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School cohesion, speed and efficiency are
modulated by the swimmers flapping motion
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Fish schools are ubiquitous in marine life. Although flow interactions are thought to be
beneficial for schooling, their exact effects on the speed, energetics and stability of the
group remain elusive. Recent numerical simulations and experimental models suggest
that flow interactions stabilize in-tandem formations of flapping foils. Here, we employ
a minimal vortex sheet model that captures salient features of the flow interactions among
flapping swimmers, and we study the free swimming of a pair of in-line swimmers driven
with identical heaving or pitching motions. We find that, independent of the flapping
mode, heaving or pitching, the follower passively stabilizes at discrete locations in the
wake of the leader, consistent with the heaving foil experiments, but pitching swimmers
exhibit tighter and more cohesive formations. Further, in comparison to swimming alone,
pitching motions increase the energetic efficiency of the group while heaving motions
result in a slight increase in the swimming speed. A deeper analysis of the wake of
a single swimmer sheds light on the hydrodynamic mechanisms underlying pairwise
formations. These results recapitulate that flow interactions provide a passive mechanism
that promotes school cohesion, and afford novel insights into the role of the flapping mode
in controlling the emergent properties of the school.

Key words: swimming/flying, low-dimensional models, wakes

1. Introduction

Fish schools are ubiquitous in aquatic life, with half of the known fish species thought to
exhibit schooling behaviour during some phase of their life cycle (Shaw 1978). However,
the role of the fluid medium as a mediator of the physical interactions between swimming
fish remains unclear (Partridge & Pitcher 1979; Partridge 1982). Experimental evidence
suggests that fish modify their motions and reduce muscular effort when swimming
in vortex-laden flows (Liao et al. 2003). These findings support a long-standing but
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controversial hypothesis that schooling provides hydrodynamic benefits as fish move
within the flows generated by others (Weihs 1973, 1975; Abrahams & Colgan 1985;
Liao 2007). A direct assessment of this hypothesis in biological and physical models
remains a challenge because of the complexity in resolving the hydrodynamics of unsteady
swimming at high Reynolds numbers with single (Wolfgang et al. 1999; Triantafyllou,
Triantafyllou & Yue 2000; Borazjani 2008) and multiple interacting swimmers (Liao
2007; Gazzola et al. 2016; Verma, Novati & Koumoutsakos 2018). Simplifications based
on crystalline school arrangements and ideal flow models indicate that fish within a planar
formation, with diamond-shaped unit cell, benefit energetically from near-field interactions
with the wakes of upstream neighbours (Weihs 1973), whereas far-field interactions serve
to passively stabilize the formation (Tsang & Kanso 2013). These crystal lattice models
do not capture that fish exhibit variable arrangements in field and laboratory experiments
(Partridge & Pitcher 1979; Marras et al. 2015), and the broader question of how flow
interactions benefit schooling remains unresolved.

Physical models and numerical simulations of mechanically actuated foils found that,
at the single swimmer level, flapping foils share with their biological counterparts many
common aspects of the flows, forces and energetics (Blondeaux et al. 2005; Dong, Mittal
& Najjar 2006; Buchholz & Smits 2008; Dabiri 2009; Lauder et al. 2011; Wen & Lauder
2013). A key similarity is the reverse von Kármán wake left by both flapping foils
and fish (Taneda 1965; Triantafyllou, Triantafyllou & Grosenbaugh 1993). Subsequently,
several numerical and experimental studies used pairs of flapping foils to understand
multi-swimmer interactions. Zhu, He & Zhang (2014) were first to examine, in the context
of the immersed boundary method, the effects of pairwise hydrodynamic interactions on
the self-propulsion of flapping flexible swimmers in tandem configuration. Flow-mediated
interactions were found to stabilize the swimmers in particular spacings and to reduce the
energetics cost of swimming in the follower. Experimental studies on heaving rigid foils
confined to in-line positions and freely swimming in tandem were also found to assume
one of several particular spacings, stabilized by the flow interactions (Becker et al. 2015;
Ramananarivo et al. 2016; Newbolt, Zhang & Ristroph 2019). These observations have
since been confirmed in several numerical studies (Dai et al. 2018; Park & Sung 2018;
Peng, Huang & Xi-Yun 2018; Lin et al. 2020). Here, we investigate the speed, energetics
and stability of these planar formations using a mathematical model of self-propelling and
interacting swimmers that flap by either heaving or pitching.

Existing mathematical models of flow interactions in fish schools vary in the degree of
fidelity to the fluid dynamics and sensory-feedback control at the swimmer level. Ideal
flow models – based on a dipolar far-field approximation (Tchieu, Kanso & Newton 2012)
– with no feedback control have been used to assess the effect of passive flow interactions
on the stability of pairwise (Kanso & Tsang 2014, 2015) and diamond lattice formations
(Tsang & Kanso 2013) and the advantages of flapping out of phase (Kanso & Newton
2009). This far-field flow model coupled to visual feedback control, either in the form of
behavioural rules (Filella et al. 2018) or learning algorithms (Gazzola et al. 2016), was
used to analyse the fish collective dynamics. Fish were shown to exhibit a novel collective
turning mode and to swim faster thanks to the fluid (Filella et al. 2018). Near-field
fish–wake interactions were also accounted for in ideal flow models with no feedback
control, such as the vortex street model used by Weihs (1973) or the phenomenological
model derived in Oza, Ristroph & Shelley (2019) to assess the efficiency of lattice
formations. High-fidelity computational fluid dynamics coupled to reinforcement learning
algorithms were recently implemented in pairwise interactions to optimize the flapping
motion of the follower fish for harnessing the wake of the leader (Verma et al. 2018).

922 A27-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.551


School cohesion, speed and efficiency

LeaderFollower Single

Pressure 

force

LeaderFollower Single

Pitching

Heaving
(a)

(b)

Pressure 

force

Figure 1. A pair of swimmers undergoing (a) heaving motions at amplitude Ah = 0.3 and (b) pitching motions
at amplitude Ap = 15◦. Snapshots of the velocity field (grey arrows) and free vortex sheet of the leader (blue)
and follower (red) are taken after steady-state swimming is reached at a time instant where both swimmers are
flapping downwards. Insets depict the pressure forces acting on each swimmer in the pairwise formation in
comparison to a single swimmer undergoing the same prescribed motion.

