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SUMMARY
In this paper, a new design of neural networks is introduced, which is able to generate oscillatory
patterns in its output. The oscillatory neural network is used in a biped robot to enable it to learn to
walk. The fundamental building block of the neural network proposed in this paper is O-neurons,
which can generate oscillations in its transfer functions. O-neurons are connected and coupled with
each other in order to shape a network, and their unknown parameters are found by a particle swarm
optimization method. The main contribution of this paper is the learning algorithm that can combine
natural policy gradient with particle swarm optimization methods. The oscillatory neural network
has six outputs that determine set points for proportional-integral-derivative controllers in 6-DOF
humanoid robots. Our experiment on the simulated humanoid robot presents smooth and flexible
walking.

KEYWORDS: Central pattern generators; Humanoid robots; Neural networks; Policy gradient
learning; Walking; Sensory feedbacks.

1. Introduction
Neural networks (NN), as used in artificial intelligence, have been usually viewed as simplified
models of neural processing in the brain, even though the relation between this model and biological
architecture of the brain is debated as it is not clear as to what degree artificial neural networks
resemble the brain function.2 A neural network, in the case of artificial neurons called artificial neural
network (ANN) or simulated neural network, is an interconnected group of natural or artificial neurons
that use a mathematical or computational model for information processing based on a connectionist
approach to computation. These can be used to model complex correlation between inputs and outputs
or to find patterns in data. Theoretical and computational neuroscience is the field concerned with the
theoretical analysis and computational modeling of biological neural systems. Since neural systems
are intimately related to cognitive processes and behavior, the field is closely related to cognitive and
behavioral modeling. In this paper, a new model for artificial neural networks based on the concept
of oscillation in neurons is designed.

Many different tasks in human body originate from oscillatory neural networks (ONNs) called
central pattern generators (CPGs).11 CPGs are neural circuits located at the ending parts of the brain
and the beginning parts of the spinal cord of a large number of animals and are responsible for
generating rhythmic and periodic patterns of locomotion in different parts of body.15 Although these
pattern generators use very simple sensory inputs imported from sensory systems, these can produce
high dimensional and complex patterns for walking, swimming, jumping, turning, and other types of
locomotion. The origin of many movements in animals is the CPG, which was discovered by Brone
in the early decades of the 20th century.5 Many implementations of CPGs are based on coupling
some special neurons to make them work together to produce a desired rhythm.
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Coupled oscillator-based CPG implementations offer miscellaneous features such as the stability
properties of the limit-cycle behavior (i.e., ability to overcome perturbations and compensate their
effects), smooth online modulation of trajectories through changes in the parameters of the dynamical
system, and entrainment phenomena when the CPG is coupled with a mechanical system.3 Examples
of CPGs applied to biped locomotion are given in refs. [12, 18, 22]. Peters and Schaal16 have discussed
a CPG-based method for biped walking combined with policy gradient learning. A disadvantage of
the CPG approach is that most of the time CPGs have to be custom-made for a specific application.
There are few techniques to be applied in the construction of a CPG for generating an arbitrary
input trajectory. Righetti and Ijspeert18 presented a construction model for a generic model of CPG.
This method is Programmable Central Pattern Generator (PCPG) and is used by applying dynamical
systems and some differential equations for developing a training algorithm. The learner model is
based on the works of Righetti et al.,19 a Hebian learning method in dynamical Hopfs oscillators. The
PCPG was used in generating walking patterns for a Hoap2 robot. This Hoap2 robot can increase
its speed without falling on ground. Using this type of generic CPGs, they trained PCPGs with
sample trajectories of walking patterns of a Hoap-2 robot. Each trajectory is a teaching signal to the
corresponding CPG controlling associated joints.

Hackenberger initiated some proceedings10 on a PCPG model included in ref. [18] to use a nonlinear
feedback policy for balancing a humanoid robot during a walking gait. This system consists of two
modules: a polar-based PCPG, which reproduces a walking trajectory, and a reinforcement learning
agent responsible for modifying walking patterns. This paradigm can use PCPGs and can enable
them to incorporate gyro feedbacks into the system definitions that generate walking trajectories.
Degallier4 defined a modular generator of movements called the Unit Pattern Generators (UPGs) and
combined it to build CPGs for some robots with high degrees of freedom (DOF). He applied his
framework to interactive drumming and infant crawling in an iCub humanoid robot.

