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This paper is concerned with the behaviour of Tollmien–Schlichting (TS) waves
experiencing small localised distortions within an incompressible boundary layer
developing over a flat plate. In particular, the distortion is produced by an isolated
roughness element located at Rexc = 440 000. We considered the amplification of
an incoming TS wave governed by the two-dimensional linearised Navier–Stokes
equations, where the base flow is obtained from the two-dimensional nonlinear
Navier–Stokes equations. We compare these solutions with asymptotic analyses which
assume a linearised triple-deck theory for the base flow and determine the validity
of this theory in terms of the height of the small-scale humps/indentations taken into
account. The height of the humps/indentations is denoted by h, which is considered
to be less than or equal to xcRe−5/8

xc
(corresponding to h/δ99 < 6 % for our choice of

Rexc). The rescaled width d̂ (≡ d/(xcRe−3/8
xc

)) of the distortion is of order O(1) and
the width d is shorter than the TS wavelength (λTS = 11.3δ99). We observe that, for
distortions which are smaller than 0.1 of the inner deck height (h/δ99 < 0.4 %), the
numerical simulations confirm the asymptotic theory in the vicinity of the distortion.
For larger distortions which are still within the inner deck (0.4 %< h/δ99< 5.5 %) and
where the flow is still attached, the numerical solutions show that both humps and
indentations are destabilising and deviate from the linear theory even in the vicinity of
the distortion. We numerically determine the transmission coefficient which provides
the relative amplification of the TS wave over the distortion as compared to the flat
plate. We observe that for small distortions, h/δ99 < 5.5 %, where the width of the
distortion is of the order of the boundary layer, a maximum amplification of only
2 % is achieved. This amplification can however be increased as the width of the
distortion is increased or if multiple distortions are present. Increasing the height of
the distortion so that the flow separates (7.2 %< h/δ99< 12.8 %) leads to a substantial
increase in the transmission coefficient of the hump up to 350 %.

Key words: boundary layers, instability, Navier–Stokes equations

1. Introduction
In a flat-plate boundary layer, laminar–turbulent transition can be triggered by the

growth of small-amplitude perturbations, such as Tollmien–Schlichting (TS) waves. In

† Email address for correspondence: jfluidmech@imperial.ac.uk
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a low-level disturbance environment such as the flight condition at cruise altitude, the
process of laminar–turbulent transition can be subdivided into three stages: receptivity,
linear eigenmode growth and nonlinear breakdown to turbulence. The instability of TS
waves is the second stage of this process, the mathematics for which was established
nearly 80 years ago (Schlichting 1968). TS instability waves grow in accordance
with linear stability theory until nonlinear and three-dimensional effects contribute
to the flow breakdown to turbulence (Kachanov 1994). Since the existence of TS
instability waves was confirmed by Schubauer & Skramstad (1948), there have been
many studies undertaken to explore and further explain transition.

Instability and transition are influenced by a multitude of physical factors (e.g.
non-parallelism, nonlinearity and external disturbances which may operate on different
time and/or length scales). In order to account for their influences in a systematic
manner, high-Reynolds-number asymptotic approaches have been developed. Among
these, the first application of the triple-deck theory to describe the linear and nonlinear
growth of lower-branch TS waves is apparently due to Smith (1979a,b) although Lin
(1966) clearly recognised the appropriate large-Reynolds-number scalings for TS
waves long before triple-deck theory was invented. The investigation by Smith (1979b)
showed how non-parallel effects could be taken care of in a self-consistent manner
using asymptotic methods. Previously Gaster (1974) used a successive approximation
procedure to tackle the same type of problem. Subsequently Smith (1979a) showed
how the nonlinear growth of TS waves could be taken into account using triple-deck
theory. However, the results of Smith (1979a), and the subsequent extension to
three-dimensional modes by Hall & Smith (1984), are confined to the weakly
nonlinear stage where an amplitude equation in an ordinary differential equation
form describes the initial stage of the bifurcation from a linearly growing disturbance.
Some years later Smith & Burggraf (1985) discussed the high-frequency limit of
the lower-branch triple-deck problem and uncovered nonlinear structures governing
successively more nonlinear stages; related work on the high-frequency limit had
been previously carried out by Zhuk & Ryzhov (1982). Moston, Stewart & Cowley
(2000) showed that the nonlinearly generated mean flow may develop a singularity
and discussed its implication for the realisability of these nonlinear stages.

Free-stream disturbances are related to receptivity mechanisms. Receptivity is the
initial stage of the natural transition process, which consists of the transformation of
environmental disturbances, such as acoustic (sound) or vorticity (turbulence), into
small perturbations within the boundary layer (Morkovin 1969). Receptivity establishes
the initial conditions of disturbance amplitude, frequency and phase for the breakdown
of laminar flow (Morkovin 1969; Saric, Reed & Kerschen 2002). Reviews of
different receptivity mechanisms are given by Nishioka & Morkovin (1986), Heinrich,
Choudhari & Kerschen (1988), Goldstein & Hultgren (1989), Kerschen (1989), Kozlov
& Ryzhov (1990), Choudhari & Streett (1994), Crouch (1994), Wlezien (1994),
Kachanov (2000) and Saric et al. (2002). The early theoretical work of Goldstein
(1983, 1985), Goldstein, Sockol & Sanz (1983), Zavol’skii, Reutov & Ryboushkina
(1983) and Ruban (1985) solidified the mechanisms by which long-wavelength
free-stream disturbances at a particular frequency are converted to a wavelength
commensurate with the boundary-instability wave. From the theoretical, numerical
and experimental points of view, the receptivity mechanism of isolated small
height roughness is well understood (Gaster 1965; Murdock 1980; Goldstein 1983;
Kerschen 1989, 1990; Dietz 1999; Wu 2001; Saric et al. 2002). The receptivity
mechanism shows that the deviation on the length scale of eigenmodes from a smooth
surface can excite TS waves by interacting with free-stream disturbances or acoustic
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noise. From a theoretical point of view, Ruban (1984), Goldstein (1985) and Duck,
Ruban & Zhikharev (1996) studied the interactions of free-stream disturbances with
an isolated steady hump confined within the viscous sublayer of a triple-deck region.
Wu (2001) also investigated the interaction of steady distributed wall roughness
with either acoustic or vortical free-stream disturbances with the triple-deck theory
framework. For distributed roughness, Corke, Sever & Morkovin (1986) further
inferred that the faster growth of TS waves on the rough wall was not attributable to
the destabilisation effect of roughness, such as an inflectional instability, and claimed
that the growth is due to the continual excitation of TS waves on the rough wall by
free-stream turbulence.

