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Convective instability in a stratified ideal gas
containing an acoustic field
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Acoustic radiation pressure acts on fluid inhomogeneities and can drive convection.
Inspired by experimental observations of acoustically driven convection inside a spherical
plasma bulb, we theoretically investigate the convective modes driven by an acoustic
field in a stratified, two-dimensional planar system containing ideal gas and heated from
above. In the absence of sound, the system is stable. Gravity determines a threshold
acoustic amplitude beyond which part the fluid becomes unstable. Regions of convective
stability and instability are separated by the location of the acoustic velocity antinode,
and convection results in the regions where the density gradient was not aligned with
the gradient in the time-averaged square of the acoustic velocity. At acoustic field
levels far beyond threshold, the growth of convective modes with small wavenumbers is
suppressed by inertia, while the growth of convective modes with very high wavenumbers
is suppressed by viscosity. There is a band of wavenumbers between the two limits with
approximately constant growth rate. In the limit of zero gravity and low acoustic fields, the
instability grows fastest at a wavenumber that is twice that of the acoustic field. An analogy
is drawn between acoustic radiation pressure on inhomogeneities and gravitational forces,
which allows us to define an ‘acoustic gravity’ that drives flow approximating thermal
convection. We propose that spherical acoustic waves can be used to experimentally study
Rayleigh–Bénard convection in a central force, and we lay the theoretical foundations of
this approach.

Key words: absolute/convective instability

1. Introduction

Fluid regions with high acoustic velocity attract dense fluid and repel light fluid. This
follows from generalized acoustic radiation pressure theory (Karlsen, Augustsson &
Bruus 2016; Koulakis et al. 2018b) which considers the response of an inhomogeneous
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15 mm

(b)(a)

Figure 1. Vapour and ice aerosol coming off a block of dry ice (a) is pulled into the velocity antinodes of a
41 kHz, 140 dB standing wave located above the ultrasonic transducer visible in the lower right of the image
(reproduced from Koulakis et al. 2018b). The full acoustic resonator is pictured with parabolic reflector in the
inset. A flame from a Bunsen burner is repelled by an acoustic beam (b) formed by a TinyLev acoustic levitator
designed by Marzo, Barnes & Drinkwater (2017).

fluid to acoustic fields within it on time scales that are much longer than the acoustic
period (i.e. when the acoustic motion is averaged out). Experimentally, Tuckermann et al.
(2002) observed the trapping of heavy, but not light gases in stationery sound fields, and
experiments on combustion in the presence of sound observe that pockets of hot gas at
velocity antinodes are squeezed (Tanabe et al. 2005; Yano et al. 2010). Indeed, simple
demonstrations shown in figure 1 capture some aspects of these phenomena: dry ice vapour
is attracted to, and fire is repelled from, acoustic beams.

In this article, we describe a fluid instability that arises when density stratification
exists in a region with an acoustic field. This theoretical work is guided by experimental
observations of convection inside a spherical, stratified, rotating sulphur plasma bulb
pictured in figure 2 that has been described by Koulakis et al. (2018c). The bulb
contains a high-amplitude, spherical standing acoustic wave. Plumes of plasma emerge
from a central, hot core in which convection is not observed. The plumes are in
the equatorial plane, usually have 4-fold symmetry along the azimuthal direction, and
occur periodically every ∼25 ms. Pree et al. (2018) proposed a model for the periodic
behaviour that balanced microwave heating of the plasma, with convective cooling at a
rate proportional to the instantaneous, time-varying acoustic amplitude. A preliminary
understanding of the stability regions inside the bulb was given by Koulakis et al.
(2018c), which proposed that the gas is stable to convection when the density gradient
is parallel with the gradient of the time-averaged square of the acoustic velocity, and
unstable otherwise. In this article, the arguments are expanded and applied to a stratified,
two-dimensional (2-D) planar system containing an ideal gas, as drawn in figure 3.
Since the system is heated from above, the gas is stable to convection in the absence
of sound. When an acoustic field is applied with amplitude beyond a threshold set by
gravity, the fluid becomes unstable. The resulting convection pattern is reminiscent of
the ‘rolls’ of Rayleigh–Bénard convection, except that they only occupy the regions of
space where the density gradient is not parallel with the gradient of the time-averaged
square of the acoustic velocity. We calculate the growth rate of modes of a given
wavenumber, and identify the most unstable wavenumber. The intuition obtained is more
broadly applicable to any physical system with density stratification and strong sound
fields.
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30 mm 

(a) (b) (c) (d) (e)

Figure 2. Series of frames extracted from a high frame rate video capturing the growth of the instability in a
spherical sulphur plasma bulb driven at its lowest-order spherically symmetric acoustic resonance. The bulb
is simultaneously rotating at approximately 50 Hz. Time elapsed from the first to the last frame is 5 ms. The
instability repeats every 25–30 ms (Pree et al. 2018).

Th

Tc

k0z = π/4

L

〈v2
1〉v1 = v0 cos (k0z + π/4)ẑ

k0z = –3π/4

g x̂

ẑ

Figure 3. We consider an ideal gas between two infinite horizontal planar boundaries that are normal to a
gravitational field and heated from above. In the absence of sound the gas is convectively stable. Turning on a
standing acoustic wave generates convection in the bottom half of the system if the acoustic amplitude is higher
than a threshold set by gravity.

2. Theoretical and experimental preliminaries

According to the generalized acoustic radiation pressure theory (Karlsen et al. 2016), the
‘slow’ response of a fluid to an acoustic field is governed by a modified Navier–Stokes
equation, accurate to second order in the acoustic variables,

∂

∂τ
(ρ̄v̄) = ∇ · [σ − ρ̄v̄v̄] + f ac + ρ̄g, (2.1)

where σ is the stress tensor, given by

σ = −P̄I + η
[∇v̄ + (∇v̄)T]+

(
ηb − 2

3η
)

(∇ · v̄)I; (2.2)

f ac is the time-averaged acoustic force density, given by

f ac = −〈P2
1〉

2
∇κ − 〈v2

1〉
2

∇ρ̄; (2.3)

ρ̄, v̄ and P̄ are the density, velocity and pressure averaged over a few sound periods; τ is
the slow time scale; g is a gravitational field; κ = 1/(ρ̄c2) is the adiabatic compressibility;
c is the spatially varying adiabatic speed of sound; η is the dynamic viscosity; ηb is the
bulk viscosity; and I is the unit tensor. The time-averaged, spatially varying square of
the acoustic pressure and velocity are 〈P2

1〉 and 〈v2
1〉 respectively. They determine the

acoustic force density acting on compressibility (elastoclinic force – we thank G. Swift
for conceiving this term) and density gradients (pycnoclinic force). The derivation of (2.1)
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assumes that the acoustic field can be described by the linearized fluid equations, which
are valid when the Mach number M = v0/c = p0/(ρc2) � 1, where v0 and p0 are the
temporal and spatial maxima of the acoustic fields. The acoustic forces are quadratic in
the fields and are proportional to M2 at lowest order. Finite-amplitude corrections to the
sound field contribute a force of order M4 and are ignored. The time-averaged velocity
is also assumed to be small v̄/c � M2. An additional restriction is that the time-averaged
pressure in the system is nearly uniform, |∇P̄| = |ρ̄g| � c2|∇ρ̄|. This is a mild condition,
and is easily fulfilled: a 1 K temperature difference over 1 m in air on Earth’s surface gives
c2|∇ρ̄|/(|g|ρ̄) � 30.