Gams et al.8 discussed a system (called CDS-ODS) for learning and encoding a periodic signal
with no knowledge of its frequency and waveform, and this system was able to modulate an input
periodic trajectory in response to some external events. Their system is used to learn periodic tasks on
the arms of a humanoid HOAP-2 robot for the task of drumming. The canonical dynamical system is
actually a polar implementation of PCPGs included in ref. [10]. Another online method of trajectory
learning for a seven-link biped robot is discussed in ref. [6], which is based on a fuzzy system.

In this paper, we introduced a new type of neural networks to build CPGs. The fundamental building
block of a neural network is o-neurons that can generate oscillations in its transfer functions. Since
natural policy gradient learning is used in training a CPG paradigm, we called these as ONNs. O-
neurons are connected and coupled with each other to shape a network, and their unknown parameters
are found by a natural policy gradient learning algorithm. The outline of a higher level controller and
the methods used for the stability are discussed in our previous work.20

In the next section the fundamental block of ONNs is introduced. The structure and functions of
O-neurons are widely explained in this section. Section 3 is dedicated to the proposed model of neural
network presented in this work. It explains the topology and the learning algorithm of the proposed
method on a humanoid robot locomotion. The experimental results and analysis are discussed in
Section 4. Section 5 includes conclusions and future works.

2. O-Neurons in Oscillatory Neural Networks
The fundamental building block of ONNs is O-neurons, a new design of oscillatory neurons
introduced here. This neuron model is inspired by the realistic models of neurons such as the
Hodgkin–Huxley model.9 In these realistic models, the dynamics of electrophysiological transaction
on neuron’s membrane is modeled through some nonlinear ordinary differential equations (ODEs)
for demonstrating behavioral changes during time. Figure 1 illustrates the schematic diagram of
O-neurons. The internal parts of O-neurons are shown in this figure. Each O-neuron has an internal
state, which is saved in a three-element vector [a,b,c]. This internal state is being updated during the
time by neurons dynamics. O-neurons are biased by two biases, v1 and v2, which initiate the dynamics
of neurons. These biases determine the initial frequency and initial phase of the oscillation. These are
trained in the learning procedure of the network. An O-neuron receives Pa , Pb, Pc, and Pdc inputs.
The Pa , Pb, and Pc inputs enter sensory feedbacks to the network and modify output patterns of the
network, while the Pdc input is used in synchronizing the neuron with other neurons in the network.
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Fig. 1. Schematic diagram of the O-neurons. Each neuron receives some inputs; Pa , Pb, and Pc enter sensory
feedbacks to the network and modify output patterns of the network. Gyro and Foot sensors are connected to
these inputs. Pdc is used in synchronizing the neuron with other neurons in the network. Bias values initiate the
state vector [a,b,c]. Dynamics described in Eqs. (1)–(4) change the internal states. Inputs enter the dynamics and
change the output, which is produced from [a,c]. These values enter an O-function transfer function. O-function
makes a desirable low-computational oscillation.

Synchrony is one of the most important properties of O-neurons; it can learn to generate specific
component of a complicated pattern and accelerate or decelerate itself to change the total pattern.
This model consists of a particular transfer function called O-function. O-function receives two of the
three internal states, [a, c], and computes an oscillation based on these values. The c value is another
output of the neuron and is used for synchronization within the network.

The internal dynamics of the neuron are described in Eqs. (1)–(4):

a(t + 1) = a(t) + (T1(a(0)2 − a(t)2)a(t) + Pa)dt, (1)

b(t + 1) = b(t) + (T2(b(0)2 − b(t)2)b(t) + Pb)dt, (2)

c(t + 1) = c(t) + b(t).dt + Pc + Pdc, (3)

a(0) = 1, b(0) = 1.v1, c(0) = 1.v2. (4)

Here a(t), b(t), and c(t) are three variables of internal dynamics of neurons, and T1 and T2 are two
timing constants that determine the sensitivity level of neurons. The initial values of variables a(t),
b(t), and c(t) are constructed by the bias values v1 and v2. For simplicity, a(0) is set to be 1 for all
neurons in the network. Since there are some synaptic weights connected to the output of O-neurons,
this setting does not reduce the generality of the system. The dynamical system generates new state
variables a(t+1), b(t+1), and c(t+1) in the next time episode and send a(t+1) and c(t+1) to O-function.
The O-function is the transfer function of the neuron which computes the neuron output pattern based
on its internal state. This function is described in Eq. (5).

