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Abstract: This target article presents a critical survey of the scientific literature dealing with the speed/accuracy trade-offs in rapid-aimed
movements. It highlights the numerous mathematical and theoretical interpretations that have been proposed in recent decades.
Although the variety of points of view reflects the richness of the field and the high degree of interest that such basic phenomena attract in
the understanding of human movements, it calls into question the ability of ‘many models to explain the basic observations consistently
reported in the field. This target article summarizes the kinematic theory of rapid human movements, proposed recently by R. Plamondon
(1993b; 1993c; 1995a; 1995b), and analyzes its predictions in the context of speed/accuracy trade-offs. Data from human movement
literature are reanalyzed and reinterpreted in the context of the new theory. It is shown that the various aspects of speed/accuracy trade-
offs can be taken into account by considering the asymptotic behavior of a large number of coupled linear systems, from which a delta-
lognormal law can be derived to describe the velocity profile of an end-effector driven by a neuromuscular synergy. This law not only
describes velocity profiles almost perfectly, it also predicts the kinematic properties of simple rapid movements and provides a consistent
framework for the analysis of different types of speed/accuracy trade-offs using a quadratic (or power) law that emerges from the model.
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1. Introduction

Speed/accuracy trade-offs in target-directed movement
have been studied for more than a century. Fullerton and
Cattell (1892) referenced some experimental work by both
German and French investigators on the psychophysics of
movement. Woodworth (1899) is often credited with being
the founder of research on the speed/accuracy trade-offs in
movement. The main contribution of Woodworth’s article is
the proposition of a cohesive account of the accuracy of
voluntary movements, which had never been done before.
Woodworth’s observations implied an intricate relationship
between movement duration, amplitude, and velocity in
the determination of movement accuracy. He suggested the
separation of a rapid movement into two phases: (1) the
initial adjustment phase and (2) the current control phase.
Woodworth attributed the effect of movement speed on
accuracy to the characteristics of current control and elimi-
nated any effects on the accuracy of the initial adjustment.

Following Woodworth’s work, many investigators pur-
sued descriptions of speed/accuracy functions (Brown &
Slater-Hammel 1949; Craik & Vince 1943/1963a; 1944/
1963b; Garrett 1922; Philip 1936; Searle & Taylor 1948. See
also Meyer et al., 1990, for a historical review). The next
major contribution to research on speed/accuracy trade-
offs was done by Fitts (1954), who was the first to propose a
formal relationship linking movement time (MT ) and the
inverse of the relative spatial error:

MT 5 a 1 b log2 S 2A
W

D (1)

where A represents the amplitude of the movement and W
represents the target width; a and b are empirically deter-
mined constants. In this formulation, the logarithmic term
is called the “index of difficulty (ID ) of the movement,”

ID 5 log2 S 2A
W

D (2)

and is linked to the maximum rate of information transmis-
sion of the human motor system.

In subsequent years, Fitts’ tapping tasks or Fitts’ para-
digms were used in a systematic way for numerous studies.
Equation (1) was found to be so general that it became
known as Fitts’ law (Crossman & Goodeve 1963/1983;
Keele 1968). In spite of its generality, Fitts’ relationship was
found to be of limited use for spatially constrained tasks of
low precision, and even inappropriate in timely constrained
tasks (see Schmidt 1988 for a survey). Moreover, from a
theoretical point of view, a few models have been devel-
oped to explain the origin of these phenomena (see Meyer
et al. 1988 for a review), but no satisfying interpretation
covering the various aspects of speed/accuracy trade-offs
has been proposed.

This target article constitutes an attempt toward such an
interpretation, one that explains the origin of the different
speed/accuracy trade-offs by linking them to some funda-
mental properties of the kinematic behavior of a large
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number of coupled neuromuscular networks (Plamondon
1995a). The text is divided into four parts. First, a list of
domains and contexts where Fitts’ law has been studied is
reported. In this short review, the previous theoretical
models used to explain speed/accuracy trade-offs are pre-
sented. This part also summarizes the various experimental
limitations that have been reported concerning Fitts’ law as
well as the different mathematical formulations that have
been proposed to take these discrepancies into account. In
the second part, the kinematic theory of rapid human
movements developed by Plamondon (1993b; 1993c;
1995a; 1995b) is summarized and discussed to highlight the
origin of speed/accuracy trade-offs in complex neuro-
muscular systems. This new theory is used in the context of
spatially-constrained and temporally-constrained tasks to
predict the different relationships between movement time
and the inverse of the relative spatial error (Plamondon
1993c; 1993d; 1995b). In the third part, the resulting laws
are tested using the data available from the numerous
studies published in the field. The implications of Plamon-
don’s kinematic theory for movement control and under-
standing are discussed in section 4.

2. Speed/accuracy trade-offs: A short survey

The majority of experimental procedures used in the study
of speed/accuracy trade-offs fall into one of two categories:
spatially constrained movements or temporally constrained
movements. In movements with spatial constraints, sub-
jects are asked to move as quickly as possible to a target
placed at a distance (A). The target width (W ) may or may
not be explicitly given. In movements with temporal con-
straints, subjects are asked to move to a fixed target at a
specified time (MT). The required timing precision (DMT)
may or may not be explicitly given.

In this section we report on these two categories of
movements. For spatially constrained movements we pre-
sent Fitts’ (1954) law as the case where both W and A are
given and MT is measured, and Howarth et al.’s (1971)
approach as the case where only A is specified and results
on W and MT are reported. For temporally constrained
movements, A and MT are specified. We present the work
of Schmidt et al. (1979), who provide data on spatial
variability, and the work of Newell et al. (1979), who
provide data on temporal variability.

2.1. Spatially constrained movements where both A
and W are given

The popularity of Fitts’ law is mainly the result of the large
number of experiments and studies that have been reported
to support it. It has been roughly validated for a variety of
movements, and some studies have adopted the model as a
tool for investigating other issues. The experimental valida-
tion of Fitts’ law has been confirmed, totally or partially, for a
variety of movements, limbs and muscle groups, experimen-
tal conditions and manipulating devices, subjects, and a
wide range of performance indices (see Table 1).

It should be noted that not all these studies support Fitts’
law. Many of them report violations, new formulations, or
new explanations of this law. Indeed, although Fitts’ law has
been generally accepted by many researchers as a good and
practical working tool, many have worked on its experimen-
tal verification, and several modifications to his original

equation (1) have been advanced, taking into account
specific experimental conditions and thus providing better
data fitting.

Several factors indicate limitations of Fitts’ law as a
potentially general description of the movement speed/
accuracy relationship. An upward curvature of MT data,
away from the regression line, has been observed for low
indices-of-difficulty values, so the lawful relationship fails at
very low IDs (Buck 1986; Crossman 1957; Crossman &
Goodeve 1963/1983; Drury 1975; Klapp 1975; Langolf
et al. 1976; Meyer et al. 1988; 1990; Wallace et al. 1978;
Welford 1960). In Fitts’ reciprocal tapping experiment, the
constant a becomes negative when movement time is
plotted against his index of difficulty, as it also does for zero
information per response; in addition, the best regression
line through the data is not straight but curved slightly
upwards (Knight & Dagnall 1967).

Several discrepancies between Fitts’ experimental data
and his theoretical formulation have been deduced by many
authors who changed the definition of the index of diffi-
culty, as shown in Table 2. Welford (1968) suggested that
subjects utilize only the half near the target area, and he
modified the equation accordingly. Subsequently, Welford
et al. (1969) advanced an equation relating movement time
to amplitude and to target width, separately. While studying
moving targets, Jagacinski et al. (1980b) proposed an alter-
nate index of difficulty that explicitly incorporates a velocity
factor.1 Recently, Hoffmann (1991a) has proposed two
models for capturing the speed of a moving target; these
models provide an excellent fit to the experimental data of
Jagacinski et al. The main improvement of the Hoffmann
models over that of Jagacinski et al. is in the theoretical
explanations. For situations where there is a transmission
delay between control movements and the feedback of the
system response to the operator, Hoffmann (1992) pro-
posed a model incorporating the delay2 in its formulation.
Recently, MacKenzie (1989; 1992) showed that Fitts’
choice of an equation that deviates slightly from the funda-
mental theorem 17 of Shannon is unfounded and proposed
a corrected equation. Gan and Hoffmann (1988) found that
when the index of difficulty is small, MT can be predicted
by an equation depending only on A. Johnsgard (1994)
proposed a modification to the equation of MacKenzie that
includes the effect of the device gain (G ).

Another problem stems from the relative contributions of
W and A in the equation for MT. In contrast to the implicit
assumption of Fitts’ law, it has been suggested – following
the example of Welford et al. (1969) – that amplitude and
target width do not possess equal weight in the determina-
tion of movement time (Sheridan 1979). The disproportio-
nate increase in movement time caused by reductions in
target width compared to similar increases in target ampli-
tude has also been noted directly from their data (Buck
1986; Jagacinski et al. 1980a; Jagacinski & Monk 1985; Keele
1973; Meyer et al. 1988; Welford et al. 1969), or indirectly
from the analysis of the error-rate, which was found to
increase as target width decreases independently of target
amplitude (Card et al. 1978; Wade et al. 1978).

A few models have been proposed to give a theoretical
explanation for speed/accuracy trade-offs, and particularly
for Fitts’ law. We review these briefly below.

2.1.1. Fitts’ information theory hypothesis. Using the in-
formation theory (Miller 1953; Pierce 1961; Shannon 1948;

https://doi.org/10.1017/S0140525X97421441 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X97421441


Plamondon & Alimi: Speed/accuracy trade-offs in target-directed movements

BEHAVIORAL AND BRAIN SCIENCES (1997) 20:2 281

Table 1. Applications of Fitts’ law

Category Study Authors

Movements a)
b)

Serial or continuous
Discrete

a)
b)

Fitts (1954); Kvalseth (1975)
Carlton (1979; 1980); Fitts & Peterson
(1964).

c) Tapping c) Fitts (1954); Fitts & Peterson (1964); Kan-
towitz & Elvers (1988); Megaw (1975);

d)
e)
f )
g)
h)

Object transferral
Dart throwing
Three-dimensional
Rotary
Pointing and dragging

d)
e)
f )
g)
h)

Fitts (1954); Raouf & Tsui (1978)
Kerr & Langolf (1977)
MacKenzie et al. (1987)
Knight & Dagnall (1967)
Gillan et al. (1990)

Limbs and muscle groups a) Wrist flexion and rotation a) Crossman & Goodeve (1963/1983); Meyer
et al. (1988); Wright & Meyer (1983)

b)
c)

Foot movements
Head movements

b)
c)

Drury (1975); Hoffmann (1991b)
Andres & Hartung (1989a; 1989b);
Jagacinski & Monk (1985)

d) Finger manipulation d) Hoffmann & Sheikh (1991); Langolf et al.
(1976)

e)
f )
g)
h)

Arm extension
Rapid elbow flexion
Speech
Hand movements

e)
f )
g)
h)

Kerr & Langolf (1977)
Corcos et al. (1988)
Jafari & Kondraske (1988)
Beggs & Howarth (1972); Howarth et al.
(1971)

i) It has been suggest that the law would hold
for the mouth or any other organ for which
a suitable motor task could be devised

i) Glencross & Barrett (1989); MacKenzie
(1992)

Experimental conditions a) Microscopic movements a) Hancock et al. (1973); Langolf & Hancock
(1975)

b)
c)
d)

Underwater movements
Aircraft flight
Controlled visual feedback

b)
c)
d)

Kerr (1973; 1978)
Hartzell et al. (1982)
Carlton 1981; Crossman (1960); Glencross
& Barrett (1989); Keele & Posner (1968);
Meyer et al. (1988); Prablanc et al. (1979);
Wallace & Newell (1983); Zelaznik et al.
(1981)

e)
f )
g)

Inert gas narcosis
Handedness studies
Moving targets

e)
f )
g)

Fowler et al. (1982)
Flowers (1975)
Hoffmann (1991a); Jagacinski et al.
(1980a; 1980b)

h) Tasks with transmission delay h) Ferrell (1965); Hoffmann (1992); Sheridan
& Ferrell (1963)

i) Tasks with unusual body dynamics i) Newman & Bussolari (1990)

Manipulation devices a)
b)
c)

Hand-held stylus
Rotary handle
Joystick

a)
b)
c)

Fitts (1954); Kvalseth (1978)
Crossman & Goodeve (1963/1983)
Card et al. (1978); Epps (1986); Hartzell
et al. (1982); Jagacinski et al. (1980a)

d) Computer mouse d) Boritz et al. (1991); Card et al. (1978);
Epps (1986); Johnsgard (1994)

e) Keyboard e) Card et al. (1978); Drury & Hoffmann
(1992)

f )
g)

Food pedal
Teleoperator

f )
g)

Drury (1975)
Draper et al. (1990); Drascic et al. (1989);
Repperger & Remis (1990); Shinhar (1986)

h) Head-controlled computer input device h) Lin et al. (1992); Radwin et al. (1990);
Spitz (1990)

(continued)
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Table 1. (Continued)

Category Study Authors

i) Ballpoint pen or digitizer tablet i) Spitz (1990); van Galen & Schomaker
(1992)

j) Trackball j) Arnault & Greenstein (1987); Epps (1986)
k)
l)

m)
n)
o)

Touchpad
Eyetracker
Telerobotic system
Touch tablet
Virtual reality glove

k)
l)

m)
n)
o)

Epps (1986)
Ware & Mikaelian (1987)
Cannon & Leifer (1990)
Arnault & Greenstein (1987)
Johnsgard (1994)

Subjects a) Youths and children a) Jones (1991); Salmoni (1983); Salmoni &
McIlwain (1979); Sugden (1980); Wallace
et al. (1978)

b)
c)

The aged
Intellectually handicapped patients

b)
c)

Welford et al. (1969)
Wade et al. (1978)

d) Patients with Parkinson’s disease d) Flowers (1976)
e)
f )
g)
h)

Patients with cerebral palsy
Drugged subjects
Monkeys
Humans of different ages and sexes

e)
f )
g)
h)

Bravo et al. (1990)
Kvalseth (1977)
Brooks (1979)
Brogmus (1991)

Performance indices (ID) a)
b)
c)

Less than 1 bit/sec
More than 60 bits/sec
Most studies report IDs in the 3 to 12
bit/sec range

a)
b)
c)

Hartzell et al. (1982)
Kvalseth (1981)
MacKenzie (1992)

Shannon & Weaver 1949), Fitts (1954) hypothesized that
the task difficulty could be measured in bits using an
information metric and that, in carrying out a movement
task, information is transmitted through a noisy stochastic
communication channel that models the behavior of the
human motor system. Theorem 17 of Shannon (1948)
expresses the effective information capacity C (in bits/sec)
of a communications channel of bandwidth B (in Hz) as:

C 5 B log2 S S 1 N
N

D (3)

where N is the noise power and S is the signal power. Fitts
claimed that, at the maximum rate of information transmis-
sion, the human motor system behaves in accordance with
the logarithmic relation by identifying 1/MT with B, A with
S 1 N, and W/2 with N to obtain the speed/accuracy trade-
off relation proposed in equation (1).

One of the major hypotheses in Fitts’ information theory
interpretation is that the human motor system behaves like
a stochastic communication channel. This theoretical
framework has been criticized. Crossman and Goodeve
(1963/1983) have pointed out “the empirical difficulty of
establishing the existence of the postulated ‘noise’ or initial
uncertainty” (p. 253). Kvalseth (1979) has claimed that “the
Fitts’ ID measure does indeed yield false estimates of the
information capacity of the human motor system” (p. 292),
and he proposed a power law as an alternative to Fitts’ law,
based on the superior data fit obtained by reanalysing
previously published results. He did not support this power
law theoretically. Recently, MacKenzie (1989) showed that
Fitts’ law is in fact derived from Goldman’s equation 39
(Goldman 1953), which is an approximation of Shannon’s
theorem, instead of the original theorem 17 of Shannon
(1948), given in equation (3):

C 5 B log2 S S
N
D (4)

The resulting variation of Fitts’ law (see Table 2) has
recently (Brogmus 1991; Welford 1990) been shown to be
one of the best, although the origin of the constant a is still
problematic and not predicted by the theory.

2.1.2. The deterministic iterative-corrections model of
Crossman and Goodeve. An alternative to Fitts’ informa-
tion theory approach is known as the deterministic iterative-
corrections model, which originated in the model of Cross-
man and Goodeve (1963/1983), and was subsequently
developed by Keele (1968) and by Langolf et al. (1976).
Under this model, movements intended to reach a target
region quickly and accurately are executed through itera-
tions of feedback-guided corrective submovements. A sub-
movement is assumed to take a constant time t to cover a
distance equal to (1 – p) times the remaining distance. By
applying these assumptions, the submovement sequence
continues under either visual or kinesthetic feedback until
the target region has been reached. So, if Xi denotes the
distance remaining up to the target center after the ith
submovement, then:

Xo 5 A

Xn 5
W
2

Xi 5 pXi21 (5)

and Xn 5 p · Xn21 5 . . . 5 pn · A 5
W
2

n 5
1

log2(p)
log2 S W

2A
D (6)
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Table 2. Mathematical formulations of Fitts’ law

Authors Equation Remarks

Crossman (1956)
MT 5 a 1 b log2 S A

W
D Applying this expression to experimental

data, Crossman found that the fit was
better and that the constant a had a
value of 0.05 sec, which was the time he
found that the subject spent lingering on
the target.

Welford (1968)
MT 5 k log2 S A

W
1 0.5D k is an experimentally determined constant.

Welford et al.
(1969)

MT 5 a 1 bA log2 (A) 1 bW log2 S 1
W
D

Jagacinski et al.
(1980b)

MT 5 c 1 dA 1 e(V 1 1) S 1
W

2 1D V is the mean velocity of the target move-
ment and c, d, e are fitting constants.*

Jagacinski et al.
(1980b)

MT 5 p 1 q log2 H2 FA 1
V
W

(MT 1 T )GJ T is a constant, corresponding to the length
of time the cursor had to be held over
the target to capture it, and p, q or x, y,
z are fitting parameters. It should be
noted that this equation is transcendent
and, as such, does not provide an analyti-
cal solution for MT.*

Jagacinski et al.
(1980b)

MT 5 x 1 y log2 S 2A
W

D 1 z log2 F V
W/T

1 1G T is a constant, corresponding to the length
of time the cursor had to be held over
the target to capture it, and p, q or x, y,
z are fitting parameters.**

Hoffman (1991a) A 1
V
K

K, a, b, c are fitting parameters.*

MT 5
1
K

ln 3 4W
2

2
V
K

and MT 5 a 1 b log2 SA 1
V
K
D 2 c log2 SW

2
2

V
K
D

Hoffman (1992)
MT 5 2a 1 b(c 1 D) log2 S 2A

W
D D is the delay; a, b, and c are regression

coefficients.***

MacKenzie
(1989; 1992)

MT 5 a 1 b log2 S A
W

1 1D
Gan & Hoff-

mann (1988)
MT 5 a 1 bÏA

Johnsgard (1994)
MT 5 a 1 b log2 SA/W

G
1 1D

Kvalseth (1980)
MT 5 a S A

W
Db

*If V 5 0, we obtain an expression of MT for the case of static targets, which is different from Fitts’ law.
**If V 5 0, we obtain an expression of MT for two cases of static targets, similar to Fitts’ law.
***If D 5 0, we obtain an expression of MT for the no-delay case, similar to Fitts’ formulation.

Since the movement time is MT 5 nt, it can be expressed as:

MT 5
2t

log2(p)
log2 S 2A

W
D (7)

Since the first move should take less than t (by a constant
a), because the time it takes to decide how far to move
initially occurs before a move begins (Keele 1968), then:

MT 5 (t 2 a) 1 (n 2 1)t 5 nt 2 a (8)

MT 5 2a 1 b log2 S2A
W

D with S b 5
2t

log2(p)
D (9)

To verify these assumptions, the time it takes to process
visual feedback was determined to be in the 135 msec to
290 msec range (Beggs & Howarth 1970; Carlton 1981;
Crossman & Goodeve 1963/1983; Keele & Posner 1968;
Zelaznik et al. 1983) and the proportional error constant p
was estimated to be between 0.04 and 0.07 (Langolf et al.
1976; Meyer et al. 1988; Pew 1974; Schmidt 1988; Vince
1948), giving b in the 29.1 msec/bits to 75.6 msec/bits
range. This estimate of the slope of the logarithmic trade-
off relation was sufficiently impressive that the determinis-
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tic iterative-corrections model soon became accepted as
the best available account of Fitts’ law (Meyer et al. 1990).
In addition, with this model Crossman (1956) suggested
that the ID could be interpreted as the difference between
two fundamental quantities – log2(W ) measuring the en-
tropy of the endpoint distribution, and log2(2A) measuring
the entropy of a hypothetical initial distribution of motion
amplitudes.

Despite its simplicity, the assumptions of the determinis-
tic iterative-corrections model have been found to be
suspect, and since the 1970s it has become increasingly
clear that this model is seriously flawed. Langolf et al.
(1976) and Jagacinski et al. (1980a) have found consider-
able variation in the duration of the initial submovement,
which is contrary to the model’s hypothesis of constant-
duration submovements. Langolf et al. found that some
movements exhibiting the logarithmic trade-off relation-
ship have only one correction despite the model’s pre-
diction of several corrective submovements for large-
movement-difficulty indices. Wallace and Newell (1983)
observed that aimed hand movements produced in the
absence of visual feedback obey Fitts’ law, which gives
additional evidence against the dichotomy of feedback-
controlled movements obeying Fitts’ law and feedforward-
controlled movements obeying a linear speed/accuracy
relation. More fundamentally, one handicap of this model is
that it is completely deterministic. This implies that for a
fixed target distance and width the sequence of submove-
ments would always be the same. So, the model cannot
explain why subjects sometimes miss a target and commit
an error (Fitts & Peterson 1964; Meyer et al. 1988; Wallace
& Newell 1983).

2.1.3. Connelly’s control model. Connelly (1984) proposed
an alternative interpretation of Fitts’ law based on a control
model linking the error rate of a movement to the error. To
illustrate the mathematical development for a simple con-
trol law, he assumed that the error rate dX/dt is a linear
function of the error X.

dX
dt

5 2KX with K . 0 (10)

The solution to this equation is

X(t) 5 X(0)e2Kt (11)

It can be written as

log2 S X (t)
X (0)

D 5 2Kt log2(e) (12)

to obtain

t 5 C log2 SX (0)
X (t)

D (13)

where

C 5
1

K log2(e)
(14)

Finally, by identifying X (0) with A and X (MT) with W/2,
the expression for MT is obtained:

MT 5 C log2 S 2A
W

D . (15)

This is the same equation as Fitts’ law, except for the
constant a, which again is not predicted here. Connelly
(1984) concluded his study by noting that a specific model
had not yet been identified and that numerous models

and control laws, both linear and nonlinear, could be
formulated.

If we analyze the equations given above, it can be seen
that the control law proposed in equation (10) is no more
than a generalization of Crossman and Goodeve’s (1963/
1983) deterministic iterative-corrections model. In fact,
Crossman and Goodeve’s model is discrete, whereas Con-
nelly’s model is continuous. In addition, Crossman and
Goodeve’s model has a specific control law (Xi 5 pXi 2 1),
which is the discrete representation of dX/dt 5 pX, whereas
Connelly’s model does not have a specific control law.

2.1.4. The unifying noise/velocity relationship of Chan
and Childress. Chan and Childress (1990) have proposed a
relationship that relates the variance of the human-machine
noise to the mean square velocity of the human-machine
output. Furthermore, they showed that this noise-velocity
relationship is verified for some human-machine models
(McReur’s [1980] crossover model, Elkind’s human-machine
model [Elkind & Forgie 1959], and Fitts’ law), and that it
can be considered as a more fundamental human-machine
behavior property.

Noting R as the radius of the region from the target
center where human-machine output is most likely to be at
any time t, the derivation of their relationship from Fitts’
law is obtained by writing:

R 5 Ae2(t2a)/c (16)

where R 5 W/2; c 5 b/ln(2.0) for t 5 MT.
In this context, the authors represented the random

variable, corresponding to the position from the target
center at any time t, by a zero-mean Gaussian random
variable with a standard deviation sn related to R by

sn 5 k1R 5 k1Ae2(t2a)/c (17)

where k1 is a proportionality constant.
From this,

­sn

­t
5 2

k1
c

Ae2(t2a)/c 5 2
sn

c
(18)

since the position is a Gaussian random variable, the veloc-
ity is also a random variable with mean square v2 and

v 5
­sn

­t
5

sn

c
(19)

finally to obtain a unifying noise-velocity relationship:

sn
2 5 c2v2 (20)

Chan and Childress (1990) did not provide any theoretical
support for this new relationship.

2.1.5. The stochastic optimized-submovement model of
Meyer et al. This model (Meyer et al. 1988; 1990) repre-
sents the movement production process as an ideal com-
promise between the duration of primary and secondary
submovements. The model assumes the existence of noise
in the neuromotor system that may affect the primary
submovement, causing it either to overshoot or undershoot
the target. The stochastic optimized-submovement model
assumes that the effect of the motor noise increases with
the velocity of the submovements and that the relationship
between primary submovement endpoint standard devia-
tion S1 and the average velocity V1 of the primary submove-
ment is:

S1 5 KV1 5 K
D1
T1

(21)
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where K is a positive constant, D1 is the mean distance
travelled by the primary submovements, and T1 is their
mean duration. Another assumption of the model is that for
the secondary submovement,

S2 5 K
D

T2D

(22)

where D is the distance travelled in a mean time T2D by the
secondary submovement. K is the same constant in equa-
tions (21) and (22). Finally, another key assumption is that
the average velocities of the primary and secondary sub-
movements are programmed to minimize the average total
movement duration (MT ).

Under these assumptions, the stochastic optimized-
submovement model predicts that

MT 5 A 1 B ÎD
W

(23)

where A and B are non-negative constants. Many other
interesting predictions are made by this model with respect
to the mean primary submovement durations, the propor-
tion of secondary submovements, and the values of error
rates (see Meyer et al. [1988; 1990] for more details). Using
computer simulations of this model, Meyer et al. have
suggested that for multiple submovements, a quasipower
function might be a better predictor of MT :

MT 5 A 1 B S D
W
D1/n

(24)

where n is the number of submovements.
As stated previously, a few studies of temporally con-

strained movements have suggested relationships that are
other than linear between the standard deviation of move-
ment endpoints and the average velocity (Hancock &
Newell 1985; Schmidt et al. 1985). Also, the constant K in
equations (21) and (22) may differ for primary and second-
ary submovements. In these cases, the polynomial speed/
accuracy trade-off represented by equation (23) will not be
verified, and neither will equation (24).

2.1.6. The VITE model of Bullock and Grossberg. The
VITE model consists of a set of channels controlling the
length of a particular muscle (Bullock & Grossberg 1988).
Motor planning occurs in the form of a target position
command (TPC) that specifies the length to which all
trajectory-controlling muscles are intended to move, and a
command signal GO that ties together all these channels
and specifies the movement’s overall speed. Mutual inter-
actions exist between channels for antagonistic muscles.
The present position command (PPC) subtracted from the
TPC command specifies the difference vector (DV) that is
integrated through time by the VITE circuit after being
multiplied by the GO signal. Thus the PPC is gradually
updated and generates an outflow movement command to
reach the target. To generate a movement, a TPC different
from the PPC generates a nonzero DV that is multiplied by
the GO signal to generate an input to the PPC. By integrat-
ing this signal through time, the PPC will be updated until it
equals TPC.

In its simplest form, the VITE circuit obeys these equa-
tions (Bullock & Grossberg 1988):

d
dt

DV 5 a(2DV 1 TPC 2 PPC) (25)

d
dt

PPC 5 GO[DV ]1 (26)

where [DV ]1 5 max (DV,0); a is a given parameter of the
model.

Bullock and Grossberg showed that

MT 5
2
a

log STPC(0) 2 PPC(0)
E

D (27)

where E is the amount of overshoot error in the VITE
command. In this relation, TPC(0) 2 PPC(0) represents the
distance to be moved. It should be noted that this relation-
ship was mathematically proven only in one specific case
(Bullock & Grossberg 1988, Appendix I), and, using com-
puter simulations, the authors suggest that it occurs with
greater generality.

2.2. Movements with spatial constraints, where only A
is given

Howarth et al. (1971) have proposed a theory of intermit-
tent visual control that is not based on linear control
assumptions. Their theory specifies that the hand should be
as close as possible to the target at the time of initiation of
the last corrective movement. In an attempt to determine
the precise relationship between distance and time as the
hand approaches the target, they found experimentally that

d 5 814.9 S t
MT

D1.4
(28)

where d is the distance to the hand from the target in mm, t
is the time remaining before the target is hit in seconds, and
MT is the time for the total movement in seconds.

They found, from experimental analysis, that

E2 5 E0
2 1 (814.9)2 s0

2 S tu

MT
D2.8

(29)

where E2 is the mean square error from the target center,
E0

2 is a square error due to tremor, s0
2 is the angular error of

the final corrective movement, and tu is the uncontrolled
movement time evaluated at tu 5 290 msec by Beggs and
Howarth (1970).

As presented above, equation (29) is empirically deter-
mined, and so it does not specify the nature of the control
processes contained therein (see Langolf et al., 1976, for an
extensive criticism of this theory). It should be noted that in
their experimental procedure, Howarth et al. (1971) con-
sidered only one target distance, A 5 50 cm. If equation
(29) is written differently, we obtain

MT 5 tu [(814.9)2 s0
2]1/2.8 S 1

E2 2 E0
2D1/2.8

(30)

which is similar to a power law (see Kvalseth, Table 2),

where S 1
E2 2 E0

2D corresponds to S 1
W Db

; and, because

A is constant (50 cm) here tu[(814.9)2 s0
2]1/2.8 corresponds

to a(A)b. So, the empirical relationship of Howarth et al.
can be seen as a manifestation of a power law.

2.3. Movements with temporal constraints, where MT
is given: Focus on spatial variability

Another fundamental problem is the dependency of the
speed/accuracy trade-off formulation on the subjects’ tem-
poral and spatial goals (Schmidt et al. 1979). It was claimed
that a linear trade-off relationship is more appropriate for
time-matching tasks or temporally constrained tasks, whereas
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a logarithmic trade-off relationship better explains time-
minimization movement or spatially constrained tasks. The
linear speed/accuracy trade-off can be characterized as

We 5 a 1 b S A
MT

D (31)

where We is the standard deviation of the endpoint coordi-
nates.

Two main hypotheses have been considered for charac-
terizing the conditions under which a linear rather than a
logarithmic trade-off will occur for aimed movements (see
Wright & Meyer, 1983, for a review).

The first hypothesis, named the movement-brevity hy-
pothesis (Wright & Meyer 1983), was proposed by Schmidt
et al. (1979) as a motor-output variability theory for ballistic
movements. The proportional relationship between the
within-subject variability in movement amplitude, called
the effective target width (We ), and the average velocity of
the single aiming movement (A/MT ) is derived in this
model from two proportionality relationships – the first
between the impulse and the average velocity:

impulse ~ velocity (32)

and the second between the within-subject variability of the
impulse and the size of the impulse:

simpulse ~ impulse. (33)

Since We is proportional to the variability of the impulse
(Schmidt et al. 1978; 1979):

We ~ impulse (34)

We is also proportional to the average velocity of the
movement (see Schmidt et al., 1979, for more details):

We ~ velocity ~ A/MT (35)

The second hypothesis, named the temporal-precision
hypothesis (Wright & Meyer 1983), was proposed by Meyer
et al. (1982) as the symmetric impulse-variability model.
This second approach provides a way to unify the linear and
logarithmic trade-offs by attributing precisely timed move-
ments to a single pair of opposing force pulses that mini-
mizes temporal variability, and spatially precise movements
to a preprogrammed series of overlapping force pulses that
increases temporal variability. This approach includes a
number of assumptions about the shapes of force pulses
used to produce movements and about the stochastic varia-
tion of pulses across different movements (see Meyer et al.,
1982, for more details). The linear speed/accuracy trade-
offs have been observed by other investigators: stylus-
tapping movements (Zelaznik et al. 1981; 1988); wrist
rotations (Wright 1983; Wright & Meyer 1983); saccadic
eye movements (Abrams et al. 1989). The scaling property
of the force assumed by these models has been reported by
Abrams et al. (1989), Armstrong (1970), Freund and Bud-
ingen (1978), Ghez (1979), Ghez and Vicario (1978), Gor-
don and Ghez (1987), and so on. However, some problems
have been raised. Most of the detailed studies have re-
ported nonproportional relationships between force and
force variability in both isometric (Carlton & Newell 1985;
Fullerton & Cattell 1892; Jenkins 1947; Newell & Carlton
1985; Noble & Bahrick 1956; Provins 1957) and aniso-
metric tasks (Newell et al. 1982). Furthermore, this rela-
tionship was found to have an inverted U shape (Newell et
al. 1984; Sherwood & Schmidt 1980; Sherwood et al. 1988).

A few investigators have questioned the model’s assump-
tions about the scaling of force pulses (Schmidt et al. 1985;

Zelaznik et al. 1986). Zelaznik et al. have reported that “the
acceleration-time functions were not symmetrical and that
symmetricality decreased as MT decreased” (p. 36), which
caused difficulties for the Meyer et al. (1982) symmetric
model (see Plamondon et al., 1993, for a review on the
asymmetry of velocity profiles).

2.4. Temporally constrained movements, where MT is
given: Focus on temporal variability

Newell et al. (1979) conducted three experiments in which
subjects were asked to move, as soon as they were ready,
through a target distance, and not to stop directly opposite
the target, in a time as close as possible to a target time MT.
Newell et al. examined MTs of 100, 200, 500, 600, and 1,000
msec over distances of 0.75, 2.5, 5, and 15 cm. A controver-
sial finding of their experiment, still without any convincing
explanation, was that “the faster one moves, the more
accurate the timing of the response” (Newell et al. 1979,
p. 50; see Hancock & Newell, 1985, for a synthesis on the
space-time approach to the speed/accuracy trade-off ).
They also found that the velocity effect was independent of
the values of movement time, and that for very slow
movements there was a reduction in timing accuracy and
movement control broke down.