Consider the acoustic forces of (2.3). In liquids with solute gradients, for example, both
compressibility and density gradients are appreciable (Qiu et al. 2019). In this work, we
consider systems of ideal gas, and ∇κ may be neglected for the following reasons. The
ideal gas equation of state P = ρkBT/ma, and speed of sound c = √

(γ kBT/ma) give κ =
1/(γ P), where kB is Boltzmann’s constant, T is temperature, ma is the molecular mass and
γ is the ratio of specific heats. Therefore, according to the already made approximation
|∇P̄| � c2|∇ρ̄|, the elastoclinic term is much smaller than the pycnoclinic term in (2.3).

Another simplification is that the time-averaged velocity v̄ is nearly solenoidal and
∇ · v̄ may be approximated as being equal to zero. Consider the motion of gas of
inhomogeneous temperature, in a system of almost uniform pressure. In the limit of zero
thermal diffusivity, there will be no compression or expansion of the gas as it moves
around; it will behave like an incompressible fluid. For finite diffusivity, there is some
compression due to the heat flow. This can be seen mathematically by combining the
thermal advection–diffusion equation

∂T
∂τ

+ v̄ · ∇T = χ∇2T, (2.4)

where χ is the thermal diffusivity, with conservation of mass,

∂ρ̄

∂τ
+ ∇ · (ρ̄v̄) = 0. (2.5)

Multiply (2.4) by ρ̄ and (2.5) by T , add and use the fact that the product ρ̄T ∝ P is
approximately uniform and constant to find,

∇ · v̄ = χ
∇2T

T
. (2.6)

In the onset calculation to follow, we take ∇2T = 0 as an initial condition, and are
interested in the initial growth rate of unstable convective modes. For those early times
there will be no net heat flow to cause expansion or compression except inasmuch as the
departure from the initial state disrupts the ∇2T = 0 condition, which will be higher order.
We therefore treat the time-averaged velocity as incompressible, ∇ · v̄ = 0. To put this in
the context of the thermal convection literature, the analogue of (2.6) for a general fluid
with small temperature variations is ∇ · v̄ = βχ∇2T , where β = −(1/ρ)(∂ρ/∂T)P is the
thermal expansion coefficient, and we see that our condition ∇ · v̄ = 0 is equivalent to the
often used Boussinesq approximation applied to the case of a gas.

With these simplifications, (2.1)–(2.3) reduce to,

∂

∂τ
(ρ̄v̄) + ∇ · (ρ̄v̄v̄) = −∇P̄ − 〈v2

1〉
2

∇ρ̄ + ρ̄g + η∇2v̄. (2.7)
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Figure 4. (a) Photograph of the convection inside a spherical plasma bulb driven at its lowest-order,
spherically symmetric acoustic resonance. A plot of the time-averaged acoustic field is overlayed on the
photograph, as well as the direction of flow in one quadrant of the bulb as determined by high-speed video
(see figure 2). (b) Cartoon of the physical situation within the bulb at the onset of the instability. Solid curves
represent isothermal surfaces and are normal to the density gradient ∇ρ̄. The density gradient would be parallel
to the radial unit vector if not for the perturbations from spherical symmetry. The acoustic velocity gradient
∇〈v2

1〉 always points towards the velocity antinode. Misalignment of ∇〈v2
1〉 and ∇ρ̄ generates a momentum

vorticity according to (2.8), whose sign is such that within the velocity antinode deviations from spherical
symmetry are reduced, but beyond the velocity antinode they are amplified.

A qualitative understanding of the convective flow pictured in figure 2 is obtained by
considering the curl of (2.7) ignoring the convective term and with g and η set to zero,

∂

∂τ
∇ × (ρ̄v̄) = 1

2∇ρ̄ × ∇〈v2
1〉, (2.8)

which says that ‘momentum vorticity’ (∇ × (ρ̄v̄)) is generated whenever the density
gradient is misaligned with the gradient of the time-averaged acoustic velocity squared.
If the acoustic field and density profile are strictly spherically symmetric (only functions
of the radial coordinate r), there will not be any momentum vorticity generated. The
instability is therefore governed by the response of the system to perturbations from
spherical symmetry. Figure 4(a) is a photograph of the convection pattern, overlayed with
a plot of the time-averaged acoustic field (the lowest-order spherically symmetric mode,
see Koulakis, Pree & Putterman 2018a; Russell 2010) and arrows depicting the direction
of flow in the plasma plumes. The gas is, on average over a spherical shell, hottest in
the middle and coldest near the glass, and so the density gradient points mostly radially
outward. On the other hand, ∇〈v2

1〉 always points towards the velocity antinode, and
switches direction at approximately half the bulb radius. A cartoon depicting the gas within
the bulb and the direction of these vectors is displayed in figure 4(b). The key insight is that,
according to (2.8), within the velocity antinode (∂/∂τ)∇ × (ρ̄v̄) is in a direction where the
generated solenoidal flow reduces deviations from spherical symmetry, whereas beyond
the velocity antinode the generated solenoidal flow amplifies perturbations from spherical
symmetry. This is the fundamental reason the core is stable to convection whereas the
outer region is not.
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3. ‘Acoustic gravity’ and the connection to Rayleigh–Bénard convection

Before proceeding with calculating the unstable convective modes in a model 2-D planar
system, it is of interest to consider (2.7) in the context of the Rayleigh–Bénard problem to
which it should reduce in the limit of zero acoustic field. Our goal in this section is to show
that even for finite acoustic fields, the flow field due to the acoustic forces will approximate
thermal convection in an effective ‘acoustic gravity field’ that varies in space.