O(a, c) =
{

sign(c).a.(1 − �(c)(C1 − �(c).C2)); |c| < π

−sign(c).a.(1 − �(c)(C1 − �(c).C2)); |c| > π
. (5)

In this equation C1 = 0.5 and C2 = 0.0416 are two pre-computed constants that shape a desirable
oscillation in this function. The “sign” function determines the sign of its input c. The �(c) is a limiter
function which bounds the input x to a linear interval and generates a periodic behavior for it. Eq. (6)
presents this function.

�(x) =
{

(xmod(2π) − π
2 )2;

∣∣(xmod(2π)

∣∣ < π

(xmod(2π) − 3π
2 )2;

∣∣(xmod(2π)

∣∣ > π
. (6)
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This phi-function computes the remainder of its input x by dividing it by 2π , then reduces it and
calculates its square. For each input x, the �(c) is computed once, saved, and used twice in computing
the O-function. This procedure reduces the computational complexity of the function and allows for
numerous implementations of this function during the test period. These neural networks can be run
on different controller platforms as well.

Each O-neuron is able to learn a specific periodic signal and regenerates it during the time according
to some sensory inputs. Sensory inputs originated from different stimulations on the neural system
of vertebrate animals are the main source of changes in their neural pattern generators. In Eqs. (1)
and (2), the dynamics is designed to damp the inserted perturbations. In fact, O-neuron forms a stable
limit cycle that can attract all close trajectories in the phase plane by making it possible for the robot
to bypass rough surfaces.7 This damping property is very useful in walking robot applications.11

In Eq. (3), the dynamics of c is a linear one combined with some instantaneous inputs Pc and
Pdc. Input Pc is a sensory input that can be originated from the sensory feedbacks of the system,
and moves the phase of pattern to a new phase. Pdc is a phase difference that comes in the network
from another neuron. This phase difference is a means for the synchronization of neurons within the
network. Using this option in the network, a change in one neuron phase will be transmitted to other
neurons.

2.1. Properties of O-neurons
Here some of the characteristics of O-neurons are discussed. As described earlier, each O-neuron
has three sensory inputs that can regenerate its output value. Pa affects the amplitude of the output,
Pb affects the frequency of the oscillation, and Pc changes the phase of the pattern. In Fig. 2, an
example of these effects on O-neurons is shown. In this example, a(0), v1, and v2 are set to 1, 1, and 2
respectively. Sensory inputs Pa , Pb, and Pc are generated as some pulses. These pulses exhibit some
of the hidden properties of O-neurons.

Each O-neuron has two-limit cycle on the amplitude and frequency of the oscillation. It is designed
to lock on a specific amplitude and frequency, and it keeps on generating patterns with that frequency
and amplitude. Pa and Pb can induce changes on the output pattern, but attractor limit cycles attract
new trajectories to the original one. This phenomenon is illustrated in Fig. 3.

Another important characteristic of O-neuron is coupling. O-neurons can be coupled with each
other and share their phase. This sharing property enables them to be synchronized and cooperate
with each other. Coupling between neurons is a very important natural property in neural networks.13

In Fig. 4, there are two O-neurons which are coupled with each other. The bias value of each neuron
is written on it. The first one exports its c state to the other. Pdc is generated and imported to the
equations of the second neuron based on this c value.