3. Plamondon’s kinematic theory

As we can see, the speed/accuracy trade-offs in rapid
human movements are far from being completely under-
stood. None of the theoretical explanations proposed to
date is able to take into account the major experimental
observations in the field under a single scheme. In addition,
the majority of the resulting mathematical equations pre-
sented in Table 2 produce good data fitting over a limited
range. If a mathematical expression has to be considered as
a law in a specific domain, it should be general enough to
describe all the phenomena occurring in that domain and,
ideally, should be supported both theoretically and experi-
mentally.

Over the past six years, a research group led by R.
Plamondon has been studying the theoretical and practical
interests of modelling the impulse response of neuro-
muscular systems to describe speed/accuracy trade-offs
(Plamondon 1990a; 1990b; 1991a; 1991b; 1992a; 1992b;
1993a; Plamondon et al. 1993). Recently, Plamondon
(1993b; 1993c; 1995a; 1995b) has come up with a kinematic
theory that seems to fulfill most of the previous require-
ments.

The major claim of this theory is that speed/accuracy
trade-offs are inherent constraints that emerge directly
from the delta-lognormal impulse response of the global
neuromuscular system involved in a synergy. The intrinsic
properties of this impulse response, combined with a
simple perceptivo-motor condition that has to be met at
some sensorimotor level, are sufficient to ensure the effec-
tive production of any rapid movements. In this context, the
kinematic relationships that have been reported in the field
can be taken into account under a single paradigm.

3.1. The delta-lognormal law

The production of a rapid movement involves the activation
of a complex neuromuscular system made up of several
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components organized both hierarchically and in parallel
(see Ghez, 1991, for an extensive survey). The primary
motor cortex, the premotor cortex, and the supplementary
motor area constitute the highest levels of control. These
components contain somatotopic maps and receive infor-
mation from the periphery via sensory relay nuclei. The
next level of the hierarchy is the brain stem, which is made
up of three neuronal systems (medial, lateral, and am-
inergic) that modulate motor neurons and interneurons in
the spinal cord. This latter component constitutes the next
level of the hierarchy. Its motor neurons interact, directly
or indirectly, with proximal and distal muscles. In addition,
two other components regulate motor functions: the cere-
bellum and the basal ganglia. At lower levels, various muscu-
loskeletal networks are involved. Indeed, even the simplest
movements require the coordination of several skeletal
muscles acting in groups rather than individually. Such a
group is generally referred to as a synergy (Bernstein 1967).
The muscles that cause the desired action are called the
agonist muscles; those causing the opposite effect are the
antagonist muscles. Any of these muscles acts on bones via
tendons by contracting parallel bundles of muscle fibers.
For simple rapid movements it is generally accepted that
sensory feedback is not continuously used to control the
trajectory, but that advance information from sensory
events is used as a feedforward control to adjust the
properties of the neuromuscular system with respect to the
task objective.

According to the kinematic theory of Plamondon (1993b;
1993c; 1995a; 1995b), a schematic view of the complete
neuromuscular synergy involved in the production of a
rapid-aimed movement can be represented as in Figure 1.
This synergy is composed of two parallel systems, each
made up of numerous components that represent the sets
of neural and muscular networks involved in the generation
of the agonist and antagonist neuromuscular activities re-
sulting in a specific movement. Using such a model, it is
possible to provide an analytical description of a synergy
output, when a few basic hypotheses are made.

First, a representation space must be selected for this
output. One of the most well-accepted invariants in rapid-
aimed movements is the shape of the absolute velocity
profile. Several authors (Abend et al. 1982; Atkeson &
Hollerbach 1985; Beggs & Howarth 1972; Georgopoulos et
al. 1981; Morasso 1981; Nagasaki 1989; Soechting & La-
quaniti 1981; Uno et al. 1989, etc.) have shown that the
velocity profiles of rapid-aimed movement have a global
“asymmetric bell shape” that is invariant over a wide range
of movement sizes and speeds. This invariance suggests
that velocity might play a key role in movement control and
that it is reasonable to assume that a synergy output can be
described in the velocity domain.

Second, since the kinematic theory is concerned with the
description of well-learned and well-practiced movements,
we assume that for a specific task each subsystem works in a
linear mode around some steady conditions. In this context,
the agonist and antagonist systems described in Figure 1
can be considered globally as linear time-invariant systems
producing a velocity output (v1(t ) or v2(t )) from an impulse
command (U0(t 2 t0)) of amplitude D1 or D2, occurring at
t0. Although proprioceptive feedback as well as various
forms of interaction and coupling exist in several places
between these two systems, we assume that the global
effect of all these mechanisms can be taken into account at

the very end of the process by subtracting the two outputs.
The resulting velocity of the end-effector of the synergy is
thus represented by:

v(t) 5 v1(t) 2 v2(t)

5 D1H1(t 2 t0) 2 D2H2(t 2 t0)

(36)

(37)

where subscripts 1 and 2 stand for the agonist and the
antagonist systems, respectively, and H(t 2 t0) represents
the impulse response of each system.

Equation (37) describes the output of the synergy as the
difference between the impulse responses of the agonist
and antagonist neuromuscular systems, weighted by the
respective amplitude of their input activation commands.
For each of these systems, their internal architecture, as
depicted in Figure 1, is quite complex. Each component
interacts serially with its nearest neighbor but also in a
hierarchically parallel fashion with a large number of more
distant components. If this model could be simplified, an
analytical expression could be obtained for the global im-
pulse response of both the agonist and antagonist systems
using asymptotic predictions. On the one hand, if emphasis
could be put only on the parallel interactions between the
components of a system, its impulse response could be de-
rived using the product of the integrals of the impulse re-
sponse of each component, and under some specific condi-
tions it could converge asymptotically toward different
types of exponential functions: double exponential, power
of exponential, and Weibull function (Galambos 1978;
Leadbetter et al. 1983). For example, using a purely parallel
model, Ulrich and Wing (1993) have proposed a specific
sum of weighted exponential functions as an impulse re-
sponse for a force-generating system. On the other hand, if
emphasis could be put only on the sequential interactions
between components, the impulse response of the system
would be the convolution of the impulse responses of each
component, and its mathematical description could be
specified from the prediction of the central-limit theorem
as applied to the convolution of a large number of positive
functions (Papoulis 1987). So, if all the neural and muscular
networks composing a system were to form an independent
sequence of subsystems, the impulse response (H(t 2 t0))
of the resulting linear system could be described by a
Gaussian function (Plamondon 1991a; 1993b; 1995a).

Plamondon’s kinematic theory stays in between these
two extreme cases, using an argument based on the time
delay introduced in a system by the different components
that have to react to a specific command. In the purely
parallel model, the total time delay characterizing a system,
agonist or antagonist, would be limited by the distribution
of the maximum time delays of the different components.
In the purely sequential system, the total time delay would
be defined by the sum of the individual time delays of each
component.

With the mixed architecture depicted in Figure 1, the
time delay associated with each component taken individu-
ally will affect the total time delay of the global system in a
more complex way to reflect both the parallel and the
sequential coupling between the components. One simple
way to link the time delay of each component is to assume
that the cumulative time delay (Tj ) after j subprocessing
steps is related to the cumulative delay time (Tj21) of the
previous j 2 1 components by a law of proportional effect
(Gibrat 1931), or, in other words, by a Weber law:
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Figure 1. Schematic view of the neuromuscular synergy involved in the production of a rapid-aimed movement.

Tj 5 (1 1 «j )Tj21 (38)

where «j is a proportionality factor reflecting the coupling
between step j and all the previous steps, each «j being
independent of the others and independent of Tj.

This hypothesis can be interpreted to be assuming that
both the agonist and antagonist systems depicted in Figure
1 can be represented by an equivalent sequential system
made up of n coupled components, where the jth is linked to
the j  2 1 previous ones. Then, by making an analogy with
the predictions of the central-limit theorem (Papoulis 1987;
1965), it is predicted that under the hypothesis described by
equation (38), the impulse response of a neuromuscular
system will converge toward a lognormal curve (Plamondon
1991a; 1993b; 1993c; 1995a), provided that the individual
impulse response hij(t) of each component meets some
very general conditions (real, normalized, non-negative
conditions with a finite third moment and scaled disper-
sion). So, under these conditions, the complete velocity
profile of the total synergy will be described by the
weighted difference of two lognormals (Plamondon 1993b;
1993c; 1995a):

v(t) 5 D1L(t;t0,m1,s1
2) 2 D2L(t;t0,m2,s2

2) (39)

where

L(t;t0,mi,si
2) 5 H(t 2 t0)

5 1
siÏ2p(t 2 t0)

exp 2 H[ln(t 2 t0) 2 mi]2 ·
1

2si
2J (40)

As will be seen below, equation (39) is very general, and
we refer to it as a delta-lognormal or DL law (Plamondon
1993b; 1995a). Similarly, we refer to m and s as the total

logtime delay and logresponse time, respectively, since
these parameters reflect the total time delay and response
time of a lognormal impulse response on a logarithmic time
scale.3

In other words, the synergetic execution of a rapid
movement can be seen as resulting from the simultaneous
activation (at t 5 t0) of an agonist and an antagonist
neuromuscular system, with commands of amplitude D1
and D2, respectively. Both systems react to their specific
commands with an impulse response described asymp-
totically by a lognormal function, whose parameters m1, s1
and m2, s2 characterize the logtime delay and the log-
response time of the agonist and antagonist neuromuscular
system involved in the synergy. From this point of view, t0,
D1, and D2 can be considered as command parameters and
m1, m2, s1, s2 as synergetic or system parameters.

We have shown in previous studies (Alimi & Plamondon
1993a,b; 1994; Plamondon et al. 1993) that the DL law is
actually the most powerful equation for reproducing com-
plete velocity profiles of simple movements. Figure 2 shows
a few examples of the optimum reconstruction of velocity
profiles as obtained in these studies. Similar results were
obtained for wrist flexions and extensions on a monkey
subject as well as visual saccades, head rotations, and hand
movements on a human subject (Plamondon 1995a; Pla-
mondon et al. 1995a; 1995b).

In addition, Plamondon (1993b; 1993c; 1995a) has dem-
onstrated that the DL law predicts the majority of phenom-
ena consistently reported by many research groups study-
ing these types of velocity profiles. First, the theory predicts
that from a single pair of synchronous input commands D1
and D2 occurring at t0, single, double, or triple peak velocity
profiles can be generated. The main peak has an asymmet-
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Figure 2. Typical results of an analysis-by-synthesis experiment
for three typical velocity profiles. The solid lines represent the
curvilinear velocity of a pentip movement as computed from
digitizer data, whereas the crosses represent the best fitting DL
law in each case. 2A: D1 5 2.33, D2 5 3.36⋅1021, m1 5 21.28, m2
5 21.10, s 2

1 5 2.13⋅1022, s 2
2 5 9.10⋅1023, t0 5 2.88⋅1021

2B: D1 5 2.46; D2 5 0.40, m1 5 21.47, m2 5 21.25; s2
1 5

8.10⋅1023, s2
2 5 2.5⋅1023, t0 5 0.25

2C: D1 5 3.88, D2 5 1.74, m1 5 21.39, m2 5 21.28, s2
1 5

1.96⋅1022, s2
2 5 3.6⋅1023, t0 5 0.16.

ric bell shape; its asymmetry depends upon the velocity and
can be inverted at very high speeds. All these phenomena
have been regularly and consistently reported (Abend et al.
1982; Atkeson & Hollerbach 1985; Beggs & Howarth 1972;
Georgopoulos et al. 1981; Morasso 1981; Nagasaki 1989,

Soechting & Laquaniti 1981; Uno et al. 1989, Zelaznik et al.
1986; and so on).

With regards to movements where subjects are asked to
produce displacements of different amplitudes with the
same duration, the DL law predicts that the maximum
velocity of the dominant peak will increase almost propor-
tionally to the distance covered, that the time to peak
velocity will be constant, and that the different velocity
profiles will be perfectly superimposable after displace-
ment rescaling. All these facts have been reported in detail
by Gielen et al. (1985).

As for movements where subjects are asked to cover a
constant distance at different speeds, the DL law predicts
that the maximum velocity of the dominant peak will
increase for faster movements and that the time to peak
velocity will decrease as the maximum velocity increases.
These predictions are consistent with the results of Corcos
et al. (1990), Gielen et al. (1985), Lestienne (1979), and
Nagasaki (1989). Moreover, the velocity profiles of a spe-
cific family of curves will be approximately superimposable
after appropriate amplitude and time rescaling, as reported
by Corcos et al. (1990), Gielen et al. (1985), and Mustard
and Lee (1987).

Finally, for movements where subjects are asked to move
as quickly as possible to a target zone, computer simulation
using the DL law predicts that the maximum velocity of the
dominant peak will increase with movement time, and
that the time to peak velocity will increase with an increase
of maximum velocity. These predictions can be verified
from the data reported by Brown and Cook (1981), Gielen
et al. (1985), Goggin (1989), and Mustard and Lee (1987).
It is also predicted that the maximum velocity increases
with displacement, as observed by many researchers (Binet
& Courtier 1893; Freeman 1914; Hoffman & Stick 1986;
Jeannerod 1984; Milner 1986). For a specific distance in-
terval, the latter relationship can be approximated by a
straight line with a positive intercept; this is consistent with
Wadman et al. (1979) and Milner (1986). Moreover, if the
relationship is plotted on a log-log scale, it can also be
approximated with a straight line for some specific distance
intervals. Such an observation has been reported by Brown
and Slater-Hammel (1949). Similar predictions are also
made for the relationship between the mean velocity of the
dominant peak as a function of the distance covered, in ac-
cordance with the linear approximation reported by Brook
(1974), Brown and Slater-Hammel (1949), and Freund and
Beudingen (1978).

3.2. The quadratic and power laws

One of the most striking predictions of Plamondon’s kine-
matic theory is related to its predictions concerning the
practical duration of a movement. Although a single lognor-
mal curve reaches a null value after an infinite time (Pla-
mondon 1991a), the subtraction of two lognormals may
result in one or two zero crossings in the velocity profile
(Plamondon 1993c; 1995b). The time occurrence (t1) of
these zero crossings can be calculated by canceling out the
DL law. This automatically leads to a quadratic law that
links the logarithm of the movement time4 as defined here
by MT 5 t1 2 t0 and the logarithm of the ratio of the
agonist-to-antagonist input commands:

a1(lnMT )2 1 a2 lnMT 1 a3 5 ln
D1
D2

(41)
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where

a1 5
s2

2 2 s1
2

2s1
2s2

2 (42)

a2 5
m2s1

2 2 m1s2
2

s1
2s2

2 (43)

s2
2m1

2 2 s1
2m2

2 1 2s1
2s2

2 ln
s1
s2a3 5

2s1
2s2

2 (44)

So, depending on the general aspect of the velocity
curve, zero, one, or two values will be observed for MT,5
and these will be linked to the ratio D1/D2. In other words,
the velocity profile will encompass one, two, or three peaks.
These different cases can be analytically described under
various parameter conditions (Plamondon 1993c; 1995b).
For example, if s2

1 5 s2
2 5 s2 then equation (41) reduces to

a linear equation with respect to lnMT, and there is a single
zero crossing in the velocity profile in this case, with a time
occurrence defined by a power law:

MT 5 t1 2 t0 5 Fexp Sm1 1 m2
2

DG SD1
D2

D
s2

m2 2 m1 (45)

5 K SD1
D2

Da

(46)

As previously said, the system parameters (mi, si) reflect
the global timing properties of the different neural and
muscular networks recruited for the production of a specific
movement of an end-effector. Since the limb inertial and
viscoelastic properties are fairly constant in adults, it is
conceivable that for a specific type of movement, the mi and
si will remain relatively constant or highly centered around
their mean values from one movement to another. There-
fore, for a set of synergetic movements of an end-effector
characterized either by fixed values of m1, m2, s1, s2, or by
the fact that m1, m2, s1, and s2 covary in such a way that ai in
equation (41) or K and a in equation (46) are constants, the
logarithm of the movement time will be linked to the
logarithm of the amplitude ratio of the input commands by a
quadratic law in general, or by a linear equation (a power law
in MT ) in some specific cases (Plamondon 1993c; 1995b).

These latter conclusions highlight an efficient strategy
that can be used by humans to control movement ampli-
tude and movement time at the command level. Indeed,
the movement amplitude (MA) – associated with the domi-
nant pulse in the case of one velocity zero crossing or with
the first two pulses when two zero crossings are observed in
the velocity profile – is obtained by integrating the delta-
lognormal law over movement time:6

MA 5 Et1

t0

v(t)dt . D1 2 D2 (47)

In addition, as can be seen from equations (41) and (45),
the movement time can be controlled either at the input
level, at the system level, or by both mechanisms together.
The input control of the movement time is reflected by the
ratio D1/D2 of the amplitudes of the agonist and antagonist
input commands. In other words, for one set of experimen-
tal conditions, if it can be assumed that the system parame-
ters m1, m2, s1, and s2 are fixed or covary in such a way that
ai in equation (41) or K and a in equation (46) are constant,
then the quadratic law directly predicts the duration of the
dominant peak of the velocity profile (as well as the dura-

tion of the second pulse when the profile has two zero
crossings).

From this input level perspective, the theory explains
how easy it can be to generate either one set of movements
with different amplitudes and the same duration, or move-
ments with the same amplitude but of different durations.
In other words, if a subject is instructed to generate
movements of different amplitudes within the same move-
ment time, he should use a pair of input commands having a
constant ratio (D1/D2 5 constant) while changing D1 2 D2
according to the required movement amplitude. If the goal
is to produce movements with the same amplitude but of
different duration, the subject must use a pair of input
commands having a constant difference (D1 2 D2 5
constant) while modifying the ratio D1/D2 according to the
required movement time.

3.3. Speed/accuracy trade-offs

In a Fitts’ task, a subject has to move a pointer to a target
positioned at a distance D from an origin and reach the
target within an absolute spatial error of 6DD as quickly as
possible. The first condition to be met by the subject can be
expressed as putting a limit g1 on the maximum relative
spatial error:

SDD
D

D
max

5 g1 (48)

where g1 is a constant for a specific task. The second
condition is described by equation (41):

a1(lnMTmin)2 1 a2lnMTmin 1 a3 5 ln SD1
D2

D (49)

where it is assumed that the ai are constants for an experi-
ment where the same neuromuscular synergy is involved.
The second constraint can thus be interpreted as putting a
limit g2 on the maximum ratio of the antagonist to agonist
input commands:

SD2
D1

D
max

5 exp 2 [a1(lnMTmin)2 1 a2lnMTmin 1 a3] 5 g2 (50)

To meet both conditions simultaneously, a subject has to
map the spatial constraints with the command constraint.
In this case, equations (48) and (50) are combined to obtain
the general expression of the constraints of a Fitts task on
the ratio of antagonist to agonist input commands:

SD2
D1

D
max

5
g2
g1

SDD
D

D
max

(51)

that is, to succeed in a Fitts task the ratio D2/D1 must be
proportional to the relative spatial error required by the
experimental protocol. In this context, substituting equa-
tion (51) with (49), the kinematic theory predicts that, in
general, a quadratic law will be observed between the
logarithm of the movement time and the logarithm of the
inverse of the relative spatial error:

a1(lnMTmin)2 1 a2lnMTmin 1 a4 5 ln S D
D D

D (52)

where a4 5 a3 1 ln(g2/g1) (53)

This quadratic law also reduces to a power law when a1 5 0.

MTmin 5 K1 S D
D D

Da

(54)

where K1 5 K Sg1
g2
Da

(55)
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In Figure 3, we have reproduced typical velocity profiles
that are predicted by the kinematic theory (Plamondon
1993c; 1995b) as a function of different values of D/DD.
Figure 3A shows some profiles corresponding to the qua-
dratic law (equation 52), whereas 3B depicts some examples
of the power law (equation 54). These curves are similar to
those reported by Corcos et al. (1988), Goggin (1989), and
Soechting (1984). The maximum velocity decreases as
D/DD increases. In addition, it is predicted that the asym-
metry of the profile increases as the accuracy demand be-
comes greater, that is, as D/DD increases. This is consistent
with the results of Corcos et al. (1988), Jeannerod (1984),
MacKenzie et al. (1987), Marteniuk et al. (1987), Milner
and Ijaz (1990), and Soechting (1984). Figures 3c and 3d
also show that the profiles cannot be perfectly rescaled but
their rising phase can be made almost similar after appro-
priate amplitude rescaling, as many others have reported.

The kinematic theory predicts that under experimental
conditions, where the system parameters are held constant
or covary in such a way that ai in equation (52) or K and a in
equation (54) are constants, an efficient strategy for pro-
ducing, for example, a specific reaching movement would
be to evaluate visually the distance D to be covered by the
end-effector and the relative spatial error DD/D sufficient
to accomplish the task. By coupling some sensory motor
maps in such a way that D 5 D1 2 D2 and D2/D1 ~ DD/D,
the target will be reached in a movement time predicted by
equations (52) and (54) for each specific case.

Plamondon’s (1991a; 1992a; 1993a; 1993b; 1993c; 1995a;
1995b) fundamental claim is that these relationships hold
even when the D or DD information is not directly spe-
cified, in which case the subject performs some visual
estimate and uses some kind of virtual or default values for
the missing information. In this perspective, the same
equation – (52) or (54) – can be used to analyze any single
rapid movements made under different spatiotemporal
conditions. In the Schmidt et al. (1979) protocol, for exam-
ple, subjects have to reach a target at distance D within a
certain movement time. The information about DD is not
specified. If we assume that subjects are roughly estimating
DD to succeed in this experiment, a strategy similar to the
one described above can be used and the predictions of the
kinematic theory (Plamondon 1993c; 1995b) can thus be
found for these conditions, if equation (52) is rewritten as:

DD 5 D(exp 2 [a1(lnMT )2 1 a2lnMT 1 a4]) 5 jD (56)

Because MT is fixed here, this equation predicts a pro-
portional relationship between DD and D for experiments
requiring subjects to perform aiming tasks with the same
neuromuscular synergy (mi, s2

i constant) within a certain
specified movement time (MT ). In addition, in this context
equation (56) predicts that MT will play the role of a scaling
factor, decreasing the slope of the proportionality relation-
ship for a longer movement time.

Similarly, for an experimental protocol such as the one
used by Howarth et al. (1971), where subjects are asked to
move from a home position to a constant distance (D ) while
measuring the error (DD ) for different movement times
(MT ), the kinematic theory predicts a quadratic relation-
ship between lnDD and lnMT in the general case:

lnD D 5 lnD 2 a1(ln MT )2 2 a2ln MT 2 a4 (57)

and a linear relationship between them for the specific case
where a1 5 0 (power law):

lnD D 5 ln D 2 a2ln MT 2 a4 (58)

Since D, DD, and MT are fixed, it can be seen that to
succeed in such a protocol the subjects will have to adapt
their mi and si to meet the constraint described by equation
(57) or (58).

Finally, for experiments dealing with time accuracy, such
as those reported by Newell et al. (1979), where subjects
are required to reach a target of fixed width (which is
equivalent to assuming DD 5 constant) under different
distance and movement time conditions, if the subject uses
a strategy governed by equation (52), the predictions of the
kinematic theory (Plamondon 1993c, 1995b) concerning
timing precision will be found under these conditions by
estimating the movement time errors DMT. Differentiating
equation (52) and assimilating the absolute errors to the
differentials (Topping 1972), we obtain:

D MT 5 S MT
2a1ln MT 1 a2

D D D
D

5
D D

(2a1ln MT 1 a2)V
(59)

where V 5 mean velocity

So, for experiments requiring the same absolute spatial
accuracy DD at different movement times, the absolute
timing error will be related to the movement time by a
nonlinear relationship. Moreover, the distance (D ) will act
as a scaling factor under these conditions. For the specific
case where s2

1 5 s2
2 (a1 5 0, power law), equation (59)

reduces to a proportionality relationship:

D MT 5
MT
a2

D D
D

5
DD
a2V

(60)

This summarizes the major list of predictions made by
Plamondon (1993b; 1993c; 1995a; 1995b) concerning the
kinematic theory. In the next section we report some
validation results based on the data available in the nu-
merous papers published on this topic.

4. Experimental results

Among the numerous studies dealing with speed/accuracy
trade-offs, many provide tables of numerical data that can
be used directly or indirectly to test the predictions of the
kinematic theory concerning speed/accuracy trade-offs.
We have grouped the tests under the four general headings
previously used in section 2.

4.1. Movements with spatial constraints, where both D
and DD are given

4.1.1. The data and the protocol. To test the validity of the
relationships between movement time and the inverse of
the relative spatial error, we have made an extensive survey
of the studies dealing with Fitts’ task. For any study where
sufficient numerical data were available7 we have run a
regression analysis using three equations:

a1(ln MT )2 1 a2ln MT 5 ln S D
D D

D 2 a4 (61)

ln MT  5 b1 1 b2 ln
D

D D
(62)

and MT  5 c1 1 c2 ln
D

D D
(63)

The first two equations are the quadratic and power laws
previously proposed by Plamondon (1993c; 1995b); the
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Figure 3. Properties of velocity profiles for movements with different accuracy demands. 3A: Typical velocity profiles corresponding to
the quadratic law. ——— DD/D 5 5.71⋅1021; .... DD/D 5 5.00⋅1021; ---- DD/D 5 4.00⋅1021; ⋅-⋅- DD/D 5 2.50⋅1021. 3B: Typical
velocity profiles corresponding to the power law. ——— DD/D 5 5.77⋅1021; .... DD/D 5 5.05⋅1021; ---- DD/D 5 3.85⋅1021;
⋅-⋅- DD/D 5 1.44⋅1021. (C) and (D) Approximate superimposition of the profiles of 3A and 3B, respectively, after amplitude rescaling.

third is the well-known equation generally referred to as
Fitts’ law (Fitts 1954), rewritten by us, using our own
notation for the relative spatial error (2A/W 5 D/DD ) as
well as using a natural logarithm instead of the base 2
logarithm. We found 11 studies, which provided 50
datasets. Their protocols are summarized in the Appendix
and some of their basic features can be found in Table 3.

4.1.2. Results. Table 3 reports the results of our regression
analysis over the 11 studies that were found with sufficient
numerical data. For each study, the value of the fitting cor-
relation coefficients for the quadratic law (R2

Q ), the power
law (R2

P ), and Fitts’ law (R2
F ) are listed under their specific

headings.
As can be seen from these values, the quadratic law is the

most powerful in predicting the data. It is either better than
(84% of the cases) or equivalent to (14% of the cases) Fitts’
law. The power law outperforms Fitts’ law in about 78% of
the cases. These results are in accordance with the facts that

a power law can be considered as a sufficient approxima-
tionof the quadratic law in many cases (Plamondon 1993a;
1993b) and that a logarithmic law can be seen as the first-
order approximation of a power law:

MT 5 K S D
D D

Da

(64)

5 K exp F ln S D
D D

DaG (65)

5 K H1 1 ln S D
D D

Da

1
1
2!

F ln S D
D D

D a G 2

1
1
3!

F ln S D
D D

DaG3
1 . . .J (66)

. K 1 a K ln
D

D D
(67)

To illustrate better the differences in the prediction
capacity of equations (61) and (62) over (63), we have
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Table 3. Results of a regression analysis: The predictive power of a quadratic and a power law vs. Fitts’ law

Study Features Remarks

Quadratic law

RQ
2

Power law

Rp
2

Fitts’ law

RF
2

Andres & Hartung
(1989a).

• 9 male subjects
• A 5 7.6, 15.2, 30.5 cm
• W 5 1.3, 2.5, 3.8 cm
• 18 datasets

Session 1, subject 1
Session 1, subject 2
Session 1, subject 3
Session 1, subject 4
Session 1, subject 5
Session 1, subject 6
Session 1, subject 7
Session 1, subject 8
Session 1, subject 9

0.96
0.95
0.92
0.86
0.84
0.89
0.84
0.81
0.88

0.92
0.91
0.92
0.86
0.83
0.89
0.84
0.81
0.88

0.95
0.83
0.91
0.84
0.84
0.86
0.83
0.80
0.87

Session 2, subject 1
Session 2, subject 2
Session 2, subject 3
Session 2, subject 4
Session 2, subject 5
Session 2, subject 6
Session 2, subject 7
Session 2, subject 8
Session 2, subject 9

0.89
0.96
0.88
0.89
0.89
0.99
0.78
0.90
0.83

0.89
0.96
0.88
0.89
0.87
0.97
0.78
0.89
0.83

0.87
0.93
0.87
0.87
0.81
0.89
0.77
0.89
0.81

Drury (1975) • 10 male subjects
• A 5 150, 225, 300, 375, 525, 675 mm
• W 5 25, 50 mm
• 1 dataset

0.98 0.95 0.92

Drury & Hoff-
mann (1992)

• 10 male subjects
• A was kept constant at 160 mm
• B 5 2, 6, 10, 14, 18 mm
• P 5 0, 5, 10, 15 mm
• W 5 B 1 0.6 P in probe condition
• W 5 B 1 10 in finger condition
• 2 datasets

Probe
Finger

0.96
0.98

0.96
0.97

0.96
0.98

Fitts (1954) • 16 male subjects participated in the first
3 experiments and 20 (10 men, 10
women) in the last one

• Tapping task: (A 5 2, 4, 8, 16 in; W 5
0.25, 0.5, 1.0, 2.0 in)

• Disk-transfer task: (A 5 4, 8, 16, 32 in;
W 5 0.0625, 0.125, 0.25, 0.5 in)

• Pin-transfer task: (A 5 1, 2, 4, 8, 16 in;
W 5 0.03125, 0.0625, 0.125, 0.25 in)

• 4 datasets

Tapping 1-oz stylus
Tapping 1-lb stylus
Disk-transfer task
Pin-transfer task

0.99
0.99
0.87
0.91

0.99
0.99
0.87
0.91

0.96
0.96
0.84
0.89

Gan & Hoffmann
(1988)

• 6 male and 6 female subjects
• A 5 4, 9, 16, or 25 cm
• ID 5 log (2A/W ) of 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, 4.5, 5.0, 6.0 bits
• 4 datasets

A 5 4 cm
A 5 9 cm
A 5 16 cm
A 5 25 cm

0.98
0.94
0.92
0.95

0.97
0.89
0.84
0.81

0.93
0.84
0.79
0.75

Hoffmann &
Sheikh (1991)

• 5 males and 5 females
• A 5 100, 200, 400 mm
• W 5 2, 6, 10, 14, 18 mm
• 2 datasets

Sharp probe
Finger

0.96
0.97

0.95
0.97

0.96
0.97

Johnsgard (1994) • 18 subjects
• A 5 2, 4, 8 in; W 5 0.5, 1, 2 in
• G 5 1, 2, 3
• 6 datasets

Mouse Gain 5 1
Mouse Gain 5 2
Mouse Gain 5 3
Glove Gain 5 1
Glove Gain 5 2
Glove Gain 5 3

1.00
0.99
0.99
1.00
0.99
1.00

0.99
0.99
0.99
0.99
0.96
1.00

0.98
0.97
0.98
0.99
0.99
0.99

(continued)
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Table 3. (Continued)

Study Features Remarks

Quadratic law

RQ
2

Power law

Rp
2

Fitts’ law

RF
2

Kerr & Langolf
(1977)

• 8 male subjects
• A 5 8, 12, 16, 20 in
• W 5 0.25, 0.5, 1.0, 2.0 in
• 9 datasets

Average (8 subjects)
Subject a1
Subject a2
Subject a3
Subject a4
Subject a5
Subject a6
Subject a7
Subject a8

0.94
0.96
0.84
0.84
0.43
0.80
0.90
0.93
0.81

0.94
0.95
0.84
0.83
0.43
0.80
0.88
0.92
0.79

0.93
0.93
0.81
0.83
0.42
0.76
0.83
0.91
0.81

MacKenzie et al.
(1987)

• 6 subjects
• W 5 2.54, 1.27, 0.64, 0.32 cm
• A 5 7.62, 15.24, 30.48 cm
• 1 dataset

0.98 0.97 0.96

Newman & Busso-
lari (1990)

• 19 subjects
• Fitts ID in the 1.5-3.7 bits range
• 2 datasets

Battery 2, no lag
Battery 2, lag

0.99
1.00

0.98
0.99

0.99
0.97

Repperger &
Remis (1990)

• 5 subjects
• Fitts ID in the 6.35-11.73 bits range
• 1 dataset

0.99 0.99 0.97

plotted on a log-log scale, in Figure 4, a few examples of the
data reported by some authors of these studies, describing
the predictions of the quadratic law, the power law, and
Fitts’ law. Even with a small (3%) difference in R2

F , the
predictions of Fitts’ law can lead to large errors, particularly
in curve extremities.

One might argue that part of the improvement gained by
the quadratic law could be the result of its encompassing
three parameters instead of two. However, this argument is
not valid when we compare the performances of the power
law and Fitts’ law, where the number of parameters is the
same in both cases. Figure 5 summarizes the results of this
comparison. It shows that on a mean basis, the quadratic law
gives a 2% increase in R2

Q  as compared with the R2
P of

the power law, which is itself 2% higher than the R2
F of

Fitts’ law. A similar analysis using the equation proposed by
MacKenzie (1989; 1992) gives results that are slightly bet-
ter than Fitts’ predictions (1% increase), but generally not
as good as those of the power law or the quadratic law (1%
and 3% worse, respectively).