Gravitational forces (ρ̄g) are proportional to the density at a location, and so the fact
that the pycnoclinic acoustic force (−〈v2

1〉∇ρ̄/2) is proportional to the density gradient
may seem to preclude that it can approximate a gravitational field. The reason it can
is that thermal convection flow fields are solenoidal under the usual Boussinesq and
other approximations (Landau & Lifshitz 1987a; Chandrasekhar 1961), and therefore their
dynamics is captured by the curl of (2.7),

∂

∂τ
∇ × ρ̄v̄ = 1

2∇ρ̄ × ∇〈v2
1〉 + ∇ρ̄ × g. (3.1)

Here, we have ignored the convective and viscous terms for simplicity since they do
not change the argument. This equation indicates that there is an effective ‘acoustic
gravity’ gac = ∇〈v2

1〉/2 which is indistinguishable from a gravitational field in generating
solenoidal mass flow.

There is, however, a difference in the fluid pressure, which will be different in the
presence of acoustic gravity than what it would have been in response to a true gravitational
field of the same form (one with a force density ρ̄gac). Explicitly, the divergence of (2.7)
is,

∂

∂τ
∇ · (ρ̄v̄) = −∇2P̄ − 1

2 〈v2
1〉∇2ρ̄ − 1

2
∇〈v2

1〉 · ∇ρ̄ + ∇ρ̄ · g + ρ̄∇ · g, (3.2)

and we see that the choice gac = ∇〈v2
1〉/2 does not put the acoustic terms into a similar

form as the gravitational ones. But this difference may not be very significant for the
following reasons. Equation (3.2) describes small diverging flows necessary to establish
and maintain hydrostatic balance in the presence of acoustic radiation forces. It is well
known that in homogenous fluids, time-averaged acoustic forces lead to an ‘excess
pressure’ (Lee & Wang 1993), and (3.2) is the generalization to inhomogeneous fluids.
Lighthill (1978b) expresses a related concept when he says any ‘force in the form of
a gradient of a quantity [F = ∇Ψ ] . . . cannot force any [sustained] motion’. This is
because it ‘merely sets up a hydrostatic solution [v̄ = 0, P̄ = Ψ ]’. Indeed, a Helmholtz
decomposition of a vector field (in this case the pycnoclinic acoustic force or gravity)
guarantees that the part of the field with a divergence (which contributes to (3.2)) can be
expressed as a gradient of a quantity. Therefore, (3.2) simply describes the shifting of gas
needed to achieve the hydrostatic solution, which will slowly vary as the inhomogeneous
density profile evolves according to (3.1).

In summary, the acoustic forces of (2.3) can be split into two parts. One part can be
balanced by a pressure and leads to a hydrostatic solution that is different than one would
expect from a gravitational force. Acousticians would call the resulting pressure ‘acoustic
radiation pressure’, and it is unique to acoustic gravity. The second part of the acoustic
forces cannot be balanced by a pressure and leads to flows that acousticians would call
‘acoustic streaming’ driven by the inhomogeneities. The streaming approximates thermal
convection in an acoustic gravity field gac = ∇〈v2

1〉/2. Historically, acoustic streaming was
studied in homogenous fluids, where it is completely due to attenuation (Lighthill 1978b).
It was only recently understood that streaming can be driven by inhomogeneities as well
(Karlsen et al. 2016; Koulakis et al. 2018b).

915 A25-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.83


Acousto-pycnoclinic instability

Despite these differences between true gravitational forces and acoustic ‘gravity’, some
convective flow quantities of interest, such as the Nusselt number (Niemela et al. 2000),
are sensitive to the velocity field and may not be affected too much by the details
of the pressure. More research will be required to fully understand the consequences
of these differences, which on the surface appear to be higher-order corrections. This
insight opens a path towards an experimental apparatus that can study an approximation
of Rayleigh–Bénard convection in a rotating system with a central force. Historically,
realizing such an experiment has been difficult due to the challenge of arranging for a
central force. To date, the only viable option has been the electrophoretic force (Chandra
& Smylie 1972; Amara & Hegseth 2002), which relies on strong alternating electric
fields and variations in a fluid’s dielectric constant. However, because of its inherent
weakness compared to buoyancy (gravity) at Earth’s surface, experiments were forced into
a microgravity environment (Hart et al. 1986a). Acoustic forces in the experiment shown
in figures 2 and 4 are estimated to be >1000× stronger than gravitational ones (Koulakis
et al. 2018c) on the ground.

The dimensionless parameters characterizing thermal convection are often taken to be
the Rayleigh number,

Ra = βg�TL3

νχ
, (3.3)

and Prandtl number Pr = ν/χ , for characteristic temperature difference �T and length
L; kinematic viscosity ν; and thermal diffusivity χ . We can define an acoustic
analogue with the transformation g → |∇〈v2

1〉|/2 ∼ k0v
2
rms/2 for acoustic wavenumber

k0, root-mean-squared acoustic amplitude vrms, ideal gas thermal expansion coefficient
β → 1/T and characteristic length scale L → π/k0,

Raac = π3v2
rms�T

2k2
0νχT

. (3.4)

We estimate Raac > 106 in the experiment of figures 2 and 4, calculated using
v2

rms � (20 m s−1)2/2, �T/T � 1/3, k0 � 280 m−1, ν � 3 × 10−5 m2 s−1 and χ � 2 ×
10−4 m2 s−1 estimated from data in Koulakis et al. (2018a,c). Note, however, that this
Rayleigh number is not sustained in the experiment. The sound amplitude varies rapidly
in time as described by Pree et al. (2018), and the estimate here is based on the largest
observed amplitude.

Without sound, the mean state of the fluid in the bulb is determined by a balance
of gravitational and centrifugal forces. When sound is turned on, the mean state is
destabilized and the convective instability is established. If this acoustic field was sustained
for a long period of time, a new mean state would stabilize at a different configuration. In
this configuration the dynamics of density fluctuations will be similar to Rayleigh–Bénard
convection in a stable acoustic gravity field. The focus of the rest of the article, however,
is on the initial evolution of the fluid, right after the sound is applied. We find below that
the initial dynamics is better described by an ‘acoustic Grashof number’ Gac = Rac/Pr,
where the thermal diffusivity drops out.