In this paper, we analyse pairwise interactions of heaving and pitching swimmers in the
context of the vortex sheet model (see figure 1). The vortex sheet model has been used
extensively to analyse problems of fluid–structure interactions, including ring formation at
the edge of a circular tube (Nitsche & Krasny 1994) and wakes of oscillating plates (Jones
2003; Sheng et al. 2012), falling cards (Jones & Shelley 2005), flapping flexible flags
(Alben & Shelley 2008; Alben 2009), swimming plates (Wu 1971) and hovering flyers
(Huang, Nitsche & Kanso 2016; Huang et al. 2018). Here, we use the implementation of
Nitsche & Krasny (1994), which we vetted in comparison to Navier–Stokes simulations
and other implementations of the vortex sheet method in Sheng et al. (2012), Huang
et al. (2016). This study focuses on the effect of streamwise flow interactions on the
swimming motion of heaving and pitching plates, and finds that ordered formations emerge
spontaneously via these interactions, independent of the flapping mode, consistent with
heaving foil experiments (Ramananarivo et al. 2016; Newbolt et al. 2019) and numerical
simulations (Zhu et al. 2014; Park & Sung 2018; Peng et al. 2018; Lin et al. 2020).
However, the flapping mode, heaving or pitching, affects the speed and energetics of these
formations as well as their robustness to streamwise perturbations. We describe a specific
hydrodynamic mechanism that explains the energetic and stability differences associated
with each flapping mode.

2. Problem formulation

A swimmer is modelled as a rigid plate of length 2l, small thickness e � l and
homogenous density ρ, submerged in an unbounded, planar, fluid domain of density ρf .
The swimmer’s mass per unit depth is given by m = 2ρel. An inertial frame (ex, ey, ez)
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is introduced, such that (ex, ey) span the plane of motion. The vector x ≡ (x, y) denotes
the position of the leading edge of the swimmer in the (ex, ey) plane, and the angle θ its
orientation relative to the ex-direction (see Appendix A and figure 7)

The swimmer is free to move in the ex-direction under periodic heaving or pitching
motions. Heaving consists of periodic lateral motions in the y-direction, of amplitude
Ah, at fixed angle θ = 0. Pitching refers to angular oscillations θ of amplitude Ap, with
zero lateral motion y = 0 at the leading edge. The frequency of these heaving and
pitching motions is denoted by f . Hereafter, we scale all parameter values using l as the
characteristic length scale, 1/f as the characteristic time scale and ρf l2 as the characteristic
mass per unit depth. Accordingly, velocities are scaled by lf , forces by ρf f 2l3, moments by
ρf f 2l4 and power by ρf f 3l4.

In dimensionless form, the heaving and pitching motions are given by

Heaving: y(t) = Ah sin(2πt), θ(t) = 0,

Pitching: θ(t) = Ap sin(2πt), y(t) = 0.

}
(2.1)

The equation of motion governing the free swimming x(t) is given by Newton’s second
law

mẍ = −F sin θ + S cos θ − D cos θ. (2.2)

Here, the hydrodynamic forces acting on the swimmer consist of a leading edge suction
force S, a pressure force F acting in the direction normal to the swimmer and a skin drag
force D acting tangentially to the swimmer in the opposite direction to its motion. The
drag force D is introduced to emulate the effect of fluid viscosity, while the hydrodynamic
pressure force F is calculated in the context of the inviscid vortex sheet model. A detailed
description of the method and its numerical implementation can be found in Nitsche
& Krasny (1994), Huang et al. (2018) and a brief overview is given in Appendix A.
Detailed expressions of the fluid forces and moments acting on the swimmer are given
in Appendix B.

To assess the swimming performance, we use four metrics: the period-averaged
swimming speed U = ∫ t+1

t ẋ dt at steady state, the thrust force T = S cos θ − F sin θ , the
input power P required to maintain the prescribed heaving or pitching motions (see details
in Appendix D) and the cost of transport defined as the input power P divided by the
swimming speed U.

3. Single swimmers: numerical results and scaling analysis

We solve (2.2) in the case of a single swimmer and compute the period-average swimming
speed at steady state. In figure 2(a,b), we show the steady-state speed for heaving and
pitching swimmers, respectively, as a function of the flapping amplitude. In both cases, the
speed increases monotonically, albeit that, when pitching, the increase scales differently at
small amplitudes. To get insight into how the swimming speed U scales with the heaving
and pitching amplitudes and frequency, it is instructive to use a simple scaling analysis.

At steady state, the sum of forces acting on the swimmer is zero on average. For heaving
swimmers, the dominant forces are those due to leading edge suction and viscous skin
drag (Garrick 1937). In dimensional form, the suction force scales as ρf (2l)C2

s U2, where
the coefficient Cs scales linearly with the effective angle of attack. In a heaving flat plate
the effective angle of attack is given by ẏ/U ∼ Ahf /U (Garrick 1937; Floryan et al. 2017;
Franck & Breuer 2017; Smits 2019), and the suction force scales as ρf (2l)(Ahf )2. Skin drag
scales as ρf (2l)Cf U2, where Cf ∼ √

μ/ρf (2l)U is the drag coefficient based on adapting
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Figure 2. Swimming speed vs. flapping amplitude for single swimmers. (a) Average swimming speed at steady
state for a heaving swimmer. (b) Average swimming speed at steady state for a pitching swimmer. At small Ap,
skin drag is dominant and the speed scales super-linearly with Ap. For Ap > 10◦, pressure drag is dominant
and speed scales linearly with Ap. (c) Experimental data (black symbols) of average swimming speed of a
heaving foil (Ramananarivo et al. 2016, figure 2); the data collapse when scaled by the heaving frequency
f 4/3 (yellow symbols). (d) Comparing the swimming speed of our heaving swimmer model (blue circles) to
the frequency-scaled experimental data shown in (a), on a log–log scale. Both model and experimental results
scale super-linearly with heaving amplitude.