In addition, it should be remembered that a larger
number of parameters is not an automatic guarantee of a
better fit (Alimi & Plamondon 1993a; Plamondon et al.
1993). For example, a regression analysis on the previous
50 datasets was executed using eight equations: quadratic
law (3 parameters), power law (2 parameters), Welford’s
equation (1 parameter), Fitts’ law (2 parameters), Welford
et al.’s equation (3 parameters), Jagacinski et al.’s equation
(3 parameters), MacKenzie’s equation (2 parameters), and
Meyer et al.’s equation (2 parameters). The results of this
analysis (Alimi & Plamondon 1995) show that the quadratic
law is generally the best among the three-parameters equa-
tions and that the three-parameters equations of Welford et
al.’s and of Jagacinski et al.’s often perform less well than
that of Meyer et al.’s or than the power law equation, both of
which have only two parameters. Thus, a larger number of
parameters with a less descriptive equation does not sys-

tematically improve the performances of a model in ex-
plaining real data.

When sufficient numerical data were available, we ran a
regression analysis using the same three equations as above,
but with the data grouped by amplitude values. The results
of this regression analysis are reported in Table 4. A similar
pattern is observed here that reflects the superiority of the
quadratic law and the power law over Fitts’ law.

In 4 out of 11 cases in Table 3, and in 2 out of 5 cases in
Table 4, sufficient data were available, and a statistical
analysis that was conducted shows that these differences
are significant:

• In Andres and Hartung’s (1989a) study (see Table 1),
R2

Q . R2
P (T(17) 5 2.6025, Prob . /T/ 5 0.0186), and R2

P 
. R2

F (T(17) 5 2.3108, Prob . /T/ 5 0.0337).
• In Fitts’ (1954) study (see Table 1), R2

P . R2.F (T(3) 5
11.0000, Prob . /T/ 5 0.0016), but R2

Q and R2
P were not

significantly different.
• In Gan and Hoffmann’s (1988) study (see Table 1), R2

P
. R2

F (T(3) 5 12.2574, Prob . /T/ 5 0.0012), but R2
Q and

R2
P were not significantly different.
• In Kerr and Langolf ’s (1977) study (see Table 1), R2

Q
R2

P (T(8) 5 2.8000, Prob . /T/ 5 0.0232), and R2
P .

R2
F (T(8) 5 2.3570, Prob . /T/ 5 0.0462).
• In Fitts’ (1954) study (see Table 2), R2

Q . R2
P (T(16)

5 4.2885, Prob . /T/ 5 0.0006), and R2
P . R2

F (T(16) 5
3.8454, Prob . /T/ 5 0.0014).

• In Kerr and Langolf ’s (1977) study (see Table 2), R2
Q .

R2
P (T(35) 5 2.5966, Prob  /T/ 5 0.0137), and R2

P . R2
F

(T(35) 5 4.2642, Prob . /T/ 5 0.0001).
Table 4 also highlights another phenomenon. As can

be seen from the R2
Q values, a better data fit is obtained

when data are grouped under the same movement ampli-
tudes than when they are grouped for all experimental
conditions. In the context of the kinematic theory (Plamon-
don 1995a; 1995b), this suggests that, depending on the
distance to be covered, a subject might use a slightly
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Figure 4. Fitting of data from typical experiments with a qua-
dratic law (solid line), a power law (truncated line), and Fitts’ law
(dotted line). (A) Data from the Fitts (1954) experiment: Tapping
1 oz. stylus. (B) Data from the Drury (1975) experiment. (C) Data
from the Mackenzie et al. (1987) experiment.

different neuromuscular synergy, and therefore slightly
different m1, m2, s1, and s2 parameters from one distance
to another. The data collected for each amplitude condition
will obey a specific quadratic (or power) law and the
grouped data will be a mixture of the slightly different laws
due to slightly different parameters. From an external point
of view, this could be misinterpreted as different relative
contributions of DD and D in these conditions, as has been
suggested by Sheridan (1979) and Welford et al. (1969).

4.2. Movements with spatial constraints where only D
is given

The predictions of the kinematic theory (Plamondon
1993c; 1995b) are summarized in equations (57) and (58)
for these conditions. Howarth et al. (1971) have reported
such an experiment, where subjects were required to move
from a home position to a constant distance target of
varying size (DD) at different movement times (MT ).8
These authors could not predict their results from Fitts’
law. Figure 6 presents their results, as plotted in a graph of
lnDD versus lnMT. The solid line shows the quadratic law
predictions (equation 57), and the dotted line the power
law approximation (equation 58). As can be seen, an almost
perfect fit is obtained in the former case (R2

Q 5 99%) and a
very good approximation is still reached in the second (R2

P 5
97%). In other words, the Howarth et al. experiment just
reflects another aspect of the quadratic law.

4.3. Movements with temporal constraints where MT is
given: Focus on spatial variability

The predictions of the kinematic theory in these conditions
are summarized in equation (56) (Plamondon 1993c; 1995b).
However, most of the papers dealing with this type of
movement study the relationship between the movement
distance and the standard deviation of the spatial error
along or perpendicular to the overall direction of move-
ment, not the absolute error (Schmidt et al. 1979; Wright
1983; Zelaznik et al. 1981; 1988). Two studies (Abrams et al.
1989; Wright & Meyer 1983) report both the standard
deviation (SD ), also referred to as the variable error (VE),
and the constant error (CE), from which the absolute error
can be estimated under the assumption of a Gaussian
distribution of errors (Schutz & Roy 1973):

EhDDj 5 uCEu(2Ay) 1 0.798 ÏVE · Fexp 2 S1
2

CE2

VE
DG (68)

where Ay represents the area between CE and the desired
target in a normal distribution. Substituting equation (68)
for (56), a strong correlation is predicted by the kinematic
theory, between EhDD j and D, if the Gaussian distribution

Figure 5. Summary of the comparison analysis between the
quadratic, power and Fitts’ laws for the 11 studies reported in the
text.
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Table 4. Results of a regression analysis: The predictive power of a quadratic and a power law vs. Fitts’ law,
by movements of similar amplitude

Study Remarks

Quadratic law

RQ
2

Power law

RP
2

Fitts’ law

RF
2

Fitts (1954) Tapping 1-oz stylus A 5 2
A 5 4
A 5 8
A 5 16

1.00
1.00
1.00
1.00

0.98
1.00
1.00
1.00

0.94
0.98
0.99
0.99

Tapping 1-lb stylus A 5 2
A 5 4
A 5 8
A 5 16

1.00
1.00
1.00
1.00

0.97
0.99
1.00
1.00

0.93
0.96
0.98
1.00

Disk-transfer task A 5 4
A 5 8
A 5 16
A 5 32

1.00
0.99
0.99
1.00

0.97
0.99
0.99
0.99

0.99
0.99
0.99
1.00

Pin-transfer task A 5 1
A 5 2
A 5 4
A 5 8
A 5 16

1.00
1.00
1.00
1.00
1.00

0.98
0.98
0.98
0.98
0.98

0.94
0.95
0.96
0.95
0.95

Hoffmann & Sheikh
(1991)

Sharp probe A 5 100
A 5 200
A 5 400

0.94
1.00
0.95

0.93
0.97
0.95

0.94
0.99
0.95

Finger A 5 100
A 5 200
A 5 400

0.96
0.97
0.97

0.92
0.97
0.91

0.93
0.97
0.92

Kerr & Langolf
(1977)

Average (8 subjects) A 5 8
A 5 12
A 5 16
A 5 20

1.00
1.00
1.00
1.00

0.98
1.00
0.94
1.00

0.94
0.98
0.90
0.98

Subject a1 A 5 8
A 5 12
A 5 16
A 5 20

1.00
0.99
0.97
1.00

1.00
0.98
0.97
0.99

0.96
0.92
0.96
0.96

Subject a2 A 5 8
A 5 12
A 5 16
A 5 20

0.96
1.00
0.84
0.99

0.95
1.00
0.80
0.97

0.93
1.00
0.82
0.99

Subject a3 A 5 8
A 5 12
A 5 16
A 5 20

0.96
0.99
0.69
0.99

0.94
0.96
0.55
0.98

0.90
0.90
0.63
0.97

Subject a4 A 5 8
A 5 12
A 5 16
A 5 20

0.86
0.92
0.98
0.99

0.86
0.23
0.95
0.69

0.84
0.21
0.95
0.70

Subject a5 A 5 8
A 5 12
A 5 16
A 5 20

0.83
1.00
0.90
0.98

0.83
1.00
0.83
0.97

0.81
0.99
0.79
0.85

Subject a6 A 5 8
A 5 12
A 5 16
A 5 20

0.97
0.94
0.89
0.95

0.96
0.90
0.76
0.90

0.94
0.86
0.72
0.86

Subject a7 A 5 8
A 5 12
A 5 16
A 5 20

0.97
1.00
1.00
1.00

0.91
1.00
0.97
1.00

0.85
0.96
0.91
0.98

(continued)
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Table 4. (Continued)

Study Remarks

Quadratic law

RQ
2

Power law

RP
2

Fitts’ law

RF
2

Subject a8 A 5 8
A 5 12
A 5 16
A 5 20

1.00
0.88
0.97
0.95

0.99
0.79
0.94
0.95

0.99
0.74
0.97
0.93

Mackenzie et al.
(1987)

A 5 7.62
A 5 15.24
A 5 30.48

1.00
0.98
0.96

0.99
0.98
0.96

1.00
0.98
0.96

hypothesis (Schutz & Roy 1973) holds in these experi-
ments. This prediction is confirmed by both studies
(Abrams et al. 1989; Wright & Meyer 1983). The Wright
and Meyer data are also consistent with the scaling effect of
MT, that is, EhDD j decreases as MT increases. Figure 7
highlights these predictions by plotting the best linear
regression between EhDDj and D over the different sets of
data reported by Wright and Meyer.

4.4. Movements with temporal constraints where MT is
given: Focus on temporal variability

The predictions of the kinematic theory can be found under
these conditions by equations (59) and (60). The study
performed by Newell et al. (1979) provides a dataset that
includes the absolute error DMT as a function of MT and for
two distance values. Both a nonlinear regression based on
equation (59) and a linear regression based on equation (60)
can be used to describe these data, as can be seen from
Figure 8. The nonlinear relationship provides a better fit,
although equation (60) gives consistent predictions. The
scaling effect of the movement amplitude is also clearly
apparent in this graph. Similar predictions can be derived
for Dtvmax

 as a function of tvmax
 in the same context. So, if

the target is reached at zero speed or at maximum velocity, a
proportionality relationship is predicted between the time
to contact and its absolute error.

Figure 6. Fitting of the data from Howarth et al. (1971) with a
quadratic law (solid line, R2

Q 5 0.99) and a power law (truncated
line, R2

P 5 0.97).

4.5. Other experimental protocols

The kinematic theory can also explain why consistent and
simple patterns do not always emerge under some specific
experimental conditions. For example, in the second exper-
iment by Zelaznik et al. (1988), subjects are required to land
in a spatial target zone and within a temporal bandwidth,
in other words, D, DD, and DMT are fixed in this experi-
ment. This protocol forces the subjects to change their
synergetic parameters m1, m2, s1, and s2 from one condi-
tion to another, and the data collected reflect a behavior still
obeying the quadratic law, but where nonconstant ai are
used from one task to another. In addition, since too many
constraints are put on the system and since m1, m2, s1, and
s2 certainly have upper and lower bounds, it is predicted
that some task requirements will not be met by some
subjects. This is clearly apparent in the data reported by
Zelaznik et al., particularly for large and precise movements
to be executed very fast.

Similar reasoning can be applied to explain the nonlinear
speed/accuracy functions recently reported by Newell et al.
(1993) for both spatial and temporal errors. The different
tasks cannot be executed under a single set of m1, m2, s1, and
s2, and a mixture of data from different quadratic laws are
collected, depending on the experimental groupings. Ac-
cording to the kinematic theory, a complete analysis of these
data would first require an analysis of each individual

Figure 7. Best linear regression between EhDDj (equation 68)
and D resulting from the proportionality between DD and D as
predicted by equation (56) for movements of the same duration.
Data from Wright and Meyer (1983, Tables 2 and 4). Solid line: MT
5 239 msec, R2 5 0.97. Dotted line: MT 5 317 msec, R2 5 0.93.
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Figure 8. Best nonlinear regression (equation 59, solid line)
and proportional regression (equation 60, truncated line) between
DMT and MT. Data from Newell et al. (1979, experiment 1). M D
5 5 cm, R2 5 0.99. D D 5 15 cm, R2 5 0.99.

velocity profile with a specific DL law, extracting the differ-
ent parameters that allow an optimal reconstruction of that
profile, followed by an analysis of the variations of these
parameters under different experimental groupings. As
long as the DL law parameters for each specific movement
are not extracted and analyzed individually and statistically,
these nonlinear observations will remain difficult to ex-
plain, although they probably reflect the effects of these
specific experimental conditions on the synergetic parame-
ters.

5. Discussion

As one can see from these results and predictions, the
kinematic theory of Plamondon (1993b; 1993c; 1995a;
1995b) can take into account the various forms of the
velocity profiles of an end-effector as well as its different
properties as a function of various experimental conditions.
Using a basic DL law (equation 41), all the resulting
observations can be described and analytical predictions
about movement time, time to maximum velocity, maxi-
mum velocity, and so on, can be performed. Using a
quadratic law (or a power law approximation) that derives
from the DL law, all the observations dealing with speed/
accuracy trade-offs can be described under a single frame-
work. Using a single model that schematizes the global
asymptotic behavior of a neuromuscular synergy, a simple
analytical description of very complex phenomena can be
reached. This is consistent with the fact that for a specific
set of tasks the same neuromuscular system is always being
used, under different spatial or temporal constraints. One
basic system – one basic description, but analyzed under
the numerous points of view provided by the different
experimental protocols that have been so cleverly designed
over the last century.

Taking each of these various curve fittings individually, an
improvement of a few percentage points would probably
not justify the adoption of a new specific theory. It is
interesting, however, that only one basic equation is suffi-
cient to explain all the data and to provide a new paradigm
for analyzing them from a new perspective. We summarize
below a few examples of the new points of view provided by

the theory, as reported and discussed in Plamondon (1993b;
1993c; 1995a; 1995b) and in Plamondon and Privitera (1995).

5.1. Origin of the speed/accuracy trade-offs

The kinematic theory of Plamondon (1993b; 1993c; 1995a;
1995b) provides a new insight into what might ultimately be
responsible for speed/accuracy trade-offs – the asymptotic
impulse response of a neuromuscular synergy, as described
by the DL law (equation 39). This law predicts that even if
there were absolutely no noise, no variability in the neuro-
muscular systems, a trade-off would have to be taken into
account by a subject planning a rapid movement at the
command level, because the distance to be covered is
predicted by the difference between the agonist and antag-
onist input commands (D 5 D1 2 D2), and the movement
time is linked to the ratio of these two commands (see
equation 41 or 45). Assuming that a coupling exists between
some sensorimotor maps in such a way that the ratio of
antagonist to agonist activities is made proportional to the
desired relative spatial error DD/D of the planned move-
ment, the different speed/accuracy trade-offs follow. These
trade-offs result from the rapid-aimed movements being
executed by an ensemble of networks that produce very
specific velocity profiles.

Using proprioceptive feedback, for example, a subject
can estimate the initial position of the end-effector to be
moved. Using visual feedback, the distance to be covered as
well as the required accuracy can be estimated. By coupling
this information with D1 2 D2 and D1/D2, respectively, an
appropriate pair of input commands can be fed into a
specific neuromuscular system. Depending on the path-
ways and units involved, the overall synergy will react with
logtime delays m1 and m2 and logresponse times s1 and s2.
Once the specific commands are fed into the agonist and
antagonist systems, the subject “already knows” from pre-
vious learning that the target will be reached with a certain
relative spatial error DD/D within a time MT, depending on
the acuity and integrity of the sensory information available
(visual, kinesthetic, or virtual). No visual feedback is
needed during the movement, except as will be discussed
below for the preparation of the next movement, if a
complex sequence is being executed.

In this context, the variability of the different parameters
describing a DL synergy is not the intrinsic cause of the
speed/accuracy trade-offs. This variability constitutes a
noise that is superimposed on the basic processes to pro-
duce motor output fluctuations around some mean values,
each of which is a specific movement being described by
the kinematic theory. In this context, the relationships that
have been reported to depict the variability of space or time
targets just emerge from the variability of the command
and system parameters according to basic experimental
constraints that are put on a subject who has to
cope with its intrinsic neuromuscular limitations, as de-
scribed in the context of the DL law (Plamondon 1993b;
1995a).

5.2. Control variables

The kinematic theory also provides an answer to the prob-
lem of control variables in rapid-aimed movement. Several
variables have been proposed for controlling limb move-
ments: force, velocity, length, stiffness, viscosity, and so on.
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(see Stein, 1982, for an extensive review). The kinematic
theory shows that for target-directed movements, the input
control variables D1 and D2 have to be coupled with
distance information (D and DD ), because the goal of the
subject is to exploit the asymptotic shape and properties of
the impulse response of its neuromuscular system. This
approach seems in accordance with the results of Houk and
Gibson (1987) and Gibson et al. (1985), who have shown
that short high-frequency bursts transmitted from the red
nucleus to the spinal cord in the rubrospinal track – as
recorded from monkey subjects trained to perform a visual
tracking task – code movement velocity in terms of the
burst frequency of the firing cells. In addition, burst dura-
tion in these experiments correlates closely with movement
duration, and the number of spikes in a burst correlates
with movement amplitude. Based on these observations, it
was suggested that red nucleus signals may serve to com-
mand velocity (Houk 1989).

Furthermore, Georgopoulos et al. (1984) have reported a
strong similarity between the asymmetry of the velocity
profile and the asymmetry of the vector cell population
profile. This has been interpreted by Bullock and Gross-
berg (1988) as a manifestation of the properties of the
neural networks that control movement.

A rapid-aimed movement may be seen as a motor task
producing a certain spatial output within relatively strin-
gent time limits. From a physics point of view, controlling
velocity seems to be the simplest way to perform such a
task. In this way, more complex movements, such as hand
writing, can be segmented into strokes with relatively less
activity at the beginning and at the end (Plamondon &
Maarse 1989). These strokes can be interpreted in terms of
spatial targets and a control strategy based on these virtual
targets can be learned from the visual inspection of a
trajectory (Plamondon & Privitera 1995).

In addition, the velocity vector is the sole dynamic
information that is uniquely related to the end-effector
trajectory: it is always tangent to the trajectory and can thus
be recovered at least partially from visual observation of a
real movement or of its trace image like, for example, in
handwriting. Other representations, such as acceleration or
force vectors, cannot. This is a major point to bear in mind
when considering the importance of the visual system in the
learning and control of more complex movements.

Some indirect evidence also support the importance of
velocity in movement generation. For example, in a com-
parative simulation of 14 simplified handwriting models, it
has been shown (Plamondon & Maarse 1989) that models
controlling the velocity output yield the best reconstruction
in an analysis-by-synthesis experiment. Similarly, in a study
of comparative performance of position, velocity, and accel-
eration signals for automatic signature verification, it has
been suggested that the velocity domain is one of the best
representation spaces for a 2D signature verification system
(Plamondon & Parizeau 1988).

5.3. Ballistic movements

The generation of a multiple peak velocity profile from a
single pair of synchronous impulse commands is one of the
most powerful characteristics of the DL law (Plamondon
1993b; 1995a). Most of the models published to date, if not
all, ignore or neglect secondary peaks in velocity profiles or
require specific commands for each peak (see Plamondon

et al., 1993, for a comparative review). The DL law shows
that secondary peaks emerge naturally from a single pair of
synchronous impulse commands when the agonist and
antagonist systems composing a synergy have different
logresponse times, different logtime delays, or both.

In this context, the kinematic theory provides a practical
definition of a simple ballistic movement: a rapid movement
produced by a synergy made up of agonist and antagonist
systems synchronously activated by a pair of impulse com-
mands D1U0(t 2 t0) and D2U0(t 2 t0), each system is
asymptotically characterized by a lognormal impulse re-
sponse. As can be seen from the examples given in Figure 2,
a simple movement does not necessarily result in a single
peak velocity profile. Depending on the state of the neuro-
muscular system, as depicted globally by the values of m1 and
m2, s1 and s2, a small velocity reversal or a double reversal
may occur. These secondary peaks do not have to be
associated with any closed-loop corrective submovements.
They are not the result of new input commands for making
trajectory corrections but are rather part of a single ballistic
movement and result from the differences in the timing
properties of the impulse responses of the agonist and
antagonist systems to a single pair of synchronous inputs.

The occurrence of these vanishing oscillations in the
system response to a single pair of synchronous commands
seriously questions the concept of corrective movements or
submovements that have been put forward in the past by
several researchers to explain phenomena related to
speed/accuracy trade-offs of simple movements. The kine-
matic theory provides a way to check if there are real
closed-loop homing-in phenomena in more complex trajec-
tories. Indeed, using equation (39), a complex experimental
velocity profile can be reconstructed by concatenating and
superimposing a few basic units (that might incorporate
secondary peaks). The optimal solution to this signal recon-
struction process would provide the number and the rela-
tive importance of the submovements needed to synthesize
the complex velocity profile. In addition, if multiple solu-
tions emerge in analyzing these data (Guerfali & Plamon-
don 1994), the DL law could serve as a basis for studying
strategies and optimizing principles that might be involved
in the production and control of complex movements
(Guerfali & Plamondon 1995).9

5.4. Complex movements

In light of the kinematic theory, many previous results can
be reanalyzed and new experiments planned to study the
effect of the command and system parameters on move-
ment kinematics. This will require the measurement of the
complete velocity profiles and the extraction of movement
parameters (Alimi & Plamondon 1994; Plamondon et al.
1995a; 1995b). With such an approach, a set of simple
ballistic movements can be studied under different experi-
mental conditions in terms of changes in the input com-
mands and of changes in the global state of the system,
instead of focusing on data-driven interpretations like sin-
gle/multiple movements, accelerating/decelerating phases,
closed- and open-loop portions, and so on. Since the theory
does not require continuous feedback, it can also be useful
in providing criteria to discriminate between open- and
closed-loop conditions. If the velocity profile of a move-
ment cannot be fitted by a DL law (as could happen, for
example, for complex visual tracking tasks), this might
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suggest that the corresponding movement, or part of it, has
probably involved some kind of continuous feedback and
that the DL law does not hold in these conditions.

It is interesting that the theory provides some cues on the
necessity or possibility of using feedback information. Un-
less default or virtual values are used for D and DD,
feedback is necessary prior to movement initiation to evalu-
ate D and DD and to recruit the proper neuromuscular
networks (as characterized by mi, si). Once a movement is
initiated, a specific DL velocity profile is generated and the
end-effector will reach its target within MT within a relative
spatial error DD/D, and a relative timing error DMT/MT. If
some new sensory information is provided during that first
movement, which requires a change in the planned trajec-
tory to a new target, another movement with more or less
similar DL characteristics (depending on the new neuro-
muscular networks recruited) would be initiated and a new
velocity profile would start to become superimposed vec-
torially on the previous one. Using this methodology, more
complex movements can be analyzed by vector superim-
position of different ballistic units (Plamondon 1992b;
1992c; Guerfali & Plamondon 1994; 1995).

5.5. Sequence generation and control

Assuming that the built-in properties of the DL law are
known and exploited by a subject, we have recently devel-
oped a neural network model that generates and learns
rapid movement sequences – each described by a DL
velocity profile (Plamondon & Privitera 1995). In other
words, we have used the kinematic theory to describe a
neuromuscular synergy that is coupled to a neural map
representing the planning space and composed of leaky
integrator elements. In light of the basic arguments previ-
ously introduced, the generation of a structured motor plan
is then seen as the outcome of a predefined mental image of
the movement, where only the principal targets and their
corresponding time sequence is already represented before
execution, with an indication related to the evaluation of the
acceptable spatial error of the movement.

A movement sequence is instantiated by a recall of the
movement sequencing plan from the long-term memory
and the corresponding positioning of this plan on the
surface of the planning space: all the virtual targets compos-
ing the sequence are settled on the surface of the leaky
integrator grid and the map finally represents a sort of
virtual imagery of the movement. By means of a simple
competition mechanism, we can define a threshold process
capable of detecting the descending part of the velocity
of each motor stroke and consequently of instantiating
the next ballistic stroke. This point of synchronization de-
pends on the time requested for the movement: the higher
the velocity of the movement the faster the next motor im-
pulse has to be anticipated, finally risking losing the in-
tended form of the movement. On the basis of this virtual
imagery, which is kept for the entire course of the external
movement sequencing, the command generator is able
to activate the corresponding sequence of impulse com-
mands D1 and D2 for the neuromuscular synergy. During
movement learning, the same process is exploited: in this
case the movement is executed by an external subject
and the occurrence of a synchronization point is inter-
preted as the location of one of the virtual targets compos-

ing the new movement. The goal of the learning phase is to
build a central representation of the observed movement by
means of storing the sequence of corresponding virtual
targets.

5.6. Motor-perception interaction

One key interpretation highlighted by the kinematic theory
of Plamondon (1993b; 1993c; 1995a; 1995b) is the inherent
relationship that must exist between the perceptual infor-
mation and the motor commands. Indeed, to execute a
target-directed movement, at least two basic cues must be
perceived from the environment or from mental imagery
previously acquired from learning: the distance (D ) to be
covered and the absolute error (DD ) that is required in
executing that movement. The knowledge of the absolute
position of the target and the end-effector is not necessary
at this stage, although it might be needed at another level to
estimate the two previous pieces of information. Once this
information is extracted from the optic flow, it has to be
matched via different sensorimotor maps into two com-
mands, D1 and D2, whose difference, D1 2 D2, predicts the
movement amplitude (D ) and whose ratio, D1/D2 ~ D/DD,
predicts the movement time (MT ) (Plamondon 1993b;
1993c; 1995a; 1995b). Depending on the status of the
neuromuscular synergy recruited in the process, as de-
scribed by the parameters m1, m2, s1, and s2, the resulting
DL velocity profile will be more or less complex, in terms of
its number of pulses (up to three for a single pair of
commands). Proper coupling between the different stages
involved in the continuous activation process will result in a
faster or a slower movement, depending on the relative
precision that is required by the task.

In other words, once a subject has learned how to control
a specific neuromuscular synergy to execute a spatially
constrained task with a specific end-effector, a specific DL
velocity profile does emerge due to the coupling that is
developed between the different components of the agonist
and antagonist systems involved (equation 39). This allows
the subject to “forget” about the synergy itself and concen-
trate on the goal of the action at a higher level, via a direct
coupling between the global activation commands and the
relevant perceptual information. In this context, the move-
ment time does not have to be planned or programmed in
advance as a specific goal, since it will automatically emerge
from the selection of the ratio of two basic activation
commands. Even when the maximum absolute error (DD )
is not specified by the experimenter, the subject is probably
able to extract from the environment or from past experi-
ence a significant or a default value for this cue (mental
imagery). In any case, the spatial target will generally be
reached within a movement time MT, as predicted by the
quadratic law.

How is this mapping done? What types of maps are
necessary, from a retinotopic to a motor representation?
How are intermodality sensorimotor commands encoded
as the target position and as spatial resolution? How does
the learning affect the time delays of the different compo-
nents? These are some of the questions that are raised by
the new point of view provided by the kinematic theory. We
hope to see some constructive suggestions made by the
commentators, to help shed some light on these potential
mechanisms.
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6. Conclusion

This target article had two specific goals. First, we wanted
to make clear that speed-accuracy phenomena, as observed
in simple rapid-aimed movements, are still without a fully
comprehensive interpretation. Second, we tried to show
that the kinematic theory recently proposed by Plamondon
(1993b; 1993c; 1995a; 1995b) provides a general frame-
work in which such phenomena can be described and
further studied.

To reach our first goal, a systematic survey of the scien-
tific literature dealing with speed/accuracy trade-offs was
presented to highlight the numerous mathematical and
theoretical interpretations that had emerged over recent
decades from the various studies that had been conducted
on this topic. Although reflecting the richness of the studies
in the field and the high degree of interest that such basic
phenomena represent for the understanding of human
movement, such a variety of points of view questions the
validity of many of the models with respect to their capacity
to explain all the basic observations consistently reported in
the field.

In the second part of this article we have summarized
Plamondon’s kinematic theory of rapid human movement
in which the basic properties of the proposed model
emerge as a fundamental consequence of its architecture.
By considering the asymptotic behavior of a large number
of dependent linear systems, this theory provides a mathe-
matical expression describing the velocity profile of an end-
effector driven by the action of a synergy made up of an
agonist and an antagonist system. The resulting equation
that describes the velocity profile, referred to as a DL law
(Plamondon 1993b; 1995a), can be used to depict the
kinematic properties of simple ballistic movements and,
more specifically, the various aspects of speed/accuracy
trade-offs from a quadratic or a power law (Plamondon
1993c; 1995b), which emerges from it. So, within a single
framework it is possible to take into account the basic
observations consistently reported in the classical studies in
the field.

The kinematic theory (Plamondon 1993b; 1993c; 1995a;
1995b) encompasses both similarities and dissimilarities
with respect to the other models previously published. For
example, unlike the minimum jerk (Hogan 1984) or the
minimum torque (Uno et al. 1989) models, the theory does
not require any minimization criterion to generate “bell-
shaped” velocity profiles. The form invariance of the profile
is evident in the asymptotic behavior of a large number of
coupled neuromuscular networks. However, for the study
of a more complex trajectory, where many DL equations
will have to be superimposed to reproduce the complete
velocity profile, it is expected that optimization principles
will have to be incorporated into the theory to reduce the
number of potential solutions. As in the impulse timing
models (see Plamondon & Maarse, 1989, for a review), the
kinematic theory succeeds in separating the command and
the system parameters, except that the end of the activation
does not have to specify directly a particular parameter at
the command level (Plamondon 1993c; 1995b). Unlike the
equilibrium point models (Feldman 1966; 1986; Polit &
Bizzi 1979), where the focus is mainly on the modeling of
the mechanical properties of the muscles, or the neural
network models (Bullock & Grossberg 1988), where the

emphasis is on the modeling of the architectural properties
of the neural systems – the kinematic theory provides a
global view based on the timing properties of both the
neural and the muscular networks. The price for such
generalization is that it is difficult, without further experi-
ments, to provide a direct biological interpretation for the
system parameters m1, m2, s1, and s2, and further study is
needed in this context. Unlike the neural network models,
the kinematic theory is based on the linear system theory. It
provides an analytical solution for describing the trajectory
of a well-learned rapid movement, but it does not provide
too many cues on the learning process itself. However,
using the basic knowledge that emerges from the theory, it
is possible to construct higher-level neural networks that
can learn to generate complex movements (Plamondon &
Privitera 1995). Finally, the model can be considered to
stand in between purely parallel (e.g., Ulrich & Wing 1993)
and purely sequential models (e.g., Plamondon 1991a). The
proportionality relationship (equation 38) that is assumed
to exist between the cumulative time delays of the different
stages of the equivalent sequential representation of the
synergy is a way to take into account the different hierarchi-
cal couplings (both sequential and parallel) that exist in a
synergy.

As will probably be reflected in the commentaries, al-
though the kinematic theory is very powerful at a descrip-
tive level, numerous questions remain unanswered in the
study of well-learned tasks. To answer most of them, new
experiments will have to be designed or old data will have to
be reanalyzed. To progress in our understanding of rapid
human movements and to take advantage of the new
window provided by the kinematic theory summarized
here, a large set of velocity profiles will have to be studied
with an analysis-by-synthesis methodology based on an
optimal parameter fitting of the DL law to these profiles
(Alimi & Plamondon 1993a; 1993b; 1994; Plamondon et
al. 1993; Plamondon et al. 1995a; 1995b). We hope that
the analysis of the parameters that will be extracted from
these studies will provide some answers to these unsolved
problems.

APPENDIX
Eleven studies were selected to compare the performance of the
quadratic law versus the power law and Fitts’ law; these studies
provided 50 datasets. Their protocols are summarized below.

Andres and Hartung (1989a). The study consisted of two experimental
sessions. Nine male subjects were asked to move a chin stylus
reciprocally between targets of various widths and separations.
Using a Fitts’ reciprocal tapping task, the subjects’ head move-
ment capability was predicted by recording the time intervals
between movements of the chin stylus repetitively tapped be-
tween two target plates located along the horizontal axis of a recip-
rocal tapping apparatus. The experimental protocol consisted of
nine A/W conditions (A 5 7.6, 15.2, and 30.5 cm; W 5 1.3, 2.5, and
3.8 cm), giving a Fitts’ index of difficulty ID 5 log2(2A/W ) in the
2 to 5.58 bits range. The mean movement times were reported for
the nine subjects and the two sessions for each A/W condition,
providing a total of 18 datasets.

Drury (1975). Ten male subjects participated in experiment II of this
study. Each subject started reciprocal tapping using his preferred
foot. Six different amplitudes (A 5 150, 225, 300, 375, 525, and
675 mm) were crossed with two pedal sizes (W 5 25 and 50 mm),
giving a Fitts’ index of difficulty ID 5 log2(2A/W ) in the 0.918 to
3.335 bits range. The mean width of subjects’ shoes (108.8 mm)
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was added to the target width as a reasonable adjustment, because
any portion of a shoe touching the target was recorded as a hit. The
mean movement times over subjects for experiment II were
reported for each A/W condition, providing one dataset.

Drury and Hoffmann (1992). In this study, experiment I dealt with a
standard Fitts’ paradigm. Ten male subjects were asked to make
discrete movements to hit simulated keyboard keys. The ampli-
tude of movement A was kept constant at 160 mm (light key
spacings) and five target boards were used onto which were
attached target sets of width (B 5 2, 6, 10, 14, and 18 mm). The
subjects held four metal probes in their hands, flat across the palm
so that the probes would produce a natural extension of the index
finger. These probes had tip widths of (P 5 0, 5, 10, and 15 mm). A
further condition, in which the subjects used their index fingers as
the probe, was also included (the mean pad width in this case was
11 mm).

To evaluate W in Fitts’ index of difficulty ID 5 log2(2A/W ), the
authors used W 5 B 1 0.6 P in the probe condition (B was the
target width and P the probe width) and W 5 B 1 10 in the finger
condition. The mean movement times over subjects for single
targets were reported for each A/W condition for the probe and
the finger conditions, providing two datasets.