4. Application to 2-D planar system

In the rest of the article we apply these insights to a specific 2-D planar system that
models some aspects of the convection in the plasma bulb. Although the model looks
similar to the Rayleigh–Bénard problem, there are important differences to keep in mind.
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In Rayleigh–Bénard convection, the fluid is heated from below, and gravitational buoyancy
makes it unstable. We will consider a fluid heated from above, which is normally stable
to convection. Then, analogous to the experiment, we imagine an acoustic field is rapidly
turned on. The acoustic forces on density gradients reverse the sign of the effective gravity
in some regions, destabilize the stratification and the fluid begins to move towards a new
equilibrium. We seek to calculate the form and growth rate of the initial convection cells,
which we anticipate will be similar to the plasma plumes of figures 2 and 4.

4.1. Physical set-up
We consider the physical system of an ideal gas between two plates normal to gravity
g = gẑ (g < 0) depicted in figure 3. The plates are a distance L apart and are held at
temperatures Th and Tc respectively. We allow the density and temperature between the
plates to acquire their equilibrium profiles determined by ∇2T = 0 and −∇P + ρ̄g = 0,

T = Az + B � Tc(1 − 2bk0z), (4.1)

ρ̄ = ρ̄c

(
T
Tc

)n−1

� ρ̄c(1 + 2bk0z), (4.2)

with A = (Th − Tc)/L, B = (Tc + 3Th)/4, n = (magL)/(kb(Th − Tc)), ρ̄c is the density at
the cold plate and b is a normalized density gradient defined below in (4.6). An acoustic
standing wave of the form

v1 = v0 cos(k0z + π/4) sin(ωt)Θ(t)ẑ, (4.3)

is quickly turned on at time t = 0. Here, v0 is an amplitude, k0 = π/L, ω is the frequency
and Θ(t) is the Heaviside step function defined by Θ(t < 0) = 0 and Θ(t ≥ 0) = 1. The
reason for the unusual choice for the origin position z = 0 will become apparent below.
In the experiment shown in figures 2 and 4, the acoustic field is generated and sustained
thermoacoustically by pulses of microwave energy. For the problem considered here, we
imagine an ultrasonic transducer (of large extent) either above or below the plates directing
a sound beam perpendicular to them. Reflection off the far plate will result in a standing
wave between the plates.

There are a few aspects of (4.3) that require clarification. As written, the ‘turn-on’
time of the sound field is effectively instantaneous, and represents the limiting case
where the growth rate of unstable modes (solved for below) is slow compared to the
actual, finite, turn-on time. Since the growth rate goes to zero at low acoustic amplitudes,
there will always be a range of acoustic field amplitudes that are low enough where
this approximation is valid. For high enough acoustic amplitudes, the growth rate is
comparable or faster than the turn-on time and this analysis does not apply. From here
on out we take t > 0 and will ignore the Heaviside function going forward. Next, consider
the spatial dependence of (4.3). In general, sound in a lossless, inhomogeneous medium
must satisfy (Landau & Lifshitz 1987b)

∇ ·
(∇P1

ρ̄

)
− 1

ρ̄c2
∂2P1

∂t2
= 0, (4.4)

but for simplicity we have chosen the form of the standing wave in a homogeneous
medium. This applies in the limit that density changes over the system are small compared
to the density itself. To be consistent with the assumptions delineated in § 2 that are
necessary for the applicability of (2.1), we must also take the density differences due to
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the hydrostatic pressure drop as being small compared to those due to temperature. To
summarize, this analysis is applicable in the limits ma|g|/(kbTc) � (Th − Tc)/Tc � 1,
which imply |n| � 1 as well.

The quantity (1/ρ̄)(∂ρ̄/∂z), plays a large role in what follows and is closely related to
the Brunt–Väisälä frequency of internal waves. According to the conditions above, it is
approximately uniform with

1
ρ̄

∂ρ̄

∂z
� mag

kbB
− A

B
−
(

mag
kbB

− A
B

)
A
B

z. (4.5)

We therefore define the normalized density gradient,

b = − 1
2k0

A
B

≈ 1
2k0ρ̄

∂ρ̄

∂z
� 1, (4.6)

which is just the square of the Brunt–Väisälä frequency divided by 2k0g. Note that the
approximation that (1/ρ̄)(∂ρ̄/∂z) does not vary with z is often made in the treatment of
internal waves (Lighthill 1978a).

4.2. Mathematical set-up
We seek the 2-D flow patterns induced by the acoustic radiation pressure acting on the
stratified density profile given by (4.2). As argued in § 2, the gas may be treated as
incompressible, and therefore equations describing the dynamics of the solenoidal part
of the velocity field will capture its motion. Since the fluid is starting from a standstill,
terms ∝ v̄2 are dropped. The curl of (2.7) is,

∂

∂τ
∇ × (ρ̄v̄) = ∇ρ̄ ×

[
g + ∇〈v2

1〉
2

]
+ η∇2∇ × v̄. (4.7)

The acoustic field with gradient

∇〈v2
1〉 = −k0v

2
0/2 cos(2k0z)ẑ, (4.8)

is applied. In the initial state, ∇ρ̄ is parallel to g and ∇〈v2
1〉, so the cross-product is zero

and the system is in equilibrium. However, as we will show, the equilibrium is unstable
(like water sitting on top of oil) if at any location ẑ · (g + ∇〈v2

1〉/2) > 0, which can be
interpreted as the effective gravity changing sign. That condition is met in regions centred
at cos(2k0z) = −1 if v2

0 > −4g/k0.
The instability will grow if the initial state of the background is kinematically deformed.

Since the force acts on density gradients, it is important to track them as they are carried by
the velocity field. This is done by taking the gradient of the conservation of mass equation,

∂

∂τ
∇ρ̄ + ∇(∇ · ρ̄v̄) = 0. (4.9)

Combining the time derivative of (4.7) with (4.9), and keeping terms up to first order in
the normalized density gradient b, kinematic viscosity ν = η/ρ̄ or products thereof, we
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arrive at the governing equation for the instability,

∂2

∂τ 2 ∇ × (ρ̄v̄) =
[

g + ∇〈v2
1〉

2

]
× ∇(∇ · ρ̄v̄) + ν

∂

∂τ
∇2∇ × ρ̄v̄. (4.10)

In our 2-D system, (4.10) has only one non-trivial component for the two components of
ρ̄v̄. We use as our second condition,

∇ · ρ̄v̄ = v̄ · ∇ρ̄ = 2bk0(ρ̄v̄) · ẑ, (4.11)

which applies for early times, before ∇ρ̄ develops a large component that is not parallel
with ẑ. Guessing a solution of the form,

ρ̄v̄ = eσ teikxebk0z[u(z)x̂ + w(z)ẑ], (4.12)

substituting into (4.10) and (4.11) and changing to non-dimensional variables and
parameters ζ = k0z, k̃ = k/k0, growth rate σ̃ = σ/(k2