Blasius theory to this inviscid fluid model (see Appendix C and White 1979). Balancing
suction and drag forces, we arrive at (Ahf )2 ∼ U3/2, which leads to

Heaving: U ∼ (Ahf )4/3. (3.1)

The swimming speed scales super-linearly with the heaving amplitude and frequency. We
test this scaling law in light of the experimental results of (Ramananarivo et al. 2016,
figure 2). The black data points in figure 2(c) represent the experimentally measured
swimming speed as a function of heaving amplitude. The different marker shapes represent
three different heaving frequencies used in the experiments (f = 1, 2, 3). We scaled the
data by the heaving frequency according to our derived scaling law in (3.1). The scaled data
(coloured symbols) collapse on a single curve, indicating that our scaling analysis is sound.
In figure 2(d), we plot, using a log–log scale, the swimming speed obtained from our
model in figure 2(a) (blue dots) and experimental data (coloured symbols) vs. the heaving
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amplitude. The slope of each line represents the power law that governs the relationship
between the two quantities. In both the model and the experiment, the swimming speed
depends super-linearly on the amplitude of heaving, however, the dependence is slightly
stronger in the model.

The steady-state speed of the pitching swimmer scales differently depending on the
flapping amplitude because the dominant drag forces acting on the swimmer differ. At
small pitching amplitude Ap, the swimmer is almost parallel to the swimming direction,
hence skin drag is dominant leading to the same scaling law as in the heaving case. At
large amplitude Ap, pressure drag is dominant; it is well known that pressure drag scales
as U2; see, e.g. Moored & Quinn (2019). Balancing inertia and pressure drag, we arrive at
U ∼ Apf . Put together, we have

Pitching:

{
small Ap : U ∼ (Ahf )4/3,

large Ap : U ∼ Apf .
(3.2)

These scaling laws fit remarkably well the numerical results in figure 2(b).

4. Pairwise formations: stability, speed and energetics

We examine the steady-state behaviour of a pair of swimmers undergoing heaving and
pitching motions while freely interacting via the fluid medium. In figure 1, we show
snapshots of the flow field (grey arrows) and free vortex sheets in the case when the leader
(blue) and follower (red) are heaving at Ah = 0.3 (figure 1a) and pitching at Ap = 15◦
(figure 1b). The snapshots are taken after the pair has reached steady-state swimming in
the positive x-direction, and passively locked into a constant separation distance. At these
flapping amplitudes, the heaving swimmers experience longer transience and swim faster,
whereas the pitching swimmers rapidly lock into a tighter formation (see supplementary
movie available at https://doi.org/10.1017/jfm.2021.551).

An analysis of the hydrodynamic pressure forces −F sin θex + F cos θey, where F is
given in Appendix B, acting on each swimmer shows that compared to a single swimmer,
the distribution on the leader remains relatively unchanged. However, the force distribution
on the follower is affected by the wake of the leader, and the effect is more pronounced
for pitching swimmers; see insets in figure 1(a,b). Specifically in the pitching case, the
follower experiences less resistance from the fluid, and a favourable force distribution (in
the same direction of flapping) at the swimmer’s tail. At the instant shown in figure 1(b),
the downward flow due to the vortex sheet created by the leader helps the follower in its
downward pitching motion.

In figure 3, we vary the initial separation distance between the two swimmers for the
examples shown in figure 1. We find that for both heaving and pitching, the follower
tends to settle in one of several discrete locations behind the leader at nearly digital
values of dh/λ and dp/λ, respectively, where dh is the tail-to-head distance, dp the
tail-to-tail distance and λ = U/f the wavelength of the leader’s swimming trajectory; see
figure 3(a,b). Depending on initial conditions, the leader and follower reach one of these
separation distances and swim together in ordered formation. These findings are consistent
with the observations of Zhu et al. (2014), Ramananarivo et al. (2016), Park & Sung (2018),
Peng et al. (2018) and Lin et al. (2020).

To examine the nonlinear basins of attraction of these equilibria, we vary the initial
separation distance dh and dp between the two swimmers and keep track of the
corresponding steady-state formation; The basin of attraction of each equilibrium is
highlighted in a different shade of grey in figure 3(a,b). The pitching swimmers converge
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Figure 3. Emergence of passive stable formations in a pair of heaving swimmers (Ah = 0.3) and of pitching
swimmers (Ap = 15◦). (a) For heaving swimmers, the follower stabilizes at one of many discrete positions
behind the leader where the gap (tail-to-head) distance dh is close to integer multiple of the wavelength λ = U/f
of the leader motion. (b) For pitching swimmers, the follower stabilizes at locations such that the tail-to-tail
distance dp is close to integer multiples of λ. Basins of attraction of each the first three equilibria are depicted in
gradually more faint shades of grey. (c,d) Linear stability analysis: we perturb the position of the follower about
each of these equilibria and compute the total hydrodynamic force Fx. We simultaneously sample data from
the change in Fx and perturbation strength δx, and plot δFx vs. δx. Clearly, δFx acts as a restoring force. Taking
the slope of δFx, we construct the hydrodynamic potential V on the follower. The potential well is deepest at
the first equilibrium where the hydrodynamic interactions are strongest.

more rapidly to the corresponding equilibria, indicating that these equilibria are stronger
attractors in pitching than in heaving. Further, the wavelength λ = U/f is smaller in
pitching, and so is the actual separation distance at equilibria (dp < dh), indicating that
pitching swimmers move in tighter formations.