In contrast, the interaction between TS waves and rapid distortions on the wall
also has practical significance for prediction of laminar–turbulent transition (Wu 2001)
but has not received so much attention. A rapid distortion refers to the TS waves
are modulating over a length scale comparable with, or shorter than, the streamwise
wavelength. For smooth distortions, analyses by Smith (1973, 1981), based on triple-
deck theory, provided a good understanding of the physics of imperfection on the wall.
Numerical solutions of the nonlinear triple-deck equations for the flows over a hump
were also obtained by Sykes (1978), Napolitano, Davis & Werle (1979) and Smith &
Merkin (1982).

For isolated rapid distortions, when the height of the roughness exceeds a
problem-dependent critical value, bypass transition can be triggered without the
growth stage of TS waves through a strong inflectional instability mechanism (Savin,
Smith & Allen 1999). However small-amplitude roughness, which are located in the
viscous sublayer, has a relatively small modification of the streamwise component of
the boundary layer base flow profile. Wörner, Rist & Wagner (2003) numerically
investigated the influence of two-dimensional humps and steps on the stability
characteristics of a two-dimensional laminar boundary layer by direct numerical
simulations (DNS). This study indicated that a localised rectangular hump destabilises
the laminar boundary layer. In a three-dimensional flat-plate boundary layer flow,
disturbances excited by surface three-dimensional roughness also have significant
impact on the boundary layer. Considering a spanwise three-dimensional roughness
array, there are some experimental and numerical studies of roughness elements on
transition. Experimentally, for a flat-plate boundary layer using a spanwise roughness
array to excite controlled stationary disturbances, low-speed experiments of White
(2002) indicated that roughness induces suboptimal disturbance growth. White & Ergin
(2003) investigated how the steady disturbance energy in spatial wavelengths scales
with roughness amplitude. Fischer & Choudhari (2004) carried out DNS for various
roughness configurations that enable detailed comparisons with the measurements
of White & Ergin (2003). Using suitably designed roughness elements placed on
the skin to enforce nearly optimal perturbations, Fransson et al. (2006) showed that
transition is delayed. However, the topic of disturbances induced by three-dimensional
roughness elements is beyond the scope of our discussion in this paper.

Whilst studying the acoustic radiation of TS waves being scattered by a localised
roughness in a subsonic compressible boundary layer, Wu & Hogg (2006) also
analysed the impact of the roughness on transition. They showed that, as the TS
wave propagates through and is scattered by the mean-flow distortion induced by
the roughness, it acquires a different amplitude downstream. They introduced the
concept of a transmission coefficient, defined as the ratio of the TS wave amplitude
after being amplified by the local roughness to that of the incident TS wave, to
quantify the impact of the roughness on transition. In this study they observed that a
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two-dimensional surface hump, independent of shape, may stabilise TS waves, which,
as they comment, ‘comes as a surprise’. However it was also noted that this was
only the case when the hump is ‘small’ and if it is not then a nonlinear calculation
is necessary. Therefore in this paper, our interest is to study, through nonlinear DNS,
the behaviour of unstable TS waves when the base flows are distorted by rapidly
varying localised imperfections on the wall and to understand whether TS waves are
energised or weakened by this type of small roughness. We further investigate the
relative magnitude of the strengthening or weakening of the TS wave as compared
to a flat plate.

The paper is organised as follows. In § 2 we introduce the governing equation and
the fundamental definitions used in this paper. The basic numerical strategies and
configurations are provided in § 3. Our results and discussion are then provided in § 4.

2. Problem formulation

The non-dimensional momentum and continuity equations for an unsteady viscous
fluid with constant density are defined by

∂tu+ u · ∇u= −∇p+ Re−1∇2u with ∇ · u= 0, (2.1)

where u= (u, v,w) denotes the velocity vector normalised by U∞, p is the kinematic
pressure and Re is a Reynolds number defined by LU∞/ν, where L is the distance
from the leading edge to an isolated surface roughness and ν is the kinematic viscosity.
The Cartesian coordinates (x, y) are normalised by L. In the flat-plate simulations
undertaken, it is assumed that Re is large, so that the base flow can be approximated
by the well-known Blasius equation

f ′′′(η)+ 1
2 f (η) f ′′(η)= 0, (2.2)

subjected to the boundary conditions

f (η)= f ′(η)= 0 at η= 0, (2.3a)

f ′ = 1 at η→∞, (2.3b)

where the prime denotes the derivative with respect to the similarity variable η.
Specifically in the above the dimensionless variables are defined as follows:

f =Ψ/√νU∞x and η= y
√

U∞/(νx), (2.4a,b)

where Ψ is the stream function. The streamwise and vertical velocity profiles of the
Blasius boundary layer can be calculated from the following relationships:

UB = ∂Ψ
∂y
=U∞f ′(η) and VB =−∂Ψ

∂x
= 1

2

√
νU∞

x
(η f ′(η)− f (η)). (2.5a,b)

In order to determine the behaviour of the TS waves, when the base flow is distorted
by a hump or indentation, we solve the following linearised system,

∂tũ+ ū · ∇ũ+ ũ · ∇ū=−∇p̃+ Re−1∇2ũ with ∇ · ũ= 0, (2.6)
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where ũ and ū are the perturbed velocity vector and the base flow velocity vector,
respectively, and p̃ is the perturbed kinematic pressure. For a flat-plate boundary layer,
ū is defined by the Blasius flow (UB, VB).

Considering the above linearised equations as is typically done for the Orr–
Sommerfeld equation, we now non-dimensionalise in the normal manner with respect
to the free-stream velocity U∞ and the displacement thickness of the Blasius boundary
layer, δ∗. For convenience, we still use ū and ũ to denote the non-dimensional base
flow field and the perturbed velocity field. Then, without distortions, under the
assumption of streamwise parallel flow in two dimensions, the perturbation assumes
the normal form

(ũ, ṽ, p̃)= (û, v̂, p̂) exp(i(αx−ωt))+ c.c. (2.7)

From the linearised Navier–Stokes equations follows the well-known Orr–Sommerfeld
(OS) equation for v̂,

[(−iω+ iαU(y))(D2 − α2)− iαU′′(y)− Re−1
δ∗ (D

2 − α2)]v̂(y)= 0, (2.8)

where Reδ∗ is the displacement thickness Reynolds number defined by U∞δ∗/ν and
the boundary conditions are characterised from the fact that the perturbation velocities
vanish at the wall (y= 0) and decay to zero in the main stream (y=∞), and so are
given by

v̂(y)=Dv̂(y)= 0 at y= 0, (2.9a)

v̂(y),Dv̂(y)→ 0 for y=∞ (D= ∂y). (2.9b)

For a given real ω, the solution of the OS equation consists of a spatial discrete
spectrum and a continuous spectrum when y ranges from 0 to ∞. The solution of this
mathematical problem for eigenvalues and eigenfunctions is well described in several
references (Stuart 1963; Schlichting 1968; Drazin & Reid 1981).