0ν), acoustic buoyancy γ 2 =
−bv2

0/(4k2
0ν

2) and gravitational buoyancy g̃ = 2bg/(k3
0ν

2), (4.10) and (4.11) become,

0 = −σ̃
∂4w
∂ζ 4 + (σ̃ 2 + 2σ̃ k̃2)

∂2w
∂ζ 2 − k̃2(σ̃ 2 + σ̃ k̃2 + g̃ + 2γ 2 cos 2ζ )w, (4.13)

and

ik̃u = bw − ∂w
∂ζ

. (4.14)

Note that g̃ and γ 2 are numerical multiples of the Grashof number G = Ra/Pr and
acoustic Grashof number Gac = Raac/Pr respectively. We solve the system of (4.13) and
(4.14), subject to the boundary conditions u[ζ ] = w[ζ ] = 0 at ζ = π/4 and ζ = −3π/4.
Once a solution w of (4.13) is found, u follows trivially from (4.14).

4.3. Zero-viscosity limit
Before proceeding to find solutions of (4.13) which contain a rich assortment of physics,
we first build some intuition regarding the system by examining the zero-viscosity limit. In
this limit, the boundary conditions must be reduced to require only the normal component
of the velocity to be zero at the walls. Taking ν → 0, (4.13) reduces to a Mathieu equation,

∂2w0

∂ζ 2 + (a − 2q cos 2ζ ) w0 = 0, (4.15)

with parameters,

a = −
(

1 + 2bk0g
σ 2

)
k̃2, (4.16)

q = −bv2
0k2

0
4σ 2 k̃2. (4.17)

Physically, this equation contains nothing more than a balance of inertia with a spatially
varying drive force. The inertial term (∂2/∂τ 2)∇ × (ρ̄v̄) of (4.10) results in both the
∂2w0/∂ζ 2 − k̃2w0 terms. If one imagines a flow field that is tangential to an ellipse
whose axes are perpendicular or parallel to the boundaries, ∂2w0/∂ζ 2 represents the
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Figure 5. (a) Values of ±q(a) for which solutions exist in the zero-viscosity limit. The growth rate of a given
mode, (4.18), is a linear function of the ratio −a/q, plotted in (b), which asymptotically approaches 2 in the
large −a, or large wavenumber limit.

inertia of the flow parallel to the boundaries, while −k̃2w0 captures the inertia of flow
perpendicular to the boundaries. Gravity acts to stabilize the initial conditions, opposes
any motion and appears as an increased inertia −(2bk0g/σ 2)k̃2w0. Finally, the acoustic
drive is 2q cos(2ζ )w0.

The solutions of (4.15) are linear combinations of the even and odd Mathieu functions
C(a, q, ζ ) and S(a, q, ζ ) for parameters a and q, and reduce to cosine and sine respectively
as q → 0. Solutions only exist when parameters a and q satisfy a certain relation, q = q(a),
which has multiple branches. For a given a, q(a), the growth rate and wavenumber are
determined,

σ 2 = bk2
0v

2
0

4
a
q

− 2bk0g, (4.18)

k2

k2
0

= −a + 8g

k0v
2
0

q. (4.19)

Before searching for eigenvalues a, q(a) that solve (4.15), let us consider where they
lie in the complex plane. If we require periodic solutions (k2 > 0), (4.19) tells us that in
the limit g → 0 and v0 > 0, a must lie on the negative real axis. In that case, q(a) is
real as well and comes in ± pairs that were determined with numerical techniques and are
plotted in figure 5(a). Solutions with q > 0 are unstable (σ 2 > 0) and solutions with q < 0
oscillate (σ 2 < 0). At the other extreme, |g| > 0 and v0 → 0, the problem is equivalent
to internal waves propagating in a waveguide. Here, q → 0, and the eigenfunctions are
sines and cosines with eigenvalues a = m2 for integer m. In other words, the locus of the
a eigenvalues in the absence of sound is discrete points along the positive real axis. As the
sound amplitude is increased, the points spread out along paths in the complex plane that
converge onto the negative real axis at large sound amplitudes. In between, where there
is competition between gravitational and acoustic forces, a may become complex. This
work is ultimately interested in the large acoustic field limit, where a is real and negative.
Furthermore, solutions exist with a real and negative for moderate acoustic field levels,
as long as they are larger than a threshold we define below. Therefore, in this work, we
limit our eigenvalue search to the parameter space with a real and negative, and leave
exploration of the rest of the complex plane for future work.

Plots of w0 are included in figure 6, and the entire modal structure ρ̄v̄ in figure 7 for a
few values of a and q. Note that changing g, v0 or b does change the wavenumber k and
growth rate σ for a given a, q, but w0 remains unchanged. Therefore, when considering
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Figure 6. The three fastest growing solutions (b,d, f ) and three fastest oscillating solutions (a,c,e) of (4.15) for
a = −0.1, −1 and −10. The growth rates and wavenumbers are given by (4.18) and (4.19) respectively, and
depend on other parameters. See figure 7 for plots of the entire modal structure for some parameters.

the modal structure in figure 7, changing g or v0 amounts to a rescaling of the x axis by
the wavenumber, and also changes the ratio of the x̂ and ẑ components of the velocity
according to (4.14). Changing b mainly changes the exp(bk0z) prefactor of the fields.

According to (4.18), the growth rate is a linear function of the ratio −a/q, which is
plotted in figure 5(b). At small −a, −a/q increases proportional to −a, but asymptotically
approaches 2 in the limit −a → ∞, or large wavenumbers. What is happening physically
is that the drive force (q, crudely speaking) is proportional to k̃2, while the inertial and
gravitational terms have mixed proportionality to k̃2. As discussed in § 2 and drawn in
figure 4, the instability is driven by deviations from the symmetry of the stratification,
and therefore the inertia of flow parallel to the boundaries, which does not break the
planar symmetry, is ‘dead’ weight that must be carried along. On the other hand, flow
perpendicular to the boundaries breaks the symmetry and helps drive the instability. For
small k̃2, the resistance to motion is primarily the inertia of flow parallel to the boundaries
(∂2w0/∂ζ 2), and therefore increasing k̃2 lowers the inertia while increasing the drive
and the growth rate increases. For large k̃2, the resistance to motion is primarily the
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Figure 7. Modal structure in the zero-viscosity limit for g = 0 and various values of the parameters a and q.
Changing g or v0 amounts to a rescaling of the x axis by the wavenumber ((4.19)) which affects the ratio of the
x̂ and ẑ components of the velocity according to (4.14). Changing b mainly affects the exp(bk0z) prefactor of
the fields.

aw0 term (combined inertia of perpendicular flow and gravitational resistance), which
is also proportional to k̃2. Therefore increasing k̃2 increases the drive and resistance
proportionally and the growth rate remains constant.