To quantitatively assess the linear stability of these equilibria, we perturb the position
of the follower about each equilibrium in the positive and negative x-direction with an
initial perturbation of size δx/l = 0.5 and we calculate the corresponding change in
δx and change in the total hydrodynamic force δFx = δ(−F sin θ + S cos θ − D cos θ)

acting on the follower in the x-direction. We scale the change in total force by U2/l
and the perturbation from equilibrium by d·/λ, where d· is either dh or dp. We sample
simultaneously the scaled change in total force δFx and scaled perturbation strength δx
and we plot the results in the first row of figure 3(c,d). The results are depicted in
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Figure 4. Instantaneous swimming performance (time-dependent speed, thrust, input power and cost of
transport vs. time) for a single and pair of swimmers undergoing (a) heaving at Ah = 0.3 and (b) pitching
at Ap = 15◦, respectively. Results are shown after the swimmers have reached steady state. From top to bottom,
the swimming speed, thrust force, input power and cost of transport are shown. Solid lines represent the
instantaneous values and dashed lines represent time-period averages.

red triangles for the first stable position, and in orange circles and yellow squares for
the second and third positions, respectively. Straight line fit for each of these data sets
results in straight lines with negative slopes, implying that, for each of these equilibrium
positions, the hydrodynamic force acts as a restoring force δFx = −Kδx that keeps the
formation stable. Here, K is obtained numerically from the straight line fit. The value of K
depends monotonically on the equilibrium position of the follower, with highest value at
the first equilibrium (dh/λ ≈ 1 and dp/λ ≈ 1). The first equilibrium is most stable because
hydrodynamic interactions are strongest at closer distance. We write δFx = −∂V/∂(δx),
where V = K(δx)2/2 is the hydrodynamic potential function around the equilibrium
δx = 0. For both pitching and heaving, the formation is stable with weaker stability for
larger inter-swimmer distance. In the pitching formation the potential well is deeper (by
approximately 50 %) for all equilibria, indicating faster convergence to the respective
equilibrium; see Appendix E for detailed analysis of the hydrodynamic forces during
transient and equilibrium states.

We next evaluate the advantages of these formations in terms of the speed and energetics
of the pair of swimmers in comparison with swimming alone. Figure 4 shows details of
the time evolution at steady state of a single and pair of swimmers for the first relative
equilibrium dh/λ ≈ 1 and dp/λ ≈ 1 shown in figure 3, where hydrodynamic interactions
are strongest. From top to bottom, we report the swimming speed, thrust force, input
power and cost of transport vs. time. Instantaneous values are shown in solid lines and
period-average values in dashed lines. For the heaving motion, the average speed of the
pair is approximately 10 % higher than the speed of the single swimmer, consistent with
experimental observations on heaving foils (Ramananarivo et al. 2016). However, the
input power required to maintain these heaving motions in the presence of hydrodynamic
interactions is also higher (approximately 30 %). Consequently, the cost of transport of the
heaving pair is approximately 20 % higher than a single heaving swimmer. These results
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Figure 5. Swimming performance (average speed, thrust, input power and cost of transport) vs. flapping
amplitude for a single and pair of swimmers undergoing (a) heaving and (b) pitching motions, respectively.
From top to bottom, average values of the swimming speed, thrust force, input power and cost of transport.
Left columns (black symbols) in (a,b) show the results for single swimmers. For the pair of swimmers, all of
the results are scaled by the corresponding quantity values for a single swimmer. The blue and red symbols
represent the results for the follower and leader, respectively. The grey symbols are the school average.

suggest that heaving swimmers can enhance their speed by swimming in a pair. However,
this enhancement in swimming speed is achieved at an energetic cost.

For pitching swimmers, the speed of the formation is comparable to that of the
single swimmer (approximately 2 % slower). However, the follower’s input power is
significantly reduced (approximately 70 % less than the single pitching swimmer). This
reduction in input power is due to the hydrodynamic benefits highlighted in figure 1(b).
Correspondingly, the cost of transport of the pair of pithing swimmers drops by 30 %
compared with swimming alone.

Figure 5 explores the effect of the flapping amplitude on the period-average values of the
swimming speed, thrust force, input power and cost of transport, after the swimmers have
reached steady state. Specifically, we examine the range Ah ∈ [0, 0.7] and Ap ∈ [0◦, 45◦]
for single swimmers and Ah ∈ [0.3, 0.7] and Ap ∈ [10◦, 45◦] for pairs of swimmers, where
small amplitudes are ignored to ensure that hydrodynamic interactions are sufficient for
the spontaneous emergence of order formations. In pairwise interactions, we report all
period-average values normalized by the corresponding values for a single swimmer.

When swimming alone, whether by heaving or pitching, an increase in the flapping
amplitude monotonically increases the swimming speed, thrust, input power and cost
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of transport; see left columns of figure 5(a,b). Here, the swimming speed vs. flapping
amplitude for single swimmers is a reproduction of the results in figure 2(a,b).

Across all heaving amplitudes, the pairwise formation is approximately 5 %–10 % faster
than that of a single heaving swimmer. Both the leader and follower experience an increase
in thrust compared with the single swimmer, but require more power to swim in formation
compared with swimming alone, with extra power demand on the follower. The cost of
transport of the heaving formation is thus slightly higher (approximately 15 %) compared
with swimming alone. Thus, heaving swimmers slightly enhance their swimming speed
when in formation, albeit at a higher cost of transport.

The formation of pitching swimmers is approximately 5 % slower than swimming alone
for almost all flapping amplitudes. The leader experiences consistently lower thrust and the
follower consistently higher thrust compared with swimming alone. However, while the
power demand on the leader is comparable to the single swimmer, the power demand on
the follower is significantly reduced for all amplitudes. Taken together, these results lead to
slightly higher cost of transport for the leader and significantly lower cost of transport for
the follower compared with swimming alone. Indeed, the cost of transport of the follower
is a fraction of the single swimmer (approximately 25 % at best), which in turn, causes the
formation to save a significant amount of power (approximately 35 % at best) compared
with swimming alone. These results imply that although the pairwise formation of pitching
swimmers experiences no enhancement in swimming speed compared with swimming
alone, it reduces the cost of transport by a significant amount.