Fitts (1954). In this original study four experiments were reported,
consisting of a reciprocal tapping task with a stylus of 1 oz and 1 lb,
a disk-transfer task, and a pin-transfer task. Sixteen male subjects
participated in the first three experiments, and 20 subjects (10
male and 10 female subjects) in the last one. In the tapping task,
four distances (A 5 2, 4, 8, and 16 in) and four target widths (W 5
0.25, 0.5, 1, and 2 in) were used, giving a Fitts’ index of difficulty
ID 5 log2(2A/W ) in the 1 to 7 bits range. In the disk-transfer task,
four distances (A 5 4, 8, 16, and 32 in) and four target widths (W 5
0.0625, 0.125, 0.25, and 0.5 in) were used, giving a Fitts’ ID in the 4
to 10 bits range. Finally, in the last pin-transfer task, five distances
(A 5 1, 2, 4, 8, and 16 in) and four target widths (W 5 0.03125,
0.0625, 0.125, and 0.25 in) were used, giving a Fitts’ ID in the 3 to
10 bits range. The mean movement times over subjects were
reported for each A/W condition and for all the tasks, providing
four datasets.

Gan and Hoffmann (1988). Six male and six female subjects were
asked to make discrete tapping movements about the elbow in a
left-to-right direction, and to make these as rapidly as possible.
The apparatus consisted of boards having a starting plate and a
target plate at a distance of (A 5 4, 9, 16, or 25 cm) from the
starting plate and each board had a constant Fitts’ ID 5
log2(2A/W ) of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, and 6 bits. The mean
movement times over the subjects were reported for each ID and
each A condition, providing four datasets.

Hoffmann and Sheikh (1991). Five male and five female subjects took
part in this experiment. There were 15 experimental conditions
(A 5 100, 200, and 400 mm; W 5 2, 6, 10, 14, and 18 mm).
Movements were made by the subjects’ either holding a sharp-
pointed probe or using the finger as a probe. The probe was
pointed at its tip. The mean finger pad size of the 10 subjects was P
5 10.2 mm. Times for the discrete movements were measured
from the moment the probe left the starting plate until the
moment it contacted the target. The mean movement times over
subjects were reported for each A/W condition for the sharp-
probe condition and the finger condition, providing two datasets.
For the finger condition, the value of the finger width P was added
to the target width W to obtain the effective target width used in
the calculus of the indices of difficulty.

Johnsgard (1994). In this study 18 subjects were asked to move a
cursor from a starting position to a rectangular bar target drawn on
the computer screen, using a mouse or a virtual reality glove.
Three target amplitudes were chosen (A 5 2, 4, and 8 in), fully
crossed with three target widths (W 5 0.5, 1, and 2 in). For each

device, three values of gain were tested (G 5 1, 2, and 3). The
mean movement times over the subjects were reported for each
ID and each G condition, providing three datasets for each device.

Kerr and Langolf (1977). Eight male subjects participated in the
experiment. The task consisted of moving a stylus forward from a
back contact plate to hit a target placed at specified distances in
front of the subject. Four levels of movement distance were
chosen (A 5 8, 12, 16, and 20 in), and for each of these, four target
widths were chosen (W 5 0.25, 0.5, 1, and 2 in), giving a Fitts’ ID
in the 3 to 7.32 bits range. The mean movement times were
reported for the eight subjects for each A/W condition. So nine
datasets10 were available (the eight subjects and the mean of all
the subjects).

MacKenzie et al. (1987). Six subjects participated in the experiment
with a discrete tapping task. There were 12 experimental condi-
tions with the same IDs as in experiment 1 of Fitts and Peterson
(1964). Four target diameters (W 5 2.54, 1.27, 0.64, and 0.32 cm)
were crossed with three amplitudes (A 5 7.62, 15.24, and 30.48
cm), giving a Fitts’ ID in the 2.58 to 7.58 bits range. The mean
movement times over all subjects were reported for each A/W
condition, providing one dataset.

Newman and Bussolari (1990). Nineteen subjects performed two
batteries of tests, where unusual body dynamics were imposed on
subjects to assess altered environment performance. The results
of the first battery of tests are not used here, because only two
points were given in the ID versus MT dataset. Eleven subjects (six
females and five males) participated in the second battery of tests,
where an altered environment was electronically created by intro-
ducing a first-order lag characteristic between the graphic input
device and the computer. The dynamics of the arm motion-input
device with a lag bear little resemblance to human arm motion-
input device dynamics in microgravity. However, an astronaut
performing tasks in the weightless state is in an analogous situation
by being exposed to unusual body dynamics and responses. The
average movement times over the subjects were reported for a
Fitts’ ID in the 1.5 to 3.7 bits range, for two conditions (with and
without lag), providing two datasets.

Repperger and Remis (1990). Five subjects ran five trials each of the
five different stylus diameters selected with the same task hole.
Subjects were placed in an exoskeleton device to investigate the
feasibility of using such devices in the performance of a Fitts’ task.
The mean movement times over all subjects were reported for a
Fitts’ ID in the 6.35 to 11.73 bits range, providing one dataset.

NOTES
1. It should be noted that if V 5 0, we obtain an expression of

MT for the case of static targets, which is still different from Fitts’
formulation.

2. It should be noted that if D 5 0, we obtain an expression of
MT for the no-delay case, which is similar to Fitts’ formulation.

3. One should not confuse between what we call the logtime
delay (m) and the logresponse time (s), which refers to (log t ), a

logarithmic time scale, with the time delay Sexp Sm 1 s2

2 DDand

the response time (hexp[2m 1 s2]exp[s2 2 1]j 1/2) of a lognormal
on a conventional time scale (Plamondon 1995a).

4. We should use the term “activation time” here, since the
definition of (t1 2 t0) is more general than the operational
definition of the movement time that is normally used in most
studies. According to the kinematic theory, movement time refers
to the whole activation time, beginning at the initiation of the input
command t0 and finishing at t1, when the velocity reaches zero.
Therefore, the time reference for computing movement time is
not the reaction time (tr ), that is, the time where the end-effector
begins to move, but t0, the time of occurrence of the commands.
Since, for a specific set of identical movements produced by the
same synergy, t1 2 tr should be proportional to t1 2 t0, we will not
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distinguish between activation time and movement time, to avoid
confusion.

5. A supplementary zero velocity value is also predicted for t1
5 `. See Plamondon (1993b; 1995a) for a discussion about this
asymptotic prediction.

6. Depending on the relative importance of the surface under
the velocity curve from the longest time occurrence of the zero
crossing to tf 5 ̀ , the approximation will be more or less realistic.
For example, for many results reported in Figures 2 and 3a,b, the
approximation defined by equation [47] would certainly be ac-
ceptable. In general, since the remainder will be a function of the
system parameters (m1, m2, s1, s2), control from both input
command and system processes might have to be taken into
account in some extreme cases.

7. A few studies were eliminated for these reasons: Beggs and
Howarth (1972), who reported only three values of D/DD; Carlton
(1980), who reported only two values of log2 D/DD; Kerr (1973,
p. 177), included the trials that missed the target in the calculation
of MT; Kvalseth (1977, p. 43), for the same reason as Kerr (1973);
Spitz (1990, p. 407), included in the measure of MT the time to
stabilize the cursor on the target.

8. The DD values were computed from the effective target
values (We ), reported by the authors, using their method DD 5
4.11 * We (Howarth et al. 1971).

9. We always assume here that the recording devices or the
manipulanda used by the subjects have a negligible effect on the
neuromuscular impulse response. If these mechanical devices
strongly interfere with the end-effector under study, the DL
velocity profile might be partially masked by the impulse response
of the recording devices itself, making data analysis really more
complex.

10. For subject 7, the value 000.3 (probably a typing error) in
Table I was replaced by 600.3, which is consistent with the mean
value reported (Kerr & Langolf 1977).

ACKNOWLEDGMENTS
This work was supported partially by grants NSERC-000915 and
ICR046114 from NSERC Canada, grant ER1220 from FCAR
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Dynamics of trajectory formation and
speed/accuracy trade-offs
Reinoud J. Bootsmaa and Denis Mottetb
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Abstract: Though capable of reproducing experimentally observed veloc-
ity profiles, the model proposed by Plamondon & Alimi (P&A) does not
provide a viable theoretical framework for the understanding of trajectory
formation and speed/accuracy trade-offs. The issues of variation and

stability can be better understood by considering movement as resulting
from an underlying dynamic rather than from an impulse-response of the
system.

Starting from the point of view that the asymmetric bell-shape of
the velocity profile of aiming movements constitutes an essential
invariant of the movement pattern, over the last few years Plamon-
don and collaborators have refined a model capable of reproduc-
ing this invariant. Assuming that the kinematic pattern observed is
the result of the difference between the velocity outputs of
agonist–antagonist neuromuscular systems, each responding in a
lognormal fashion to a discrete activation impulse, Plamondon &
Alimi (P&A) aim to provide a general theoretical framework in
which trajectory formation and speed/accuracy trade-off phenom-
ena can be understood.

Plamondon’s model is indeed capable of generating adequate
velocity profiles for simple unperturbed aiming movements di-
rected toward stationary targets. To do this, seven parameters are
proposed, three of which are supposed to reflect the command
level and four the system level. Because of the metatheoretical
position taken, with the command level dominating a somehow
known system, all the neural and (bio)mechanical properties of the
effector chain as well as those of the environment are regrouped
under the same heading, rendering a meaningful biological inter-
pretation of the so-called system parameters practically impossi-
ble. Thus, while the model can, under specific circumstances,
reproduce the velocity profiles experimentally observed, it does
not provide a coherent set of interrelated theoretical (explanatory)
concepts and as such does not, at present, constitute a theory of
trajectory formation.

P&A’s claim that speed/accuracy trade-offs “are inherent con-
straints that emerge directly from the delta-lognormal impulse
response of the global neuromuscular system” (sec. 3, para. 3) is
not warranted, because the relationship between MT and relative
spatial accuracy (equations 51 and 52) is not an emergent property
of the delta-lognormal law of equation 39. Rather, this relation is
externally imposed, based on the observation that in a Fitts’ task a
subject is confronted with both speed and accuracy constraints,
followed by the equation of these two constraints in the language
of the model. Obviously, we are not suggesting that the quadratic
law relating ln(MT) to ln(D/DD) does not give a good description
of the speed/accuracy trade-off in Fitts’ type tasks; we are simply
suggesting that this relationship is empirically rather than theoret-
ically founded. In fact, the most surprising feature of the model in
this respect is that, while dealing with movement amplitude and
movement time, it does not address spatial or temporal accuracy
(i.e., variation) in a principled manner and therefore cannot
constitute a theoretical framework for understanding the origin of
the speed/accuracy trade-off.

Not only is the model completely deterministic, it is inherently
unstable: a small perturbation already suffices to ensure that the
target is never reached and that the movement never ends. This
lack of stability results from the pure feedforward character of the
model but may also be related to the absence of a positional
anchoring, thus rendering its generalization to continuous move-
ments tasks even more difficult.

These shortcomings can be overcome by considering the move-
ment as resulting from an underlying dynamics rather than from
an impulse-response of the effector system. The equilibrium point
models, developed on the basis of the mass-spring analogy, consti-
tute a first (but in our view insufficient) step in this direction. The
full advantage is obtained by adopting a nonlinear dynamical
systems perspective.

From such a perspective, the actual behaviour of the system
is considered to reflect the presence of an attractor plus noise,
where the attractor is the behavioural expression of the self-
organisational properties of the environment-actor system under
the pressure of the task constraints, and the noise represents
microscaled random fluctuations. This attractor-plus-noise char-
acterization has important consequences. The movement kinema-
tics and the (attractive and hence stable) behavioural pattern are
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both emergent properties of the operational régime of the under-
lying dynamical structure. Apart from its ability to deal with
coordination phenomena (Haken et al. 1985), the power of the
dynamical systems approach can be seen in its capability of
reproducing the main aspects of trajectory formation for both
discrete and continuous movements (e.g., Beek et al. 1995;
Schöner 1994). Trajectory formation thus considered has direct
consequences for speed/accuracy trade-offs, since variability is an
intrinsic component of any such dynamical model.

Using a five-parameter nonlinear dynamical model, the move-
ment kinematics in Fitts’ tasks can be accurately reproduced
(Mottet & Bootsma 1995). Moreover, the speed/accuracy con-
straints operating in task space can be meaningfully redefined in
the model’s parameter space: the movement time and the spatial
accuracy requirements act, respectively, as (1) a constraint on the
(nonlinearly varying) stiffness (the globally stiffer the system, the
faster the motion) and (2) a constraint on the stability (the stabler
the system, the lower its spatial dispersion). Because this stability
is essentially due to a Rayleigh-type damping term, the increase in
peak velocity with movement amplitude and the increase in
asymmetry of the velocity profile with accuracy are emergent
properties. Thus, contrary to Plamondon & Alimi’s position, such
an approach allows a theoretically founded perspective on trajec-
tory formation and the reasons underlying the emergence of
speed/accuracy trade-offs.

Speed/accuracy relations: The kinetic–
kinematic link and predictions for rapid
timing tasks
Les G. Carltona and Yeou-Teh Liub

aDepartment of Kinesiology, University of Illinois at Urbana-Champaign,
Urbana, IL 61801; bDepartment of Kinesiology, Pennsylvania State
University, University Park, PA 16802. lcarlton6uiuc.edu;
yeouteh6psu.edu

Abstract: Recent accounts of the speed/accuracy relation for motor tasks
have focused on the concept of motor output variability. We outline the
advantages of this approach and the limitation of Plamondon’s model in
explaining movement error. We also examine and present complimentary
data for rapid timing tasks. While these tasks do not meet the presented
assumptions, the data still fit the model predictions.

Plamondon has formulated a neuromuscular synergy model for
the control of rapid aimed movements that accounts for
speed/accuracy relations under a number of task conditions. The
strength of his work is that it predicts a number of speed/accuracy
related findings from a single model. There are also some limita-
tions to the model. Two points that we will address concern the
importance of linking kinetic variability to movement accuracy
and the predictions of the model related to rapid timing tasks.

Force variability and movement accuracy. The approach used
by Plamondon & Alimi (P&A) focuses on space-time tasks but for
the most part ignores the linking of accuracy in these tasks to
accuracy in force production itself. This is in contrast to recent
models and approaches that have linked accuracy to motor output
(e.g., Schmidt et al. 1979). One of the prime advantages of this
approach for studying motor functioning is the integration of
kinetic and kinematic accuracy functions. The implicit and some-
times explicit assumption is that such a link is possible and will lead
to a unified theory that can account for variability and, therefore,
accuracy in a variety of tasks (Carlton & Newell 1993). Plamon-
don’s model does not address the locus of the accuracy function
and makes no predictions for the isometric force production case.

In order to explain the speed/accuracy relation in motor tasks, it
is necessary to explain the source of the error. The concept of
absolute spatial error is introduced by P&A in equation 48 by
defining a variable (g1) equal to maximum relative spatial error. To
perform a space-time task the performer must evaluate the dis-
tance, the relative spatial error (DD/D), and couple “some sensory

motor maps in such a way that D 5 D1 2 D2 and D2/D1 a DD/D”
(sect. 3.3, para. 4). What are these sensory motor maps? How are
they developed? The important point is that there is no theoretical
basis for this process – a process that is critical for moving from the
general model to the specifics of the speed/accuracy predictions.
One way to conceive of these spatial-temporal maps would be to
think of them as large look-up tables. It appears that the maps
would need to be specified for various combinations of synergy
parameters because changes in the synergy parameters would
result in a change in the relation between movement time and
relative accuracy (equation 54). Even so, this would not explain the
nature of the error.

Timing accuracy. P&A use experiments and data from Newell
et al. (1979) to demonstrate that their model can account for time
accuracy. Unfortunately, these experiments do not match the
description provided or the assumptions that are used to produce
the equations to predict time accuracy. Yet, the model accounts for
the data quite well! In fact, with a few modest assumptions, the
model predicts not only these timing data but also those from
other rapid timing experiments (Newell et al. 1993a; 1993b).

Spatial errors in these experiments are not constant. In rapid
aiming tasks the subject attempts to move through a set distance in
a fixed movement time. Spatial errors are an outcome measure
based upon arriving at the target too soon or too late. There were
no measures of spatial error in Newell et al. (1979). Even though
the model’s assumptions do not match the characteristics of the
data, it is surprising how well it predicts the empirical findings.
Two experiments by Newell et al. (1993a; 1993b) demonstrate
this. The experiments either held distance constant and varied
movement time (MT) or held MT constant and varied distance.
We would argue that the data that emerged from these experi-
ments are consistent and simple patterns, contrary to P&A’s
suggestion (sect. 4.5, para. 1). In fact, the data from both these
experiments fit equation 60 very well. Equation 60 can be rewrit-
ten to obtain:

DMT/MT 5 1/a2 DD/D. (1)

Assuming small constant errors, true for most of Newell et al.’s
data, variable error can be substituted for absolute error. With this
adjustment, the coefficient of variation of movement time [((sd of
MT)/MT)] is proportional to the coefficient of variation of spatial
error.

Figure 1 shows the relationship between spatial and temporal
coefficients of variation for the three experiments from Newell et
al. (1993a). For each set of data the fit was highly linear with a near
zero intercept. This relation also holds for Newell et al. (1993b,
Fig. 7).

Summary. We see the model as providing predictive and curve
fitting power, but little explanation for the inaccuracy of move-
ment. There are other limitations to the model. Two that we did
not focus on are (1) the validity of its internal architecture and its
testability, and (2) the difficulty of disproving the model because
discrepant data can be accounted for by hypothesized changes in
synergy patterns. Plamondon & Alimi are probably right in their
conclusion: “Speed/accuracy phenomena . . . are still without a
fully comprehensive interpretation” (sect. 6, para. 1).

Visual control of target-directed movements
Romeo Chuaa and Digby Elliottb
aLaboratory for Perceptual-Motor Dynamics, Faculty of Physical Education
and Recreation, University of Alberta, Edmonton, Alberta, Canada T6G 2H9;
bMotor Behaviour Laboratory, Department of Kinesiology, McMaster
University, Hamilton, Ontario, Canada L8S 4K1. rchua6per.ualberta.ca;
elliott6mcmail.cis.mcmaster.ca

Abstract: Visual feedback regulation during movement is not fully cap-
tured in Plamondon’s kinematic theory. However, numerous studies indi-
cate that visual response-produced feedback is a powerful determinant of
performance and kinematic characteristics of target-directed movement.
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Figure 1 (Carlton & Liu). Relationship between relative time
error and relative space error from Newell et al. (1993a). Panel A
5 Experiment 1 (30 degrees), Panel B 5 Experiment 2 (10
degrees), Panel C 5 Experiment 2 (50 degrees).

This influence remains despite extensive practice, with subjects learning
to use the sensory information available during movement acquisition
more efficiently.

Plamondon & Alimi (P&A) present a model that provides an
account of speed/accuracy trade-offs and predicts kinematic char-
acteristics of rapid goal-directed movements. Similar to recent
theories of speed/accuracy trade-offs (Meyer et al. 1982; 1988;
Schmidt et al. 1979), Plamondon’s (1995a; 1995b) model is primar-
ily open-loop in nature. That is, “sensory feedback is not used to
control the trajectory,” but rather, “advance information from
sensory events is used as a feedforward control to adjust the
properties of the neuromuscular system with respect to the task
objective” (Plamondon 1995a, p. 296). An assumption of the
model is “that linearity and feedforward control emerge through
practice and learning” (Plamondon 1995a, p. 296). We take issue
with these assumptions of Plamondon’s kinematic theory of rapid
human movements. Evidence from our labs and elsewhere indi-
cates that when visual response-produced feedback is available, it
is used to modify aiming trajectories and reduce error. Moreover,
recent studies indicate that rather than becoming less dependent
on visual feedback with practice, improved skill at aiming involves
learning to use visual feedback more rapidly and efficiently.

Since the classic work of Woodworth (1899), it has been appar-
ent that the elimination of vision during the execution of target-
directed movements results in increased movement error and
end-point variability. Thus the assumption of the kinematic theory
that visual feedback is not needed during movement seems at odds
with many studies showing accuracy advantages when visual
feedback is available, even for very rapid movements (i.e., 125
msec; Carlton 1992). Studies that have, for example, manipulated
visual conditions through the use of occlusion spectacles (Elliott et
al. 1995b), removal of ambient lighting (Elliott & Allard 1985;
Zelaznik et al. 1983), or extinguishing a graphic cursor from a
monitor (Chua & Elliott 1993; Elliott et al. 1995a) have all
demonstrated that the presence or absence of visual feedback is a
potent influence on the outcome and kinematic characteristics of
the movement.

Presumably, the performance advantages observed when visual
feedback is available reflect rapid closed-loop corrective pro-
cesses. This position is consistent with kinematic differences
between aiming movements completed with full vision and those
in which vision of the effector is eliminated upon movement
initiation. Particularly when the instructional set emphasizes accu-
racy (Carson et al. 1993; Elliott et al. 1991) or when the error
tolerance is small (Chua & Elliott 1993; Elliott et al. 1995b),
subjects take more time to complete movements when full vision
is available than when it is eliminated upon movement initiation. A
greater proportion of the movement time is spent after peak
velocity. Moreover, if one examines discontinuities in acceleration
profiles after peak velocity, such as secondary zero-crossings, these
occur more frequently when vision is available during that portion
of the trajectory (Carson et al. 1993; Chua & Elliott 1993). Typical
velocity and acceleration profiles for a visually closed-loop and a
visually open-loop aiming movement by the same subject appear
in Figure 1.

Trajectory modifications in the form of secondary velocity peaks
and deviations in acceleration have been interpreted as reflective
of feedback-based corrective processes (Chua & Elliott 1993). In
contrast, P&A question the notion that such trajectory deviations
are necessarily corrective in nature and show that secondary peaks
in the velocity profile could simply emerge as a result of the
neuromuscular dynamics. Thus, an interesting issue here might be
how to distinguish between secondary peaks that reflect neuro-
muscular dynamics and those that reflect corrective attempts.
Another issue pertaining to trajectory modifications is the infor-
mation used to prepare such modifications. According to the
kinematic theory, a trajectory modification could come in the form
of a secondary movement generated and superimposed on the
initial trajectory. Given that movement trajectories fail to exhibit
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Figure 1 (Chua & Elliott). Velocity and acceleration profiles from a single subject from Experiment 1 of Chua & Elliott (1993).
The left panels are profiles from a full-vision condition, and the right panels are from a no-vision condition. Movements were made
with a mouse on a graphics tablet to a 1 cm target at a distance of 13 cm (index of difficulty 5 4.7). Note the deviations in the full-vision
profiles.

periods of “dead time,” during which velocity is zero for an
extended period of time, and the presence of processing delays,
the sensory information required for the preparation of a second-
ary movement must be derived during the initial movement
(Carson et al. 1993; Chua & Elliott 1993). Such a requirement
would seem at odds with the kinematic theory’s assumption that
visual feedback is not needed during the movement.

While one might argue that performance and kinematic differ-
ences between visual conditions are transient and disappear after
participants have had sufficient practice to develop the type of
central representation(s) necessary for feedforward control (Pla-
mondon 1995a; Schmidt & McCabe 1976), there is also evidence
to suggest the contrary. Proteau et al. (1987) had subjects practice
a simple discrete aiming movement either 200 or 2,000 times with
full vision before transferring them to a situation in which vision
was eliminated upon movement initiation. Contrary to the view
that the learner progresses from a closed-loop to open-loop mode
of control with practice, subjects with extensive practice under full
vision showed greater performance decrements than those with
limited practice. Further, in a study in which the amount of vision
available during spatially constrained aiming was manipulated
(vision eliminated either 400 or 600 msec into the movement), we
found that, regardless of practice condition, subjects quickly
adjust their movement trajectories to make maximal use of the
visual feedback available (Elliott et al. 1995a). This suggests that if
some sort of central representation develops with practice, we
have argued that this phenomenon may be a result of subjects
becoming more efficient in utilizing feedback or becoming more
accurate in their movements in general, or that movement regula-
tion is becoming more continuous in nature. A key point is that

performance is nevertheless affected by the presence of visual
feedback during the movement.

Although many of the studies we have cited were not intended
to specifically examine speed/accuracy tradeoffs, we have pro-
ceeded with the assumption that the kinematic theory is meant to
be a model of movement production in general. However, it is not
entirely clear whether the model holds for feedback-regulated
movements. It is our view that any comprehensive account of
speed/accuracy relations in goal-directed movement must con-
sider the important role played by vision both prior to and during
movement execution. It is through the exclusion of the latter
criterion that the kinematic theory fails to fully appreciate the
visual regulation of movement.

Are speed/accuracy trade-offs caused by
neuromotor noise, or not?
Willem P. De Jong and Gerard P. Van Galen
Nijmegen Institute for Cognition and Information (NICI), 6500 HE Nijmegen,
The Netherlands; dejong6nici.kun.nl; vangalen6nici.kun.nl

Abstract: Notwithstanding its overwhelming descriptive power for exist-
ing data, it is not clear whether the kinematic theory of Plamondon & Alimi
could generate new insights into biomechanical constraints and psycho-
logical processes underlying the way organisms trade off speed for accu-
racy. The kinematic model should elaborate on the role of neuromotor
noise and on biomechanical strategies for reducing endpoint variability
related to such noise.

The kinematic theory of Plamondon & Alimi (P & A) has a number
of attractive features. It incorporates, for example, the fundamen-
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tal antagonistic nature of the motor apparatus, and it uses the idea
that the motor system consists of many serially and linearly
coupled elements. Both features seem to be inspired by a need to
design a biologically realistic theory of aiming behavior. The DL
model is able to fit the velocity profile of a wide variety of ballistic
movements almost perfectly, and it is also capable of capturing the
empirical results of many studies on spatially as well as temporally
constrained aiming movements. In light of these attractive fea-
tures and their descriptive power, what could possibly be wrong
with the DL model? Perhaps a serious flaw is that the model does
not generate new insights into motor control theory, in spite of the
many assumptions and parameters that the model seems to need.
This is not to say that the theory could not, in principle, do so.
However, before that stage, some fundamental questions need to
be resolved. We will concentrate on two of these issues, the first
being that it is unclear how the parameters m and s are related to
biomechanical control parameters such as stiffness and viscosity.
The second issue is the apparent deterministic nature of the DL
model, which does not seem to rely on any inherent noisiness of
the human motor system, whereas the latter is such an apparent
feature to explain the speed/accuracy trade-off phenomenon.
Again, we think that the kinematic theory could indeed generate
new insights on these issues, but presently it is silent about them.
An answer to the first question is already given by P&A, who state
that the kinematic theory gives only a global overview and that
further experiments are needed “to provide a direct biological
interpretation for the system parameters” (Conclusion). The
second question will be discussed below.

Where variability vanishes. Some theories rely on the concept
of motor variability, or neuromotor noise, to explain the speed/
accuracy trade-off seen in rapid aiming movements (Fitts et al.
1954; Fitts & Peterson 1964; Meyer et al. 1988; Schmidt et al.
1979; Van Galen et al. 1995), whereas others explicitly do not
(Crossman & Goodeve 1983). The kinematic theory, discussed in
the target article, clearly belongs to this last category. The delta-
lognormal model (DL) is, at first sight, completely deterministic
and does not need any kind of variability to explain the
speed/accuracy trade-off normally observed in spatial- or time-
constrained movements. Can it be true that neuromotor noise
indeed fails to play any significant role in the control and outcome
of ballistic movements? And does the kinematic theory of P&A
give us evidence that it does not?

What is neuromotor noise? The term neuromotor noise is used
in the present context to indicate that the motor system is inher-
ently noisy, like any other dynamic system, and that no part of the
motor system, from the neurons in the brain to the motor units in
the muscles, ever behaves in a totally predictable way. The reader
should note that this interpretation is different from the static
interpretation of noisiness of the human motor system according
to which the outcome of a motor act is unsure. The actual endpoint
of an aiming movement is the outcome of a noisy control signal and
the noise-reducing properties of the biomechanical system (Van
Galen & De Jong 1995). It is well known that humans are not
capable of exerting a completely constant force; there is always
some kind of uncontrolled variability. In our modeling of goal-
directed movements, this phenomenon is equivalent to neuromo-
tor noise. There is, of course, a large difference between such an
isometric force and the normal force pulses seen in ballistic
movements, but it is likely, and demonstrated in many experi-
ments, that these brief force pulses in ballistic movements contain
uncontrolled variability as well (Schmidt et al. 1979; Van Galen &
Schomaker 1992).

Is there no noise in the delta-lognormal (DL) model? At first
sight the DL model does not contain any noisy components. It
nevertheless describes the speed/accuracy trade-off in a convinc-
ing manner, showing that there is a relation between the minimum
movement time needed to reach a target and the maximum
allowed relative spatial error (equation 52). This corroborates the
major claim of the kinematic theory that the speed/accuracy
trade-offs are inherent constraints that emerge directly from the

delta-lognormal impulse response of the global neuromuscular
system involved in a synergy. So, what kind of system does actually
cause this impulse response?

According to Plamondon (1993), the neuromuscular system
involved in a synergy consists of many interacting components. All
these components react with a slightly different random time
delay (ej) to the central impulse command (equation 38), resulting
in a bell-shaped velocity profile that can be mathematically de-
scribed with the lognormal function. We think that this random
proportional time delay (ej) of the individual components does
indeed imply that there is some kind of neuromotor noise present,
even in the DL model. Van Galen & De Jong (1995) implemented
a computational model, not so different from the DL model, which
does explicitly simulate the effects of this type of neuromotor noise
on endpoint variability. Moreover, the model also simulates the
noise-reducing effects of stiffness and viscosity. In the present
version of kinematic theory, the latter variables are implicitly
controlled by the subject through the learned choice of an appro-
priate D1 and D2 (and also the parameters m and s). It is not made
clear, however, how such an agonist–antagonist regime relates to
noise-exaggerating and noise-reducing properties of the motor
system. In our view, any new theory of motor control should refer
to the optimization of these biomechanical constraints. P&A’s
theory seems to offer a global explanation of fast-aiming move-
ments in which neuromotor noise is apparently not needed. At the
same time, it is also important to note that there is indeed a
random variable (ej) present in the definition of the lognormal
function, which could be responsible for the global speed/
accuracy trade-off.

In conclusion, an intriguing thing about the kinematic theory of
Plamondon & Alimi is the emphasis on the slightly different
response delays of the many components out of the motor system.
This uncertainty in the timing of the components of the neuromo-
tor systems is very similar to the way others have tried to model the
role of neuromotor noise. It is, in the end, this random delay in the
response to the command parameters that causes the bell-shaped
velocity curve and also the speed/accuracy trade-off. The theory
does not thereby demonstrate, however, that neuromotor noise
does not contribute significantly to this trade-off.

Kinematic theory: From numerical fitting
to data interpretation

Michel Desmurget, Claude Prablanc, and Yves Rossetti
INSERM U94, 69500 Bron, France. prablanc6lyon151.inserm.fr

Abstract: Plamondon’s kinematic theory is very powerful from a descrip-
tive point of view. Unfortunately, the fact that it neglects some fundamen-
tal features of the motor system, such as nonlinear inertial torque interac-
tions or joint redundancies, limits its explanatory power and biological
validity. As a consequence, the data presented by Plamondon & Alimi
should be analyzed and interpreted with caution. There appears to be a
gap between the observations reported by the authors and some of the
conclusions they draw.

As emphasized by Plamondon & Alimi (P&A), numerous models
have been developed during the last decades in the literature
dealing with speed/accuracy trade-offs in rapid aimed move-
ments. The short, but rather complete survey provided by P&A
shows that most of these models rely on engineering notions such
as information theory and control theory. This is also the case with
Plamondon’s kinematic theory. However, unlike most authors,
P&A incorporate memory and learning as putative factors to
account for the speed/accuracy trade-offs in rapid aimed move-
ments. When considered together with the ability of the kinematic
theory to account for most of the results published in the litera-
ture, this feature makes P&A’s model very heuristic and powerful.
These positive aspects, however, conceal some crucial questions
we would like to address in this commentary.
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Our first concern is related to the biological plausibility of the
model. Plamondon’s theory relies on a quadratic law, which, by
adjusting four parameters of the synergies between the agonist
and antagonist muscles, accounts for the various speed/accuracy
trade-offs in the literature. However, the presence of nonlinear
inertial torque interactions in multijoint movements (Hollerbach
& Flash 1982) and the nonlinear relation linking arm moment to
joint angles (Hogan 1985) make this model into an equivalent
circuit rather than a biologically plausible model at the level of the
final joint torque control. In fact, like the minimum jerk model
(Flash & Hogan 1985), the kinematic theory, which neglects the
redundancy problem and focuses on the global output of the
motor system, tells us little about the organization of movement at
the joint level. The regularities observed by P & A could only
reflect higher levels of movement representation, that is, the fact
that both the time-varying structure and the path followed by the
hand have a direct neural representation for certain types of
movements (Flash & Hogan 1985; Desmurget et al. 1997).

Another important point is related to what is usually called
“additive theory.” According to this theory, “experimental velocity
profile[s] can be reconstructed by concatenating and superimpos-
ing a few basic units” (target article, sect. 5.3), and “movements
can be analyzed by vector superposition of different ballistics
units” (sect. 5.4). This assumption, already proposed to account for
the eye and arm movement modifications in double step trials
(Van Gisbergen et al. 1987; Flash & Henis 1991), and for the arm
movement control in single step trials (Crossman & Goodeve
1983; Meyer et al. 1988; Milner 1992), has been challenged by
several studies demonstrating the inability of the additive proce-
dures to account for the movement reorganisation observed dur-
ing double step trials. For instance, Massey et al. (1986) have
observed that the trajectory modification observed when target
location was modified during movement initiation involved first
the application of antagonist forces to break the initial movement
and second the implementation of a new movement joining the
current position of the arm and the second target. A similar
strategy has been reported in several experiments with prehension
movement (Paulignan et al. 1991; Gentilucci et al. 1992).