As a result, in the zero-viscosity limit large wavenumber modes will grow the fastest, at
a nearly identical growth rate limited by inertia and gravity (the constant part of the curves
in figure 5(b) for −a � 1). In analogy to the cutoff frequency of an electrical filter, which
is conventionally taken to be the -3 dB point, the value of −a where −a/|q| reaches half
its maximum value, −a1/2, determines the wavenumber beyond which the growth rate (for
q > 0) or oscillation frequency (for q < 0) is approximately constant. It is listed in table 1
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Mode number 1 2 3 4 5

−a1/2 4.55 34.2 93.5 183 302

Table 1. Values of −a at which −a/|q| is half its maximum value. These determine the wavenumber ((4.20))
beyond which the growth rate (q > 0) or oscillation frequency (q < 0) is approximately constant in the
zero-viscosity limit. Inclusion of viscosity determines an upper-bound wavenumber ((4.28)) beyond which
the growth rate or oscillation frequency falls again.

for the lowest few modes. This ‘lower-bound’ wavenumber is,

k̃2
< = −a1/2

(
1 + 8g

k0v
2
0

q
|q|

)
, (4.20)

and an upper bound due to viscosity will be determined in § 4.4.
According to (4.18), there is a minimum acoustic amplitude required for the instability

to overcome the stabilizing effect of gravity determined by the condition σ 2 > 0. Since
the maximum value of −a/q is 2, the amplitude required for the first mode (at infinite
wavenumber) to become unstable is,

v2
min = −4g

k0
, (4.21)

and we have confirmed the statement made in § 4.2, that the stratification becomes
unstable if the effective gravitational force reverses sign at any location in the system. The
density gradient drops out, and the acoustic amplitude threshold is determined only by
the gravitational field and the acoustic wavelength (or plate separation). Further increase
of the acoustic amplitude broadens the width of the region where the effective gravity
reverses sign, and pushes the instability from infinite to lower wavenumbers. This can be
seen by writing the growth rate and wavenumber in terms of the threshold,

σ 2 = −bk2
0v

2
0

2

(
−a
2q

− v2
min

v2
0

)
, (4.22)

k2

k2
0

= 2q

(
−a
2q

− v2
min

v2
0

)
, (4.23)

and noting that for positive q modes 0 < −a/2q < 1 and approaches 1 at high
wavenumber. When v2

min/v
2
0 < (−a)/2q, the mode is unstable, and as v2

min/v
2
0 approaches

(−a)/2q from below, the wavenumber goes to zero. As long as v2
0 ≥ 2v2

min, all
wavenumbers higher than k̃2

< will be unstable. These thresholds are important
for distinguishing regions of parameter space by the nature of their modes –
periodic/exponentially growing and stable/unstable – as summarized in table 2.

For a 2 cm wavelength, the Earth’s gravitational field sets the acoustic amplitude
threshold at vmin = 0.36 m s−1 (Mach number of approximately 0.001 in air) before
convection sets in. This low Mach number validates the use of the linear acoustics regime
in the derivation of (2.1). Far beyond threshold, the limiting value of the growth rate

is
√

−bk2
0v

2
0/2. Calculating this value for b = 2 × 10−4, which corresponds to a 1 K

temperature difference over the 2 cm wavelength at room temperature, and the acoustic
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−a
2q

< 0 0 <
−a
2q

<
v2

min

v2
0

v2
min

v2
0

<
−a
2q

a >0 <0 <0 >0 >0 <0
q >0 <0 >0 <0 <0 >0
σ 2 <0 <0 <0 <0 >0 >0
k2 <0 >0 <0 >0 <0 >0

Table 2. Types of solutions for various values of the parameters, assuming real a, q. This article focuses on the
cases with k2 > 0 and a < 0. Modes in columns shaded grey have imaginary wavenumber and are unphysical
for the system we consider.

amplitudes of 20 m s−1 measured in the experiment gives a growth rate of σ = 63 Hz.
With more extreme parameters characteristic of the conditions inside the spherical plasma
bulb experiment shown in figures 2 and 4, the growth rate can be > 105 Hz.

4.4. Finite viscosity
In § 4.3, we learned that the inertially limited growth rate is larger for short wavelengths
(large −a), but once the wavelength becomes shorter than a certain value the growth
rate saturates. Viscosity must be included to determine a preferred, finite wavenumber.
When combined with the growth rate, a new length scale – the viscous penetration depth
– is introduced to the problem, adding more physical regimes. Examination of (4.13),
reproduced here for convenience,

0 = − 1
σ̃

∂4w
∂ζ 4 +

(
1 + 2k̃2

σ̃

)
∂2w
∂ζ 2 − k̃2

(
1 + k̃2

σ̃
+ g̃

σ̃ 2 + 2γ 2

σ̃ 2 cos 2ζ

)
w (4.24)

lends more insight into the problem. The inertial, gravitational and driving terms discussed
in § 4.3 are immediately identifiable. The additional terms due to viscosity come in two
forms: (i) proportional to 1/σ̃ = νk2

0/σ , which is the square of the ratio of the viscous
penetration depth to the plate separation (or acoustic wavelength), and (ii) proportional
to k̃2/σ̃ = νk2/σ , which is the square of the ratio of the viscous penetration depth to the
instability wavelength. The fourth derivative is only appreciable for slow enough growth
rates that the viscous penetration depth becomes comparable to the plate separation. On
the other hand, the k̃2/σ̃ terms appear as an increased resistance at high wavenumber.