Owing to the distortion of small-scale humps/indentations, the base flows are
distorted locally and therefore, as a TS wave approaches the roughness site, it is
scattered by the rapid distortion. In order to describe the problem by adopting the
scales used in the triple-deck theory as is illustrated in figure 1 (Neiland 1969;
Stewartson & Williams 1969; Messiter 1970), we introduce the scales xRe−3/8 and
xRe−5/8. Then, the following scales are defined around the roughness elements:

X = (x− xc)/(xcRe−3/8) and Y = y/(xcRe−5/8), (2.10a,b)

where xc is the centre of the roughness elements.
By the coordinate transformation (2.10), the waves can now be described locally by

ũ(X, Y, t). For an unstable frequency ω ∈R+, the TS wave envelope is defined by the
absolute maximum amplitude of the TS wave as follows:

Amax(X)=max
{|ũ(X, Y, t)| : ∀Y ∈ [0,∞), ∀t ∈R+} . (2.11)

The distorted TS wave envelopes for humps/indentations are therefore denoted by

Amax
h (X) and Amax

i (X), (2.12a,b)

where the subscripts h and i refer to hump and indentation, respectively. Similarly for
a flat-plate boundary layer, let Amax

f (x) denote the absolute maximum amplitude of the
TS wave.
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Upper deck

Main deck

Lower deck

FIGURE 1. Schematic figure of the triple-deck structure.

FIGURE 2. Schematic illustration of transmitted TS waves when a base flow is distorted
by a hump.

In order to quantify the difference between Amax
f (x) and Amax

h,i (X), the following
quantities are introduced:

Th,i(X)= Amax
h,i (X)/A

max
f (X). (2.13)

Following the asymptotic theory, for X � 1 and when the Blasius boundary layer
recovers after being disturbed by a distortion, according to linear theory, Th,i(X) should
be constant. Under these conditions, the value then becomes the so-called transmission
coefficient Th,i(∞), which was introduced in Wu & Hogg (2006). The value of Th,i(∞)
can be defined by the ratio of right limit and left limit of Amax

h (X) at the discontinuity
point as is illustrated in figure 2.

To investigate the ĥ dependence of Th,i(X), it is convenient to introduce the closely
related quantity T ∗h,i(x):

T ∗h,i(x)= Th,i(x)− 1. (2.14)

Similarly, in order to investigate the shear stress distribution around local surface
imperfections, we introduce the shear stress notation

τf (X), τh(X), τi(X), (2.15a−c)

where the subscripts f , h and i again refer to flat plate, hump and indentation,
respectively. We note that shear is evaluated using the strain rate ∂ ũ/∂y in a direction
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normal to the flat plate in both the theoretical and computational evaluations. The
following quantities are also useful in presenting the ĥ dependence of the shear stress
around the hump and indentation as compared to the flat-plate conditions:

τ ∗h (X)= τh(X)/τf (X)− 1, τ ∗i (X)= τi(X)/τf (X)− 1. (2.16a,b)

The values τ ∗h,i can be interpreted as the deviation from one of the shear stresses of
the hump/indentation relative to the flat-plate shear stress.

In the subsequent calculations, the rescaled width (d̂) and height (ĥ) are defined by

d̂= d/(xcRe−3/8) and ĥ= h/(xcRe−5/8). (2.17a,b)

3. Direct numerical simulations
In this work the base flows were generated by means of DNS of the two-

dimensional nonlinear Navier–Stokes equations (NSEs), where we used initial and
boundary conditions calculated through the Blasius boundary layer equations. The
base flows were subsequently used in the two-dimensional linearised Navier–Stokes
equation (LNSEs) to calculate the TS wave behaviour. Both the NSEs and the
LNSEs make use of a spectral element discretisation in space (for additional details
the interested reader can refer to Karniadaks & Sherwin (2005)). The geometry of the
humps/indentations was described by using high-order curved elements. In particular
both the flow and the geometry were described by seventh-order polynomial basis
functions. Note that, for the base flow generation, the inlet and outlet positions
are located sufficiently far from the localised roughness location in order to allow
the base flow to recover the Blasius profile. In addition, in the simulations of the
LNSEs, the OS eigenfunction is prescribed as inlet boundary conditions while an
absorption region (Israeli & Orszag 1981) was used to damp the TS waves at
the outlet.

3.1. Base flows and physical configuration
We consider the boundary layer with a small localised imperfection over a flat plate
and define the local Reynolds number, Reδ∗ = (U∞δ∗)/ν, in terms of the free-stream
velocity U∞ and the local Blasius boundary layer displacement thickness, δ∗. The
initial conditions for solving NSEs are set by the Blasius solution. In order to
guarantee steady-state convergence of (2.1), we used the tolerance

‖∂tun‖0/‖un‖0 < 10−7, (3.1)

where ‖·‖0 is the standard L2 norm. Figure 3 illustrates the evolutions of the
convergent criteria given by (3.1) for the generation of the base flows distorted by the
humps. Figure 4 shows the velocity components and their derivatives along the normal
direction at different downstream positions for ĥ = 1.2, once a convergent solution
is obtained. It is observed that, numerically, the streamwise Blasius component is
recovered quickly. However, the vertical Blasius component recovery needs a longer
downstream distance.

Using the simulated data, we are interested in exploring the behaviour of transmitted
TS waves. Therefore, we investigated the characteristics of the base flows around
localised imperfections which are located in the unstable regime according to
the neutral stability diagram of the flat-plate boundary layer for Rexc = 440 000.
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FIGURE 3. Convergent criteria ‖∂d
t u‖0/‖u‖0 evolutions for the generation of base flows

distorted by humps, where ∂d
t denotes the discrete time derivative operator. Height/depth

ĥ= 0.6 (E), 0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1. The non-dimensional quantity T is
defined as t/Tc (where Tc is a typical time scale).

To guarantee domain size independence, we located the inlet and the outlet sufficiently
far from the roughness position (X <−45 and X > 45 for upstream and downstream,
respectively) so that the Blasius profiles were consistently recovered. In the wall
normal direction, we adopted a domain where the Blasius similarity variable was
η= y/δ ∈ [0, 70].

Through the above configuration, the numerically determined base flows were
observed to be independent of the computational domain size. This was also
corroborated by ensuring that, when we specified the Blasius profile at the inlet,
the Blasius profile was recovered before the outlet.

In order to ensure that solid walls were sufficiently smooth and to avoid the slow
decay of an exponentially shaped function, the shape y = f (x) of the roughness is
defined as

f (x)=


0, x− xc <−d/2,

±h
2

(
1+ cos

(
2π(x− xc)

d

))
, x− xc ∈ [−d/2, d/2],

0, x− xc > d/2,

(3.2)

where d and h are the streamwise width and wall-normal scales, receptively. Therefore,
+h and −h denote the height (and depth) of humps and indentations, respectively.