Another major challenge to the additive theory was provided by
Pélisson et al. (1986), who demonstrated the existence of smooth
trajectory reorganisation when the target position was modified at
the peak velocity of the ocular saccade (which corresponds
roughly to hand movement onset for synergic eye-hand re-
sponses). Contrary to the predictions of the additive scheme, these
authors showed: (1) that movement durations were not increased
when the target location was modified, and (2) the acceleration
and velocity profiles related to the perturbed movements did not
exhibit secondary peaks. These results suggested the existence of
an internal feedback loop continuously comparing the spatial
representation of the target location with the internal representa-
tion of hand location, the latter being centrally and/or peripherally
derived. Additional support for this view has recently been pro-
vided by Hoff and Arbib in a computational study (Hoff & Arbib
1993). The fact that the movement durations observed in Pélisson
et al.’s study (1986; see also Prablanc & Martin 1992) were
equivalent to the durations recorded in several studies quoted by
P&A to illustrate the existence of invariant velocity profiles for
“fast movements” (sect. 3.1) makes the foregoing remarks relevant
to the present discussion.

Our last and probably most important point concerns the
dissociation between feedback and feedforward processes. Ac-
cording to P&A, their theory “can also be useful in providing
criteria to discriminate between open- and closed-loop conditions.
If the velocity profile of a movement cannot be fitted by a DL
law, . . . this might suggest that the corresponding movement . . .
has probably involved some kind of continuous feedback and that
the DL law does not hold in these conditions” (sect. 5.4). The
implications of this assertion are two: (1) the velocity profiles that
can be fitted by a DL law involve a purely feedforward control; (2)
the velocity profiles observed for ballistic movements (purely

feedforward control) should be significantly different from the
velocity profiles observed for controlled movements (feedback
control). There seems to us to be a long stretch from the applica-
tion field of the kinematics theory to these conclusions. Indeed, as
demonstrated by Prablanc and colleagues in a series of experi-
ments on rapid aimed movements performed without vision of the
limb (or more exactly with movements that can be considered
rapid according to the examples provided by P&A, sect. 3.1), the
final accuracy of the motion is significantly deteriorated when the
target is turned off at hand movement onset (Prablanc et al. 1986).
Moreover, when the position of the target is modified around
movement onset unknown to the subject (see above), the error
induced by the perturbation is almost fully corrected, without
modification of the shape of the velocity profile (Goodale et al.
1986; Pélisson et al. 1986; Prablanc & Martin 1992). As shown by
these results, the simple presence of the target is sufficient to
trigger feedback processes, and the shape of the hand velocity
profile is not always a relevant criterion for distinguishing between
feedforward and feedback controls. These observations cast some
doubt on the strong conclusions in P&A’s discussion.

In summary, although P&A’s kinematic theory is both very
heuristic and powerful from a descriptive point of view, its explan-
atory power remains debatable when one considers the neural
mechanisms involved in movement control and generation. In
fact, like previous engineering models, the biological validity of
Plamondon’s theory seems to be limited, as it does not take into
account some critical features of the motor system, such as
nonlinear inertial torque interactions or joint redundancies. This
limitation dictates some caution when extrapolating from numeri-
cal agreement to biological functions.

How do neuronal and muscle-mechanical
properties contribute to the performance
of the “delta lognormal” model?
C.C.A.M. Gielen
Department of Medical Physics and Biophysics, University of Nijmegen,
Nijmegen, The Netherlands. stan6mbfys.kun.nl

Abstract: Plamondon & Alimi’s model will gain substantially in credibility
when it is able to come up with predictions for new (rather than old)
experimental results that discriminate between various models. Moreover,
the present model is nothing more than a descriptive “black box,” not an
explanation for motor performance. A link to the contribution of various
neuronal mechanisms involved in motor control and of muscle properties
to the performance of the model is crucial.

Plamondon and Alimi (P&A) present a synthesis of their recently
developed model and provide a comparison of its performance
with that of other models available in the literature. Based on the
results presented in their target article, the results of this compari-
son are favorable for their model. Although this may seem to
provide strong support, theirs, like any model, should be treated
with a healthy dose of scepticism. For a new model, it is not enough
to provide a better fit to the available data in the literature. It should
also suggest very specific hypotheses that allow falsification and can
discriminate between various models. Hence a prediction of the
results of new experiments should follow in order to show that the
model can contribute to the understanding of “what might ulti-
mately be responsible for speed/accuracy trade-offs.”

P&A’s model is based on the assumption that many subsystems
are involved in the process of motor control and that the contribu-
tion of this large number of subsystems justifies the use of the
central limit theorem, which states that the sum of a large number
of randomly chosen distributions will converge to a Gaussian
distribution. In this context it should be remarked that the central-
limit theorem guarantees a Gaussian distribution, but the parame-
ters of the Gaussian distribution (e.g., the mean and standard
deviation) depend on the nature of the underlying probability
distributions. This might be used to test the model and to relate its
performance to various parts of the motor system.
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It is of crucial importance for any model of motor control to at
some point allow the identification of the contribution of the
various (neuronal and muscle-mechanical) components of the
motor system. This could be done in various ways. For example,
various serial and parallel neural pathways are involved, as ex-
plained in the target article. It would accordingly be extremely
important to study the parameters of P&A’s model in conditions in
which different neural pathways are active. A possible experiment
might involve movements to visible targets and “remembered”
targets. Movements to a remembered target require an internal
cuing mechanism that is known (see Cunnington et al. 1996, for an
overview) to be related to the involvement of the supplementary
motor area (SMA). It would be interesting to see how involvement
of the SMA would affect the parameters of the lognormal model.

It is well known that the relative contribution of muscles
depends on the type of motor task. For example, the relative
contribution of the elbow flexor muscles biceps, brachialis, and
brachioradialis is different in isometric contractions and in move-
ments (Gielen & van Ingen Schenau 1992; Theeuwen et al. 1994).
As a consequence, one might expect that if the number of active
muscles or motor units, or the type of muscle (mono- or biarticu-
lar) is relevant for the Gaussian distribution in the lognormal
model, the parameters of the lognormal model might be different
for isometric contractions and isotonic movements.

Along the same lines, one might expect to find different param-
eters for the lognormal model for periodic movements at various
frequencies. This follows from experiments in cats (Smith et al.
1980) that demonstrated that in fast repetitive movements of the
hind limb, the fast gastrocnemius muscle is active and that m.
soleus is quiet, whereas in slow movements it is the other way
around. Other evidence in favor of different contractile properties
of muscles at different movement frequencies comes from recent
experiments (Gielen et al. 1994; van Bolhuis et al. 1997), which
have revealed differences in recruitment order in isometric con-
tractions and repetitive movements. Since it is well known that
each muscle has a large number of motor units, each with different
contractile properties, a different distribution of active motor
units will result in different contractile properties. Motor units
with a low isometric recruitment threshold are not fatiguable and
have twitches with a relatively small amplitude and long duration.
Motor units with a high isometric recruitment threshold are
fatiguable and have motor units with large twitches with short
twitch contraction times. Since it has been demonstrated that the
recruitment order of motor units is different in isometric contrac-
tions and in lengthening contractions (Nardone et al. 1989), one
should expect differences in contractile properties of muscle in
these conditions. This indicates that the properties of muscle are
not the same but can vary in different conditions.

These observations indicate that some of the basic assumptions
that underlie the lognormal model (e.g., the time-invariant prop-
erties of the system) may not be justified. Since the present version
seems to give a better fit than previous models, this is a step
forward. However, before it can give an ultimate explanation for
human motor performance based on the neurophysiological and
muscle mechanical properties, we have to go a long way, which
may eventually lead to a different model.

Accuracy and variability of the movement
in Fitts’ and Schmidt’s laws
Simon R. Goodman
Department of Physiology, Rush-Presbyterian St.-Luke’s Medical Center,
Chicago, IL 60612-3864. srg6enteract.com

Abstract: In Schmidt’s experiments, only properties of actually produced
movements systems are measured; in Fitts’ experiments, external task
parameters are measured too (target size and distance). Thus, the laws
contain variables of different natures and cannot be reduced to each other
even formally. These difference especially reveals itself in modeling: a
model of variability can be simpler if it deals with the performance

variables only. On the other hand, modeling Fitts’ law, one should take into
account not only the human effector system but features of the experimen-
tal apparatus as well. These differences have not been sufficiently re-
flected in Plamondon & Alimi’s target article.

The number of topics mentioned in Plamondon & Alimi’s (P&A’s)
target article is very large, so we will make only three observations:

(1) Concerning prediction from “the kinematic theory of Pla-
mondon” (see sect. 3), we would like to make a terminological
observation about the use of the words “theory” and “prediction.”
Webster’s Dictionary gives the word “hypothesis” as a synonym for
the word “theory.” If P&A’s paper contains a hypothesis, it also
should contain predictions based on it that can be rejected or
affirmed. Indeed, there are plenty of predictions in the target
article (the word “predict” is used about 70 times), and all of them
are affirmed. As it can be understood from the article, P&A have
predicted already published results, that is, confirmed “postdic-
tions” rather than predictions (while traditionally, predictions are
followed by experiments). This can confuse a reader, especially at
the beginning of the article.

(2) The second observation is about the nature of the notions
“accuracy” and “variability” (which, alas, also can be considered
terminological). Unfortunately, the difference between these no-
tions is repeatedly ignored. Accuracy can be estimated from one
measurement; variability characterizes a set of measurements. In
Fitts’ law [MT 5 a1 1 b1lg2(2D/W), MT is movement time, D is
the movement distance, W is target size, a1 and b1 are some
constants], there is a dependence between movement accuracy
and movement time. Schmidt’s law (SD 5 a2 1 b2D/MT, SD is
distance standard deviation, a2 and b2 are some constants) de-
scribes a dependence between movement variability and move-
ment velocity. In Fitts’ experiments, parameter W is the external
task parameter (target size); in Schmidt’s experiments, SD de-
scribes properties of the studied human movement system. Thus,
the laws contain variables of different natures and cannot be
reduced to each other even formally. This difference reveals itself
especially in modeling: A model of variability is simpler; it deals
with the actual moving system only, and SD comes out as a
parameter of the set of measured movement distances. Vice versa,
modeling Fitts’ law, one should take into account not only the
human moving system but part of the experimental apparatus (the
target with its parameter, D and W), and its perception by the
subject. These differences have not been sufficiently reflected in
the target article, although it was expected from the title.

Just combining the known formulae, one can come to a new
result. On the one hand, this result is a tautology; on the other
hand, it could be interpreted in an important and unexpected way.
However, the usefulness of the new formula needs to be demon-
strated. For example, excluding distance from the pair of equa-
tions given above, we can obtain a new law connecting target size,
distance standard deviation, and movement time:

aW/(SD 2 b) 5 22MT/c MT,

where a, b, and c are constants. Analysis of this formula is still
ahead.

(3) The third observation concerns the analytical expression
modeling a measured dependence. A rich collection of such
expressions fitting trajectories of reaching movements was repre-
sented by Plamondon et al. (1993). P&A prefer to work with their
own expression, because it fits the experimental curves better than
others. However, a comparison with other expressions cannot be
made only by the number of parameters, as is attempted in the
target article. A more adequate criterion should combine accuracy
of fitting with the number of parameters, analogous, for example,
to Akike’s criterion used in linear regression. What is more
important, the expressions (i.e., the models) have to be referred to
the biomechanical and physiological ideas underlying the formu-
lae. Unfortunately, even for their own model, P&A have not
explained the idea of “the asymptotic behavior of a large number
of coupled linear systems, from which a delta-lognormal law can
be derived” so as to make it understandable for readers. However,
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if a reader does not understand the main issue of the theory, the
matter of formalization used is lost and any discussion is moot.

In conclusion, P&A write that their kinematic theory “encom-
passes both similarities and dissimilarities with respect to the other
models previously published. . . . unlike . . . (Hogan 1984) . . .
(Uno et al. 1989), . . . (Feldman 1966; 1986; Polit & Bizzi 1979)
. . . [and] (Bullock & Grossberg 1988), . . . kinematic theory
provides a global view. . . . The price to pay for such generalization
is that it is difficult, without further experiments, to provide a
direct biological interpretation for the system parameters . . .”
(sect. 6, para. 4).

Unfortunately, the price for “such generalization” is higher. If a
view is too global and generality is too high there is the risk of
saying nothing about everything. P&A’s terminology is insuffi-
ciently accurate.

Neural models of reaching

Stephen Grossberg
Department of Cognitive and Neural Systems, Boston University, Boston,
MA 02215. steve6cns.bu.edu

Abstract: Plamondon & Alimi (P&A) have unified much data on
speed/accuracy trade-offs during reaching movements using a delta-
lognormal form factor that describes “the asymptotic behavior of a large
number of dependent linear systems,” notably neuromuscular systems.
Their approach raises questions about whether a large number of systems
is needed, whether they are linear, and whether the results disclose the
neural design principles that control reaching behaviors. The authors
admit that “it is difficult . . . to provide a direct biological interpretation for
the system parameters” (sect. 6, para. 4).

The VITE model (Bullock & Grossberg 1988) of neural trajectory
formation implies Fitts’ law, and various failures, as emergent
properties of trajectory dynamics. VITE was derived to explain
how motor synergies form, and how synergies contract syn-
chronously at variable speeds. These three S’s (synergy, synchrony,
speed) of reaching behavior imply Fitts’ law, as well as asymmetric
velocity profiles and their invariances. They do so using a single,
weakly nonlinear system rather than a large number of linear systems.

VITE multiplies a difference vector (DV), which codes the
difference between desired target position and an outflow repre-
sentation of present position – and a volitional GO signal. Are
there other neural systems that use DV-style computations and
that are cascaded together to provide multiple VITE-like contri-
butions to Fitts’ law, none of which involves neuromuscular
computations?

The VITEWRITE model (Bullock, Grossberg & Mannes 1993)
embeds VITE into a movement-planning circuit for generating
handwriting movements. The script letters are an emergent prop-
erty of circuit interactions that enable writing to preserve its form
as volitional acts flexibly change its size or speed. The script letters
have an invariant representation as a spatial pattern of synergy-
controlling DVs that are stored in a working memory. As in VITE,
GO volitional signals can alter their speed of execution. GRO
volitional signals alter their size by multiplying the DV that is read
out of working memory; this product is then input to the VITE
circuit. Feedback from VITE to working memory releases the next
working-memory DV only when the VITE DV is maximal or zero.
Complex data about stroke coordination, such as the “two-thirds
power law” of Lacquaniti et al. (1983), arise as emergent proper-
ties of these feedback interactions. Nowhere does the circuit need
the virtual targets or minimization principles that the authors
mention.

DVs also occur during visually guided control of motor-
equivalent reaching to targets in space. The direct model (Bull-
ock, Grossberg & Guenther 1993) shows how accurate reaches
can be made with novel tools of variable lengths, clamped joints,
distortions of visual input by a prism, and unexpected perturba-

tions. The coordinate transformations from retinal, to head-
centered, and finally to the body-centered coordinates that control
reaches also use DV computations. Why are DVs so ubiquitous in
the spatial planning and motor execution of reaches?

We propose that this is the correct computational format for
autonomously learning the coordinate transformations and move-
ment parameters that keep sensory-motor coordination accurate
within a growing body (Grossberg et al. 1993; Guenther et al.
1994). P&A note that their approach “does not provide too many
clues about the learning process itself.”

P&A say that VITE does not describe “the mechanical proper-
ties of the muscles.” This is because VITE concerns itself with
outflow positional control. The FLETE model (Bullock &
Grossberg 1991) links outflow VITE commands to spinal and
cerebellar circuits that maintain positional accuracy of contracting
muscles under variable tension. FLETE models identified spinal
and motor components, such as Renshaw cells and gamma mo-
toneurons, and simulated the multiple velocity peaks during
ballistic movements (Bullock & Grossberg 1992) which P&A
consider “one of the most powerful characteristics of” their model.
VITE has since been extended to a model circuit for controlling
reaching movements of variable speed and force in the presence of
obstacles (Bullock et al. 1997). This model simulates the neuro-
physiological firing patterns of six identified cell types in cortical
areas 4 and 5 during a wide variety of behavioral tasks.

P&A mention Weber law control of timed movements. A model
of learning in the cerebellum describes how metabotropic gluta-
mate receptors, acting at cerebellar Purkinje cell spines, may
control adaptively timed learning that obeys a Weber law (Fiala et
al. 1996).

In summary, whereas Plamondon & Alimi provide a stimulating
account of how speed/accuracy data may arise from delta-
lognormal processing, recent neural models of reaching behavior
provide an alternative view of the design principles and nonlinear
mechanisms whereby these data may arise as emergent proper-
ties.

Where in the world is the speed/accuracy
trade-off?

P. A. Hancocka and Willem B. Verweyb

aHuman Factors Research Laboratory, University of Minnesota,
Minneapolis, MN 55455. bTNO Human Factors Research Institute, NL 3769
ZG, Soesterberg, The Netherlands.
peter6reality.psych.umn.edu; www.hawk.psych.umn.edu
verwey6arb-phys.uni-dortmund.de

Abstract: Even though Plamondon’s kinematic model fits the data well,
we do not share the view that it explains movements other than ballistic
ones. The model does not account for closed-loop control, which is the
more common type of movement in everyday life, nor does it account for
recent data indicating interference with ongoing processing.

Plamondon & Alimi (P&A) state two specific goals. The first is to
demonstrate the absence of a cohesive account for aimed move-
ments; the second is to advance Plamondon’s kinematic theory as
such an account. In general, P&A are successful with respect to
these goals and are therefore to be congratulated. However, we
have a number of questions, which principally concern real-world
application of the findings, consistency with other data, and a
potential weakness of the model itself.

It is our contention that P&A’s work only relates to a very small
and generally atypical segment of the full spectrum of movement
capability. Only under highly constrained and artificial conditions,
such as in the experimental laboratory or at sporting events, does
any individual regularly engage in ballistic movements occurring
at or near their maximum movement velocity. Very few daily skills
require performance at the levels of velocity and accuracy typical
in the cited research (although an obvious exception is keyboard-
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ing). P&A are appropriately prudent about claims of improved
curve fitting of the order of 1% to 2%. However, the form of
behavior at hand represents perhaps 1% to 2% of the range of
potential movement capabilities and the limit on generality is
therefore indeed a critical one.

P&A refer to these movement as well-learned. Relatively, they
are not. If any one individual research participant engaged in more
than perhaps two hundred such movements it would be unusual.
Compare this to the millions of repetitions at lower velocities for
such actions as reach and grasp. Of course, P&A can protest that
the latter movements are accounted for by their model, but there
is a further objection to be raised: one hallmark of skill is energy
minimization. Given this, high-level skills may well be composed
of a single agonist burst, in which the constraints of the environ-
ment and/or the object/tool at hand could perform the antagonis-
tic function. Where does this leave a model that depends crucially
upon the interplay of signals from both agonist and antagonistic
muscles to achieve the desired outcome? The absence of a D2
signal in this situation only further delimits the task domain
explained by the kinematic model.

Also, what is the nature of the outcome being accounted for? In
certain conditions it is absolute error (AE), but AE is a derivative
of the first two distributional moments and reflects neither in a
pristine condition. Although P&A are right to focus on the relative
accuracy of movement, they limit themselves to a combinatorial
reflection that itself can be problematic (Newell & Hancock 1984;
Schutz & Roy 1973). Besides, error in the sense of an obvious,
gross mistake, rather than merely a close miss, also seems to be
beyond the direct purview of the present approach.

P&A ignore various clear indications that slower aiming move-
ments especially rely on closed-loop control in a limited capacity
system. Many studies indicate the use of visual feedback and the
existence of interference from concurrently performed tasks in
aiming tasks. P&A do mention the possibility that deviations from
the DL law might be explained by the use of continuous feedback
in some aiming movements. However, they overemphasize the
applicability of the Plamondon model in an attempt to show that it
can do what all other models could not: explain the data. In line
with this contention, P&A’s ideas of sequence control in section 5.5
do fit current notions obtained in reaction time studies (e.g.,
Verwey 1996). However, those studies also show slowing effects of
higher level processing on movement execution. Such data cannot
be accounted for by Plamondon’s kinematic theory, which ba-
sically rejects any form of on-line control.

A clear weakness of the model itself is that in section 4.5 P&A
suddenly introduce the possibility that, besides D1 and D2, the
system parameters m1, m2, s1, and s2 are programmable also.
Apart from the biological implausibility of changing these parame-
ters, adding the modifiability of these parameters as well would
provide the model with sufficient degrees of freedom to explain
virtually any movement outcome.

Finally, P&A are obviously enthusiastic proponents of the
mathematical form of description. Indeed, they consider only
explanatory constructs that use this notation. For example, they
conclude, “None of the theoretical explanations proposed to date
is able to take into account the major experimental observations in
the field under a single scheme” (sect. 3, para. 1). This statement is
true if only mathematical descriptions are considered. However,
we would claim that the descriptive theoretical structure proposed
by Hancock and Newell (1985) over a decade ago provides such an
initial description and indicates the sequence of connections that
must occur between intention, muscular activation, kinetic and
kinematic descriptions, and related subsequent outcome. What
was also avoided in the latter work was spurious theorizing about
causation, relying upon underdeveloped constructs such as
“noise” to redescribe the phenomena in different terms. It is
unfortunate therefore, that P&A relapse into this “explanation” at
a critical juncture of their work.

While we have focused upon some issues of concern, our
comments should not be taken as overly critical. In general, the

work is soundly conceived and presents new insights to the
problem. It is in consequence a good step forward in understand-
ing the intrinsic problems of movement control, and we applaud
the effort.

Neuronal and muscular correlates consistent
with Plamondon’s theory: Velocity coding
and temporal activation patterns

Uta Herrmann and John F. Soechting
Department of Physiology/Graduate Program in Neuroscience, University of
Minnesota, Minneapolis, MN 55455.
uta6shaker.med.umn.edu; john6shaker.med.umn.edu

Abstract: This commentary cites several findings of neuromuscular re-
search that are consistent with aspects of Plamondon’s kinematic theory. In
addition, we point out certain biomechanical properties of the limb that
influence the requirements for the production of accurate movement, and
might thus compromise the global applicability of any law governing
speed/accuracy trade-offs.

Plamondon & Alimi’s (P&A’s) idea that velocity is one of the main
control parameters in the production of movements is consistent
with several findings in neuromotor control research. In a study by
Georgopoulos and colleagues (1992), the motor cortical popula-
tion vector was found to be related to the change in force rather
than to the force exerted by the subject, suggesting that cortical
neurons are concerned with phasic commands. At the level of
force output, Hollerbach and Flash (1982) have identified two
distinct components of joint torque: a “gravity” torque with an
invariant contribution to movements of different speeds, and a
“drive” torque, scaling quadratically with linear changes in veloc-
ity. Accordingly, Flanders and Herrmann (1992) found two inde-
pendent elements of muscle activation, whose weighted sum
could account for the EMG signals observed during arm move-
ments of different speed. While one “tonic” component had a
constant weighting coefficient at all speeds, the other “phasic”
component’s coefficient scaled monotonically with velocity. The
“drive” torque, or, concurrently, the “phasic” EMG component,
could thus be interpreted as the result of a motor command
concerned primarily with the control of velocity.

Similarly, certain temporal aspects of muscular activity patterns
are consistent with P&A’s notion that the delay time, with which a
muscle is activated, depends on whether the muscle acts as an
agonist or antagonist in the movement: Flanders and colleagues
(1996) showed that the timing of the phasic EMG activity of
human arm muscles during reaching gradually changed as a
function of movement direction, from an early burst for the
agonist direction to a later burst for the antagonist direction. This
pattern of temporal shifting with direction persisted under dy-
namic isometric conditions, where it did not represent the me-
chanically optimal solution (Pellegrini & Flanders 1996). These
robust features of muscle activation could thus be the result of a
central neuromuscular control strategy like the one proposed in
the target article.

Any theory attempting to explain the ubiquitous phenomenon
of speed/accuracy trade-offs with a global law governing neurally
generated movements will eventually have to be tested under
broader conditions than those involved in the standard Fitts’ task.
More specifically, the law will have to deal with the nonuniform
biomechanical requirements for multijoint movements in differ-
ent directions and different parts of the workspace that arise from
the pattern of the limb’s elastic and inertial anisotropy (see Mussa-
Ivaldi et al. 1985). In fact, Gordon and Ghez (1987) showed that
for arm movements in different directions, subjects scaled their
movement times in order to compensate for the differences in
initial acceleration arising from the limb’s inertial anisotropy.
Soechting et al. (1995) found that for pointing movements, the
arm’s final posture depended on its initial posture in a way best
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predicted by the assumption that the work necessary to transport
the arm from the starting position was minimized. It would thus be
a rather profound finding if speed/accuracy trade-offs remained
unaffected by these biomechanical factors and continued to obey
one global law. It would therefore be interesting to examine
whether endpoint errors also depended on initial arm position and
whether speed/accuracy trade-offs can be described by the same
law regardless of initial position.

What is Fitts’ law about?

Herbert Heuer
Institut für Arbeitsphysiologie an der Universität Dortmund, 44139 Dortmund,
Germany. heuer6arb-phys.uni-dortmund.de

Abstract: Movement time and accuracy, as defined by Plamondon &
Alimi, do not conform to empirical definitions. When definitions are used
that conform better to empirical ones, the original predictions of the
kinematic theory are no longer valid – as is demonstrated by simulations.
Thus the theoretically derived quadratic law and the successful empirical
quadratic law seem to be independent of each other.

Fitts’ law describes the relationships between movement time,
movement amplitude, and accuracy under a variety of conditions.
The generality requires an account that relies on fairly universal
mechanisms, and the kinematic theory from which Plamondon &
Alimi (P&A) derive their quadratic law seems to satisfy this
requirement. Moreover, the quadratic law provides a more accu-
rate fit to various experimental data than the power law, which has
been derived from the model of Meyer et al. (1988) and the
original logarithmic law of Fitts (1954). (As an aside, the fit of the
quadratic law must be at least as good as that of the power law,
because the latter is a special case of the former.) Given this state
of affairs, it seems that the experimental data offer support for the
kinematic theory. Nevertheless I shall argue that the successful
empirical quadratic law is one thing, the theoretical quadratic law
as based on the kinematic theory is another, and the two have little
or nothing to do with each other. The reason is that the theoretical
and the empirical quadratic laws are about different things, at least
as far as movement time and accuracy are concerned.

What is movement time? P&A take T1 5 t1 2 t0 as movement
time, where t0 is a parameter of the kinematic theory and t1 is the
time of the first zero crossing of the velocity profile. This definition
of movement time differs from how movement time is defined in
experiments, both at the start and at the end of a movement. At
time t0 there is not yet an overt movement which only begins at
time tr. Therefore, in footnote 4, P&A also refer to t1 2 t0 as
activation time and state that it should be proportional to t1 2 tr,
for which the start of the movement is defined in a more conven-
tional manner. At time t1, if it exists, the theoretical movement
reaches its peak amplitude and reverses to approach the final
amplitude D 5 D1 2 D2. In equation (47) P&A state that the peak
amplitude is proportional to D1 2 D2.

Empirically, the end of a movement is typically not defined by a
zero crossing of the velocity profile. When a stylus is moved from a
home position to a target, contact with the target occurs at some
point after peak velocity and before it is down to zero, with a larger
velocity at impact for larger targets (cf. MacKenzie et al. 1987). In
movements without a physical target to be hit, the end of the
movement can be defined in terms of a tolerance range for
acceleration (e.g., Heuer 1981) or velocity (e.g., Meyer et al.
1988); the end is defined as the time at which the signal enters the
tolerance range and does not leave it for a defined duration.

To test the claim that t1 2 t0 is proportional to t1 2 tr and to
examine the eventual robustness of the theory’s predictions
against different definitions of movement time, I have run a
number of simulations. The parameters were those given by
Plamondon (1995a, Fig. 7), except that I have set s2 5 s1 5
0.3598 to make the power law applicable, and that I have varied D1

Figure 1 (Heuer). Movement times defined in different ways as
a function of ln(D1/D2). T1 5 t1 2 t0, T2 5 t1 2 tr, T3 5 te 2 tr; tr is
the start of the movement, te is the end of the movement as
defined by a tolerance range for velocity.

in somewhat irregular steps between 500 and 8 with D1 2 D2 5 7.
The results are shown in Figure 1.

For T1 5 t1 2 t0, only the fitted straight line is shown, because
the data points do not deviate from it (as, of course, they should
not). For T2 5 t1 2 tr, with tr being defined as the time at which
velocity exceeds a threshold of 0.3, the data points show some
deviation from a straight line, but the fit is still reasonably good.
(The line does not extend beyond ln(D1/D2) 5 1.1 because for
higher ratios the negative velocity did not exceed a tolerance range
of 20.3 and is thus negligible.) Across the 24 simulations there was
a linear relation between T2 and T1 (r2 5 .99), but with almost 100
msec the intercept was nonnegligible (T1 5 0.0995 1 1.1428 T2).
The good fit of the power function for T2 results from the fact that
there is again a linear relation between the logarithms of T1 and
T2, lnT1 5 0.119 1 0.775 lnT2, r2 5 0.99. Although T2 exhibits the
same type of relation to D1/D2 as T1 for constant D1 2 D2, as
shown in Figure 1, it does not remain constant – as T1 does – for a
constant ratio D1/D2 when the difference D1 2 D2 is varied. This
is illustrated in Table 1.

Figure 1 also shows the relation of T3 5 te 2 tr to the ratio
D1/D2. The time of the end of the movement te is defined as the
time at which velocity enters a tolerance range of 6 0.3 and stays
within this range for at least 20 msec; T3 [4] and T3 [10] have
equivalent criteria for the end of a movement, but with tolerance
ranges of 6 4 and 6 10. For T3 it is apparent that there is an
optimal setting of the ratio D1/D2 such that overshoots are so small
that the tolerance range is not left again. Only for movements
without a noticable overshoot or no zero crossing of the velocity
profile does T3 increase as the ratio D1/D2 increases. This increase
can again be fitted by a power function with a reasonable accuracy,
but it tends to become progressively less steep as the width of the
tolerance range becomes larger. Table 1 shows that T3, again in
contrast to T1, is not constant for a constant ratio D1/D2 as the
difference D1 2 D2 is varied; for the particular parameter values
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Table 1 (Heuer). Different measures of movement time (T1, T2,
T3) as a function of amplitude D 5 D1 2 D2 for In(D1/D2) 5
0.773. Also given is the overshoot (DD) at the time of the zero

crossing of the velocity profile.

D T1 T2 T3 DD D/DD

3.5 .472 .322 .669 0.3658 9.57
7.0 .472 .327 .752 0.7316 9.57

14.0 .472 .332 .832 1.4631 9.57
28.0 .472 .336 .912 2.9263 9.57
56.0 .472 .340 .991 5.8526 9.57

examined, the variation across different amplitudes is even stron-
ger than for T2.

The simple simulations show that the kinematic theory no
longer predicts a power law (under parametrizations in which the
quadratic law simplifies to the power law) when the definition of
movement time is made more consistent with common empirical
definitions. In particular, movement time turned out to be no
longer invariant against variations of the difference D1 2 D2 for
constant ratios D1/D2, while power functions still gave a reason-
able fit to its variations across different ratios D1/D2 for a constant
difference D1 2 D2.

What is accuracy? Empirically, Fitts’ law refers to target width
(with percentage of hits being roughly constant) or to a measure of
variability of movement end points, sometimes referred to as
effective target width. The important point is that, empirically,
accuracy is measured in terms of variability; this can be done
directly or indirectly, as when a target width is given that constrains
the variability of movement end points in such a way that only a
few movements miss the target. Variability, however, is unknown
to the P&A model, and this is a feature that P&A’s theory shares
with other accounts of Fitts’ law, such as the deterministic
iterative-corrections model of Crossman and Goodeve (1963/
1983) or the vite model of Bullock and Grossberg (1988).

I have tried to find a particular theoretical reason for the
constraints specified in P&A’s equations (48) and (50) (see also
Plamondon 1995b, equations (16) and (18)). If I got it right, the
reason could be seen in the overshoot DD that is present at the
zero crossing of the velocity profile. The overshoot increases as the
ratio D1/D2 decreases (or as D1 and D2 both increase with a
constant difference D 5 D1 2 D2). Thus the ratio DD/D, which
corresponds to the ratio of target width to target amplitude WT/AT
(with AT measured to the nearer edge of the target), imposes a
lower bound on D1/D2. For a constant ratio D1/D2 the relative
overshoot DD/D seems to be constant, as is illustrated in Table 1.
Replacing ln(D1/D2) by ln(D/DD) requires a linear relation be-
tween them for the quadratic law to hold also for D/DD. In my 10
simulations with ln(D1/D2) in the range between 0.431 (large
overshoot) and 1.012 (small overshoot), I found a linear relation
with r2 5 .99. Thus, with the overshoot as a measure of accuracy,
one could relate the theoretical term D1/D2 to the task constraint
AT/WT 5 D/DD.

As a measure of accuracy, the overshoot does not correspond to
empirical measures of accuracy, and with a given target width,
movements do not end systematically at the far edge of the target.
Thus, as with movement time, there is also a discrepancy between
the theoretical and the empirical definitions of accuracy. It seems
that it is impossible in principle to account for a fundamentally
stochastic phenomenon like the speed/accuracy tradeoff in deter-
ministic terms (cf. Heuer 1991). A possible alternative could be to
assume that D1 and D2 are random variables with a systematic
relation between variability and expected value, and that AT
constrains the expected amplitude, E(D) 5 E(D1) 2 E(D2) 5 AT,
while WT constrains the variability of endpoints, ksD 5 WT. Such
a stochastic version of the kinematic theory could also take into

account that Fitts’ law deals with mean movement times, not with
durations of individual movements.

In conclusion, the theoretical definitions of movement time and
accuracy that Plamondon & Alimi use in deriving the quadratic
law do not correspond to the empirical definitions of movement
time and accuracy. It could be an interesting exercise to go one
step back and analyse velocity profiles of movements under
different AT/WT conditions in terms of the kinematic model. To
the extent that the velocity profiles can be fitted reasonably well,
the model – with the addition of the proper definitions of start and
end of a movement – should be able to predict the speed/accuracy
tradeoff. Through such a procedure one might get a better idea
about parametric variations across conditions that might be more
complicated than variations of D1 2 D2 and D1/D2, and one could
also obtain some idea about the sources of variability within each
condition.