There are two tests shown in Fig. 5 that exhibit the coupling properties between two O-neurons.
In the first one the effect of change in Pb of the first neuron on the second one is examined. Figure 5
illustrates output of the second neuron (output2) based on the two pulses of Pb. It can be observed
that oscillation before and after these pulses are synchronous. In fact, pulses change the first output,
and the coupling term makes the second neuron coupled with the first one. So the final outputs would
be still synchronous. The second test is designed to test the effect of change in Pc of the first neuron
on the second one. The neurons would also be synchronized after the perturbation pulses. Here the
oscillation phase of the first neuron is changed, but the second neuron made itself adapted with the
first one by changing its phase using the coupling term. Coupled neurons in a network can work with
each other and generate a rhythmic synchronized pattern.

3. Network of O-Neurons
In order to make the neural network, O-neurons are connected and coupled and a network of neurons
is stabilized. This neural network can have multiple layers. In Fig. 6, a network with only two layers
is presented. In the first layer some O-neurons are coupled with one another. Coupling can be done
by sending out the c state to the next neuron in the network. This phase will be added to a phase
difference value and inserted into the input Pdc at next neuron. O-neurons can be connected to a
synaptic neuron in the next layer. Synaptic neuron computes a weighted sum on the outputs of O-
neurons and sends this sum to a limiter transfer function. The limiter transfer function can bound
the upper and lower outputs of synaptic neuron. Each synapse is modeled by a weight link between
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Fig. 2. Effect of Pa , Pb, and Pc on the output of O-neurons. (a) Pa is generated as two pulses and each pulse
changes the amplitude of the pattern and makes it higher or lower. When the pulse gets to zero, the neuron tries
to regenerate the original waveform of the pattern. The system has been built based on an attractor limit cycle
which is able to attract all close trajectories. (b) Pulses of Pb change the frequency of the pattern. When these
pulse gets to zero, the neuron generates the original waveform with basic frequency. Equations here are also
built based on limit cycle behavior. (c) Pulses of Pc demonstrate that there is no limit cycle for c equation. This
value is the phase of the neuron. Phase of oscillation will be changed whenever Pc is not zero. This is used to
reset the phase of pattern generation.

O-neurons and synaptic neuron. The weights should be trained in the learning procedure to shape a
particular wave form. In the next section the procedure of training these weights would be discussed.
Function F is described in Eq. (7),

F (ow) =
∑

wi.O(ai, ci) + bi) =
{

ow; |ow| < M1
sign(ow).M1; |ow| > M1

. (7)
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Fig. 3. Response of the limit cycle of O-neurons to the changes in Pa .

Fig. 4. Coupling between two neurons. Here, in the first neuron, v1 is set to 1 and v2 is set to 2. In the second
neuron, v1 is set to 2 and v2 is set to 3.

Function F is purely linear for the range between –M1 and M1. For inputs bigger or smaller than
this maximum threshold, its output is –M1 or M1, depending on the sign of the input. The function
prevents the output size from becoming bigger than a predefined value. This would be useful in the
control application of walking. bi is the bias value in the synaptic neuron and is able to bias the output
on a specific level. This constant should be trained in the first step of learning in order to simplify
next steps.

A one-dimensional network of neurons can be coupled with another network to shape a multi-
output network of O-neurons. In this application a six-dimentional network is necessary to generate
suitable walking patterns for all six joints involved in the walking of a humanoid robot. Figure 7
illustrates the connection between networks that make a n-dimensional network. In this figure, a
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Fig. 5. Coupling between two neurons and perturbation on (a) Pb and (b) Pc.

Fig. 6. One-dimensional network of O-neurons. In the first layer there are usually some O-neurons coupled with
one another. Coupling can be done by sending out the c state to the next neuron in the network. This phase will
be added to a phase difference value and enter to the input Pdc at the next neuron. O-neurons can be connected
to a synaptic neuron in the next layer. Synaptic neuron computes a weighted sum on the outputs of O-neurons
and sends this sum to a limiter transfer function. The limiter transfer function can bound the upper and lower
outputs of synaptic neuron. Each synapse is modeled through a weight link between O-neurons and synaptic
neuron.
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Fig. 7. Connection of some one-dimensional neural networks. The circle between one-dimensional network
contains an external difference dij between the one-dimensional network. These dijs are trained in the last step
of the learning algorithm.

circle containing an external difference dij between the one-dimensional network within the bigger
network is observed. These dijs are trained in the last step of the learning algorithm.