Figure 5(a) depicts the computational domain used for the hump simulations. As
mentioned previously, the hump was constructed using a seventh-order polynomial
representation of the geometry. The background coarse mesh employed for specific
hump simulations is shown in figure 5(b), while figure 5(c) illustrates the solution
points within each element of the mesh. We used a polynomial of order seven within
each element of the mesh in order to achieve a consistent approximation between the
geometry and the equations.
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FIGURE 4. Comparisons of streamwise (a,b) and normal (c,d) velocities and their
derivatives with respect to η: (a,c) at X = 10; (b,d) at X = 30. The solutions calculated
by DNS: ——, U in (a,b) and V̆ in (c,d); — —, dU/η in (a,b) and dV̆/η in (c,d);
— · —, d2U/dη2 in (a,b) and d2V̆/dη2 in (c,d). The reference quantities obtained from
Blasius solution: E, UB in (a,b) and V̆B in (c,d); ♦, dUB/dη in (a,b) and dV̆B/dη in
(c,d);A, d2UB/dη2 in (a,b) and d2V̆B/dη2 in (c,d). Here, U(η)= ū(ηδ)/U∞, δ = x/

√
Rex,

V̆B(η)= η f ′(η)− f (η) (see (2.5)), V̆(η)= 2v̄(ηδ)
√

Rex/U∞, δ = x/
√

Rex and ĥ= 1.2.

The mesh configuration and the polynomial order adopted for each simulation were
based on P-refinement independence where the L2 relative error of the shear stress
along the solid wall was of order O(10−5) in all cases.

3.2. Inflow perturbations for the LNSEs
It is well known that, under a parallel flow assumption, the non-zero solutions of the
eigenvalue problem for the OS equation with ω 6= 0 are usually TS waves.

In our computations, because the position where we wish to enforce an incoming
TS wave when solving the LNSEs is within the domain of the base flow calculation,
the LNSEs are solved in a smaller domain than that used for the base flow simulations.
In the smaller domains, only the inlet position was changed to guarantee that the
inlet displacement Reynolds number is in the unstable regime of the neutral stability
diagram (or at the neutral position of the lower branch of the neutral curve). So, when
the inlet displacement Reynolds number Reδ∗ lies in the unstable regime for a given
real frequency ω, the normal velocity at the inlet is defined by the most unstable
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FIGURE 5. Schematic illustration of the computational domain and the mesh around
a hump: (a) the computational domain with a smooth hump on the lower boundary,
where h and d denote the height and width of the hump, respectively; (b) low-order
background mesh around the hump; and (c) high-order body-fitted mesh around the
hump (ĥ= 1, d̂= 1).

eigenfunction of the discrete spectrum. With the aid of the divergence-free condition,
we can obtain the streamwise component ũ(y) corresponding to (2.7). Mathematically,
the inlet boundary condition is formulated as

ũ= ε Re[(−iα−1v̂′(y), v̂(y)) exp(−iωt)], (3.3)

where ε can be an arbitrary non-zero constant. In our simulations, the dimensionless
frequency F is defined by

F = ω

Reδ∗
× 106. (3.4)

4. Results
The behaviour of transmitted TS waves is determined by a distorted base flow.

As the length scale of the distorted base flow is comparable with the characteristic
wavelength of the TS wave, the concept of local stability analysis is not tenable.
The physical process by which the roughness influences the disturbance is through
scattering. The wave downstream of the roughness will be referred to as the
transmitted wave. Typically, the shear stress distribution of a given base flow around
a small localised imperfection on the wall has a significant impact on the behaviour
of TS waves. Classically, triple-deck theory is used to describe locally distorted
base flows (see figure 1 for a schematic triple-deck structure). In this section, we
firstly review the lower-deck structure and the corresponding linearised approximation.
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Next, we discuss the shear stress distribution in terms of the linearised lower-deck
theory. Finally, we discuss the applicability of the linearised theory in formulating
the transmission coefficient. The transmission behaviour is subsequently evaluated
numerically for various configurations.

4.1. Linearised lower deck
The classical triple-deck theory (Neiland 1969; Stewartson & Williams 1969; Messiter
1970) is based upon the small parameter ε; the asymptotic dimensionless thickness is
defined by

ε= Re−1/2. (4.1)

The streamwise length scale of the roughness (or other forms of variation) is of order
O(ε−3/4); we introduce

X = ε−3/4(x− xc)/xc. (4.2)

In each deck, the following normal direction variables are adopted:

upper deck Y∗ = ε−3/4y, (4.3a)

main deck Y = ε−1y, (4.3b)

lower deck Ŷ = ε−5/4y. (4.3c)

The triple-deck structure is illustrated in figure 1 (the asymptotic expansions in each
deck are given in appendix A).

We denote by UB(Y) the non-perturbed Blasius velocity profile of the boundary
layer at x= xc and its slope at the wall is defined as

λ= dUB(Y)
dY

∣∣∣∣
Y=0

. (4.4)

Without loss of generality, let λ be equal to 1 and the final system of the lower deck
is independent of the base flow. This can be achieved by introducing the following
rescaled quantities:

X := λ5/4X, Ŷ := λ3/4Ŷ, (4.5a,b)

and

u= λ−1/4ε1/4û1 + · · ·, v = λ−3/4ε3/4v̂1 + · · ·, p= λ−1/2ε1/2p̂1 + · · ·. (4.6a−c)

It is assumed that, locally, the hump/indentation has the profile (Smith 1973)

y/xc = ε5/4ĥF(X), (4.7)

where ĥ is initially of order one and the function F is such that ĥF(X) is of order
one or less. Consider now the case ĥ� 1. Equations (A 7) can be linearised about the
undisturbed boundary layer profile by introducing the following expansions:

û1 = Ẑ + ĥǔ1 +O(ĥ2), v̂1 = ĥv̌1 +O(ĥ2), p̂1 = ĥp̌+O(ĥ2),

A= ĥǍ1 +O(ĥ2),

}
(4.8)
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where Ẑ = ĥF(X). For subsonic flows, Smith (1973) gave the following for the
streamwise pressure gradient and shear stress solution to the linearised lower deck
equations:

dp̂
dX
= ĥθ 3

2π

∫ ∞
−∞

F(X − t)α(t) dt, (4.9a)

τ = 1+ ĥǔ1,Z(X, 0)= 1− 3ĥAi(0)θ 4/3

2π

∫ ∞
−∞

F(X − t)β(t) dt, (4.9b)

where Ai(X) denotes the Airy function, θ = [−3Ai′(0)]3/4, and α(t) and β(t) are two
special functions of t (Smith 1973), which are given in appendix B.