Individual data and clear assumptions about
movement

Jan E. Holly
Department of Mathematics and Computer Science, Colby College,
Waterville, ME 04901. jeholly6colby.edu

Abstract: It is important to study movement data from individual subjects
rather than by averaging data across subjects or trials, because averaged
data may follow different laws than those followed by the individual data.
This fact can be shown mathematically. In addition, clear assumptions and
a thorough understanding of their consequences are a necessary compo-
nent of any realistic model.

Importance of individual data. If a coin were flipped many times
and the resulting data were averaged rather than listed individu-
ally, a scientist might conclude that a flipped coin typically lands on
edge, balancing halfway between “heads” and “tails.” Similarly, if
movement data from a number of individuals are averaged, then
the average may follow a law different from that followed by the
individual neuromuscular systems. A strength of Plamondon &
Alimi’s (P&A’s) analysis is the focus on individual neuromuscular
systems, with individual variation of parameters allowed within the
scope of a single model.

To illustrate the importance of individual data: if a delta-
lognormal law is followed exactly by every rapid-aimed movement
of every individual, then in general an average velocity profile will
not follow the delta-lognormal law (Fig. 1A). Here, a delta-
lognormal curve is P&A’s

D1L(t; t0, m1, s1
2) 2 D2L(t; t0, m2, s2

2)

where

L(t; t0, m, s2) 5
1

sÏ2p(t 2 t0)
exp S2

(ln(t 2 t0) 2 m)2

2s2
D .

Data on movement times of individuals are also important. If
movements by subjects always follow, for example, the exact
“power law” ln MT 5 b1 1 b2 ln(D/DD) (where MT 5 movement
time,  D 5 distance, DD 5 absolute spatial error, and b1 and b2 are
constants that may differ between individuals), then in general the
average movement time over two or more subjects will not follow
an exact power law (Fig. 1B). P&A use data on individuals – for
example, their Table 3, Kerr and Langolf (1977) – in testing
models of movement time (although P&A’s Fig. 4 apparently uses
averaged data).

Future models that aim to explain the physiology of individuals
– as opposed to the emergent properties of averages – must also
be tested on data from a variety of individuals.

Importance of clear assumptions. Do individuals exhibit more
contraction of both agonist and antagonist muscles during move-
ments of less accuracy? This is predicted by P&A’s assumption

https://doi.org/10.1017/S0140525X97421441 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X97421441


Commentary/Plamondon & Alimi: Speed/accuracy trade-offs in target-directed movements

314 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:2

Figure 1 (Holly). (A) The average of two or more delta-
lognormal curves is not, in general, a delta-lognormal curve. The
average (dashed line) of two different delta-lognormal curves (thin
lines) is shown along with an attempted fit (solid thick line) by a
delta-lognormal curve. Parameters used for the two original
curves are t0 5 0 and: (1) D1 5 2.4cm, D2 5 0.34cm, m1 5 21.8,
m2 5 21.5, s1 5 0.14, s2 5 0.09; (2) D1 5 2.0cm, D2 5 0.65cm, m1
5 21.7, m2 5 21.4, s1 5 0.10, s2 5 0.07. Parameters for the
attempted fit are t0 5 0, D1 5 2.17cm, D2 5 0.50cm, m1 5 21.75,
m2 5 21.42, s1 5 0.13, and s2 5 0.08. Although this particular
attempted fit may not be the best, these curves show the type of
mis-fit that occurs when any reasonable attempt is made. (B) The
average of two or more sets of exact power-law data cannot, in
general, be fit by an exact power law. Shown is an attempted fit by a
power law (thick line) to averaged data (large dots) from two
simulated sets of exact power-law data (small dots), which are
shown with their exact power-law fits (thin lines). Movement time
(MT), which is being measured or specified in the studies under
investigation, is given by the ordinate, while ln(D/DD), which is
linearly related to the index of difficulty, is given by the abscissa.
The values of b2 used for the simulated exact power-law data are
0.1 and 0.7, while the attempted fit uses b2 5 0.54. All use b1 5
21.6. In cases where the two sets of exact power-law data are more
alike than those shown here, the fit will be better, but still will not
be exact.

arising in section 3.3 that D2/D1 is proportional to DD/D (where
D1 5 amplitude of agonist command and D2 5 amplitude of
antagonist command). In particular, because D is proportional to
D1 2 D2 by the delta-lognormal law, P&A’s assumption is equiva-
lent to

DD 5 k1D 2 k2
D2

D1

where k1 and k2 are positive constants. This means that for a fixed
target distance D, DD increases as D1 increases (Fig. 2). In other
words, accuracy is low when the agonist command is high; the
antagonist command is also high in this case in order to maintain
target distance D.

Figure 2 (Holly). P&A’s equations predict that rapid move-
ments of greater accuracy are achieved by weaker muscle contrac-
tions, and that rapid movements of less accuracy are achieved by
stronger muscle contractions, when the target distance D is fixed.
As the amplitude of the agonist command D1 (the abscissa) and
the antagonist command increase, DD (the ordinate) increases.
Although k1 5 k2 5 1 are used here, the trend is the same for all
positive values of k1 and k2. See text for details.

The origin and justification for the D2/D1-proportional-
to-DD/D assumption are not entirely clear. P&A’s section 3.3
might seem to imply that this assumption follows from the delta-
lognormal law, but in fact, proportionality in general of D2/D1 and
DD/D does not follow mathematically from the proportionality of
the single (D2/D1)max 5 g2 and (DD/D)max 5 g1, at least not
without a further (perhaps unstated) assumption. In other words,
the delta-lognormal law and the proportionality of D2/D1 and
DD/D are mathematically independent.

The quadratic and power laws for movement time are subse-
quently derived from the above proportionality assumption, an
assumption that is not physiologically well justified by P&A.
However, it is worth noting that, unless an additional assumption is
added as discussed above, questions about the validity of D2/D1’s
proportionality to DD/D do not impinge upon the possible validity
of the delta-lognormal law for velocity profiles.

At the same time, there are a number of alternative assumptions
that would also lead to quadratic and power laws for movement
time from a delta-lognormal law for velocity. For example, D2/D1
may be proportional to ÏDD/DÏ or (DD/D)2 instead of DD/D.
In fact, any power of DD/D would lead to the quadratic and power
laws in P&A’s equations (61) and (62).

Which assumption, if any, best fits the physiology? Once again, a
model – and its pursuit of clear assumptions – can help sharpen
our investigation of the physiology.
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Flawed kinematic models cannot provide
insight into the nature of motor variability
Mark L. Latasha and Gregor Schönerb
aDepartment of Kinesiology, The Pennsylvania State University, University
Park, PA 16802; bCentre de Recherche en Neurosciences Cognitives
(CNRS), Marseille Cedex 20, France. mll116psu.edu

Abstract: Plamondon & Alimi’s derivation of the kinematic model is
mathematically flawed. By simply naming a particular parameter combi-
nation “variability,” the model fails to explicate the sources of variability. As
a result, the model cannot distinguish between various sources of error,
such as those resulting from task demands and those resulting from
movement execution.
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Natural variability is an important property of human voluntary
movement. Variability of targeted movements has become a
subject of study that has provided insights into the organization of
human movement in general. In particular, speed/accuracy trade-
offs are a primary tool for the analysis of motor variability.

Consider three major aspects of movement generation: (1)
perception and comprehension of the task; (2) planning a move-
ment (e.g., internal simulation); and (3) movement execution.
Fitts’ paradigm implies that a subject slows down when a distant
and/or small target is presented. This trade-off depends on factors
relevant to the levels of task comprehension and movement
planning, so that the trade-off may be affected by changes in
instruction and behavioral information. In fact, a proper instruc-
tion resulted in peak velocities of movements to a very small target
that were nearly twice as high as characteristic velocities observed
using the same setup, same distances, and four times larger targets
combined with a typical Fitts’-type instruction (cf. Corcos et al.
1988; Latash 1993). Such a modulation with instruction can be
modelled, for example, within the equilibrium-point hypothesis as
a shift in strategy used to perform the task (Latash & Gottlieb
1990). Behavioral feedback can also be used to modify
speed/accuracy trade-offs. In particular, the relation between
movement time, distance, and target width depends upon the
availability of visual feedback after movement initiation, the ade-
quacy of perceptual information (Flanagan & Rao 1995), the
effects of the short-term motor memory (Imanaka et al. 1996;
Miall et al. 1995), and so forth.

Because Plamondon’s model does not address any of these
factors, the account of Fitts’ law remains restricted to the level of
movement execution. (Below, we shall argue that, even at this
level, Plamondon & Alimi’s [P&A’s] account is flawed). The level of
movement execution can contribute to other types of trade-offs,
for example to the scaling of the standard deviation of final
position with movement distance and time (Schmidt et al. 1979;
Sherwood & Schmidt 1980). Thus, P&A’s account fails to distin-
guish between these distinct forms of trade-offs and analyzes them
erroneously as a single phenomenon.

Goodman/Gutman were the first to make a clear distinction
between two types of trade-offs commonly described in the
literature (Gutman & Gottlieb 1992; Gutman et al. 1993; Latash &
Gutman 1993). Goodman’s kinematic model (ignored in the target
article), generates kinematic patterns that fit the data at least as
well as Plamondon’s model. Goodman’s model is much superior in
the lack of obvious flaws (see below) and in the clear display of its
limitations related to the fact that it reflects hypothetical processes
related to only some of the steps involved in the process of
movement generation. These limitations are inherent to Plamon-
don’s model but are not explicitly acknowledged or analyzed.

Specific critique of Plamondon’s model. Plamondon’s model
essentially consists of an assumption about the functional form of
Fitts’ law, which is then fitted to data sets. This functional form is
unrelated to the hypothesized functional form of the kinematic
law suggested for unidimensional end-effector movement. The
discussion purporting to derive Fitts’ law from the kinematic law is
incorrect and misleading. By definition, the coefficient g1 (equa-
tion 48 in the target article) covaries with the required relative
precision, so the required precision cancels out of the model
equations. (In equation 51, the expression (1/g1)*(DD/D)max
equals 1 and can be dropped.) Thus, assuming proportionality
between the model parameter ratio D1/D2 and required relative
precision DD/D is an independent, additional assumption. Be-
cause this parameter ratio (D1/D2) has no other meaning in the
model and in the subsequent fitting than to express the difference
of logarithms of movement time, the power law relationship
between movement time and required error is essentially freely
assumed, unconstrained by the kinematic model.

The derivation of the kinematic law (“delta-lognormal”) from a
system-theoretic model is flawed. When the transformation of the
time variable in the convolution of the individual transfer func-
tions is attempted, a Gaussian distribution can be derived for the

sum of the random variables associated with each transfer func-
tion. This sum is a sum of exponentials. The logarithm cannot be
interchanged with the sum, and thus the derived distribution
cannot be transformed to the claimed form. (In fact, if the
proposed trick were to work, any functional form could be derived
from the central limit theorem in contradiction with the theorem
itself.) There is no simple logical connection between this kinema-
tic law and system-theory. The discussion linking Fitts’ law to
ensembles of agonist and antagonist subsystems is misleading and
the connection between the postulated formula for the Fitts’ law
and the level of movement execution remains unclear.

The derivation of the mean delay from the assumption of
proportional scaling of the delay is correct. The adequate conclu-
sion from this derivation is, however, that the serial subsystem
model with this rule imposed on its components leads to a
Gaussian distribution with the mean given by the logarithmic
formula. The resulting distribution is still purely Gaussian in terms
of the time variable, although its mean scales as desired.

Thus, the model presented by P&A is aimed to explain
speed/accuracy trade-offs even though it lacks a source of vari-
ability! A particular parameter combination in a functional form
used to fit trajectories is called variability by assumption. This is one
reason why the model cannot distinguish between various sources
of error such as those resulting from task demands and those
resulting from movement execution. Apart from the mathematical
errors in the derivation of the kinematic law, the sources of
variability in a system-theoretical account have not been adequately
addressed. What are the effects of variability in the timing of the
motor command, in the shape of the motor command, its ampli-
tude, and so on? P&A do not even try to address these questions.

Segregation of agonist and antagonist
systems minimizes the benefits of polarity

William A. MacKay
Department of Physiology, University of Toronto, Toronto, ON M5S 1A8
Canada. william.mackay6utoronto.ca; www.utoronto.ca/,physio

Abstract: A purely kinematic theory of movement runs the risk of having
no explanatory power because it neglects the internal generative struc-
tures of the central nervous system. Distributed interaction between the
agonist and antagonist systems would better simulate physiological mecha-
nisms of oscillation, lateral inhibition, and synchronization, all of which
have important roles in motor control.

Plamondon & Alimi (P&A) are taking great strides toward making
the study of motor control an exact science. This in itself is to be
applauded, and several features of their theory are appealing.
First, the polarized design around opposing agonist and antagonist
systems is physiological. Second, the simultaneous activation of
agonist and antagonist systems makes a lot of functional sense.
Physiologists often take “reciprocal innervation” too far and imag-
ine the systems as operating in strict alternation. In fact that is an
extreme case, whereas most EMG records show weak antagonist
activity during agonist activity. The full gamut of muscle synergies
requires simultaneous activity in both systems to varying degrees.
Third, a sequence of limb velocity reversals is shown to potentially
ensue from a single pair of impulse commands. This important
property is too often overlooked by investigators searching for
separate causes to link with every blip in a waveform. Despite
these positive features, however, I have major reservations with
the overall design of the model.

The goal of the extensive mathematical treatment is to simulate
the motion of limbs. To do this with an inadequate understanding
of the generative dynamic structure underlying body motion is
much like the Ptolemaic modeling of celestial orbits prior to the
Copernican/Newtonian revolution. Whether or not we presently
have the requisite knowledge is moot, but the use of pure
speed/accuracy data as a basis for motor theory is insufficient. The
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resulting simulation lacks variables that can be directly compared
to neuronal and muscle activity patterns – or even joint torques –
for rigorous testing. The model would be much more powerful if it
simulated dynamic physiological elements that are known to
generate motor programs.

Transfer functions have never been popular with biologists, who
generally find their linearity too restricting and misleading as
descriptions of system transformations. Current models of “cen-
tral pattern generators” favor nonlinear dynamics, especially cellu-
lar and network oscillators (Arshavsky et al. 1993; Grillner et al.
1991). When you look into the nervous system, oscillating ele-
ments are ubiquitous (e.g., Steriade et al. 1993). It would make the
greatest functional sense, therefore, to build a model using nested
circuits of oscillators. In effect, the biology says oscillation is the
primary goal, whereas the traditional engineering approach has
viewed oscillation as an unwanted by-product.

If you stick with a purely linear model, then it makes no
difference whether the agonist/antagonist subtraction is lumped
at the end or distributed throughout. For simplicity, P&A have
opted to keep the systems separate until the final output. Because
this segregated approach, as the authors admit, is negated by CNS
organization, I suspect that there must be important functional
reasons for incorporating interaction at every level. The most
obvious reason would be efficiency. By interacting from the start,
you do not waste energy in the form of excessive signals to motor
units that simultaneously oppose each other. Since the kinematic
theory is concerned only with the velocity resulting from sub-
tracted impulse responses at the effector, the absolute magnitude
of opposing muscle forces is not considered. Unfortunately this is a
recipe for chronic muscle pain and injury. A second benefit of
distributed interaction occurs in the form of lateral inhibition to
sharpen contours of active zones at every level of pattern genera-
tion. In the motor cortex, clusters of neurons related to joint
motion in opposing directions are almost routinely juxtaposed
(e.g., Kwan et al. 1978). This is no accident: it optimizes interac-
tion either inhibitory or facilitatory, which can improve spatial
definition or temporally synchronize populations. In addition,
oscillators in the motor system are based on a polarized structure,
ultimately representing opposing limb motions. Distributed inter-
action between opposing poles permits the embodiment of oscilla-
tors at every level of the control structure.

In short, the concept of polarized networks opposing one
another needs to be broken down into subunits, with the larger
constructs mimicking the polarized design of the smaller ele-
ments. Such a “self-similar” design is nonlinear, and more stable
and efficient than any linear simplification. Agonist–antagonist
polarity is an engine that drives the motor system. For maximal
effect that engine must be allowed to express itself at every stage.

Furthermore, some brain structures are relatively insensitive to
movement direction. The most obvious is the cerebellum (e.g.,
MacKay 1988; Thach et al. 1992), which may provide temporal
precision of impulses to sets of motor elements, leaving it up to
other centers to relegate extension or flexion routing. That is,
many cerebellar neurons appear to straddle both the agonist and
antagonist systems. The kinematic theory should contain provision
for metasystemic elements that provide a common function to
both systems.

I am inherently suspicious of mathematical descriptions of
outputs, however accurate they may seem, if they do not contain
an identifiable internal model of the biological system or include
variables that can be directly compared to physiological measures
such as EMG recordings. When Plamondon’s kinematic theory is
developed into a dynamic theory that accurately predicts, say, the
EMG pattern or joint torques in parallel with angular velocity,
then it will be a very useful tool.

Separating A and W effects: Pointing to
targets on computer displays

Christine L. MacKenzie and Evan D. Graham
School of Kinesiology, Simon Fraser University, Burnaby, B.C., Canada,
V5A 1S6. christineimackenzie6sfu.ca;
evanigraham6sfu.ca fas.sfu.ca/css/members/mackenzie.html

Abstract: We address two main issues: the distinction between time-
constrained and spatially constrained tasks, and the separable A and W
effects on movement time (MT) in spatially-constrained tasks. We con-
sider MT and 3-D kinematic data from human adults pointing to targets in
human-computer interaction. These are better fit by Welford’s (1968) two-
part model, than Fitts’ (1954; Fitts & Peterson 1964) ID model. We
identify theoretical and practical implications.

Plamondon & Alimi (P&A) make explicit for readers the two
distinct paradigms for the study of speed/accuracy trade-offs:
time-constrained and space-constrained tasks. They note that
“Fitts relationship was found to be . . . even inappropriate for
timely constrained tasks” (sect. 1, para. 3), referring readers to
Schmidt (1988) for a survey. Fitts developed his formulation for
repetitive (1954) or discrete (Fitts & Peterson 1964) spatially
constrained tasks. Our commentary is restricted to the spatially
constrained class of target-aiming movements, that is, where
subjects try to make aiming movements as quickly and accurately
as possible, and movement time (MT) is measured, not manipu-
lated by the experimenter.

We have investigated how the constraints of the environment in
human-computer interaction (HCI) affect planning and control of
discrete aiming movements with the hand. In contrast to interact-
ing directly with physical targets in the work space, in HCI
pointing is indirect; hand movements are mediated by an input
device (e.g., mouse or trackball), and motion and position are
represented abstractly on a graphics screen. These constraints
introduce several issues, e.g., the relative locations of hand space
and display space, the relative scale of the spaces, and the mapping
(often nonlinear) between hand movement and its displayed
representation.

In a series of HCI experiments, Graham (1996a) examined
pointing on a computer display. The displayed pointer (a small red
arrow, 9 3 35 mm) was driven graphically in real time, with less
than 25 msec lag, by optotrak 3D position data from markers
placed on the index finger. Subjects pointed to displayed circular
white targets (varying in width, direction, and amplitude) from a
constant starting position (5 mm in diameter). Kinematic analyses
of 3-D hand and 2-D cursor motion across different gain condi-
tions revealed that the control was in hand space, not display
space. That is, MT and kinematic profiles were best predicted by
amplitude and target width in hand space, not display space (see
Graham & MacKenzie 1995).

In one experiment, pointing directly at physical targets was
compared to a virtual condition, where a mirror superimposed the
2-D display image on the workspace. In the virtual condition, the
subject saw the target and, in place of the hand, a red arrow that
accurately tracked the planar position of the index finger. Figure 1
compares MT for physical versus virtual pointing. A marked
asymmetry in the magnitude of amplitude (A) and width (W)
effects causes a spread of points within a single ID. A two-part
model, modified from Welford (1968):

MT 5 a 1 b1 log2 A 2 b2 log2 W (1)

was used to capture this asymmetry. Multiple regression using
Equation 1 on MT for pointing to physical and virtual targets
revealed:

Virtual: MT (msec) 5 22 1 123 log2 A 2 79 log2 W
(R2 5 .99) (2)

Physical: MT (msec) 5 224 1 98 log2 A 2 32 log2 W
(R2 5 .96) (3)
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Figure 1 (MacKenzie & Graham). Actual mean movement time
(black squares) and MT modelled from equations 2 and 3 (lines)
for pointing to virtual and physical targets. Dashed lines show the
effect of changing amplitude (A), solid lines show the effect on MT
of changing target width (W). Note the greater sensitivity of MT to
A than W for both physical and virtual pointing.

The kinematics in these experiments replicate and extend our
earlier 3-D analysis of discrete aiming movements in a Fitts’ task
(MacKenzie et al. 1987). In brief: (1) amplitude primarily affects
the initial phase of movement (peak acceleration, peak velocity,
time to peak velocity), and (2) target width almost exclusively
affects the proportion of time in the deceleration phase. Figure 2
shows that the longer MT for pointing to virtual than physical
targets is attributed primarily to a lengthening of the deceleration
phase of the movements.

In a number of studies we have found that the separable effects
of A and W on movement microstructure, (1) and (2) above, are
consistent, but do not exactly cancel (as suggested in MacKenzie et
al. 1987). Instead, they combine to produce the asymmetric A and
W effects on MT, and a spread of data points for each ID as
illustrated in Figure 1. It is not clear how P&A’s quadratic and
power law simulations can be arranged (e.g., their Fig. 3) to
produce velocity profiles with the above properties. For example,
they predict that “maximum velocity decreases as D/DD in-
creases” (sect. 3.3, after equation 55). There are two ways to
increase D/DD: increasing D or decreasing DD. Using their terms,
our interpretation of the data is that maximum velocity increases
with increasing D, but is unaffected by decreasing DD. P&A state

Figure 2 (MacKenzie & Graham). MT and percent of time after
peak deceleration as a function of target width for pointing to
physical and virtual targets.

that as D/DD increases, the entire movement slows down, with
increasing asymmetry in the velocity profiles. We suggest that the
velocity profiles are “skewed” as a function of DD only, based on
our data.

In conclusion, we wish to make several points. Following
Welford’s (1968) insight, and the results of other investigators
(e.g., Buck 1986; Fowler et al. 1982; MacKenzie et al. 1987; Meyer
et al. 1988; Sheridan 1979), we wish to urge other researchers to
analyze MT and kinematics considering the separate effects of A
and W. This may help to elucidate the underlying motor control
processes. The two-part model has implications for design in HCI,
where the scale of A and W for the hand can be altered by choice of
control-display gain. For example, Figure 3 illustrates a parameter
space for sensitivity of MT to changes in A and W, for four HCI
pointing studies (Graham 1996a), showing MT more sensitive to A
than B. These data, which all fall below the Fitts’ law line, predict
that MT for discrete, space-constrained aiming movements will be
optimized by reducing the scale of the movement environment
(both A and W) for the hand.
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Figure 3 (MacKenzie & Graham). Parameter space showing
sensitivity of MT to changes in A and W, from equation 1. Triangles
show the results of physical and virtual pointing. For a detailed
explanation and interpretation, see Graham (1996a) and Graham
and MacKenzie (1996).

to E. D. Graham. Experimental data are from the doctoral dissertation of
Evan D. Graham (Graham 1996a). Related published work can be found
in Graham (1996b) and Graham & MacKenzie (1995; 1996).

Kinematic models cannot provide insight
into motor control

Arnold B. Mitnitski
Institute of Biomedical Engineering, École Polytéchnique, Montreal, QC, C.P.
6079, Succ. Centre Ville, H3C 3A7 Canada. arnold6grbb.polymtl.ca

Abstract: In Plamondon & Alimi’s target article, a bell-shaped velocity
profile typically observed in fast movements is used as a basis for the
“kinematic theory” of motor control. In our opinion, kinematics is a
necessary but insufficient ground for a theory of motor control. Relation-
ships between different kinematic characteristics are an emergent prop-
erty of the system dynamics controlled by the brain in a specific way. In
particular, bell-shaped velocity profiles with or without additional waves
are a trivial consequence of shifts in the equilibrium state of the system as
suggested, for example, in the l-model of motor control.

Criteria for the selection of a model. In Plamondon & Alimi’s
(P&A’s) target article, a mathematical model of fast movements is
proposed, based on the observation of a bell-shaped velocity
profile in many motor tasks. Experimental velocity patterns are
approximated by a combination of log-normal functions (equation
39; Figs. 2 and 3). This approximation, combined with the as-
sumption that the end-point error is proportional to the move-
ment distance, are the essence of the Plamondon’s kinematic
theory. The quality of fit of velocity/accuracy trade-off is claimed
to be better than in other kinematic models (P&A, sect. 4.1.2 and
Table 3). In general, even a perfect fit of experimental curves is
not sufficient to accept or reject a model. Plamondon’s model
introduces a lot of parameters in order to achieve a satisfactory fit.
These parameters are not easily interpreted and cannot be relia-
bly identified experimentally. A model, even with a large number
of parameters, would be useful if it could predict nontrivial
effects. It is doubtful that this is the case for Plamondon’s model.
Moreover, P&A often claim that the model “predicts” something,
whereas actually they just offer an explanation of some kinematic

features of prior experimental data. This is very confusing. The
term “predictions” refers to new effects, previously unknown,
and, in this sense, nothing has been predicted by the kinematic
theory. The biomechanical “neuromuscular synergy” (Fig. 1) de-
signed by P&A for the interpretation of the model’s parameters
can hardly be considered plausible from the physiological point of
view.

Bell-shaped velocity profile or kinematics versus dynamics.
The major failure of the kinematic model is that it ignores
dynamical properties of fast movements. Any movement is pro-
duced by muscular forces. The nervous system can change muscu-
lar forces by specifying control parameters. Let us consider, from
the dynamical point of view, the cornerstone of the kinematic
theory, the bell-shaped velocity profile. In the beginning of move-
ment, muscle forces act to accelerate movement and then to
decelerate it. This is a dynamic basis of point-to-point movements,
leading to a bell-shaped velocity profile. Indeed, the acceleration
and deceleration phase may not be precisely balanced, leading to
an asymmetry in the velocity profile and additional terminal
oscillations. Plamondon’s model was designed to describe all these
oscillations ad hoc rather than to explain their origin. The state-
ment that “most models, if not all, ignore or neglect secondary
peaks in velocity” (sect. 5.3, para. 1) does not seem to be justified.
For example, secondary peaks have been repeatedly reported and
simulated in almost all studies related to the l-model (e.g.,
Flanagan et al. 1993; Feldman & Levin 1995). Terminal oscillations
can be suppressed by changing specific parameters of the neuro-
muscular system. In the l-model, for example, the coactivation (C)
command and a damping parameter (m) are responsible for the
control of terminal oscillations as demonstrated by simulation
(Flanagan et al. 1993). In contrast to the kinematic theory, designed
to explain neither dynamical phenomena nor electromyographic
patterns, the l-model was able to provide an integrated view of
movement production. P&A’s opinion that the l-model takes into
account “just [the] mechanical properties of muscles” (sect. 6, para.
4) is incorrect. In contrast to the Plamondon model, the l-model
was not designed ad hoc to describe any particular kinematics or
EMG patterns. These patterns emerge as a result of the dynamic
interaction between the control signals, afferent feedback, and
mechanical components of the system including the environment.
In Figure 1, the model of Flanagan et al. (1993) was used to simulate

Figure 1 (Mitnitski). Velocity profiles derived for two-joint
pointing movement according to the l-model. A damping factor (m)
was the only parameter changing during the simulation. Note that
the number of waves in the velocity profile as well as the peak
velocity may be efficiently controlled by this parameter.
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a velocity profile for a two-joints reaching movement. Only one
parameter (m) a damping factor, was varied. The number of peaks
in the velocity profiles may vary depending on m. In addition, the
magnitude of the main peak also varies, even though the control
signals underlying the movement remain the same. This illustrates
that some properties of movements that look very complicated in
kinematic theories like Plamondon’s may be a simple consequence
of the dynamic properties of the system.

Movement dynamics in speed/accuracy
trade-off

P. Morasso and V. Sanguineti
Department of Informatics, Systems and Telecommunications (DIST),
University of Genoa, Italy, I-16145, Genoa, Italy.
morasso6dist.unige.it; www.laboratorium.dist.unige.it/STAFF/Morasso.html

Abstract: Fitts’ law and the DL model are “weak” theories of motor
control because they are limited to the kinematic aspects of movement and
do not capture its essential dynamic nature. The internal source of “noise”
that determines the speed/accuracy trade-off can be associated with the
partial compensation of movement-generated “parasitic” forces.

Although model fitting and data fitting are frequently confused,
they are far apart from the epistemological and pragmatical points
of view. Quoting the classical system identification approach
(Eykhoff 1974), a model can be defined as “a representation of the
essential aspects of an existing system (or a system to be con-
structed) which presents knowledge of that system in a usable
form (p. 1).” This notion of “essential aspects” for a complex
system such as neuromuscular motor control is certainly multi-
faceted and entails qualitative as well as quantitative elements,
where the latter may be related to the precise fitting of experimen-
tal data and the former include what we may call the “space of
behavioral situations.” Indeed, even if we limit ourselves to motor
actions in everyday life, there is no doubt that the variability of
loading conditions, task requirements, and so forth is much larger
than for the rapid-aimed movements that form the main topic of
Plamondon & Alimi’s (P&A’s) target article.

In a sense, limiting the study of motor control to the kinematic
observation of the highly constrained act of constant-load, over-
practiced reaching movement is like looking at a complex picture
through a very small hole. In general, the narrower the observation
angle for a complex system, the more precise can be the fitting of
the observed data but the more unrelated will be the global system
structure (the “essential aspects”) from the specific fitting model.
This does not mean that studying rapid-aimed movements is
pointless, but merely that precision fitting of the speed profile per
se is too narrow an observation window for inferring anything
about the internal structure of the motor control system. The same
argument also applies, in our opinion, to the speed/accuracy
trade-off, which is indeed compatible with (and has been attri-
buted to) a large and disparate number of explanatory theories,
with a related set of fitting models.

In general, we feel that the main point is that Fitts’ law is limited
to some kinematic aspects of (a small class) of movements and,
similarly, the DL model is a kinematic theory of motor control.
Kinematic theories have certainly been motivated by the experi-
mental observation of kinematic invariants in reaching movements
(Morasso 1981) and apparently “explained” by equilibrium-point
control models (see Bizzi et al., 1992 and Feldman & Levin, 1995,
for extensive reviews). The underlying rationale was that the
viscous-elastic properties of the muscles are strong enough to
“absorb” the dynamic complexity of movement control, thus
leaving the brain with a purely kinematic control problem. How-
ever, this elegant theory has recently been falsified (or at least its
degree of plausibility has been greatly diminished) by the empiri-
cal observation that the physiological range of muscle stiffness is
too low to compensate for the dynamic forces occurring during

everyday movements (Bennett et al. 1992; Katayama & Kowato
1992; Tsuji et al. 1995) unless a complicated process of virtual
trajectory planning is involved, which ends up as complex as
solving the dynamic problem. In fact, if we consider the notion of
“usable form” in the above-mentioned definition of “model,” this
is an example of a well-fitting (kinematic) model whose control
parameters are in practice unusable for dominating the real
dynamic phenomena – and the same comment applies to the D, m,
and s parameters of the DL model as well.

The dynamic equations of a kinematic articulated chain of a
robot manipulator or a human limb

I(Wq)Ẅq 1 C(Wq, Ẇq) 1 G(Wq) 1 Wtload(Wq, Ẇq, Ẅq) 5 JT
M(Wq)Wfm(Wl, Ẇl, Wu) 1 Js

T(Wq)Wfext
1

(1)

where Wq 5 Wq(t) is the desired law of motion in a given time window
(with the corresponding muscle pattern Wl(t)), clearly show that the
motor command waveform Wu 5 Wu(t) is supposed to take into
account nonlinearities related to accelerations and (squared) ve-
locities of the different joints, which scale quite differently with
movement duration, yielding patterns that strongly depend on
load and speed. This is, in our view, the main source of “motor
noise,” and the (approximate) mechanism of compensation is
likely to operate “in parallel” with the corticospinal pathways, not
“in series,” as is implied by the DL model. In a forthcoming target
article in this journal by V. Braitenberg, D. Heck, and F. Sultan, it
is argued that compensating for such “parasitic” dynamic forces,
that is, internal disturbances generated by our own motion, is one
of the main functions of the cerebellar circuitry. Without attempt-
ing here to articulate a model of how such compensation can
actually take place, we wish to suggest that current knowledge
about cerebral/cerebellar circuitry is compatible with a parallel
“sculpting” action of the corticospinal patterns, which can at the
same time explain the relative kinematic invariances under differ-
ent loading conditions, and the speed/accuracy trade-offs attri-
buted to pure kinematic effects.

In any case, the accurate fitting of kinematic curves in a variety
of experimental conditions by the DL model is a reference point
for any approach to understanding rapid movements in quantita-
tive terms.

NOTE
1. I is the inertia matrix, C is the vector of Coriolis forces, G is the vector

of gravity forces, tload is the vector of load forces, fm is the vector of muscle
forces, fext is the vector of external forces acting on the end-effector, Jm is
the Jacobian matrix of the muscles, and Js is the Jacobian matrix of the end-
effector. While gravity forces do not depend upon movement time, inertial
forces scale inversely, and Coriolis forces scale inversely to the square.

Predicting relationships between speed
and accuracy of targetting movements
is important

James G. Phillips, Mark A. Bellgrove, and John L.
Bradshaw
Psychology Department, Monash University, Clayton VIC 3168, Australia.
psy193g6alpha1.cc.monash.edu.au

Abstract: While explaining a large proportion of any variance, accounts of
the speed and accuracy of targetting movements use techniques (e.g., log
transforms) that typically reduce variability before “explaining” the data.
Therefore the predictive power of such accounts are important. We
consider whether Plamondon’s model can account for kinematics of
targetting movements of clinical populations.