To coordinate several joints, each joint in each leg is coupled with the opposite leg. The hip joint
in the left leg is coupled with the hip in the right and the same is true for the knee and ankle joints.
This coupling on the robot is illustrated in Fig. 8.

3.1. Training the oscillatory network
In order to train the unknown parameters in the presented neural network, the particle swarm
optimization (PSO)14 method is used, which is combined with the natural policy gradient method.16

PSO is a computational method that optimizes a problem by iteratively trying to improve a candidate
solution with regard to a given measure of quality. In this application the measure of quality is the
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Fig. 8. Coupling between joints in a simulated humanoid robot.

root mean square error of the outputs with respect to some pre-recorded walking trajectories. These
predefined trajectories in this work are walking trajectories produced by some other methods of
walking for NAO humanoid robot. In ref. [1], a method based on inverted pendulum and inverse
kinematic is discussed to generate walking pattern for NAO. PSO optimizes a problem by having a
population of candidate solutions and moving these particles around in the search space according
to simple mathematical formulae over the particle’s position and velocity. Each particle’s movement
is influenced by its local best known position and is also guided toward the best known positions in
the search space, which are updated as better positions found by other particles. This is expected to
move the swarm toward the best solutions.

In the modified version of PSO in this paper, particle’s movement is also influenced by the natural
gradient of their current positions. In this way, each particle can compute the natural gradient of
its positions and update its new velocity using Eq. (8). Position update is like the original version
presented in Eq. (9),

vi(t + 1) = vi(t) + c1.rand().(pbest
i − pi(t)) + c2.rand().(pgbest − pi(t)) + c3.NG(pi(t)), (8)

pi(t + 1) = pi(t) + vi(t), (9)

where vi(t + 1) is the new velocity for the ith particle; c1, c2, and c3 are the weighting coefficients
for the personal best and global best positions respectively; pi(t) is the ith particle’s position at
time t ; pbest

i is the ith particle’s best known position; and pgbest is the best position known to the
swarm. The rand() function generates a uniformly random variable ∈ [0, 1]. Variants on this update
equation consider best positions within a particle’s local neighborhood at time t . The natural gradient
in Eq. (8) is computed using Algorithm 2. Each particle in each learning stage is modeled as an
actor that needs a policy to generate its pattern. The policy of the network πθ is parameterized by
a θ = [θ1, θ2, . . . , θn] vector which determines its behavior. Each policy in policy space determines
how the states correspond to the actions. The objective in reinforcement learning is to find the optimal
policy that contains the best correspondence. The Actor-Critic methods use both branches of methods
for finding this optimal policy: value iteration (VI) and policy iteration (PI). In a natural version of
the Actor-Critic, the actor updates are archived using stochastic policy gradient employing Amari’s
natural gradient approach, while the critic obtains both natural policy and additional parameters of a
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value function simultaneously by linear regression.17 It is shown in ref. [16] that actor improvement
with natural policy gradients is particulary appealing as they are independent of the coordinate frame
of the chosen policy representation and can be estimated more efficiently than regular policy gradients.
A stochastic Gaussian policy πθ function can be defined for the network as:

πθ (x, u) = 1

σ
√

2π
exp

(
−1

2
(u − gθ (x))

)
, (10)

where x is the input state of the network, which is determined by the current time, and u is the action
of the network, which is the network output potential. σ is a constant used for standard deviance, and
gθ (x) is the mean behavior of the neural network, which is defined in Eq. (11):

gθ (x) =
n∑

∀j=3k,k=1

θj .O(θj+1.ti + θj+2), (11)

where n is the number of neurons and θj is the jth parameter of the vector. For j = 3k, θj = wi ; j =
3k+1, θj = vi

1, and j = 3k+2, θj = vi
2.