For the fixed hump/indentation shape F(X), (4.9a) and (4.9b) are independent of the
integrals on their right-hand sides. Therefore, the scaling relations

dp̂
dX
∼ ĥ, τ − 1∼ ĥ, (4.10a,b)

hold for a hump, and changing the sign of ĥ, the above relations also hold for
indentations.

4.2. Behaviour of shear stress and pressure distributions
To investigate the influence of hump/indentation on the behaviour of transmitted
TS waves and assess the validity of the transmission coefficient Th,i(∞) estimated
by the linearised lower-deck theory, we calculated the shear stress and pressure
distributions around the roughness position. The quantities corresponding to the
shear stress and pressure distributions are obtained by numerically solving the NSEs.
The numerical problem is chosen so that the Reynolds number at the centre of the
distortion is Rexc = 440 000, which corresponds to a displacement Reynolds number
of Reδ∗ = 1140.1. This Reynolds number was chosen since it is possible to capture
unstable TS waves at a frequency similar to that studied by Wu & Hogg (2006). In
all investigations, d̂= 1 means that the hump (or indentation) is restricted to |X|< 1/2
and d/δ99 = 1.03. Figure 6(a,b) shows the deviation from one of the vertical shear
stress relative to the flat-plate conditions τ ∗h (X) and τ ∗i (X) for different values of ĥ
on humps and indentations, respectively. For reference, when Rexc = 440 000, ĥ= 0.6
and 1.2 correspond to h/δ99 = 2.4 % and 4.8 %, where δ99 is based on the Blasius
boundary flat-plate thickness at xc. We recall that, following (4.10), the relations

τ ∗h (X)∼ ĥ, τ ∗i (X)∼−ĥ (4.11a,b)

are expected to hold true. Therefore, the ratios τ ∗h (X)/ĥ and τ ∗i (X)/ĥ are expected
to collapse to a single curve, which is illustrated in figure 6(c,d). It is evident that
the collapse is relatively good. However, around maximum/minimum values of the
hump/indentation, the deviations of τ ∗h,i(X)/ĥ from the theoretical predictions do show
notable discrepancies. For the relatively small parameters considered, we observe a
maximum deviation of 16.4 % in the hump and 19.3 % in the indentation. We note that
the region, just downstream of the surface hump/indentation do not collapse within the
plotting range.
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FIGURE 6. Distributions of the relative shear stress deviation, τ ∗# (X) and τ ∗# (X)/ĥ (the
notation ‘#’ denotes h or i) around small-scale humps and indentations: (a) τ ∗h (X)
distributions around humps; (b) τ ∗i (X) distributions around indentations; (c) τ ∗h (X)/ĥ
distributions around humps; and (d) τ ∗i (X)/ĥ distributions around indentations. Here Reδ∗ =
1140.1; height/depth ĥ= 0.6 (E), 0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1.

Figure 7 shows the pressure distributions p̂1,h(X) and p̂1,i(X) around humps and
indentations. Considering (4.10), the pressure gradient dp̂1,h(X)/dX and dp̂1,i(X)/dX
normalised by ĥ also should collapse. From figure 7, we observe that, although overall
the curves collapse reasonably well, there exists some significant deviation from the
prediction at the minimum and maximum values, particularly in the indentation case.

In figure 8 we show some comparisons between a hump and an indentation
for the same ĥ. Following the linearised lower-deck theory, with a small value of
ĥ we expect τ ∗h (X)/ĥ and −τ ∗i (X)/ĥ to have the same profile, and similarly this
should also hold for dp̂1,h(X)/dX and −dp̂1,i(X)/dX. In figure 8(a,b) when ĥ = 0.6
we observe that the normalised shear stress and pressure gradient do not overlap.
However in figure 8(c,d), when we reduce the size of the distortion to ĥ = 0.1 and
0.05 (corresponding to h/δ99 = 0.4 % and 0.2 %, where δ99 is the flat boundary layer
thickness at the roughness centre position), a relatively good agreement between the
hump and indentation is observed and is in reasonable agreement with the linearised
theory (Smith 1973). Nevertheless this highlights the very small height required
to achieve this level of agreement. We further note that in reducing the roughness
height to ĥ= 0.1 and 0.05 we have not changed the width of the hump/indentation,
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FIGURE 7. Distributions of pressure and pressure gradient normalised by ĥ around
small humps and indentations: (a) pressure distribution around humps; (b) pressure
distribution around indentations; (c) normalised dP(X)/dX distribution around humps; and
(d) normalised dP(x)/dX distribution around indentations. Here Reδ∗ =1140.1; height/depth
ĥ= 0.6 (E), 0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1.

which was kept at d̂ = 1, making the slope of the hump/indentation smaller in the
streamwise direction. For the cases of relatively large humps/indentations ĥ > 0.1,
there exists a deviation of at least 11.5 % between the numerical results from the
linearised theoretical results.

It is clear from figure 8(a,b) that the deviation between the hump and indentation is
not simply due to a constant scaling factor. However, it is worth mentioning that, for
a wider hump/indentation scale (d∼λTS), a very accurate prediction has been observed
through a similar analysis with the linearised triple-deck theory. This implies that, for
a fixed ĥ, the accuracy of the linearised theory is dependent on d̂. That is to say, even
though ĥ is very small, the theoretical precision is dependent on the ratio ĥ/d̂, which
captures the streamwise slope of the distortion.

4.3. Behaviour of transmitted TS waves
We now turn our attention to the behaviour of the transmitted TS waves. To formulate
the influence of humps and indentations on the TS waves, the transmission coefficient,
defined analytically by Wu & Hogg (2006), was numerically evaluated to quantify
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FIGURE 8. Normalised shear stress τ ∗# (X)/ĥ and pressure gradient dP(X)/dX distributions
normalised by ĥ around small-scale humps and indentations: (a) τ ∗# (X)/ĥ distributions for
ĥ= 0.6; (b) normalised dP(X)/dX distributions for ĥ= 0.6; (c) τ ∗# (X)/ĥ distributions for
ĥ= 0.1; (d) normalised dP(X)/dX distributions for ĥ= 0.1; (e) τ ∗# (X)/ĥ distributions for
ĥ= 0.05; and ( f ) normalised dP(X)/dX distributions for ĥ= 0.05. The roughness elements
are located at Reδ∗ = 1140.1. The width d̂= 1.

the TS wave behaviour. As is illustrated in figure 2, the theoretical definition of the
transmission coefficient is introduced

Tr = Amax
T (0+)/Amax

I (0−), (4.12)
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and for ĥ� 1, Wu & Hogg (2006) gave the analytic expression

Tr = 1+
{
(2π)1/2α2

α1∆′(α)
(iα1λ)

1/3
∫ ∞
η0

K(η, η0)