Fitts’ law describes but does not explain relationships between
speed and accuracy of movement. It has unfortunately been such a
good description that it tends to embarrass any further attempts to
explain any additional few percent or so of variance. Indeed Fitts’
law to some extent condones the behaviour of cognitive psycholo-
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gists who relegate motor coordination to the province of an
irrelevant peripheral device whose behaviour has been adequately
described. We therefore applaud Plamondon & Alimi’s (P&A’s)
attempt to dissect relationships between speed and accuracy of
movement in terms of agonist and antagonist systems, because we
suspect some of the continued success of Fitts’ law is spurious.

Fitts’ law is replete with statistical methods for reducing varia-
tion in a relationship. It employs log transforms, which in other
contexts are used to control severe variability in data. In addition
Fitts’ law tends to destroy any individual differences, or any
intraindividual differences, since it describes the average move-
ment times of a group of individuals’ average performance; focus-
ing upon means reduces variability by the square root of the
number of observations. In the light of these observations, we are
not surprised that it can account for a sizeable proportion of any
“remaining” variance. Unfortunately this means that we are less
than impressed with other models (including P&A’s) using similar
methods to describe relationships between movement speed and
accuracy. Nevertheless, P&A’s model has interesting properties, it
has a potentially biological (rather than an information-theoretic)
basis, and it can explain intraindividual differences, which might
give it considerable predictive power. In particular, we are inter-
ested in the shape of the kinematic functions the model can
produce.

P&A’s model can cope with asymmetries and “reversed” asym-
metries in velocity functions. This is of interest because most
models predict prolongations of the decelerative phase of move-
ment, whereas we have observed that prolongations of the acceler-
ative phase of movement can occur in patients with movement
disorders (Martin et al. 1994). In ongoing work, we have also
observed prolongations of the accelerative phase of movement in
situations where there is some uncertainty about target location.

P&A’s model can also explain increases in the number of
submovements during aiming movements without necessarily
invoking a specific command for each submovement. This is
certainly important; however, we doubt that this is realistic if it is
always done by varying muscular parameters of the model. There
are certain movement disorders, in particular Parkinson’s disease,
that cause patients to employ multiple cycles of acceleration and
deceleration. However, this is not simply a physical property of the
slower movements of such patients. We have noticed differences
in the numbers of submovements (and cycles of acceleration and
deceleration) in patients with Parkinson’s disease when they are
trained to move at the same speed as healthy age-matched controls
(Phillips et al. 1994). We have also noticed differences in the
number of submovements in older adults when matching their
movement durations to those of younger adults (Morgan et al.
1994). Even if P&A’s model could explain submovements in
disorders such as Parkinson’s disease, we very much doubt it could
provide a sensible account of the action tremor associated with
cerebellar dysfunction. From clinical impressions, the 4–5 Hz
oscillations seen in cerebellar dysfunction are clearly corrective
impulses (albeit corrective impulses that overshoot or undershoot
their target), which can be reduced by removing visual feedback.
Nevertheless, being able to explain submovements without spe-
cific commands could be valuable when considering some popula-
tions, for example, patients with Alzheimer’s disease. Patients with
Alzheimer’s disease have inefficient movements, but we doubt
whether these additional submovements necessarily reflect a
greater utilisation of visually based corrections (Slavin et al. 1995).

The legacy of Fitts’ law has been a propensity to congratulate
ourselves on how much we have explained, with a tendency to
overlook what we have yet to learn. Plamondon & Alimi potentially
have provided a valuable step forward with a more biological
model that explains the speed and accuracy of targetting move-
ments. There is a lot more, however, that remains to be addressed,
since their model is still unidimensional, and as such ignores any
directional biomechanical constraints and neglects any differential
roles of proximal-distal muscle groups in coordinating targetting
movements.

Speed/accuracy trade-offs in rapid
simultaneous and sequential actions:
Evidence for carryover effects

David E. Sherwood
Department of Kinesiology, University of Colorado, Boulder, CO 80309.
sherwood6colorado.edu

Abstract: The idea of a neuromuscular synergy involving independent
amplitude commands to the agonist and antagonist musculature is quite an
appealing part of Plamondon’s theory. One question that might be raised
relates to the relative independence of the two “D” commands. Evidence
is presented that suggests that the two commands might be related in
sequential or simultaneous rapid aiming movements.

I found the idea of a neuromuscular synergy involving amplitude
commands to the agonist and antagonist musculature quite an
appealing part of the theory presented by Plamondon & Alimi
(P&A). It is also intriguing that by changing the difference be-
tween the two amplitude commands (i.e., D1 2 D2) one can
produce different movement amplitudes. I suppose one assump-
tion that must be made is that the amplitude commands must be
independent of one another, so that a wide range of amplitudes
can be generated. However, there may be circumstances in which
the amplitude commands are correlated or interact. For example,
in some recent experiments, I asked subjects to make rapid
positioning movements over different distances (208 and 608) with
the different limbs in movements separated by 250 msec. When
the short (208) movement preceded the long (608) movement in
the sequence, the short target was overshot and the long target was
undershot relative to when the movements were performed inde-
pendently. The same trend was shown when the long movement
led the short movement in the sequence. In rapid sequential
movements, it appears that movement accuracy is dependent not
only the goal distance and the goal movement time, but also on the
presence and absence of adjoining movements. One might con-
clude that the amplitude specifications to the agonists and antago-
nists in each limb may not be independent, but related, and result
in the assimilation of movement amplitude.

The same point can be made involving simultaneous positioning
movements. When subjects move different distances, for example,
the shorter distance limb overshoots when paired with a longer
distance limb showing spatial assimilations (Sherwood 1991). In
addition, the shorter distance limb slows down when paired with a
longer distance limb, demonstrating a temporal assimilation effect
(Marteniuk et al. 1984). However, the assimilations effects are also
limited to certain combinations of distances and times. For exam-
ple, I combined 308, 408, 508, and 608 movements in the left hand
with a standard 608 reversal movement in the right hand. The left
limb overshot and the right limb undershot in the 308–608 dual
condition relative to single movements. No other spatial assimila-
tions were found, suggesting that spatial assimilations were limited
to bimanual conditions where interlimb differences in end loca-
tion were greater than 208. However, there was no change in
relative timing across limbs and conditions, suggesting that the
same temporal structure was utilized in both single and bimanual
movements. Also the assimilations noted here are dependent
on movement speed, with greater assimilations noted with greater
movement speeds. In simultaneous movements, as in sequential
movements, spatial and temporal accuracy depends on kinematic
factors (i.e., distance, time) and on the characteristics of the
movement pair. In summary, the specification of movement am-
plitude via the D1 and D2 commands does not seem to be
independent across limbs in sequential or simultaneous actions.
Can the kinematic theory of speed and accuracy account for these
data?
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What’s different in speed/accuracy trade-offs
in young and elderly subjects

George E. Stelmach and Jerry R. Thomas
Motor Control Laboratory, Exercise and Sport Research Institute, Arizona
State University, Tempe, AZ 85287-0404. stelmach6asu.edu;
jthomas6asu.edu

Abstract: We question whether Plamondon & Alimi’s model is useful in
accounting for the nonsymmetrical and multiple-peaked velocity profiles
observed in young and elderly subjects for ballistic aiming tasks. For these
subjects, both data and observation suggest that a central representation
initiates the movement in an appropriate direction but that multiple
adjustments are made, both early and late, to achieve spatial accuracy.

Developing models to explain the speed/accuracy trade-off in
normal adult subjects is important, but it is the young and the
elderly who often have the greatest need for speed/accuracy
trade-off as they control rapid aiming movements. Yet neither
Plamondon & Alimi’s (P&A’s) model, nor any of the previous
models (e.g., Crossman & Goodeve 1983; Fitts 1954; Meyer et al.
1988) even mention, much less account for, the dramatic influence
of lifespan development on the speed/accuracy trade-off. As an
example, look at Figure 1, which provides two sample velocity
curves (with an acceleration curve beneath each) from a rapid,
linear aiming hand/arm movement (20 cm movement to a 6 cm
target, ID 5 2.58) for a typical 6-year-old child (top) and a 74-year-
old senior adult (bottom).1 Note that the velocity curves are very
different from the typical samples provided by Plamondon &
Alimi (1997, p. 11). The velocity curves have multiple peaks (more
than three), with multiple crossings of the 0 acceleration line.
These changes in acceleration represent relatively uneven pro-
gress toward the target; this is further verified by measures of
normalized jerk (third derivative of movement displacement nor-
malized for movement duration), which are much greater in the
young and the elderly than in college-age adults.

P&A argue that DL law results in a velocity curve with multiple
peaks generated by single pair of synchronous impulse commands
to the agonist/antagonist muscles (likely the biceps/triceps and
anterior/posterior deltoid for this movement). It is difficult to
accept that ballistic aiming movements like these (and their
velocity profiles) that we observe in young and elderly subjects are
controlled by a central representation with no need for visual
feedback. In fact, our evaluation of the behavioral evidence
related to these kinematic characteristics is that for the young and
old, the movement goal (hitting the target with a rapid linear
movement) is basically achieved through corrective actions on the
part of the subject. We postulate that central parameters of the
movement simply “get it started” in the right direction followed by
multiple corrections. In fact, peak velocity is often not achieved
before the first corrective action is initiated.

If we use Meyer et al.’s (1988) criterion (0 crossing of the
acceleration profile) for separating primary and secondary sub-
movements to evaluate velocity profiles like these, we find that
typically about 15% to 30% of the total movement distance is
governed by the primary submovement phase (closer to 15% in
the 6-year-olds and closer to 30% in the 74-year-olds) with the rest
associated with the secondary phase. Using a wrist rotation task,
Pratt et al. (1994) reported that their elderly subjects covered
about 50% of the movement distance with the primary phase.
Although this is somewhat higher than our 30%, their subjects
were not as old (about 66 versus about 74 years of age) as ours and
their task was different. Regardless, this is a much smaller percent
of the movement length in the primary phase than is typically
reported for adult subjects (e.g., Meyer et al. 1988, 75%–90%).
We found more than 80% of the movement occurred in the
primary phase for our 24 year-old subjects, and Pratt et al. (1994)
reported about 70% for their 20-year-old adults. In addition,
normalized jerk is much higher in our young and elderly subjects,
suggesting a less smooth movement with more corrections (e.g.,
see Yan 19962 for original data).

Figure 1 (Stelmach & Thomas). Typical velocity and accelera-
tion profiles for a 6-year-old child (top) and a 74-year-old adult
(bottom) performing a single ballistic arm linear movement to a
target.

Our question from a developmental perspective is whether or
not P&A’s proposed model can accommodate the changes that
occur over the lifespan. The major difficulty is that the model
suggests that “bumps” in the velocity curve (reflected by 0 cross-
ings in the acceleration curve) do not represent adjustments in
motor control, but rather are conceived as part of a central
movement map (or a motor program) without visual adjustments
near the target. Simply observing the ballistic aiming movements
of young children and senior adults suggests that the movements
are not a single action that is completely programmed. If this is
true, then the two-part (primary and secondary submovements)
Optimized Submovement Model (Meyer et al. 1988), which
allows for “on-line” adjustments after an initial ballistic phase,
seems more adaptable and likely to fit our lifespan data better even
though it may not fit the data quite as well for adult (generally
college-age) subjects.

NOTES
1. The mean movement duration for the 6-year-old subjects was 510

msec (SD 5 140). For 74-year-old subjects, the mean movement duration
was 530 msec (SD 5 123). Adult 24-year-old subjects had a mean
movement duration of 280 msec (SD 5 70).

2. A paper (Yan, Thomas, Stelmach & Thomas) based on data from this
dissertation is in review.
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Modeling movement variability in space
and time

Dagmar Sternad and Karl M. Newell
Department of Kinesiology, Pennsylvania State University, University Park,
PA 16802. dxs486psu.edu; www.personal.psu.edu/faculty/d/x/dx48

Abstract: Plamondon & Alimi propose a universal account of trajectory
formation and speed/accuracy trade-off in rapid movements but fail,
because: (1) the kinematic model ignores the more fundamental dynamics
of movement generation, and (2) it does not capture the essential space-
time constraints of movement accuracy. Hence, the modeling lacks a
biologically and behaviorally principled foundation and is driven by
pragmatic function fitting.

The attempt to formulate a theory that “explains” the large body of
data that has been accumulated for rapid discrete movements and
their variability is a valuable and simultaneously challenging un-
dertaking. Plamondon’s proposed model is valuable in that its
formulation has progressed from accounting for the formation of
continuous movement trajectories to capturing the outcome of
such goal-directed trajectories and its variability. In this sense
Plamondon’s theory is an interesting counterpoint to much work in
the speed/accuracy literature that limited its theoretical rationale
to errors alone, irrespective of the underlying generative system.
While on the metatheoretical level we acknowledge such an
aspiration, we want to point out some major deficiencies in the
model’s assumptions, especially at the stage of modeling variability
data, which has given the account the flavor of function fitting.

One of the conceptually plausible features is the model’s strate-
gic reduction of movement control to two generalized antagonistic
impulse functions whose parametrization produces the various
shapes of velocity profiles reported in the literature. Another
interesting feature is the grounding of the generation of the
macroscopic velocity profiles in an abstracted microstructure.
This abstraction, however, assumes a linear time-invariant system
in order to allow probability assumptions that obtain the lognormal
velocity functions. Given the growing recognition of the impor-
tance of nonlinearities in complex systems such as the movement
apparatus, linearization is a mathematical convenience that may
ignore the essence of complex system behavior. Limit cycle behav-
ior, for instance, which has proven a valid account for rhythmic
coordination, is outside the model’s scope. In the same spirit, it is
questionable whether a model that focuses on the level of kinema-
tics and ignores dynamics can be more than a superficial account
of movement speed and accuracy.

Still, in this first stage of the model’s development, the kinematic
characteristics of continuous movement trajectories arise from
structural properties of the model in both space and time. However,
when Plamondon & Alimi (P&A) attempt also to “explain” the data
on the speed/accuracy trade-off, the model ignores the fundamen-
tal fact that accuracy is likewise defined in both the space and time
domain. Categorizing the various experimental protocols accord-
ing to either space or time demands in order to model their results,
P&A run the danger of requiring a separate theory for every task.
P&A’s formulation of constraints is precisely fitted to Fitts’ original
experimental protocol, which was replicated by many subsequent
studies and which pursued a remarkably one-dimensional ap-
proach to capturing variability in goal-directed movements: accu-
racy is measured only in terms of spatial errors, which are then only
correlated with the temporal duration of the movement. In strict
analogy, g1 reflects the spatial constraints captured by the task
criterion variables D and DD, and g2 captures the maximal
movement time in terms of the command variables D1 and D2.

We contend that only a space-time approach to movement
accuracy is a principled one that pays tribute to the axiomatic truth
that actions take place in space and time. Spatial errors are always
measured in regard to time and temporal errors in relation to
space. For example, it seems ironic to say that a baseball batter
missed the ball by 100 msec but only by 1 cm. Only both measures
together tell the success or failure of the action. Also, temporal
accuracy can be traded off against spatial accuracy. In many

laboratory tasks (including Fitts’ tapping protocol), however, the
method of determining movement error is somewhat arbitrary
and often follows either the task’s measurement traditions or the
experimenter’s whims. However, when spatial and temporal errors
are measured in the same frame of reference, the error profiles as
a function of movement velocity are complementary (Hancock &
Newell 1985; Newell 1980; Newell et al. 1993b).

P&A pass off the extensive work in timing error by Newell and
colleagues as controversial, but the timing error functions have
been replicated many times and, significantly for P&A, they are
tightly linked to the functions for spatial error. We argue, there-
fore, that, analogous to the command signals that define the
temporal and spatial extent, movement accuracy is constrained in
both space and time. A complete set of constraints (within the
approach offered by P&A) should also comprise the temporal
accuracy specified by the task. DMT/MT, as well as a constraint for
movement amplitude on the command level formulated in terms
of D1 2 D2.

Instead, in their attempt to account for temporal variability,
P&A propose an additional derivation (equation 59) with a differ-
ent theoretical rationale, which is based on their initial equation
for spatial constraints. Not surprisingly, the ability to fit the data
breaks down when experimental protocols are addressed that have
combined temporal and spatial constraints on accuracy – move-
ments that are all too reminiscent of any real world task! P&A’s
alternative suggestion that under such complex conditions the
internal parameters m1, m2, s1, and s2 need to be changed is
nothing more than hand waving. Which system parameters should
change? What task manipulations do the parameter modifications
correspond to? Without seeing a systematic variation of parameter
values across different task levels, P&A’s model gives the flavor of
arbitrary function fitting to meet the local task demands that are
often equally arbitrary.

Do we need an encompassing
speed/accuracy trade-off theory?

Arnold J. W. M. Thomassen and Ruud G. J. Meulenbroek
Nijmegen Institute for Cognition and Information, 6500 HE Nijmegen, The
Netherlands. thomassen6nici.kun.nl; www.nici.kun.nl

Abstract: Even if we recognize that the delta-lognormal model provides
an excellent fit to a large variety of data, the question remains as to what we
actually learn from such a model, which could be seen as merely another
multiparameter account? Do we welcome such an encompassing account,
or do we expect to learn more from the limitations that become apparent
when applying dedicated models addressing specific classes of move-
ments?

If a formal theory, like the delta-lognormal model, appears to be
successful in explaining a variety of phenomena, its likely fate is to
be subjected to criticisms related either to what it does not account
for or what the reviewer would have preferred instead. An exam-
ple of a criticism of the former type would be the fact that the
delta-lognormal law does not seem to explain why in aiming
movements directional errors are generally smaller than ampli-
tude errors (see Rosenbaum et al. 1995, pp. 46–47). However, the
extensive set of data fits presented by Plamondon & Alimi (P&A)
seems to leave particularly the latter option open for commentary.
Doubtless the delta-lognormal law has great appeal for those who
prefer a single, concise account for the speed/accuracy trade-off
relationships. But those who are more keen to understand in detail
what the actual mechanisms, processes, and limitations of the
motor system are, and how they are under voluntary control may
be dissatisfied by the mere information that these relationships
can be modeled to involve sequential and parallel subsystems and
agonist–antagonist synergies.

The trouble is that our insight into the origin and timing
constraints of rapid targeted movements has not really increased
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very much since 1954, or since 1899, for that matter. Do we really
want better and better multiparameter model descriptions for a
larger and larger variety of experimental data? Or do we need
much more real and detailed understanding of the phenomena
themselves, that is, of the nature and meaning of the
speed/accuracy trade-off relationships, and (if it exists) of the
single universal mechanism, or (which is more likely) of the
different specific mechanisms involved in such trade-offs under
different physical and experimental conditions? It is of interest to
note here that the target article has the plural form “trade-offs” in
its title. We would have liked a serious consideration of the types of
approaches and models that are needed to understand the phe-
nomena related to the timing of rapid, aimed movements. The
principal question that emerges is whether or not we gain the
desired insight by trying to cover all sorts of tasks performed by the
diverse effector systems, often manipulating different kinds of
devices as well. To the extent that such a model is more encom-
passing, it is necessarily of a more general and global nature. An in-
depth approach that develops models addressing particular classes
of movements, as distinguished from other classes, will be more
fruitful in promoting our understanding.

On the face of it, these classes of movement are not hard to
define. One of the distinctions that may lead to insight into the
phenomena, but which are not addressed by P&A, pertains to
relatively novel versus highly overlearned movements. Clearly,
most laboratory tasks of the Fitts type are rather artificial, and the
subjects’ practice is usually restricted to the duration of the
experimental sessions; this in contrast to the highly practiced
“aiming” movements of professional musicians and craftsmen.
Another such distinction is concerned with complexity, for exam-
ple, the number of segments of the effector system involved in any
particular aiming movement. Eye movements are much simpler in
this respect than, for instance, graphic movements that involve an
extremely complex, multijoint effector system holding a writing
stylus with the additional constraints implied in its grip. A third
distinction relates to single, discrete versus cyclically repeated
movements. It is most likely that different use is made of pro-
prioceptive as well as visual feedback in those types of tasks. In
particular, the opportunity for exploiting the visco-elasticity and
inertial dynamics of the effector is much larger in the case of cyclic
or repeated movements than in discrete movements.

Distinctions such as the ones that these few examples illustrate,
will no doubt remind us, in both modelling and parameter fitting,
of the boundary conditions and limitations of any specific model,
and will therefore highlight the unexplained aspects of human
motor control in any particular domain. Only this will contribute to
our understanding and it thus seems to be a valuable counterpart,
if not a necessary complement, to the – admittedly admirable –
approach taken by Plamondon & Alimi. The brilliance of their data
fits unfortunately blinds us when looking for such darker, weak
spots in the theory.

Distance versus position information in the
control of aiming movements

P. C. W. van Wieringen and P. J. Beek
Faculty of Human Movement Sciences, Vrije Universiteit of Amsterdam, The
Netherlands. piciwivaniwieringen6LSfbw.vu.nl; pijibeek6fbw.vu.nl

Abstract: Information about positions, from which differences in position
are computed (as proposed in the vector-integration-to-endpoint model),
provides a more plausible perceptual basis for the control of goal-directed
arm movements than information about distance (as proposed in the
kinematic model).

Plamondon & Alimi (P&A) present a mathematical theory for
speed/accuracy trade-offs in target-directed movements. Their
“kinematic” model involves a delta-lognormal law, which is demon-

strated to describe the velocity profiles of fast target-directed
movements equally well as or better than Fitts’ law. P&A’s model
requires that three input control parameters (t0, D1, and D2) and
four system parameters (two logtime delays m1 and m2, and two
logresponse times s1 and s2) are set prior to the initiation of the
movement. Apart from the close fit with the data, the model has two
theoretically attractive features. The model is realistic and parsi-
monious in that no cost-optimization principles are being applied,
whereas movement times are not planned a priori but are emergent
properties. Furthermore, the model assumes that velocity is the
primary variable that is being controlled by the nervous system,
which fits in well with currently evolving understanding of the
motor control system as a first-order system (see, e.g., Beek et al. 1996).

P&A present their kinematic model, based on linear system
theory, as a “global view based on the timing properties of both the
neural and the muscular networks” (sect. 6). They continue, “The
price for such generalization is that it is difficult, without further
experiments, to provide a direct biological interpretation for the
system parameters m1, m2, s1, and s2, and further study is needed in
this context.” This remark reflects the authors’ wish to interpret or
link their mathematical model to biological processes and sub-
strates involved in the control of movement. Similar sentiments
have been expressed by proponents of the application of nonlinear
system theory to the study of human movement (Beek et al. 1995).

This should not be read to imply, however, that purely mathe-
matical models without such an interpretation are useless, al-
though they admittedly run the risk of becoming completely data
driven if the curve fitting (that is part of any modelling approach)
does not lead to insight into the control and organization of
movement. Following this line of reasoning, we wonder whether
the model proposed by P&A provides more insight into motor
control than alternative models. In this context, we focus on the
fact that the input commands to the system are based on (either
perceived or remembered) distance information rather than on a
difference between position vectors as in the vector-integration-
to-endpoint (VITE) model proposed by Bullock and Grossberg
(1988). We argue that this constitutes an apparent drawback in the
light of the well-known reaching experiments of Bizzi et al. (1984)
with deafferented monkeys.

In these experiments, the reaching behavior of monkeys that
had undergone dorsal rhizotomy (eliminating prioprioceptive
feedback) was investigated. In one of the conditions, the monkey’s
forearm, which the monkey could not see, was passively driven
from the initial starting position to the target position (in the
absence of the target light) and held there for a variable amount of
time (1 to 3 sec). After the target light was activated and the arm
released, the monkeys first moved their arms toward the initial
starting position before reversing direction at a point intermediate
between the initial and the target position and moving back toward
the target position. The sooner the arm was released, the further it
travelled in the direction of the initial starting position. Inasmuch
as these results constituted a blow to the original formulation of
the mass-spring model (i.e., with a single, instantaneously fixed
equilibrium point), they also seem incompatible with the model
proposed by P&A. After all, if the monkeys would set D1 and D2 on
the basis of a remembered distance, they were always to move in
the same direction after the appearance of the stimulus and cover
(about) the same distance. Within the perspective of the VITE
model proposed by Bullock and Grossberg (1988), however, this
finding can be explained because, according to this model, the
present position vector (corresponding to the initial starting posi-
tion) is being integrated so that the difference with the target
position vector becomes zero. Moreover, the position vector
encoding for the control of arm movements proposed in the VITE
model is supported by neurophysiological evidence on primate
cells from several regions of the cerebral cortex (Georgopoulus et
al. 1982; 1986; Kettner et al. 1988). To our knowledge, similar
neurophysiological support for distance as a controlling variable in
the control of arm movements is not available. Given that the
VITE model also accounts for the behavioral data explained by the 
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kinematic model, it occurs to us that, in comparison to the model
proposed by Plamondon & Alimi, the VITE model has the edge in
explaining both behavioral and physiological data.

The delta-lambda model: “Yes” for simple
movement trajectories; “no” for
speed/accuracy tradeoffs

Charles E. Wrighta and David E. Meyerb
aDepartment of Cognitive Science, University of California, Irvine, CA
92697-5100. bDepartment of Psychology, University of Michigan, Ann Arbor,
MI 48109-1109. cewright6uci.edu; www.socsci.uci.edu/cogsci
demeyer6umich.edu

Abstract: Although it provides a useful description of elementary move-
ment trajectories, we argue that the delta-lognormal model is deficient as
an account of speed/accuracy tradeoffs in aimed movements. It fails in this
regard because (1) it is deterministic, (2) its formulation ignores critical
task elements, and (3) it fails to account for the corrective role of
submovements.

We welcome the present discourse on speed/accuracy tradeoffs
(SATs) in aimed movements and the delta-lognormal (DL) model.
This model describes well the shapes of elementary movement
trajectories (Plamondon et al. 1993), especially what we call “time-
matching” movements (cf. Meyer et al. 1988; 1990; Wright &
Meyer 1983). Furthermore, Plamondon & Alimi (P&A) have
made a valiant attempt at applying the DL model to the SATs in a
variety of movement tasks. This is praiseworthy because SATs in
rapid aimed movements are a major phenomenon that unified
theories of motor control should explain. Unfortunately, the target
article deals with these SATs in a seriously flawed and incomplete
way.

Stochastic nature of speed/accuracy tradeoffs. The authors
note that the study of SATs arose from and is part of psychophysics
(sect. 1, para. 1). Behavioral variability, a central and inescapable
aspect of the relationship between mental states and their physical
manifestations, is one key topic of psychophysics (Woodworth
1899). We are therefore surprised and disappointed that the target
article proclaims the DL model to be virtuous because it disre-
gards the inherent variability of aimed movements (sect. 5.1). This
proclamation overlooks the basic obligation of any serious motor-
control theory to incorporate and account for effects of neuromo-
tor “noise.” Because trial-to-trial variability is typically large in
movements like those considered here and because this variability
is central to the dependent measures used, it is difficult to see how
any model that ignores this variability could be correct.

Of course, we are not the only ones to reject deterministic
models as explanations of SATs (e.g., Fitts 1954; Schmidt et al.
1979; Woodworth 1899). Ironically, P&A acknowledge this re-
quirement initially before subsequently neglecting to honor it in
their DL model. Summarizing Crossman and Goodeve’s
(1963/1983) theory, they state (sect. 2.1.2, para. 4): “More funda-
mentally, one handicap of this model is that it is completely
deterministic. This implies that for a fixed target distance and
width the sequence of submovements would always be the same.”
Unfortunately, exactly the same criticism, which is a very serious
one, also applies to the DL model.

Application of the DL model to the Fitts’ task. The DL model
provides a flawed account for results in the Fitts’ Task, in which
subjects are instructed to move as quickly as possible from a
starting position to a target region whose distance is D and whose
width is 6DD. According to the DL model, velocity profiles for
this situation, which we call the “time-minimization task,” have
one or two zero-crossings before returning to zero at t 5 ∞. The
derivation for equation 52 ensures that the spatial position of the
effector will be within 6DD of the target at the first or second zero
crossing. Although this formulation yields predictions for move-
ment time (MT) that fit the data well, it ignores several important

aspects of the task situation. First, the zero-crossing criterion is at
odds with the procedures to define a movement’s endpoint used in
the experiments being modeled. Second, the DL model ignores a
psychologically crucial aspect of the task situation: the subjects’
requirement to hit the target is probabilistic. Subjects are in-
structed to produce distributions of movement endpoints with a
nonzero probability (e.g., .05) of missing the target region. A
resulting frequent complication is that a subject may generate
movement–endpoint distributions that are much wider or nar-
rower than the nominal target region for different targets. The DL
model ignores this phenomenon.

Application of the DL model to the time-matching task. The
DL model has more serious problems accounting for SATs in what
we call the “time-matching task” (and the target article calls
“movements with temporal constraints where MT is given: focus
on spatial variability”). This task requires subjects to produce
movements that travel a distance D in a prespecified total time
MT; typically a linear SAT is observed between average velocity
D/MT and movement-endpoint variability sD (Abrams et al. 1989;
Schmidt et al. 1979; Wright 1983; Wright & Meyer 1983; Zelaznik
et al. 1981; 1988). The target article suggests that subjects estimate
D perceptually and then that they solve equation 56 to obtain a
value of DD consistent with MT. The formulation of equation 56
predicts that DD will be proportional to D for fixed values of MT,
but, contrary, to the experimental findings, equation 56 does not
predict a linear relation when MT varies. Moreover, the derivation
of equation 56 makes clear that DD indexes the maximum allow-
able absolute distance error rather than the variable error, sD,
commonly studied in experiments with the time-matching task.
(Contrary to what the target article implies in sect. 4.3, DD is also
not absolute error, as it is typically defined in the motor control
literature.)

Existence of corrective submovements. Yet another problem
for the DL model is its failure to characterize aptly the function of
submovements. P&A claim that subjects make few, if any, truly
corrective submovements (sects. 5.1 and 5.3); rather, according to
them, apparent submovements are artifactual. This claim is pat-
ently false. Although not every reversal in the velocity profile
indicates the start of a corrective submovement and although
some reversals may stem from passive oscillations or ago-
nist/antagonist mismatches of the sort embodied in the DL model,
there is strong evidence that (1) truly corrective submovements do
occur frequently, and (2) visual feedback is used to guide those
corrections.

Two kinds of evidence support the existence of corrective
submovements. First, for sufficiently difficult task conditions,
there are often more than two zero-crossings in the velocity
profiles of Fitts’ task movements. For example, Meyer et al. (1990)
found three or more corrective submovements in almost one-half
of the trials than during one representative experiment. Second,
there are more apparent submovements during movements in a
Fitts’ task than during movements in a time-matching task (Carl-
ton 1994). The DL model does not predict this between-task
difference. This difference is predicted by the stochastic
optimized-submovement model (SOS) of Meyer et al. (1988;
1990).

That the extra corrective submovements observed in the time-
minimization task involve true corrections based on visual feed-
back has been amply demonstrated as well (e.g., Keele & Posner
1968; Meyer et al. 1988; Zelaznik et al. 1987). When visual
feedback is eliminated selectively during the course of time-
minimization movements to difficult targets, movement accuracy
drops substantially. The DL model does not explain why; indeed it
cannot, whereas the SOS model can.

For these and other reasons, if the DL model is to succeed as a
general, unified theory of motor control it will require substantial
further development that, we feel, may ultimately bring it closer to
the SOS model.
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Abstract: Several issues are raised concerning the notion that a single
strategy explains Fitts’ law and the linear speed/accuracy trade-off. Two
additional concerns are discussed: (1) distance is programmed, (2) the fact
that movements produced without the aid of vision obey Fitts’ law does not
mean that sighted movements must be explained without regard to vision.

Plamondon & Alimi (P&A) argue that the kinematic theory of
rapid movement can be used to explain Fitts’ law as well as the
linear speed/accuracy trade-off. This is a very large undertaking,
and at this time perhaps premature. In this commentary, we
present behavioral evidence from which we infer that these two
speed/accuracy relations do not derive from a common kinematic
strategy.

The crucial question concerns whether a unified trajectory
control strategy underlies performance on a Fitts’ task (time
minimization) and on a linear speed/accuracy trade-off type task
(temporally constrained). P&A are not the first to argue for a
common explanation (Hancock & Newell 1985); however, until
recently, experimental tests of this proposition have been lacking.
Carlton (1994) reported the results of a very simple experiment
designed to determine whether the linear speed/accuracy trade-
off relationship (Schmidt et al. 1979) and Fitts’ law (Fitts 1954) can
be derived from a common strategy. Subjects performed a 400
msec, 12 cm, temporally constrained aiming movement. Carlton
measured the within-subject standard deviation in movement
distance, that is, the effective target width, We, and then con-
structed a target width twice the We. It seems to us that Plamon-
don’s kinematic model would view these two situations as identi-
cal. Thus, when subjects performed the spatially constrained, time
minimization Fitts’ law task, with a distance of 12 cm and a target
width equal to twice their We derived from the temporally con-
strained task, the movement time should be approximately their
average movement time in the temporally constrained situation. It
was not. There was a 90-msec saving in movement time for the
time minimization Fitts’ law task. Moreover, the movements in the
latter task were composed of two submovements, whereas those in
the temporal-accuracy task were characterized by a single sub-
movement. These results appear to be counter to the suggestion of
P&A that these two speed/accuracy relationships are explained by
the velocity profile strategy that they outline.

We believe that the Carlton experiment serves as a crucial test
of the notion that subjects adopt different goals (i.e., strategies) in
time minimization tasks, compared to temporally constrained
tasks (Meyer et al. 1988; Wright & Meyer 1983). Zelaznik et al.
(1988, Experiment 1) showed nicely how the manipulation of the
temporal demands of an aimed hand movement causes changes in
the nature of the speed/accuracy relation. When temporal de-
mands were relaxed, aimed hand movements showed a
speed/accuracy relation more like Fitts’ law. P&A appear to be
more concerned about the second experiment of Zelaznik et al.
(1988), which showed no interaction between the target width and
temporal precision on the nature of the speed/accuracy relation.
Yet, the explanation for this finding is simple. The target widths
were 1, 2, and 3 cm, clearly too large to produce strategic changes
in the submovement optimization principles.

