a remarkable property: the images of the points uniformly arranged

on the circumference |μ| = 1 are uniformly arranged on the free surface as well.

We have two functions Z(ζ, t) and Z(μ, t). The first function is an analytical function of

the complex variable ζ, and the second function is an analytical function of the complex

variable μ. However, the first function is a holomorphic function in the circle |ζ| � 1,

whereas the second function, generally speaking, is not a holomorphic function in the

circle |μ| � 1. We show how it is possible to find a complex replacement μ(ζ, t) so that the

function Z(ζ, t) given by series (2.4) could be obtained by substituting this replacement

into the function Z(μ, t) given by series (5.1).

The idea of obtaining series (5.1) is simple. The function Z(θ, t), where θ ∈ [0, 2π],

which given a parametric presentation of the free boundary, is not a unique function. If

we replace the variables as θ = θ(α, t), where θ is a monotonic function of α and the

parameter α changes from 0 to 2π, we obtain a new function Z(α, t), which describes the

same free boundary. We only have to find the replacement of the variables at which the

points uniformly arranged on the segment α ∈ [0, 2π] are uniformly arranged on the free

boundary as well.

The parameter α is taken as a linear function of S:

α = 2πS/S0. (5.2)

Here S is the length of the free boundary counted from the point ζ = 1 and S0 is the

total length of the free boundary. Obviously, such a choice ensures uniform arrangement
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Figure 9. Shape of the free surface at t = 1.5: (a) The direct Padé summation; (b) Padé

summation after replacement of variables.
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of markers on the free boundary. As α changes from 0 to 2π, one turn around the fluid

along the free boundary is performed.

To take the integrals

S =

θ∫
0

|Zζ |dθ, S0 =

2π∫
0

|Zζ |dθ, (5.3)

we have to find the absolute value of the conformal mapping derivative. Differentiating

(2.4) with respect to ζ, we obtain

Zζ = 1 + 4tζ3 + t2(−2 + 21ζ6) + t3(−48ζ3 + 120ζ9) + · · · . (5.4)

Taking into account that ζ = 1/ζ on the free boundary |ζ| = 1, we find

Zζ = 1 + 4t/ζ3 + t2
(

−2 +
21

ζ6

)
+ t3

(
−48

ζ3
+

120

ζ9

)
+ · · · . (5.5)

We multiply two resultant series (5.4) and (5.5) and then take the square root of the

product. As a result, we obtain a series for the absolute value of the conformal mapping

derivative:

|Zζ | = 1 +

(
2

ζ3
+ 2ζ3

)
t + t2

(
17

2ζ6
+ 2 +

17ζ6

2

)
+ t3

(
43

ζ9
− 7

ζ3
− 7ζ3 + 43ζ9

)
+ · · · .

Substituting ζ = eiθ , we find

|Zζ | = 1 + 4t cos 3θ + t2(2 + 17 cos 6θ) + t3(−14 cos 3θ + 86 cos 9θ) + . . . (5.6)

Using (5.6) for calculating the integrals (5.3), we obtain

S = θ +
4

3
t sin 3θ + t2

(
2θ +

17

6
sin 6θ

)
+ t3

(
−14

3
sin 3θ +

86

9
sin 9θ

)
+ · · · , (5.7)

S0 = 2π + 4πt2 − 5π

2
t4 + · · · . (5.8)

Substituting series (5.7), (5.8) into (5.2) and performing their division, we obtain

α = θ +
4

3
t sin 3θ +

17

6
t2 sin 6θ + t3

(
−22

3
sin 3θ +

86

9
sin 9θ

)
+ · · · . (5.9)

Substituting series (5.9) into the formula μ = eiα, we obtain the change of variables μ(ζ, t):

μ(ζ, t) = ζ + t

(
− 2

3ζ2
+

2

3
ζ4

)
+ t2

(
− 43

36ζ5
− 4ζ

9
+

59ζ7

36

)

+ t3
(

− 629

162ζ8
+

155

54ζ2
− 257ζ4

54
+

935ζ10

162

)
+ . . . (5.10)

If we now find the inverse function ζ(μ, t) from series (5.10) and substitute it into (2.4),

we obtained the sought series (5.1). However, it is easier to search for the function Z(μ, t)
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Figure 10. Evolution of the free surface with time.

in the following form with undetermined coefficients ai,j directly:

Z(μ, t) = μ + t(a1,−2μ
−2 + a1,4μ

4) + t2(a2,−5μ
−5 + a2,1μ + a2,7μ

7)

+ t3(a3,−8μ
−8 + a3,−2μ

−2 + a3,4μ
4 + a3,10μ

10) + · · · . (5.11)

The undetermined coefficients can be easily found if we require that the initial series (2.4)

is obtained after substituting (5.10) into (5.11).

The shape of the free surface for different times obtained by the Padé summation of

series (5.1) is shown in Figure 10. The unit circle transforms to a triangular domain

consisting of three jets. Each jet becomes thinner with time. The jet apex (the free

boundary point located at the greatest distance from the origin of the coordinate system)

initially has a unit velocity. After that, its velocity rapidly increases; in the limit t → ∞,

the jet apex moves with the maximum possible velocity equal to 1.57344.
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6 Conclusion

A precision semi-analytical method, which allows studying unsteady flows with significant

deformations of the free boundary, is proposed. The method is based on the presentation

of conformal mapping in the form of a power series in time, which is summed up with the

use of the Padé approximants. A certain change of variables is first performed to ensure

uniformity of conformal mapping on the free boundary.

In this paper, we consider the simplest problem with a quadratic initial velocity field.

However, more complicated formulations can also be considered. An analysis of recurrent

boundary-value problems (2.6), (2.7) shows that the following statement is valid here. If

Z
(0)
ζ , U(0) are rational functions of ζ, then the functions Z (k) and U(k) (k � 1) are also

rational functions. This statement allows unified considerations of a fairly large number of

problems. For arbitrary rational initial data, it is always possible to construct an algorithm

for consecutive finding of coefficients of power series. If the initial data are not rational

functions, it is possible to consider a certain rational approximation and solve a problem

close to the posed problem.
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