(
2η0 − 4

3
η

)
Ai′(η) dη

}
ε1/4ĥF̂(0),

(4.13)
where λ is the local skin friction, and F̂(k) is the Fourier transform of the roughness
element shape. Expressions for K(η, η0), ∆′(α), η, η0 and the other parameters in
(4.13) are given in appendix C. In their work, the analytical result of (4.12) was
obtained using a triple-deck framework adopting a linear dependence on ĥ for a
fixed F̂(0). Expression (4.12) therefore indicates that the area that the distortion
encompasses rather than its shape is relevant, and that the gain or reduction of the
transmitted TS wave amplitude is proportional to S ≡ ĥF̂(0), which is the (rescaled)
area enclosed by the roughness contour. It should be pointed out that the derivation
Tr − 1 is of order O(ε1/4ĥ), much smaller than the expected order O(ĥ). This is
because the leading-order contribution of scattering turns out to be identically zero,
leading to a degeneracy of the linear mechanism with respect to ĥ. That is to say,
if the weak nonlinearity of the base flow distortion is considered, Tr includes a
quadratic term of ĥ and, with a small parameter ε, Tr is dominated by this quadratic
term. The O(ε1/4ĥ) effect was taken into account by extending the triple-deck analysis
to the second order.

For sufficiently small but positive ĥ, a further interesting implication of (4.12)
is that |Tr| < 1 and so a hump can stabilise the incoming TS waves whereas an
indentation can destabilise the incoming TS waves (Wu & Hogg 2006). That humps
and indentations have opposite effects is a simple consequence of linearity and is
expected, provided ĥ is sufficiently small.

Figure 9 shows the behaviour of transmitted TS waves using the nonlinear base
flows and the linearised calculations for the scattering of the TS waves. In this figure
and for the subsequent calculation of the numerical transmission coefficient, we
evaluate the transmission coefficient at a fixed X location by determining the peak
magnitude of the TS wave undergoing a distortion divided by the magnitude of the
TS wave at the same X location over a flat plate. Therefore, as X→∞ we expect
to recover the theoretical transmission coefficient. In figure 9(a), within a range
close to the distortions X ∈ [−6, 6], it can be seen that the TS waves can indeed be
stabilised (Th(X) < 1) downstream of small-amplitude humps consistently with the
theory. However, further downstream, as is shown in figure 9(b), this is not the case,
and the overall influence of the hump is to destabilise the TS waves. Figure 9(c,d)
demonstrates that, for the case of indentations, and for values of ĥ presented, the TS
waves are always destabilised. For the current configurations, we therefore observe
that humps and indentations have a similar destabilisation influence on TS waves.
We further observe that, for the same ĥ, the hump transmission coefficient, Th(∞), is
greater than the indentation transmission coefficient, Ti(∞) (X� 1).

As already mentioned, we anticipate from (4.12) that Tr is dependent on ĥ for a
fixed roughness profile F̂(X) and so T ∗h (X)/ĥ and T ∗i (X)/ĥ should collapse around the
distortions. Therefore in figure 10 we consider the numerical transmission coefficient
scaled by ĥ and observe an approximate collapse within a localised range X ∈ [−1, 1].
However, beyond this range, the distorted TS waves do not appear to collapse.
This is due to the ε1/4 scaling in (4.13). Clearly, owing to the distortion of the
hump/indentation, the boundary layer is changed and, locally, the TS waves do not
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FIGURE 9. Functions T#(X) around humps and indentations (the notation ‘#’ denotes h
or i): (a) Th(X) for X∈[−6,6]; (b) Th(X) for further downstream; (c) Ti(X) for X∈[−6,6];
and (d) Ti(X) for further downstream. Here Reδ∗ = 1140.1 and F = 55.10; ĥ = 0.6 (E),
0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1.

maintain similar growth and decay rates to those of TS waves in a flat-plate Blasius
boundary layer. Wu & Hogg (2006) put forward the model that the effect of a
localised roughness element is to instantly ‘boost’ the amplitude of the TS waves.
Nevertheless, this numerical study indicates that the amplification arises over quite
a significant streamwise scale in the case of these relatively short streamwise scale
distortions.

In figure 11, we provide a comparison between a hump and an indentation with
the same value of ĥ = 1 (h/δ99 = 3.9 %). From figure 11(a), it is clear that, when
X→∞, the influence of humps on TS waves is greater than that of indentations. In
addition, in figure 11(b), where we show the deviation of the transmission coefficient
from a unit value and have reversed the sign in front of T ∗i (X), we observe a similar
qualitative behaviour. As a comparison, for a much smaller ĥ= 0.1 (h/δ99 = 0.39 %),
the same conclusion can be drawn from figure 11(c,d) that the asymptotic theory does
become valid at this smaller amplitude. Upstream of the hump and indentation, the
profiles of T ∗h (X)/ĥ and −T ∗i (X)/ĥ have already collapsed very well. Although the
hump and indentation subsequently demonstrate different magnitudes of destabilisation
of the TS waves downstream of the hump and indentation, the overall pattern is much
more similar than for the ĥ= 1 case. Clearly this supports the trend that, as ĥ→ 0,
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FIGURE 10. Functions T ∗# (X)/ĥ around humps and indentations (the notation ‘#’ denotes
h or i): (a) T ∗h (X)/ĥ for X ∈ [−6, 6]; (b) T ∗h (X)/ĥ for X ∈ [6, 35]; (c) T ∗i (X)/ĥ for X ∈
[−6, 6]; and (d) T ∗i (X)/ĥ for X ∈ [6, 35]. Here Reδ∗ = 1140.1 and F = 55.10; ĥ= 0.6 (E),
0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1.

T ∗h (X)/ĥ and −T ∗i (X)/ĥ will indeed collapse and the numerical results recover the
linear theory.

4.3.1. Effect of height and width of distortion on the transmission coefficient
For the range 0.05 < ĥ < 1.4 (0.4 % < h/δ99 < 5.5 %) currently considered with

d̂ = 1, we have only observed a transmission coefficient of maximum 2 %. For this
numerical study we have fixed our value of Reynolds number to Rexc = 440 000 and
so the TS wave grows spatially with a growth rate of αi =−0.011 at Rexc = 878 036.
If we assume that transition arises downstream of the distortion when the TS wave
magnitude A0 has grown approximately ln(AT/A0)= 3, then the transition would arise
at X = 130 (approximately 130δ99) downstream of the initial position of the TS (and
where we place the distortion). Under this set of assumptions, if T ∗# (∞) has values
1 %, 10 % and 100 %, these will lead to a change of 0.36 %, 3.37 % and 24.0 % of
the distance from the distortion to the point of transition. Clearly, from a practical
point of view, we would like to understand what features lead to a larger transmission
coefficient.