In such a policy gradient problem, the following parameter vector θ is defined in the system as
some unknown parameters of gθ (x) function,

θ = [w1, v
1
1, v

1
2, w2, v

2
1, v

2
2, . . . , wn, v

n
1 , vn

2 ]. (12)

In this vector, wi is the synaptic weight between neuron i and synaptic neuron, and vi
1 and vi

2 are
two biases used as initial states in each O-neuron. In this function, O is the O-function which is used
as transfer function in O-neurons. To use this stochastic policy in the natural Actor-Critic method,
∇log(πθ (x, u)) should be computed as in Eq. (13):

∇θ log(πθ (x, u)) = (u − gθ (x))

σ 2
∇gθ (x). (13)

The most important aspect of Eq. (14) is computation of gradient ∇gθ (x). In this approach, gradient
∇gθ (x) is computed analytically:

∇ igθ (x) = ∂gθ (x)

∂θi

. (14)

Gradient of gθ (x) with respect to θi is:

∇ igθ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O(θj+1.ti + θj+2); CD1,
ti .θj−1.�(θj .ti + θj+1).[4.C2.(�(θj .ti + θj+1))2 − 1]; CD2
, θj−2.�(θj−1.ti + θj ).[4.C2.(�(θj−1.ti + θj ))2 − 1]; CD3,

−ti .θj−1.�(θj .ti + θj+1).[4.C2.(�(θj .ti + θj+1))2 − 1]; CD4,
−θj−2.�(θj−1.ti + θj ).[4.C2.(�(θj−1.ti + θj ))2 − 1]; CD5.

(15)

In this equation, C2 = 0.0416 is a pre-computed constant. �(x) is defined as in Eq. (16),

�(x) =
{

(xmod(2π) − π
2 );

∣∣xmod(2π)

∣∣ < π

(xmod(2π) − 3π
2 );

∣∣xmod(2π)

∣∣ > π
. (16)
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The �(x) function is the derivation of the �(x) function. CD1, CD2, CD3, CD4, and CD5 are five
different conditions of derivation. These conditions are described below:
� CD1 : jmod3 = 0,
� CD2 : jmod3 = 1 and

∣∣θj .ti + θj+1

∣∣ < π ;
� CD3 : jmod3 = 2 and

∣∣θj−1.ti + θj

∣∣ < π ;
� CD4 : jmod3 = 1 and

∣∣θj .ti + θj+1

∣∣ > π ;
� CD5 : jmod3 = 2 and

∣∣θj .ti + θj+1

∣∣ > π.

Algorithm 1 describes the whole training algorithm of the one-dimensional oscillatory network.

Algorithm 1 Training the Oscillatory Neural Network
for each particle pi: i ← 1 to S do Initialize the particle’s position with a uniformly distributed
random vector.

Initialize the particle’s best known position to its initial position
if error(pi) is less than error(global) then

update the swarm’s best known position
end if
Initialize the particle’s velocity

end for
it ← 0;
repeat

gbest(it) ← gbest(it − 1)
for each particle pi: i ← 1 to S do :

Update the particle’s velocity randomly;
NG(pi) ← ComputeNaturalGradient using Algorithm 2;
Update vi the particle’s velocity base on Eq. (8);
Update xi the particle’s position base on velocity;
error(xi) ← TestTheNeuralNetwork(xi);
if (error(xi) is less than error(gbest)) then

Update the particle’s best known position
if (error(pi) is less than error(gbest)) then

update the swarm’s best known position
end if

end if
end for
it ← it + 1;

until the desired precision is met

4. Experimental Results
In this section the experiments of walking of a simulated humanoid robot are discussed. The learning
process includes the training of basic walking trajectories to ONNs. This should be done to find the
initial state values of O-neurons within the network. The proposed learning algorithm in this study
is explained in Algorithm 1. In Fig. 9 an example of a trained ONN in Simulink is illustrated which
was programmed by sample trajectories. This example clarifies the design of an ONN consisting
of some O-neurons. The internal design of an O-neuron is presented at the top of this figure. The
system is trained with a sample input, and the biases and synaptic weights are set in the system using
some constant blocks. It can be seen that the first neuron sends out its phase to other neurons as
a synchronization criteria. These neurons have learned the most important harmonics of the input
trajectory.