5. Single swimmer wake informs pairwise formation

To gain additional insights into the information contained in the wake of the leader and
the hydrodynamic mechanisms that mediate the power reduction and stability of the
pairwise formation, we examine the flow field induced by a single swimmer. Namely,
we compute the flow field generated behind a single heaving or pitching swimmer, and
we consider a virtual ‘point’ follower placed at any location (xo, yo) in the swimmer’s
wake and undergoing lateral oscillations y(t) = yo + A sin(2πt), where A is the oscillation
amplitude. We set A to Ah in the wake of the heaving swimmer and Ap in the wake of
the pitching swimmer. The wake is blind to the existence of the virtual follower. We ask
whether there are particular locations in the swimmer’s wake that are favourable to the
follower’s flapping motion. To address this question, we define a flow agreement parameter
Z(xo, yo) that quantifies the agreement between the flow velocity in the wake of the single
swimmer and the prescribed oscillations of the virtual follower,

flow agreement parameter: Z = 1
T

∫ ts+T

ts
ẏ(xo, yo, t)v(xo, yo, t) dt, (5.1)

where ts is an arbitrary time after the single swimmer has reached steady state, T is the
flapping period, ẏ(xo, yo, t) is the lateral velocity of the follower and v(xo, yo, t) is the
y-component of the flow velocity evaluated at the follower’s location. Positive values of
the flow agreement parameter imply a beneficial interaction between the flow and the
follower’s flapping motion, whereas negative values indicate a detrimental one.

The flow agreement parameter is shown in the top row of figure 6. The hypothetical
follower is undergoing the same oscillatory motion irrespective of its location in the wake
of the single swimmer at amplitude Ah = 0.3 (for heaving) and Ap = 15◦ (for pitching).
Red regions indicate where the flow velocity in the swimmer’s wake and the hypothetical
follower’s motion agree. Interestingly, regions of maximum flow agreement are located at
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Figure 6. Flow agreement parameter and thrust parameter experienced by a hypothetical point follower
undergoing prescribed oscillations in the wake of a single swimmer that does not see the follower. Top
row shows flow agreement parameter field in the wake of (a) heaving and (b) pitching swimmers. The grey
plates represent the steady-state position of the followers in the first, second and third stable spacings found
from solving the system with pairwise interactions (figure 3). In both cases, the distance of the regions
with maximum flow agreement from the leading plate is very close to integer multiples of the wavelength
(dh,p/λ = 1, 2, 3). Bottom row shows thrust parameter as a function of distance. The dashed lines represent
the head and tail positions of the heaving and pitching follower, respectively. The negative slopes of plot at the
steady-state distances imply linear stability of the follower to in-line perturbations. The prescribed amplitudes
are Ah = 0.3 and Ap = 15◦.

almost integer multiples of the wavelength λ = U/f of the single swimmer, similarly to
the locations of the stable equilibria in fully coupled pairwise formations. Superimposed
onto figure 6(a,c), we show a snapshot of the free vortex sheet of the swimmer, as well as
the location of the actual follower at steady state obtained from our pairwise interacting
swimmers. As noted previously, in the heaving case, the leading edge of the follower is
located close to the integer multiples of λ, while in pitching, the follower’s trailing edge
is located at integer multiples of λ. In the heaving case, the leading edge of the follower
is located at the intersection of the red and blue regions of the flow agreement parameter,
that is at the location where the flow agreement parameter transitions from favourable to
unfavourable. For the pitching swimmer, the follower is mostly located within the red
region where the flow agreement parameter is favourable. This effectively means that
a higher surface area of the pitching follower experiences a flow field favourable to its
motion, whereas part of the heaving follower undergoes negative flow agreement. This
mechanism could be responsible for the increased efficiency of the pitching formation in
comparison with the heaving formation.

We next examine the stability of pairwise formation in the context of the simpler model
based on the wake of a single swimmer and a hypothetical follower. We specifically
consider the case where the virtual follower is positioned in line behind the single
swimmer. It is well established that the thrust of a self-propelled flapping swimmer
scales with the square of the swimmer’s lateral velocity relative to the surrounding fluid’s
velocity (Triantafyllou et al. 1993; Floryan et al. 2017; Newbolt et al. 2019). We thus define
the thrust parameter

Thrust parameter: X = 1
T

∫ ts+T

ts
(v − ẏ)2 dt, (5.2)

which acts as a measure of the period-average thrust but not an exact value of thrust.
We plot the thrust parameter as a function of the follower’s downstream location of
heaving and pitching swimmers in the bottom row of figure 6. The thrust parameter is
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minimum at three locations where the flow agreement parameter is maximum. This is
due to the fact that higher agreement between the follower’s oscillation and the flow
implies smaller difference in the follower’s lateral speed relative to the flow and therefore
smaller thrust. Superimposed onto these plots are the three equilibria at steady state
obtained from our pairwise simulations in figure 3 (vertical dashed lines). We next argue
that the slope of the thrust parameter at these locations is an indicator of the stability
of the pairwise formation. To this end, recall that at steady state, the thrust Fx(xo, t)
and skin drag D(xo, t) balance each other on average, and the follower experiences
zero net acceleration. Namely, 〈Fx(xo)〉 − 〈D(xo)〉 = 0, where the time-average notation
〈(·)〉 = (1/T)

∫ ts+T
ts

(·) dt is introduced for brevity. If we perturb the horizontal position of
the follower by δx, since skin drag depends only on the relative fluid’s velocity tangential
to the plate, it is reasonable to assume that its change due to in-line positional perturbations
is negligible 〈D(xo + δx)〉 ≈ 〈D(xo)〉. We arrive at the period-average equation 〈Fx(xo +
δx)〉 − 〈F(xo)〉 = m〈δẍ〉. This equation provides a condition for the linear stability of the
pairwise formation in the context of the (single swimmer/virtual follower) model: if the
slope of the period-average thrust relative to the horizontal position is negative, the system
is linearly stable to perturbations in the horizontal position. Otherwise, the perturbation
grows and the pair leaves their relative spacing at steady state. Since the thrust parameter
X is an approximation of period-average thrust, it suffices to obtain the slope of X with
respect to δx to gauge the stability of the formation. The slope is negative at the steady-state
positions in both heaving and pitching swimmers (bottom row of figure 6). Further, the
slope of these locations decreases as the distance between the two swimmers increases.
This is consistent with figure 3 where the third stable position is less stable than the second
and the second slightly less stable than the first. Finally, the significantly higher slope of
the thrust parameter in pitching compared with heaving is consistent with the observations
in figure 3, where pitching formations are more stable.