The main geometric features which could lead to a change in transmission
coefficient are a change in ĥ and d̂. A non-exhaustive investigation can be summarised
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FIGURE 11. Comparisons of Th,i(X) and T ∗h,i(X)/ĥ: (a) Th,i(X) for ĥ= 1; (b) T ∗h (X)/ĥ and
−T ∗i (X)/ĥ for ĥ= 1; (c) Th,i(X) for ĥ= 0.1; and (d) T ∗h (X)/ĥ and −T ∗i (X)/ĥ for ĥ= 0.1.
The roughness elements are located at Reδ∗ = 1140.1. Here F = 55.10 and the width d̂= 1.

in the data in figure 12. In this figure we show the variation of the transmission
coefficient as a function of ĥ at d̂ = 1 as well as reduced set of data points for
d̂= λTS, λTS/2 and λTS/3.

If we assume that there exists a relation between T#(∞), F̂(0) and ĥ of the form

T#(∞)= 1+ΛĥαF̂(0), (4.14)

where Λ is a constant, an empirical fit to the exponent α can be determined from
the log–log plotting of the data in figure 12. We observe that, for very small values
of ĥ, where we observed that the transmission coefficient did tend to follow the
linear theory, a value of approximately α = 1.5 is observed. When we continue to
increase ĥ so that the flow around the hump and indentation are no longer similar
(0.1 < ĥ < 1.4), but the flow remains attached, we observe a potential fit of α ≈ 2.
For even larger values of ĥ (h/δ99 = 7.2 %), the flow becomes detached, and at a
value of ĥ = 5 (h/δ99 = 20 %) we observe a transmission coefficient of 350 % for
the hump. For distortions of d̂ = 1, we clearly only see significant transmission
coefficients when the height has become sufficiently large and in this case the flow
has separated from the distortion. Further, when T ∗h (X) and T ∗i (X) are rescaled by
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FIGURE 12. Transmission coefficient T# (the notation ‘#’ denotes h or i): (a) for humps;
and (b) for indentations. Symbols denotes cases where the flow is attached (E) and cases
where the flow is separated (@) when d̂ = 1. Other symbols denote attached flow when
d̂= λTS/3 (♦), d̂= λTS/2 (A) and d̂= λTS (C).

 0

 0.01

 0.02

 –0.01

 0.004

 0.006

0.002

 0.012

 0.010

 0.008

10 15 20 25 30 35 10 15 20 25 30 35

X X

(a) (b)

FIGURE 13. Functions T ∗# (X)/ĥ around humps and indentations (the notation ‘#’ denotes
h or i): (a) T ∗h (X)/ĥ2.11 for X ∈ [6, 35]; and (b) T ∗i (X)/ĥ1.85 for X ∈ [6, 35]. Here Reδ∗ =
1140.1 and F = 55.10; ĥ= 0.6 (E), 0.8 (@), 1 (♦), 1.2 (A) and width d̂= 1.

ĥ2.11 and ĥ1.85, respectively, we observe an approximate collapse further downstream
for both T ∗h (X)/ĥ2.11 and T ∗i (X)/ĥ1.85 in figure 13.

However, when the distortion has a width that is comparable with the TS
wavelength, large transmission coefficients are also possible. This factor is encap-
sulated by the F̂(0) term in (4.12) and (4.14), which we recall represents the Fourier
transform of the roughness element. The data for d̂ = λTS, λTS/2, λTS/3 as opposed
to the values for when d̂ = 1 = λTS/11.3 lead to far larger transmission coefficients,
nearly an order of magnitude higher. We also observe that, in the range of data
considered, the slope of α≈ 2 seems to remain. If the analysis of Wu & Hogg (2006)
is extended to include the weak nonlinearity of the base flow distortion, then

Tr = 1+Λ1ε
1/4ĥ+Λ2ĥ2, (4.15)
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FIGURE 14. Base flow for ĥ= 1.4: (a) horizontal velocity; and (b) vertical velocity.

where Λ2 ∼ O(1). The result indicates that the linear approximation requires a more
stringent condition ĥ� ε1/4 rather than ĥ� 1. Therefore, when ε1/4� ĥ� 1, there is
a degeneracy of the linear mechanism, where the transmission coefficient can be seen
to behave primarily as a quadratic function of ĥ.

4.3.2. Effect of multiple isolated roughness elements on the TS transmission coefficient

Individually, when d̂ = 1 we have observed that the effect of a single isolated
small-scale localised distortion on the TS waves is small. Therefore, we consider the
effect of multiple isolated roughness elements. Since multiple isolated humps have a
similar destabilisation effect on the TS waves as multiple isolated indentations, we
consider only the cases of three isolated humps located at Reδ∗ = 1140.17, 1166.07
and 1191.40, as is illustrated in figure 14. The three humps are equally spaced and
the distance between two adjacent humps is equal to six times the upper-deck scale
defined at Reδ∗ = 1140.17 or approximately 6δ99. The width and height of these three
humps are kept the same, which are also defined by the local scales of the first hump
located at Reδ∗ = 1140.17. For the first hump, the width scale d̂ is fixed equal to 1
and the height scale considered includes ĥ= 0.6, 0.8, 1.0, 1.2 and 1.4. For all cases,
there is no separated flow; and the base flow, shear stress and pressure gradients were
similar to the isolated cases and are not shown.

The base flow for ĥ= 1.4 is illustrated in figure 14. Figure 15 shows the profiles
of the numerical transmission coefficient for the series of three humps. From figure
15(a), we can observe that higher ĥ values give rise to a relatively large amplification
of the TS waves. When ĥ= 1.4 (h/δ99= 5.5 %), the amplification of the corresponding
TS wave is approximately 10 %. In figure 15(b), we provide a comparison between
multiple humps and a single hump when ĥ=0.8 and we observe that the amplification
of the TS wave by three humps is very close to three times that by a single hump.
For the current configuration, there exists a linear relation between the amplification
and number of isolated humps. The effect of multiple humps would theoretically be
expected to have a multiplicative influence. However, since each hump has a small
transmission coefficient, a linearisation of a multiplicative transmission coefficient
gives a linear amplification as observed here. We recall from figure 9(a) that for
ĥ = 0.6 at a location of X = 6 there exists a small region of stabilisation of the TS
waves. However, in the case of multiple humps, spaced by six units, the overall effect
is still to destabilise the TS waves.
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FIGURE 15. Profiles of T ∗mh(X) and T ∗# (X)/ĥ: (a) profiles of τ ∗mh(X) (height scales ĥ= 0.6
(E), 0.8 (@), 1.0 (♦), 1.2 (A), 1.4 (C)); and (b) profiles of τ ∗mh(X)/ĥ for multiple humps
(E) and a single hump (@). The width d̂=1. The frequency F =55.10. Notation # denotes
the single-hump symbol ‘h’ or the multiple-hump symbol ‘mh’.