Equation (4.24) is a fourth-order ordinary differential equation with variable
coefficients, and is quadratic in its eigenvalue. We obtain approximate numerical solutions
by linearizing in three limits and using a linear eigenvalue solver. The linearized forms of
(4.24) are:

(i) for k̃2 � σ̃ (penetration depth small compared to the instability wavelength)

0 = −σ̃
∂4w
∂ζ 4 + σ̃ 2 ∂2w

∂ζ 2 − k̃2(σ̃ 2 + g̃ + 2γ 2 cos 2ζ )w; (4.25)

(ii) for k̃2 � σ̃ (penetration depth large compared to the instability wavelength)

0 = −σ̃
∂4w
∂ζ 4 + 2σ̃ k̃2 ∂2w

∂ζ 2 − k̃2(σ̃ k̃2 + g̃ + 2γ 2 cos 2ζ )w; (4.26)
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(iii) for k̃2 = σ̃ − δσ̃ , with δσ̃ /k̃2 � 1 (penetration depth comparable to instability
wavelength)

0 = −k̃2
(

1 + δσ̃

k̃2

)
∂4w
∂ζ 4 + k̃4

(
3 + 4

δσ̃

k̃2

)
∂2w
∂ζ 2

− k̃2
(

k̃4
(

2 + 3
δσ̃

k̃2

)
+ g̃ + 2γ 2 cos 2ζ

)
w. (4.27)

In regime (i), we take the eigenvalue to be k̃2 for parameters σ̃ , g̃ and γ ; in regime
(ii) we take the eigenvalue to be σ̃ for parameters k̃2, g̃ and γ ; and in regime (iii) we
take the eigenvalue to be δσ̃ for parameters k̃2, g̃ and γ .

Dispersion diagrams of the three fastest growing modes are plotted in figure 8 for g̃ = 0
and various γ . The regimes of validity of (4.25), (4.26) and (4.27) are determined by the
line σ̃ = k̃2, which is indicated by the dashed line in the figures. Equation (4.25) is valid
far to the left of the dashed line, (4.26) is valid far to the right and (4.27) is valid near the
line. Figure 9(a) shows how the growth rate for the fastest growing mode increases with
the acoustic drive γ . Solutions w[ζ ] are plotted in figure 10.

At low γ , the viscous penetration depth is larger than both the separation between plates
and the instability wavelength, and there is only a competition between shear at the wall
and shear in the bulk. For g̃ = 0, the wavenumbers with the highest growth rate for the
three fastest modes are k̃2 = 3.98, 15.8, and 36.3 respectively, and their mode structure is
plotted in figure 11.

As discussed in § 4.3, gravity stabilizes the fluid and sets a minimum acoustic amplitude
for the instability to form. The threshold is simply determined by the condition for the
effective gravity, ẑ · (g + ∇〈v2

1〉/2) to change sign at some location in the system, and
viscosity does not modify that condition. In terms of the dimensionless quantities, the
threshold is 2γ 2 > g̃. Viscosity does, however, unevenly modify the growth rate of the
modes and consequently plays a role in selecting which mode grows fastest. Figure 12
shows the effect of increasing gravity on the growth rate. In addition to decreasing the
growth rate, the peak of the growth rate curves moves towards higher wavenumbers.
Figure 13 shows its effect on w[ζ ]. The convective flow becomes more confined to the
centre of the bottom half of the volume, around ζ = −0.5π, which is a consequence of
narrowing the region where the effective gravity reverses sign.

For large γ and 2γ 2 � g̃, σ̃ scales with γ , but the un-normalized growth rate σ saturates
according to (4.18) (it is limited by inertia, not viscosity). Thus the solutions for large
γ and k̃2 � σ̃ (left of the dotted line) converge onto those found in the zero-viscosity
limit (figure 5), as shown in figure 9(b). The deviation at low k̃2 arises when the
viscous penetration depth becomes comparable to the plate separation. At high k̃2, the
approximately constant growth rate found in the zero-viscosity limit extends up to where
the k̃2 � σ̃ approximation breaks down, or when the viscous penetration depth becomes
comparable to the instability wavelength. This ‘upper-bound’ wavenumber is,

k̃2
> � σ̃max �

√
−bv2

0

2ν2k2
0

− 2bg

ν2k3
0

=
√

2γ 2 − g̃ �
√

2γ, (4.28)

which together with k̃2
< of (4.20) determines a band of wavenumbers of approximately

constant growth rate.
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Figure 8. Growth rates of the three fastest growing modes for g̃ = 0 and various values of γ generated
by linearizing equation (4.24) in three regimes and using a linear eigenvalue solver. The three regimes are
distinguished by the σ̃ = k̃2 line (dashed line) as described in the text.

5. Multiple stability zones

One could imagine systems with multiple acoustic velocity antinodes between two planar
boundaries forming a series of regions that alternate in stability, as determined by whether
the density gradient in the initial state is parallel or antiparallel with the gradient in the
time-averaged square of the acoustic velocity. Our approach can be extended to 2-D planar
systems where the plate separation L is multiple acoustic half-wavelengths, i.e. L = mπ/k0
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Figure 9. (a) Dispersion diagrams of the fastest growing mode for g̃ = 0 and various values of γ .
(b) Normalized growth rates for g̃ = 0, large γ and k̃2 � σ̃ (solutions of (4.25)) compared to those in the
zero-viscosity limit. The γ = ∞ curve is the zero-viscosity limit, and is the solution of (4.15) also plotted in
figure 5(b). The deviation at low k̃2 arises when the viscous penetration depth becomes comparable to the plate
separation.
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Figure 10. Solutions of (4.25), (4.26) and (4.27) for various values of the parameters with g̃ = 0. The character
of the solutions does not change dramatically over a broad range of parameters, with the main difference being
the size of the viscous penetration depth near the boundaries that is determined by the growth rate. At the
highest γ , the convection is better isolated in the bottom half of the volume.

for integer m, by applying the boundary conditions at a new location. For example, if there
are three acoustic half-wavelengths between the plates (m = 3) applying the zero velocity
boundary conditions at ζ = −3π/4 and ζ = 9π/4 will generate the new spectrum. To
compare with the m = 1 case studied in the previous sections, it will be useful to label the
modes with indices (m, p, q), where p ≤ m indicates the instability zone number counted
up from the bottom in which most of the flow field is contained, and q indicates the
number of extrema in wm,p,q(ζ ), divided by the number of convective regions (m). It is
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Figure 11. The two fastest growing modes for g̃ = 0, γ̃ = 1, b = 0.1 at their fastest growing wavenumbers
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Figure 12. Dispersion curves of the fastest growing mode for γ = 0.3 (a) and γ = 100 (b) for various values
of g̃. The modes are unstable when 2γ 2 > g̃, and as g̃ approaches 2γ 2 the growth rate goes to zero while the
peak of the growth rate curve shifts to higher wavenumber.
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Figure 13. Solutions w[ζ ] for various values of g̃ and γ = 0.3 (a) or γ = 100 (b). As the threshold 2γ 2 > g̃ is
approached, the width of the region where the sign of the effective gravity flips becomes narrower, restricting
the convection to a smaller volume.
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Figure 14. Increasing the plate separation so that multiple acoustic antinodes (of number m) fit between the
plates introduces an additional unstable region per half-wavelength of separation. Each unstable region supports
modes analogous to the ones that exist with only one unstable region, so each mode curve of figure 9 (when
m = 1), splits into m curves equal in quantity to the number of unstable regions. The growth times of the q = 1
modes (one vortex per instability zone) are plotted for γ = 1, 10, 100. The single curve (1, 1, 1) when m = 1
(dashed) splits into three (solid) curves when m = 3. The lowest of the three is the p = 1 mode, (3, 1, 1) where
the convection is in the lowest unstable region (see figure 15), and lies directly on top of the (1, 1, 1) curve. In
the other two modes, the convection is mainly in the other two unstable regions (see figure 15).

equivalent to the number of vortices in each instability zone. Thus the modes studied in
§ 4 are (1, 1, 1), (1, 1, 2), (1, 1, 3), etc.