6. Conclusion

We analysed the locomotion dynamics of actively flapping swimmers interacting passively
via the fluid medium in the context of the vortex sheet model. Within the two-swimmer
model, we showed that hydrodynamic interactions lead to stable ordered formations, in
which the follower falls into specific positions in the wake of the leader, and the pair
travel together at the same speed. This well-ordered ‘schooling’ behaviour occurs for both
heaving and pitching swimmers. Group cohesion is tighter and more stable for pitching
swimmers. In heaving alone, the school swims slightly faster compared with swimming
alone, approximately 5 %–10 % faster, albeit at a similar increase in cost of transport,
especially for the follower (approximately 20 % higher cost for the follower and 15 % for
the formation). When pitching, the school swims at a slightly (approximately 5 %) lower
speed but has significant energetic benefits, with up to 35 % reduction in cost of transport
for the formation and up to 75 % for the follower. Simultaneous heaving and pitching also
leads to flow-mediated stable formations (see supplemental movie), indicating that this
phenomenon is robust to the flapping mode.

Detailed comparison of our findings to previously known results are in order.
Physical experiments and numerical simulations report stable pairwise formations in
hydrodynamically interacting swimmers. The experiments of Ramananarivo et al. (2016)
using pairs of purely heaving rigid foils in tandem found that the foils stabilize at particular
discrete gap distances, and that these formations were usually accompanied by an
increase in the swimming speed of the pair (10 %–20 % compared with swimming alone).
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The increase in speed was observed up to three wavelengths away from the leader, however,
its effect quickly diminished with distance. Numerical simulations of pairs of interacting
flapping swimmers provided more details on swimming energetics. Zhu et al. (2014) used
an immersed boundary method to study the dynamics of two flexible filaments undergoing
heaving oscillations at their leading edges at Reynolds number = 200. They reported an
increase in both the swimming speed and input power of the pair compared with swimming
alone. These changes were only reported for pairs in compact configurations. In this
configuration, the leading edge of the follower is almost touching the trailing edge of the
leader and the narrow space between them causes the pair to behave like one long filament.
The increased speed and power requirements seemed to completely disappear for pairs in
regular configurations characterized by an increased distance between the swimmers and
velocity and power equal to a single swimmer. Dai et al. (2018) studied the swimming
dynamics of multiple flexible filaments under combined pitching and heaving motions at
the leading edge. However, the heaving motion’s amplitude was much smaller than the
tail’s displacement due to pitching. For two filaments swimming in tandem, they reported
a decrease of about 18 % in the cost of transport when the swimmers were in compact
configurations. The regular configurations was found to be energetically beneficial, but
only by approximately 2 %–3 % compared with swimming alone. Park & Sung (2018) also
found a decrease of approximately 15 % in power for a pair of flexible filaments, when
swimming close to one another. The increase in speed relative to swimming alone was
found to be negligible.

We examined pairwise interactions of purely heaving and pitching rigid swimmers, thus
isolating heaving from pitching as opposed to the studies of flexible heaving filament
that combine both effects. We found that for each flapping mode, the swimmers reach
stable steady-state formations with constant distances. The flapping mode had a significant
impact on the stability and swimming energetics of the pair. We observed a slight increase
in the swimming speed of the heaving pair (up to 10 %) at the expense of higher cost
of transport. For pitching swimmers, the swimming speed was not affected much by
the pairwise interaction, but we found a significant decrease in the input power of the
follower (up to 70 % for small amplitudes). In contrast to the findings of Zhu et al.
(2014) and Park & Sung (2018), where the effects of the pairwise interactions quickly
vanished with increasing distance, our vortex sheet model observed these effects at longer
distances, up to three swimming wavelengths, consistent the experiments of Ramananarivo
et al. (2016). The discrepancy is most likely due to the relatively small Reynolds number
in Zhu et al. (2014) (Re = 200), causing the wake-induced flow to diffuse faster due
to higher viscous forces. Ramananarivo et al. (2016) reported a much larger Reynolds
number (Re = 103–104) in their experimental set-up. The higher Reynolds numbers in the
experiments are consistent with our inviscid model. At this inviscid regime, the flow inertia
is dominant, causing the wake of the leader to live longer in the fluid. In this regime, the
effects of hydrodynamic interaction on stability and energetics decreased with distance,
but much more gradually.

In sum, our results are consistent with numerical and experimental findings of heaving
foils (Zhu et al. 2014; Becker et al. 2015; Ramananarivo et al. 2016; Park & Sung 2018;
Peng et al. 2018; Newbolt et al. 2019; Lin et al. 2020), but go beyond these results in two
major ways. Firstly, we completely separated the flapping modes, heaving and pitching,
probed the effect of each one on the stability, speed and energetic performance of the
school, and we showed that the flapping mode affects the tightness and stability of the
formation, as well as the cost of transport in school compared with swimming alone.
Secondly, we analysed these formations in the context of a simpler model consisting of
the wake of a single swimmer and a hypothetical point follower. We defined an empirical
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flow agreement parameter and showed that regions where the wake-induced flow and the
follower’s periodic motion agree are consistent with the stable formations observed in
pairwise interactions of heaving and pitching swimmers. The reduced-order model also
highlights that the heaving mode is less favourable energetically because, in steady-state
formations of heaving swimmers, the follower is positioned such that it experiences
negative agreement with the ambient flow. We also employed the simpler model to make
predictions about the stability of the pairwise formation, consistent with our findings
that the pitching mode leads to tighter and more stable formation. Indeed, an alternative
interpretation of our results is that they reveal how active changes in the flapping mode
can be used to control, via hydrodynamic interactions, the school emergent properties,
including the school speed, energetics and cohesion. For example, to save energy or
quickly overcome large perturbations, swimmers can adopt a pitching mode.