5. Conclusion
In this paper, the spectral element discretisation was employed to numerically

analyse the behaviour of the TS waves when the base flow is distorted by a
small-scale localised distortion. The base flows were obtained using the fully nonlinear
Navier–Stokes equations and the TS wave amplifications was simulated using the
linearised Navier–Stokes equations.

For the small-amplitude localised wall distortions considered, humps and indent-
ations both have destabilising effects rather than having opposite effects as expected
on the basis of linearity. This indicates that the nonlinearity effect is appreciable
despite the relatively small height/depth of humps/indentations. The result is broadly
consistent with the degeneracy of the leading-order linear term of the asymptotic
analysis.

Notably, for the regime investigated, 0.05 < ĥ < 1.4 (0.2 % < h/δ99 < 5.5 %) at
Reδ∗ = 1140.17 or Rexc = 440 000, we observe that, when the transmission coefficient
is evaluated downstream of the distortion, both humps and indentations have a
destabilising effect on the TS wave, in contrast to the asymptotic theory for smoother
distortions, where only indentations were observed to be destabilising in the vicinity
of the distortion. The localised distortions considered in this study lead to a significant
deviation of the flow from the Blasius flat-plate profile, which is consistent with the
deviation of the numerical results from the linearised asymptotic theory. For the
parameters studied, an isolated distortion leads to a relatively weak, of the order
of 1–2 %, amplification of the TS wave when d̂ = 1. Increasing the height of the
distortion so that the flow locally separates can lead to a much larger transmission
coefficient of up to 350 % in the case of a hump of size ĥ = 5 (corresponding to
h/δ99 = 20 %). In addition, if the hump width is increased to be comparable with the
TS wavelength, an increase of nearly one order of magnitude was observed for a
fixed hump height.

Finally the introduction of multiple humps when d̂ = 1 (with a separation of six
hump widths) is observed to have an additive effect, allowing the small distortions to
obtain more significant amplifications.
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Appendix A. Interaction described by the triple-deck theory

The asymptotic expansions in each deck are given as follows.

(1) Upper deck:
u= 1+ ε1/2u∗1(X, Y∗)+ · · ·,
v = ε1/2v∗1(X, Y∗)+ · · ·,
p= ε1/2p∗1(X, Y∗)+ · · ·.

 (A 1)

The equations are

∂u∗1
∂X
+ ∂v

∗
1

∂Y∗
= 0, (A 2a)

∂u∗1
∂X
=−∂p∗1

∂X
, (A 2b)

∂V∗1
∂X
=− ∂p∗1

∂Y∗
. (A 2c)

(2) Main deck:
u=UB + ε1/4u1(X, Y∗)+ · · ·,
v = ε1/2v1(X, Y∗)+ · · ·,
p= ε1/2p1(X, Y∗)+ · · ·.

 (A 3)

The equations are

∂u1

∂X
+ ∂v1

∂Y
= 0, (A 4a)

UB
∂u1

∂X
+ u1

∂U0

∂Y
= 0, (A 4b)

∂P1

∂Y
= 0. (A 4c)

The solution in the main deck is

u1 = A(X)U′B(Y) with U′B(Y)=
dUB

dY
, (A 5a)

v1 =−A(X)UB(Y) with A′(X)= dA
dX
, (A 5b)

where the function A(X) is called a displacement function, which can be
determined such that A→ 0 as X→−∞.
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(3) Lower deck:
u= ε1/4û1(X, Ŷ)+ · · ·,
v = ε3/4v̂1(X, Ŷ)+ · · ·,
p= ε1/2p̂1(X, Ŷ)+ · · ·.

 (A 6)

The equations are

∂ û1

∂X
+ ∂v̂1

∂Ŷ
= 0, (A 7a)

û1
∂ û1

∂X
+ v̂1

∂ û1

∂Ŷ
=−∂ p̂1

∂X
+ ∂

2û1

∂Ŷ2
, (A 7b)

∂ p̂1

∂Ŷ
= 0. (A 7c)

Asymptotically, to order ε1/4, we obtain

lim
Ŷ→∞

(û1 − λŶ)= λA(X). (A 8)

To order ε1/2, we have
v∗1(X, 0)= lim

Y→0
v1(X, Y). (A 9)

Considering (A 3) amd UB(∞)= 1, we have

v∗1(X, 0)= dA
dX
. (A 10)

For pressure p, to order ε1/2, the asymptotic matching gives

p1(X, 0)= lim
Ŷ→0

p̂(X, Ŷ), (A 11a)

p∗1(X, 0)= lim
Y→0

p1(X, Y). (A 11b)

Because
∂p1

∂Y
= 0 and

∂ p̂1

∂Ŷ
= 0, we have

p∗1(X, 0)= p1(X)= p̂1(X). (A 12)

For subsonic main stream flow,

A′′(X)=− 1
π

∫ ∞
−∞

p̂′(ξ)
X − ξ dξ . (A 13)

Appendix B. Definitions of parameters in (4.9)

α =


∫ ∞

0

s2(31/2s4/3 − 2) exp(−θst) ds
1− 31/2s4/3 + s8/3

(t> 0),

2
∫ ∞

0

s2 exp(θst) ds
1+ s8/3

(t< 0),
(B 1a)
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β =


∫ ∞

0

s5/3(31/2s4/3 − 1) exp(−θst) ds
1− 31/2s4/3 + s8/3

(t> 0),

2
∫ ∞

0

s5/3 exp(θst) ds
1+ s8/3

(t< 0).
(B 1b)

Appendix C. Definitions of parameters in (41.3)
The functions K(·,·) and ∆(·) respectively are defined by

K(η, η0)=π
Ai′(η0)Gi(η)−Gi′(η0)Ai(η)

Ai′(η)
, (C 1)

and

∆(k)=
∫ ∞
η0

Ai(ζ ) dζ + iλ(ikλ)2/3Ai′(η0)
k̄
k3
, (C 2)

where Gi and Gi′ are defined in Abramowitz & Stegun (1964, p. 449), and where
k̄ = (1 − M2)1/2|k| (M is the Mach number and M < 1 for the subsonic flow). In
the theory, the TS wave has a wavenumber α and the mean-flow distortion has a
continuous Fourier spectrum, which is a continuous function of wavenumber k. In the
above, η and η0 are defined by

η= (iα1λ)
1/3Y + η0 and η0 =−iω̂(iα1λ)

−2/3, (C 3a,b)

where ω̂ is the rescaled frequency and α1 in (C.3) and α2 in (4.13) are from the
asymptotic expansion of the wavenumber α (Wu & Hogg 2006):

α = α1 + εα2 + ε2α3 + · · ·. (C 4)
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