The limit cycle behavior of this network is shown in Fig. 10. The top part here shows the sequence
of shaping the limit cycle. The trajectory of the system starts from the initial states in (1) and makes
some cycles in the phase plane. In (3) the first cycle is completed and the second cycle is started.
The end of the second cycle is shown in (6). The third and fourth cycles in (7), (8), and (9) can be
observed. These inward cycles shape a global limit cycle for the system, which is attractor one. The
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Algorithm 2 Natural Policy Gradient Computation
1: repeat
2: Sample t0:H , y0:H

teach, dy0:H
teach

3: Set x ← t, u ← yteach, r ← (dyteach.dyT
teach).

4: Obtain the sufficient statistics:
5: Policy derivatives: ψk ← ∇θ log(πθ (xk, uk))

6: Eligibility: φ ← E
{

(
∑H

k=0 ψk)
}

7: Average reward: r ← (
∑H

k=0 rl)T

8: Fisher Matrix: Fθ ← E
{

(
∑H

k=0 ψk)(
∑H

l=0 ψl)T
}

9: Vanilla Gradient: g ← E
{

(
∑H

k=0 ψk)(
∑H

l=0 rl)T
}

10: Obtain Natural Gradient by computing:
11: Q ← (1 + φT (Fθ − φφT )−1φ)
12: Baseline b ← Q(r − φT F−1

θ g)
13: Natural Gradient gNG ← F−1

θ (g − φb)
14: until gradient estimate gNG converged
15: Output gNG

16: end;

Table I. Final parameters of ONNs in the walking application obtained by PSO. The nine vectors for each joint
represent parameters of three O-neurons connected together.

attractor limit cycle of a network can absorb close trajectories. Changing the sensory inputs can put
new trajectories near this limit cycle and the limit cycle absorbs them. In other words, when some
sensory inputs are inserted, the system can autonomously regenerate the intermediate samples of the
output signal until it returns to its natural initial behavior state. This phenomenon is applied in our
neural networks to control the walking behavior. The sensory signals (the gyro and foot pressure) are
entered into the system and its natural behavior is to walk on the surface smoothly as fast as possible.

As shown in Fig. 8, a six-dimensional oscillator neural network is used in walking robots. Each
output of the network is sent to each joint in humanoid robot. Pre-recorded walking trajectories are
used for the learning in the learning algorithm. Using Algorithm 1, these trajectories are fed into
the learning system and the error of the learning is decreased to a minimum point. These errors
(for six learning episodes) are illustrated in Fig. 11. The learning is performed rapidly for all input
trajectories. Fig. 12 presents the input training trajectories and the final outputs of the neural network.
Here it can be observed that the neural network could learn input walking patterns very well. Final
parameter values of the network are shown in Table I. Using the final parameters obtained in the
learning algorithms, we have simulated the humanoid robot in the WebotsTM Simulator. A higher
level controller is also needed to maintain stability. Design of this high-level controller is not discussed
is this paper, but the reader can refer to ref. [21]. Snapshots of the final walking on the humanoid
robot are presented in Fig. 13.

4.1. Method comparisons
To illustrate the efficiency of the proposed learning algorithm (ONNs), this method is compared
with two older methods used in learning periodic patterns. These methods are the learning methods
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Fig. 9. An example of trained ONNs in Simulink is illustrated, which can be programmed by a sample training
trajectories. Design of an O-neuron is presented in the top of this figure.

used in ref. [18] and are called PCPGs (optimized version is in ref. [10]), andtwo-stage learning
algorithms given in ref. [8] are called the CDS-ODS method. Righetti and Ijspeert18 represented a
model for the construction of a generic model of CPG. This method is the PCPG method and is used
in dynamical systems and some differential equations to build up a training algorithm. The leaner
model, based on the works of Righetti et al.,19 is the Hebian leaning method in dynamical Hopfs
oscillators. The PCPG has been used to generate walking patterns for a Hoap2 robot. Using this
type of generic CPGs, they trained the generic CPGs with sample trajectories of walking patterns of
Hoap-2 robot. Gams et al.8 discussed a system for learning and encoding a periodic signal with no
knowledge on its frequency and waveform, which was able to modulate an input periodic trajectory
in response to some external events. Their system is not used for learning to walk but for some other
periodic tasks, such as the task of drumming, on the arms of a humanoid HOAP-2 robot. This model
uses two layers of trajectory generation. The first layer, the Canonical Dynamical System (CDS), is
actually a polar implementation of generic CPGs included in ref. [10]. The second layer, the Output
Dynamical System (ODS), is responsible for learning and regenerating the waveform of the input
signal.