These findings could be instrumental for understanding the role of the fluid medium
as a mediator of the physical interactions between swimming fish, and to assess the
hydrodynamic benefits to fish schooling. Fish have more complex flapping motions than
simple heaving and pitching (Lin, Wu & Zhang 2019; Van Buren, Floryan & Smits 2019;
Ayancik, Fish & Moored 2020), and the compliance of the fish body is believed to play an
important role in the flapping efficiency and ability to extract energy from ambient flows
(Beal et al. 2006; Lucas et al. 2014; Quinn, Lauder & Smits 2014; Jusufi et al. 2017). These
considerations, as well as extensions to arrays of swimmers in tandem and side by side,
potentially flapping at different amplitudes and phases as in Newbolt et al. (2019), will be
treated in future works.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.551.
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Appendix A. Vortex sheet model

The coupled fluid–structure interaction between the swimming plate and the surrounding
fluid is simulated using an inviscid vortex sheet model. In viscous fluids, boundary layer
vorticity is formed along the sides of the swimmer, and it is swept away at the swimmer’s
tail to form a shear layer that rolls up into vortices. In the vortex sheet model, the swimmer
is approximated by a bound vortex sheet, denoted by lb, whose strength ensures that no
fluid flows through the rigid plate, and the separated shear layer is approximated by a free
regularized vortex sheet lw at the trailing edge of the swimmer. The total shed circulation
Γ in the vortex sheet is determined so as to satisfy the Kutta condition at the trailing edge,
which is given in terms of the tangential velocity components above and below the bound
sheet and ensures that the pressure jump across the sheet vanishes at the trailing edge.

To express these concepts mathematically, it is convenient to use the complex notation
z = x + iy, where i = √−1 and (x, y) denote the components of an arbitrary point in
the plane. The bound vortex sheet lb is described by its position zb(s, t) and strength
γ (s, t), where s ∈ [−l, l] denotes the arc length along the sheet lb. The separated sheet
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Figure 7. (a) Schematic of the vortex sheet model for a two-dimensional flapping swimmer. (b) Depiction of
the different hydrodynamic forces acting on the swimmer.

lw is described by its position zw(Γ, t), Γ ∈ [0, Γw] where Γ is the Lagrangian circulation
around the portion of the separated sheet between its free end in the spiral centre and the
point zw(Γ, t). The parameter Γ defines the vortex sheet strength γ = dΓ/ds.

By linearity of the problem, the complex velocity w(z, t) = u(z, t) − iv(z, t) is a
superposition of the contributions due to the bound and free vortex sheets

w(z, t) = wb(z, t) + ww(z, t). (A1)

In practice, the free sheet lw is regularized using the vortex blob method to prevent the
growth of the Kelvin–Helmholtz instability. The bound sheet lb is not regularized in order
to preserve the invertibility of the map between the sheet strength and the normal velocity
along the sheet. The velocity components wb(z, t) and ww(z, t) induced by the bound and
free vortex sheets, respectively, are given by

wb(z, t) =
∫ l

−l
Ko(z − zb(s, t))γ (s, t) ds, ww(z, t) =

∫ Γw

0
Kδ(z − zw(Γ, t)) dΓ,

(A2a,b)
where Kδ is the vortex blob kernel, with regularization parameter δ,

Kδ(z) = 1
2πi

z̄
|z|2 + δ2 , z̄ = x − iy. (A3)

If z is a point on the bound sheet for which δ = 0, wb is to be computed in the principal
value sense.

The position of the bound vortex sheet zb is determined from the plate’s flapping
( y(t), θ(t)) and swimming x(t) motions. The corresponding sheet strength γ (s, t) is
determined by imposing the no penetration boundary condition on the plate, together with
conservation of total circulation. Let n(s, t) = − sin θ + i cos θ be the upward normal to
the plate, the no-penetration boundary condition is given by

Re[wn]zb = Re[wswimmern], (A4)

where
wswimmer = ẋ − iẏ − iθ̇ [z̄b − (x − iy)]. (A5)

Conservation of the fluid circulation implies that
∫

lb
γ (s, t) ds + Γw(t) = 0.

The circulation parameter Γ along the free vortex sheet zw(Γ, t) is determined by the
circulation shedding rates Γ̇w, according to the Kutta condition, which states that the fluid
velocity at the trailing edge is finite and tangent to the flyer. The Kutta condition can be
obtained from the Euler equations by enforcing that, at the trailing edge, the difference in
pressure across the swimmer is zero. To this end, we integrate the balance of momentum
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equation for inviscid planar flow along a closed contour containing the vortex sheet and
trailing edge,

[p]∓(s) = p−(s) − p+(s) = −dΓ (s, t)
dt

− 1
2
(u2

− − u2
+), (A6)

where Γ (s, t) = Γw + ∫ s
−l γ (s′, t) ds′, −l ≤ s ≤ l, is the circulation within the contour and

p∓(s, t) and u∓(s, t) denote the limiting pressure and tangential slip velocities on both
sides of the swimmer. Since the pressure difference across the free sheet is zero, it also
vanishes at the trailing edge by continuity, which implies that

Γ̇w = −1
2(u2

− − u2
+)|s=−l. (A7)

The values of u− and u+ are obtained from the average tangential velocity component and
from the velocity jump at the trailing edge, given by the sheet strength, evaluated at s = −l

ū = u++u−
2

= Im[(w − wswimmer)n], u−−u+=γ. (A8)

Once shed, the vorticity in the free sheet moves with the flow. Thus the parameter Γ

assigned to each particle zw(Γ, t) is the value of Γw at the instant it is shed from the
trailing edge. The evolution of the free vortex sheet zw is obtained by advecting it in time
with the fluid velocity,

˙̄zw = ww(zw, t) + wb(zw, t). (A9)

Appendix B. Forces and moments

The hydrodynamic force acting on the swimmer due to the pressure difference across the
swimmer is given by, ∫

lb
n[p]∓ ds = −F sin θ + iF cos θ, (B1)

where F = ∫
lb

[p]∓ ds. The hydrodynamic moment acting on the swimmer about its leading
edge is given by

M = Re
[∫

lb
in̄(zle − zb)[p]∓ ds

]
, (B2)

where zle is position of the leading edge s = ±l.
It is known that the strength of the bound vortex sheet exhibits an inverse square root

singularity at the edges (Saffman 1992; Eldredge 2019). The singularity at the trailing
edge is regularized by enforcing the Kutta condition as discussed above. To regularize the
singularity at the leading edge, we introduce a force parallel to the plate known as leading
edge suction (Eldredge 2019). Following the derivation provided in Eldredge (2019), we
write the suction force, in dimensionless form as

S = 2π eiθσ 2, (B3)

where σ is the suction parameter defined as

σ = 1
2
(ẏ − lθ̇ cos θ) +

∫
lb

γ (s, t)
2πl

Re
(

z̃(s, t) + l
z̃(s, t) − l

)1/2

ds, (B4)

where z̃(s, t) = z(s, t) − z eiθ , is the complex position of any vortex sheet present in the
fluid written in the plate’s frame of reference. ẏ − lθ̇ cos θ is the velocity of the centre of
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the plate in the y-direction. Note that in (B3), the suction force is always positive (always
a thrust force) and parallel to the plate.