To get a sense of the additional physics involved, we investigate the m = 3 case for a
limited set of parameters. Focusing on the q = 1 modes, the growth rates are plotted in
figure 14 for a few γ , and figure 15 displays the solutions w3,p,1 and some flow fields. The
single q = 1 mode for m = 1 splits into the three modes (3, p, 1) for p = 1, 2 or 3 for m =
3, with varying ratios of flow in each instability zone. One, ( p = 1), is mainly confined
to the lowest instability zone, and its growth rate is very similar to that when m = 1.
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Figure 15. Solutions w3,p,1 and flow fields for the (3, p, 1) modes. The lowest instability zone is the only one
immediately adjacent to a boundary, and the mode with substantial amplitude near it ( p = 1) has the slowest
growth rate.

The other two, p = 2 and 3, have substantial amplitude in both other instability zones, and
have similar growth rates that are faster than that of p = 1. An important distinction is that
the lowest instability zone is the only one with a boundary immediately adjacent to it, with
the rest having fluid on both sizes. Thus the growth rate of the p = 1 mode is substantially
different than that for p > 1 modes. When k̃2 � 1, the growth rates of the p > 1 modes
converge, and when k̃2 � 10 they converge with that of the p = 1 mode as well.

6. Conclusions

The pycnoclinic acoustic force acts to pull denser fluid towards velocity antinodes, and
consequently stratified fluid in an acoustic field may be unstable if the density gradient is
not parallel with the gradient in the time-averaged square of the acoustic velocity. In this
article, we have solved for the unstable modes in a 2-D planar geometry, which have many
of the same qualitative features as our experiment in a spherical plasma bulb.

In the 2-D planar system, gravity determines an acoustic amplitude threshold beyond
which instability ensues, vmin = 4|g|/k0. For a 2 cm wavelength on Earth, vmin =
0.36 m s−1. Notably, the convection is isolated to only the part of the system where
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the density gradient is not parallel to the gradient in the time-averaged square of the
acoustic velocity. For acoustic amplitudes much larger than threshold, the growth of small
wavenumber modes is suppressed by inertia, while the growth of very high wavenumber
modes is suppressed by viscosity in the bulk. There is a band of wavenumbers between the

limits k̃< ((4.20)) and k̃> ((4.28)) with almost equivalent growth rate σ =
√

−bk2
0v

2
0/2.

A natural system that contains an internal division between stable and convecting
regions is the Sun, and experiments based on versions of the convection described
herein may be well suited to exploring that interface. Although differential rotation in
the experiment has not yet been measured or otherwise verified, the presence of radially
moving plumes in the equatorial plane with the bulk of the return flow at the mid latitudes
suggests some form of differential rotation in order to conserve angular momentum. More
terrestrial systems that may include forms of acousto-pycnoclinic convection are cryogenic
pulse tubes and thermoacoustic engines (Radebaugh 1990; Backhaus & Swift 2000),
where it likely creates or suppresses (Swaminathan et al. 2018) unwanted heat transport.
The principles brought to light herein may be helpful in understanding it.

An application enabled by this work is the suppression of Rayleigh–Bénard convection
with sound waves. If one imagines inverting the planar system considered here so that
the hot plate was on the bottom and the cold plate on top, it would be very similar to the
classic Rayleigh–Bénard problem and convection would occur naturally. Application of a
sound wave above threshold would stabilize the bottom half of the system and suppress
convection therein, but would also help drive convection in the top half. The net effect of
the sound is to halve the characteristic length scale of the convection and also to increase
the effective strength of gravity. Since thermal transport in the system is a function of the
effective Rayleigh number, which is proportional to |g|L3, there will be a range of acoustic
field amplitudes which will reduce the thermal transport. It is also of interest to consider
how the heat transport will scale in the case where the sound creates multiple stability
zones between the plates and transport will alternate between conduction and convection.
In that case the effective Rayleigh number might be reduced substantially.

Applying an analogous theory to a spherical, rotating system is of interest. The Mach
number in the spherical plasma convection experiment (Koulakis et al. 2018c) can be
larger than 50× the threshold set by gravity in a 2-D system of comparable wavelength.
Rotation of the 15 mm radius sphere at ∼50 Hz generates a centrifugal force pointing
cylindrically outwards that is ∼150× stronger than gravity, and might slow down or
stabilize the convection at the equator. Combining experimental and theoretical studies
of the interaction of spherically symmetric acoustic radiation pressure with rotation is a
promising avenue of next generation convection research.

We are most excited about the prospects of having a terrestrial experiment to study
Rayleigh–Bénard convection in a rotating, central force system. This is a rich problem
which has been studied theoretically (Roberts 1968; Jones, Soward & Mussa 2000; Dormy
et al. 2004) and numerically (Hart, Glatzmaier & Toomre 1986b; Featherstone & Hindman
2016) for quite a while. Progress on the experimental front will require stabilization
of the acoustic field in the plasma experiment, one method of which was studied
theoretically by Pree, Putterman & Koulakis (2019). Further theoretical exploration of
the differences between acoustic ‘gravity’ and actual gravity, and in particular how
well the former models the later, will be required to put such experiments on firmer
ground. The analogy we have drawn herein applies when density differences over the
system are small and the Boussinesq approximation holds. For systems with large density
differences, the flow fields may have a significant divergence, and physical parameters
such as the thermal conductivity and viscosity may vary with location. We posit that
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the physical consequences of these so-called non-Boussinesq effects (Zhang, Childress
& Libchaber 1997; Sameen, Verzicco & Sreenivasan 2008) are fundamentally different
between acoustic and true gravity and the analogy no longer holds. For example, one big
complication that arises in the acoustic case with large density fluctuations, is that the
motion of the fluctuations alters the acoustic field itself because the density appears in
wave equation.
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