These methods are compared in Table II. The reference signals are the pre-defined trajectories for
walking. In this comparison four different efficiency criteria are defined. The first one is the average
convergence time. This indicates the average time (proportional to the number of training epochs)
required for the convergence of algorithm (i.e., reaching at an acceptable training error). The second
criterion is the average convergence rate. This parameter determines the ability of the learning system
to learn different patterns. Since many complicated patterns are not found from the initial points of a
learning system, the system fails to find suitable weights to generate that pattern. The third one is the
average training error, which is the average error during the training process. The fourth criterion is
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Fig. 10. The limit cycle behaviors of the network. The sequence of shaping the limit cycle during the time is
shown in (a). The trajectory of the system starts from the initial states in (1) and makes some cycles in the
phase plane. In (3) the first cycle is completed and the second cycle is started. (6) shows the end of the second
cycle. The third and fourth cycles are seen in (7), (8), and (9). These inward cycles shape a global limit cycle
for the system, which is attractor one. (b) Complete form of the limit cycle, (c) waveform of the limit cycle.

the average testing error, which presents the average error of the system after all the parameters are
found and fixed. This criterion shows the quality of the learning.

As illustrated in the Table II, the proposed method has the maximum convergence time between
the other methods. This means that our algorithm can obtain necessary parameters slower than others.
In spite of slower convergence time, the average convergence rate in ONNs is higher than the other
methods. In other words, ONNs can learn many different patterns that the other two methods are
not able to learn. This is because the learning capabilities in PCPGs and CDS-ODSs are so much
dependent on the initial values of their oscillators. They usually fail to learn a complicated pattern from
many initial points. So the user should try many initial points to train its desired pattern in PCPGs
and CDS-ODSs. On the other hand, ONNs start from different initial vectors and simultaneously
search from these initial vectors. This leads to a successful learning in long convergence
time.

Since ONNs start from many different initial vectors, they make very big errors during the training
stage, but when they find fundamental frequency and suitable initial points, they rapidly converge to
the best final parameters. In other words, this method makes many different wrong guesses in the
parameter space, but can quickly find the right answer. So the average testing error in our method is
higher than in the other methods. This fact is illustrated in Fig. 14. The average testing error of ONNs
is lower than in the other methods. This indicates that this method can find its required parameters
better than the other methods and is able to regenerate teaching trajectories very well.
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Fig. 11. Error of the proposed neural network during the time. The ONN is trained for six trajectories of six
joints in the robot using Algorithm 1.

Fig. 12. Final results of the training of ONNs for walking application.

Fig. 13. Snapshots of the trained walking on the simulated robot.

https://doi.org/10.1017/S026357471400085X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400085X


1566 Training ONNs using natural gradient particle swarm optimization

Table II. Comparison of learning behavior of three different methods. In this comparison four different efficiency
criteria are defined. Average convergence time indicates the average time (proportional to the number of training
epochs) required for the convergence of algorithm. Average convergence rate determines the ability of the
learning system to learn different patterns. Average training error is the average error during the training
process. Average testing error presents the average error of the system after all the parameters are found and

fixed in the system.

Fig. 14. Learning curve of three different methods. ONNs are converged slower than other two methods. The
average testing error in ONNs is higher than in the other methods, while the average testing error in ONNs is
lower than the other methods. This indicates that this method can find its required parameters better than other
methods and is able to regenerate teaching trajectories very well.

5. Conclusions
In this paper, a new training algorithm for ONNs is proposed. This network is able to generate
oscillation for different types of applications. We focused on learning locomotion and used the
proposed model for a humanoid robot to teach it to walk on ground. Walking is a very complicated
problem for humanoid robots, which many researchers have tried to solve. We choose this problem
to show the abilities of our neural network to learn complicated patterns. The network used particle
swarm optimization to learn input walking trajectory. One of the most important characteristics of this
neural network is the ability of coupling between different neurons and dimensions. This coupling is
used to synchronize outputs for the walking application and maintain robot’s stability.
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