Note that the majority of the suction force is due to the vertical motion of the leading
edge relative to the surrounding fluid. For the pitching swimmer, since the leading edge
has no vertical motion, the contribution of the leading edge suction force to the total thrust
force of the swimmer is negligible. This is confirmed by our numerical experiments on a
single pitching swimmer.

Last, we introduce a drag force D that emulates the effect of skin friction due to fluid
viscosity. This force is based on the Blasius laminar boundary layer theory as implemented
by Fang (2016) in the context of the vortex sheet model. Blasius theory provides an
empirical formula for skin friction on one side of a horizontal plate of length 2l placed
in fluid of density ρf and uniform velocity U. In dimensional form, Blasius formula is
D = 1

2ρf (2l)(cf )U2, where the skin friction coefficient Cf = 0.664/
√

Re is given in terms
of the Reynolds number Re = ρf U(2l)/μ. Substituting back in the empirical formula leads
to D = CdU3/2, where Cd = 0.664

√
ρf μ(2l). Following Fang (2016), we write a modified

expression of the drag force for a swimming plate

D = Cd(Ū
3/2
+ + Ū3/2

− ), (B5)

where Ū± are the spatially averaged tangential fluid velocities on the upper and lower side
of the plate, respectively, relative to the swimming velocity U,

Ū±(t) = 1
2l

∫ l

−l
u±(s, t) ds − U. (B6)

We estimate Cd to be approximately 0.02 in the experiments of Ramananarivo et al. (2016).

Appendix C. Numerical implementation

The bound vortex sheet is discretized by 2n + 1 point vortices at zb(t) with strength
ΔΓ = γΔs. These vortices are located at Chebyshev points that cluster at the two ends
of the swimmer. Their strength is determined by enforcing no penetration at the midpoints
between the vortices, together with conservation of circulation. The free vortex sheet is
discretized by regularized point vortices at zw(t), that is released from the trailing edge
at each timestep with circulation given by (A7). The free point vortices move with the
discretized fluid velocity while the bound vortices move with the swimmer’s velocity. The
discretization of (2.2) and ((A7) and (A9)) yields a coupled system of ordinary differential
evolution equations for the swimmer’s position, the shed circulation and the free vorticity,
that is integrated in time using the fourth-order Runge–Kutta scheme. The details of the
shedding algorithm are given in Nitsche & Krasny (1994). The numerical values of the
timestep Δt, the number of bound vortices n and the regularization parameter δ are chosen
so that the solution changes little under further refinement.

Finally, to emulate the effect of viscosity, we allow the shed vortex sheets to decay
gradually by dissipating each incremental point vortex after a finite time Tdiss from the
time it is shed into the fluid. Larger Tdiss implies that the vortices stay in the fluid for
longer times, mimicking the effect of lower fluid viscosity. For the results depicted in this
study, we used Tdiss ∈ [1.5, 3.5] flapping period. We refer the reader to Huang et al. (2018)
for a detailed analysis of the effect of dissipation time on the hydrodynamic forces on a
stationary and moving plate in the vortex sheet model. Details of the numerical validation
in comparison to Jones (2003) and Jones & Shelley (2005) are provided in Huang et al.
(2016).
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Figure 8. Hydrodynamic forces on the follower act as restoring forces. Snapshots of pairs of swimmers
undergoing (a) heaving and (b) pitching motion during transient and steady-state formation. Green (thrust) and
orange (drag) arrows represent period-averaged hydrodynamic forces acting on the follower. Right columns in
(a,b) show the instantaneous thrust and skin drag (solid lines) and their period-averaged values (dashed lines)
over one flapping period during transient and steady-state formation. The grey dashed lines denote the time
instance of the snapshots shown to the left.

Appendix D. Swimming energetics

Heaving motions are produced by an active heaving force Fh acting by the swimmer on the
fluid in the y-direction. The value of Fh is obtained from the balance of linear momentum
on the swimmer in the y-direction,

Heaving: mÿ = Fy + Fh. (D1)

Here, the hydrodynamic force Fy acting on the swimmer in the y-direction is given by
(B1).

Pitching motions are produced by an active moment Mp acting by the swimmer on the
fluid about the leading edge. The value of Mp is obtained from the balance of angular
momentum about the swimmer’s leading edge,

Pitching: Iθ̈ − Im[m(ẋ + iẏ)wl.e.] = M + Mp, (D2)

Here, I = m(2l)2/3 is the swimmer’s moment of inertia about the leading edge, wl.e. is
the swimmer’s velocity at the leading edge, and M is the hydrodynamic moment about the
leading edge given in (B2).

The power input by the swimmer into the fluid due to heaving and pitching motions,
respectively, is given by

Heaving: Ph = Fhẏ, (D3)

Pitching: Pp = Mpθ̇ . (D4)

Note that, in both cases, the leading edge suction and skin drag forces do not contribute to
the input power.

Appendix E. Hydrodynamic interaction forces

To further examine the hydrodynamic interactions between the two swimmers, we plot
snapshots of the free vortex sheets and flow field for the pair of heaving and pitching
swimmers in figure 8(a,b). We report two instances taken during the transient and
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steady-state motion, and from each regime, we report the hydrodynamic thrust and skin
drag over one period of flapping and their time-period average. When the follower gets
too close to the leader, the drag force dominates over thrust, causing the follower to
decelerate and move further behind the leader. Conversely, when the distance between
swimmers is larger than the steady-state spacing, the thrust force overcomes drag causing
the follower to accelerate and the pair to move closer; see, e.g. top right of figures 8(a)
and 8(b), respectively. The thrust and drag forces on the follower are balanced on average
after steady state has been reached, effectively leading to zero acceleration and constant
separation distance between the two swimmers.
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