There are other aspects of their work with which we take issue.
First, P&A rely heavily on the fact that Wallace and Newell (1983)
found that unsighted movements obeyed Fitts’ law. However, that
result can be explained by Meyer et al.’s (1989) optimized sub-
movement theory. Even without vision, subjects will choose a

value for movement duration that minimizes the requirement for
additional submovements. Just because unsighted movements
obey Fitts’ law, it does not follow that sighted movements do not
utilize vision and, of course, corrective submovements. Second, an
important implication of Plamondon’s theory concerns distance
programming. P&A discuss the need to know the initial condition
(starting point) and the distance to be moved, in order to plan the
velocity profile trajectory. Despite the recent challenge to the
equilibrium point hypothesis (Gomi & Kawato 1996), the evi-
dence is clear that location programming is more accurate than
distance (see Rosenbaum 1991; Schmidt 1988), and that informa-
tion about starting position is not necessary for short-term motor
memory (Schmidt 1988).

Finally, many models in other domains of human performance
presume that individuals have several routes to successful perfor-
mance. In stimulus–response (S-R) compatibility research, for
example, a distinction is often made between a direct, or auto-
matic, response-selection route, via which a stimulus activates its
corresponding response, and an indirect (or S-R) translation
route, through which an assigned response to a stimulus is re-
trieved or generated by means of a rule (e.g., Kornblum et al.
1990). Compatibly mapped responses to stimuli are faster for
“pure” trial blocks in which all S-R pairs have compatible map-
pings than for “mixed” blocks in which the mappings for some
pairs are incompatible. This and other findings have been inter-
preted as suggesting that a strategy of responding on the basis of
direct response activation is adopted for pure compatible blocks
but not for mixed-mapping blocks (van Duren & Sanders 1988;
Stoffels 1996). We propose that on the motor side of information
processing, individuals can likewise utilize different strategies to
generate movement trajectories. These strategies are based upon
the task constraints, that is, temporal and spatial accuracy de-
mands. The nature of the task will then determine how the subject
achieves the goal and the type of speed/accuracy trade-off that will
be observed.

Author’s Response

The kinematic theory: A new window to
study and analyze simple and complex
human movements

Réjean Plamondon
Laboratoire Scribens, École Polytechnique de Montréal, Département de
génie électrique et de génie informatique, C.P. 6079, Succursale Centre-
Ville, Montréal, Québec, Canada H3C 3A7. rejean6scribens.polymtl.ca

Abstract: To cover as much as possible the various questions
raised by the commentators, I have divided my Response into
three major sections. In section R1, I reply to the major comments
and remarks dealing with the basic hypothesis upon which the
kinematic theory is built (Plamondon 1993b; 1993c; 1995a;
1995b). I focus on linearity, determinism, kinematics, and the
biological significance of the model parameters. I conclude this
section by showing how, from a practical point of view, the delta-
lognormal law can be used to group similar data prior to proceed-
ing with further statistical analysis. In section R2, I address the
main comments and remarks dealing with the speed/accuracy
tradeoffs. First, I focus on the origin of speed/accuracy tradeoffs
and the effect of visual feedback. Then I clarify some terminology
problems and mathematical misinterpretations prior to providing
new support for the theory using the experiments and data
referred to by some commentators. I devote section R3 to a
generalization of the kinematic theory and to some potential
applications. I first provide new explanations of some classical
experiments; then I show how more complex movements can be
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analyzed using the delta-lognormal law. I focus on perturbed and
oscillatory movements as well as on cursive script and signature
analysis. I conclude this section and my Response by showing
some possible applications to the study of movement learning in
children as well as to the study of aging phenomena in movement
control. I complete my Response by recalling some technical
problems that still need further analysis. Throughout the text, I try
to convince the reader that the kinematic theory provides a new
window on old and new data in the field.

R1. Introduction

The target article had two goals: the first was to make clear
that speed/accuracy phenomena, as observed in simple
rapid-aimed movements still lack a fully comprehensive
explanation. The second goal was to show that the kinema-
tic theory proposed and developed by Plamondon (1993b;
1993c; 1995a; 1995b) provides a general framework for
describing and analyzing such phenomena. Although some
commentators have directly or indirectly acknowledged
that the target article was partly successful with respect to
these two goals (van Wieringen & Beek; Carlton & Liu;
Desmurget et al.; Hancock & Verwey; De Jong & Van
Galen), many interesting questions and judicious criti-
cisms have been raised within and beyond the specific
topics covered in the target article. Reactions beyond the
specific scope of the paper were expected. They reflect the
fact that the kinematic theory is not limited to the simple
study of speed/accuracy tradeoffs but can be helpful in
many other areas, as will be seen below.

From a practical point of view, to address as fully as
possible the major points raised by the commentators, I
have grouped my various replies under three major head-
ings. I will first deal with comments and objections regard-
ing the basic hypothesis behind the kinematic theory. Then
I will discuss the commentaries dealing with
speed/accuracy tradeoffs, focussing mostly on fundamental
questions, trying to clarify some points that seem to have
been misunderstood. Finally, I will analyze a few experi-
ments reported by some commentators, for which the
kinematic theory can provide new insights. I will also take
the opportunity, in this third section, to show new applica-
tions of the kinematic theory in the more general context of
complex movement analysis. Throughout the Response, I
will show that the theory is already in a “usable form”
(Morasso & Sanguineti), for many applications.

R2. The kinematic theory

Several aspects of the kinematic theory were considered
powerful and even promising by many commentators: the
prediction of the different forms of velocity profiles (Phil-
lips et al.), the realism and parsimony of the model (van
Wieringen & Beek), the use of velocity as a primary
variable (van Wieringen & Beek; Sternad & Newell),
the agonist/antagonist representation (Sherwood; Mac-
Kay), the simultaneity of the two input commands
(MacKay), the high descriptive power of the model
(Wright & Meyer; Thomassen & Meulenbroek; Des-
murget et al.), the interest of the model for the study of
individual data (Holly), and the incorporation of memory
and learning to account for the speed/accuracy tradeoffs
(Desmurget et al.), to name a few. There are, however, at
least five challenges to the basis of the theory. In the first
section I will focus mainly on replying to these objections.

R2.1. Linearity versus nonlinearity. A few commentators
(Sternad & Newell; MacKay; Bootsma & Mottet; Des-
murget et al.) have pointed out that the kinematic theory
(Plamondon 1993b; 1993c; 1995a; 1995b) has a major
drawback because it is based on a linear system approach,
whereas muscular and neural networks are better modeled
using nonlinear dynamics. I certainly agree that nonlinear
dynamics provides useful ways to describe and analyze
individual networks, although many authors using this ap-
proach fail to report any quantitative comparisons of their
nonlinear models with real data (Bullock & Grossberg
1991; Mottet & Bootsma 1995, etc.). The fundamental
hypothesis behind the kinematic theory is that when a large
number of neuromuscular networks work in a synergetic
fashion to produce a natural, well-learned rapid movement,
the overall system behaves as if each subsystem were
working in a linear mode around some specific operating
conditions. Because a large number of these coupled sys-
tems are involved in the production of a single movement,
the central limit theorem can be used to predict the
mathematical form of the asymptotic impulse response of
such a neuromuscular system: a lognormal function. The
organization of a synergy into a combination of agonist and
antagonist systems then leads to the prediction that the
velocity profile of an end-effector will be described by a
delta-lognormal law (Plamondon 1993b; 1995a).

Let me make an analogy. Semiconductors or, more par-
ticularly, transistors are nonlinear devices. When they are
polarized around some operating points, they behave like
linear devices for small variations around that point. With
proper interconnections, there are various ways to build a
global system that will act as a linear amplifier using
nonlinear devices. This is what a large part of the design of
audio amplifier systems is all about. In this perspective, the
kinematic theory suggests that throughout evolution and
learning our neuromuscular system has found ways to
interconnect each subsystem to each other in a way that
mimics, at some global level of representation, a linear
system.

This phenomenon can be illustrated by looking at some
simulations that we have run at Laboratoire Scribens
(Warmoes 1995) using different nonlinear subsystems. For
example, we have computed the impulse response of a
sequence of N subsystems, each one being described by a
simple nonlinear shunting equation of the form:

dxj

dt
5 2 Ajxj 1 Bjxj21 2 Cjxj21xj (R.2.1)

where xj is the output of the jth subsystem, xj21 is the output
of the (j 2 1)th subsystem and input of the jth subsystem, Aj
is the passive decay factor, Bj is the positive feed-back
factor, and Cj is the negative feed-back factor.

Figure R1 shows a typical evolution of the form of the
impulse response of a sequence of these simple coupled
nonlinear systems. As the number of systems in the se-
quence increases, the impulse response tends more and
more toward a lognormal, even if each of these individual
subsystems is nonlinear. In practice, after interconnecting
only a few stages, the lognormal behavior is already appar-
ent. The concept of a large number of systems (called into
question by Grossberg) does not seem to be too restrictive.
Another explanation for such a convergence might be based
on some generalized form of the central limit theorem. In
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Figure R1. Evolution of the impulse response (IR) of a set of
coupled nonlinear systems (equation R.2.1) as a function of the
number (N) of subsystems in the set. The dotted lines represent
the best fitting lognormal. The mean square error (MSE) obtained
when fitting the IR with a lognormal decreases as N increases, as
predicted by the kinematic theory.

any case, it seems that there are conditions where a lognor-
mal function is a very good approximation to the global
output of a sequence of coupled linear or nonlinear sub-
systems.

R2.2. Deterministic versus stochastic approach. One of
the goals of the kinematic theory is to allow the study of
individual movements (considered by Holly as one of the
greatest points of interest in the theory). To do so, a
deterministic approach is used to model the properties of a
neuromuscular synergy in the production of a single rapid
movement. This leads to a DL law that describes almost
perfectly the velocity profile of the end-effector controlled
by that synergy. In the context of the theory, this means that
each specific rapid aimed movement can be described in
terms of a set of parameters that represent the input
command (D1, D2, t0) to the neuromuscular synergy and

the timing properties (m1, m2, s1, s2) of the agonist and
antagonist systems involved in that specific synergetic ac-
tion.

The fact that the kinematic theory associates with each
individual gesture a set of specific parameters in no way
implies that a stochastic approach cannot be useful when it
comes to analyzing the statistical properties of a set of
individual movements. I must accordingly disagree with the
commentators who reject the theory on the basis of its
deterministic nature (Wright & Meyer; Bootsma & Mot-
tet; De Jong & Van Galen). The theory in fact provides an
original approach to statistical modeling, based on the
statistical analysis of the model parameters. In other words,
the different parameters of the model take on a single
specific value (I will come back to this point later on) for a
single movement but in practice these parameters can be
considered as tunable random variables that have specific
distributions for specific experimental conditions. (I agree
that this point was not developed clearly in the target article
although most of my arguments in sections 4 and 5 reflected
that this tunability was implied.) The stochastic properties
of the neuromuscular systems involved in a specific task can
thus be analyzed with the DL law rewritten as:

v(t) 5 D̃1, L(t; t̃0, m̃1, s̃1
2) 2 D̃2 L (t; t̃0, m̃2, s̃2

2) (R.2.2)

where each , parameter is a tunable random variable with
its own statistical properties. Doing so, one should be able
to analyze both the individual movements (equation 39 of
the target article) and the statistical properties (equation
R2.2) of their associated parameters, considered as random
variables, using a full database of such movements. This
might be an interesting way to avoid the masking effect
(Holly) that occurs when more conventional statistical
analysis is done. With this new approach, the variability of a
group of movements can be easily simulated or studied. For
example, I have performed such an analysis (Plamondon
1997) and all the observations previously reported on the
variability of movement variables can be predicted on the
basis of the same single fundamental equation: the DL law.
For example, computer simulations predict that the stan-
dard deviation of the maximum velocity will increase in
proportion to the average peak velocity. Conditions of
departure from perfect proportionality can also be partly
explained in terms of the number of trials per experiment as
well as the physical limits associated with each parameter of
the DL law. In this context, the basic hypothesis on which
the stochastic optimized submovement model relies
(Meyer et al. 1988) also seems to be another direct conse-
quence of the DL law.

Another way to incorporate movement variability in the
theory, proposed by De Jong & Van Galen, is via the study
of the statistical properties of the random variable ej (equa-
tion 38). This is certainly an interesting suggestion that can
be investigated using, for example, different subsystems in
detailed models like the one used in Figure R1 (see equa-
tion R2.1). The relationship between the statistical proper-
ties of ej and the variability of the system parameters mi, si

2

could then be explored in more detail and compared with
real data.

R2.3. Kinematics versus dynamics. Apart from what I
wrote in section 5.2, a few commentators have also pro-
vided new support to the idea that velocity might be the
primary variable in movement control (Hermann &
Soechting; van Wieringen & Beek; Sternad & Newell).
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Some commentators, however, criticize the kinematic ap-
proach (MacKay), some even considering kinematics a
“trivial” consequence (Mitnitski) of dynamics.

Indeed, many models of human movement are inspired
directly or indirectly by what is known about the basic
description of a single muscle as a force generator. Al-
though a single muscle can be described as a force genera-
tor, using many kinds of dynamic spring models, this does
not lead automatically to the generalization that synergetic
action of a large number of muscles is equivalent to the
action of a single force generator. This might be an interest-
ing working hypothesis but many alternative assumptions
are possible. The one I use in the kinematic theory is that
the description of a complete neuromuscular system involv-
ing numerous nerves and muscles can be better understood
if the whole system is depicted as a velocity generator. (This
is also consistent with the recent study of Wolpert et al.
[1995] that suggests that trajectories are planned in kine-
matic coordinates.)

From the perspective of physics, there are two reasons
for using velocity as a control variable. Velocity encom-
passes two types of basic information that can be helpful to
the central nervous system (CNS) for movement control
and generation:

momentum 5 Wp 5 mWv (R.2.3)

the kinetic energy 5 E 5
1
2

muWv u2 (R.2.4)

By controlling the velocity vector a subject obtains all
information about the momentum of a gesture; this might
be of practical importance for any type of movement
involving, for example, a collision with an external object.
Moreover, by specifically controlling the magnitude of that
velocity vector, a subject gets control over the effective
kinetic energy produced by that gesture. This is consistent
with the findings of Soechting et al. (1995) on work minimi-
zation.

From this perspective, the kinematic theory provides a
new way to look at human movements in terms of momen-
tum and energy, two very fundamental variables in physics.
Which is more important, force or energy? This is a sterile
question as far as physics is concerned. Both variables
provide a description of the movement and one can be
theoretically recovered from the other. I did not refer to
forces in the target article, not because the theory does not
make any predictions about forces (Carlton & Liu), but
because these are not necessary to understand speed/
accuracy tradeoffs, the main themes of the target article. I
have recently shown how isometric and isotonic force
patterns can be described using the DL law and its first time
derivative, respectively (Plamondon 1997). Here again,
starting with the same basic law, numerous observations
repeatedly reported in the field have been accounted for.

What is more important in this process is the question of
what is gained by analyzing a movement with the delta-
lognormal law. The target article shows a few examples of
these gains; many of these cannot be as easily described
when one analyzes movements with a nonlinear dynamic
approach, particularly when it comes to making quantita-
tive comparisons. From a practical point of view, the delta-
lognormal law can be seen as a global constraint that any
dynamic description of an “articulated chain of a robot

manipulator or a human limb” (Morasso & Sanguineti) or
a redundant multijoint arm motor system (Desmurget et
al.) must respect to produce realistic outputs. For example,
the law could be helpful in selecting the proper form of the
go signals for the vite model (Grossberg).

R2.4. Biological significance of the model parameters. In
its simplest form, the delta-lognormal law relies on a set of
seven parameters to describe the magnitude of the velocity
of an end-effector as a function of time in terms of the
weighted difference in the impulse response of the agonist
and antagonist neuromuscular systems involved in rapid
movement. Some commentators acknowledge that the
model has a potentially biological basis, particularly with
regard to its power to explain intraindividual differences
(Phillips et al.; MacKay) and its approach polarized
around an opposing agonist and antagonist system
(MacKay; Sherwood), described by two generalized im-
pulse responses (Sternad & Newell) and based on a
“Weber law control of timed movements” (Grossberg).

Many comments deal with the biological meaning of the
individual parameters and what kind of insight they provide
on the control and organization of the motor system
(Thomassen & Meulenbroek; van Wieringen & Beek;
Goodman; MacKay; Bootsma & Mottet; De Jong &
Van Galen). This is certainly a major issue, probably the
most difficult one, particularly if one tries to interpret the
model parameters in the context of the classical approaches
to date. A better way to explore these questions is to analyze
movement parameters in the context of the representation
space supported by the model, a representation related
mostly to space, time, and energy.

According to the kinematic theory, a time t0 can be
conceived of as the moment when a given voluntary order is
given. Because any movement generally involves the activ-
ity of cell populations, t0 can be seen as a way to represent
the time of volition, the time when the activity of agonist
and antagonist cell populations initiating a movement is
large enough to be interpreted as the instant of the volun-
tary command for that specific movement. The global
activity of the agonist and antagonist cell populations at this
specific time can then be interpreted as the amplitude D1
and D2 of the agonist and antagonist commands, respec-
tively. Which variable describing the global activity of a cell
population directly correlates with D1 or D2 is still an open
question. The fact that D1 2 D2 defines the distance that
will be covered by the end-effector is consistent with the
recent study of Nougier et al. (1996) that suggests that
human movements are programmed in terms of amplitudes
rather than in terms of a final position. [See also Libet:
“Unconscious Cerebral Initiative and the Role of Conscious
Will in Voluntary Action” BBS 8(4) 1985.]

Parameter interpretation in the kinematic theory would
certainly be helpful in new research projects because it
allows for the recovery of t0, D1, and D2 by an analysis-by-
synthesis of any individual simple movements. From a
practical point of view, the parameter t0 could be helpful,
for example, in synchronizing rasters of action potentials in
any kind of histogram analysis that could link the syn-
chronized activities of different cell populations with a
specific task on the basis that the amplitudes D1 and D2 of
these cell activities are also linked to external variables such
as movement amplitude (equation 47) and movement time
(equations 41 or 46). A similar approach could also be used
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Figure R2. The concepts of time delay and response time of an
impulse response.

to analyze EMG data to provide a deeper insight into the
observation that “the ‘phasic’ EMG (electromyographic)
component could thus be interpreted as a result of a motor
command concerned primarily with the control of velocity”
(Hermann & Soechting).

The temporal parameters m and s represent the global
time delay and response time of a neuromuscular network
on a logarithmic time scale. Figure R2 clarifies these two
concepts. It depicts the lognormal impulse response (equa-
tion 40) of a neuromuscular system (agonist or antagonist)
with a representation of the time delay and the response
time.

When such a function is analyzed from a system engi-
neering point of view, one is interested in characterizing the
“time interval over which that function differs significantly
from zero” (Brown 1963, p. 142) generally called the
response time and also the delay “after the application of
the input [U0(t 2 t0)] at which the output attains a certain
value” (Brown 1963, p. 143). In practice, for comparative
purposes, if the impulse response is non-negative then the
median of the impulse response is taken as a good represen-
tation of the time delay. The response time is often evalu-
ated from the estimated width of H(t 2 t0) using the
standard deviation of the impulse response as a reference,
since 2.5 s gives a good estimate of the spread of H(t 2 t0)
on the time axis.

In this general context, for a lognormal impulse response
starting at t0 5 0:

m 5 ln (median) (R.2.5)

s2 5 ln Smedian
mode

D (R.2.6)

can be used to depict the time delay and the response time
on a logarithmic time scale (Plamondon 1993b; 1995a).

These parameters are probably linked, for example, to
the response latency of the various motoneurons as well as
to the viscosity or the stiffness of the individual muscles of a
network. The kinematic theory emphasizes the idea that, at
a global level of representation, the CNS controls a move-
ment not in terms of the individual biomechanical proper-

Figure R3. R3A: A simple muscle-joint model. R3B: Effect of
elasticity coefficient on the time delay and the response time of the
system depicted in (A) for a constant displacement.

ties of each individual neuromuscular component but in
terms of a more general and familiar concept: time. This is
consistent with the observation of Darling and Stephenson
(1993) that individual joints or limb segments are not
controlled in the same manner as is the terminal pointing
segment. If this is true, there must be some links between
the two representation spaces, biological versus time, but
new data analysis will be required to make such a link.

Figure R3 highlights briefly some possible correlations
that could be studied more extensively on real systems. It
reports the results of a simulation using a simplified system
(Fig. R3A) describing a joint controlled with a pair of
agonist-antagonist muscles modelled according to Hill
(1938). Using the impulse function U0(t) as input to such a
system, one gets the time course of its impulse response.
The latter curve can be characterized by its time delay and
response time, as defined in Figure R2.

Figure R3B shows the relationship between the time
delay (solid line, left vertical axis), the response time (dot-
ted line, right vertical axis), and the coefficient of elasticity
for a constant displacement. As one can see, for such a
simple system, an increase in the elasticity factors results in
a decrease in the time delay and the response time. Accord-
ingly one can suspect that the kinematic theory will not be
at odds with other biomechanical theories and that specific
experiments could be designed to check for relationships
between the neuromuscular temporal parameters mi and si
and any other specific physical variable describing the
dynamic properties of the neuromuscular system.

From the specific point of view of the kinematic theory,
what is more interesting is studying mi and si by analyzing
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different sets of individual movements to provide a new way
to think about movement. Indeed, once a given order (D1,
D2) is given at time t0, the CNS controls its propagation
through the different neuromuscular subsystems of the
agonist and antagonist pathways. This distributed control
can be interpreted in terms of controlling the relative log-
time delay and the relative logresponse time of both
agonist and antagonist systems. The different forms of
velocity profile predicted by the delta-lognormal law (see,
for example, Fig. 2) occur only because within certain
limits, a subject can change or tune the logtime delay and
the logresponse time of the agonist system relative to the
antagonist system. (I fail to understand why such a tuning of
parameters would be biologically implausible [Hancock &
Verwey. We will see other indirect evidence of such a
capability later on. As will be seen, it has nothing to do with
“hand waving” (Sternad & Newell)]. According to the
kinematic theory, the CNS can thus control how to expend
the kinetic energy for a specific task by controlling the
global timing properties of the agonist and antagonist
neuromuscular systems. Because the theory allows for the
simultaneous study of both the agonist and antagonist
systems, the results can be analyzed in conjunction with any
other current recording techniques to check for relation-
ship with any other model variables.

Moreover, the kinematic theory might provide a clue in
our effort to link the parameters m and s to the biological
properties of the individual subsystems of a pathway. The
entire demonstration that the asymptotic impulse response
of a neuromuscular network tends toward a lognormal
function relies on equation 38, which describes the rela-
tionship that must exist between the cumulative time delays
of the different subsystems involved in the production of a
simple movement. In a multiple electrode recording proto-
col at both the brain and the muscular level, the theory
predicts that for any individual movement described by a
DL law, the cumulative time delay as computed from the
recorded data at the frontiers of different subsystems will
be linked by a proportionality relationship. If such a rela-
tionship is not observed, although a DL velocity profile is
observed at the end-effector level, this might indicate that
the set of electrodes is not properly positioned. (In the long
term, with a little speculation, one can dream that the
kinematic theory will even provide some clues for electrode
positioning. . . .)

R2.5. Data fitting versus data selection. One point that
seems to be acknowledged by numerous commentators is
the power of the DL law to fit individual velocity profiles.
However, as pointed out by Morasso & Sanguineti, one
should not confuse model fitting and data fitting and I
agree. Similarly, the remark by Mitnitski – “a perfect fit of
experimental curves is not sufficient to accept or reject a
model” – makes sense. But we should not forget that a
perfect fit of experimental data is at least a necessary
condition in accepting or rejecting a model. Working with a
nice conceptual model that does not fit well with the real
data can easily lead to speculation. The new suggestions in
the foregoing paragraphs for finding a biological meaning
for some of the DL parameters would be completely useless
if the DL law did not have such a remarkable descriptive
power. What would be the interest of exploring, for exam-
ple, the biological meaning of t0, D1, D2, etc., if the
parameters extracted from various experimental curves

could not allow for an almost perfect reproduction of the
measured data? The “human like” example provided by
Mitnitski is hence unfortunately quite trivial. There are
numerous models that can show similar behavior. Simula-
tions like this can be done with the DL law by modifying a
single parameter too (Plamondon 1993b; 1995a).

The first challenge for a model is to reproduce real data.
As long as such a conclusive comparison is not done using a
large database, a model must be considered merely spec-
ulative. The delta-lognormal law has been found to be the
most powerful model among 26 such models to describe
velocity profiles (Plamondon et al. 1993; Alimi & Plamon-
don 1993a; 1994). Any model of rapid human movements
should at least reach the quality of description obtained
with the DL law. In these previous studies, the Guttman et
al. (1992) model has been tested and compared with the
other models. Contrary to what is claimed by Latash &
Schöner in their comments, the Guttman et al. (1992)
model did not perform very well. With our 1,052 handwrit-
ten stroke databases, it was ranked tenth among 26, result-
ing in a mean square error of 1.12 cm2/s2 compared with
0.09 cm2/s2 for the delta-lognormal law (Alimi 1996).

The second challenge for a model is to have meaningful
parameters that can be helpful in understanding the pro-
cess the model describes. I agree that the kinematic theory
is far from having reached the descriptive power of the vite
model (Grossberg, van Wieringen & Beek). It still needs
further development and new experiments will have to be
conducted to take up the challenge. The fact that a DL law
is very powerful in data fitting will be an essential
benchmark for further progress on this topic. Indeed, the
interest of having a model that can fit the data almost
perfectly is that the fitting process itself can be used to clean
up a database prior to going into further analysis. Human
movements encompass a high degree of variability and in a
specific experiment where individual movements cannot be
analyzed with some existing models, statistical tools are
normally used to compare, among other things, the mean
behavior of a specific variable as well as its variance with
respect to the mean. In doing so, a large part of the
collected data is considered, often without regard to the
success of the human subject in executing the required task.

As indicated in section 5.3, the DL law provides a clear
mathematical definition of a simple ballistic movement. It
can be used to check whether all the data collected in a
specific experiment on rapid movements are indeed ballis-
tic. Figure R4 shows the result of applying this method to a
database of wrist flexions and extensions from a monkey
subject (Riehle & Requin 1989). The thin lines represent
the experimental data and the thick lines the best fit
obtained using the DL law. As one can see, for a large
majority of these 28 curves, an excellent fit is obtained. In
fact, for the whole database of 1,817 movements, an almost
perfect fit was obtained in 85% of the cases. Looking at
those cases where an almost perfect fit is not reached, one
can see that very often these movements do not correspond
to what the model describes as a simple ballistic movement.
(See, for example, curves 3 and 4 in row 5.) In other words,
these trials do not correspond to the types of movement
that are under study; they often correspond to more com-
plex movements. The quality of the fit with a DL law can be
used to remove these untypical results from the database
prior to any statistical analysis to make certain that a
“purified” database is used. This is an example of what can
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Figure R4. Typical examples of wrist flexion and extension
movements of a monkey subject. Light line-original data; solid
line-reconstructed data using the delta-lognormal law. At least two
of these curves (Nos. 3 and 4, row No. 5) are badly reconstructed
using single velocity profiles.

be done with the kinematic theory in terms of database
cleaning. (I do not mean that these excluded data are of no
interest but that they constitute more complex movements.
They can be analyzed separately with the same theory using
a more complex strategy likewise based on the DL law, as
will be seen below.)

Without going further on this specific point, let me
provide an example of an analysis that could be done next.
The individual value of t0 as extracted from each curve
could be used to rank-order or synchronize rasters of action
potentials, to generate time histograms of the correspond-
ing cellular activity in the cortex (Plamondon et al. 1995b).
Moreover, correlation among the different parameters ex-
tracted could be checked and analyses like the ones pro-
posed by MacKay could be performed.

R3. Speed/accuracy tradeoffs

The kinematic theory provides a new approach to the
analysis and explanation of the origin of speed/accuracy
tradeoffs, based on the intrinsic properties of the delta-
lognormal equation describing the velocity profile of a rapid
aimed movement (Plamondon 1993c; 1995b). This inte-
grated view seems to be at odds with the numerous explana-
tions (see sec. 2 of the target article) that have so far been
proposed to explain these phenomena. Numerous com-

ments and criticisms deal with the potential explanation
provided by the kinematic theory and its underlying hy-
pothesis. I have grouped my answer on these topics under
four headings.

R3.1. Origin of speed/accuracy tradeoffs. According to
the kinematic theory, the origin of the speed/accuracy
tradeoffs resides in the intrinsic properties of the lognormal
impulse responses of the agonist and antagonist neuro-
muscular systems, as driven by a pair of synchronous
commands. For any movement, a subject can control both
the amplitudes (D1, D2) of the input commands and their
time of occurrence t0, as well as the logtime delays (m1, m2)
and logresponse times (s1, s2) of the neuromuscular sys-
tems that react to these commands. How this control is
performed is still an open question. What is the role of the
various motor cortical areas, the cerebellum, the basal
ganglia, the different motor neurons, and muscle fibres?
We do not know yet. The theory assumes that there are two
possible levels of movement control: a more localized
command level (D1, D2, t0) and a distributed level through
the parameters mi, si

2 that can be tuned to some specific
range of values. A subject when intending to execute a
specific simple movement or when asked to do so, must
solve one fundamental problem: to link the external task
goals with an internal command representation and to
execute that command by selecting the proper set of
neuromuscular networks.

The DL law provides some cues to control at the com-
mand level, a movement that is to be executed by a specific
neuromuscular network. Indeed, for a specific set of mi, si

2,
it is possible to predict the distance that will be covered
(equation 47) and to evaluate movement time MT by
estimating the times of the velocity zero crossings (equation
41 or 45). The kinematic theory is, to my knowledge, the
only analytical theory that links under a single basic equa-
tion both the kinematic properties of movement trajecto-
ries and the numerous data dealing with movement and
task variables. For example, most of the attempts to explain
speed/accuracy tradeoffs (see sec. 2) fail to make any
prediction about the form and the invariance of the velocity
profile.

For a specific Fitts’ task, the goal is to cover a distance D
with a specific absolute error DD within a minimum move-
ment time. In mathematical terms, these requirements are
met if the subject neuromuscular system is able to “solve”
equation 47 to evaluate the distance and to “solve” simul-
taneously equations 48 and 50. In other words, it is the task
requirements that force the dependence between these
independent equations (see Holly and Latash &
Schöner). The latter condition leads automatically to the
quadratic law (equation 52) or its simplified version, the
power law (equation 54). Therefore, according to the kine-
matic theory, any successful rapid aimed movement in a
Fitts’ task has this intrinsic property. Because all move-
ments produced under a specific set of experimental condi-
tions are slightly different, the general behavior can be
described by equation R2.2. Equations 52 and 54 could also
be rewritten using the statistical distribution of the model
parameters to highlight how the noise in the neuromotor
systems will mask, as pointed out by Holly, the very
fundamental phenomenon observed for each individual
movement.

Not pertinent here are the commentaries (Wright &
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Meyer; Bootsma & Mottet; Heuer; Hancock & Ver-
wey) suggesting that variability is not integrated into the
theory as a major cause of speed/accuracy tradeoffs. The
kinematic explanation of these tradeoffs does not rely on
variability. The phenomenon is a characteristic of any
individual movement that can be described by a DL law
(equations 41 or 45). Variability has to be taken into account
to understand why the basic quadratic (or power) law is not
always fully apparent in mean data (see correlation coeffi-
cients ± 1 in Tables 3 and 4) of some specific tasks, because
of the noise masking effect.

I am not suggesting that variability studies are unimpor-
tant. On the contrary, they are one of the key ways to study
the neuromuscular system. Moreover, the kinematic theory
can provide another perspective on these studies through
the analysis of the statistical properties of the DL law
parameters under different experimental conditions after
performing an analysis-by-synthesis of each individual trial
(Plamondon 1997).

Moreover, the theory shows that many kinds of
speed/accuracy tradeoffs can be explained using the same
scheme, based on a single fundamental equation: the delta-
lognormal law. This goes against Thomassen & Meulen-
broek’s suggestion to develop models addressing particular
classes of movements. It is unnecessary (and unjustified) to
do so in kinematic theory. A single global and tunable
neuromuscular system is involved in a specific type of
aimed movement and a single model with different modes
of operation is an efficient and parsimonious way to analyze
and understand these movements in different tasks.

R3.2. Visual feedback. The kinematic theory provides a full
description of the velocity profile of rapid human move-
ments without directly referring to continuous visual feed-
back. This is consistent with numerous studies that have
reported that removing vision does not drastically affect
movement accuracy (see Carlton 1992 for a review). It does
not necessarily mean, however, that vision is completely
absent from the model. It only means that vision is not fully
used in a continuous external feedback loop. It is indeed
possible that for the same type of simple movements, the
presence or the absence of vision will affect the value of
model parameters as well as their variability. This must be
studied by an analysis-by-synthesis experiment.

For example, the kinematic theory provides a method
for determining how many individual DL velocity profiles
are hidden in a signal. This can be used to propose an-
other interpretation of the Chua & Elliott data concern-
ing the fact that “rather than becoming less dependent on
visual feedback with practice, improved skill at aiming
involves learning to use visual feedback more rapidly and
more efficiently.” If one attempts to reconstruct the two
velocity profiles provided by these commentators, a very
specific effect of the use of vision is made apparent in this
typical experiment based on the following observation: it
is easy to reconstruct the velocity profile of the movement
with no vision using a single DL law, it is not possible to
get such good results on the velocity curve of a movement
with full vision. At least two (and maybe three) individual
submovements are needed, each having a velocity profile
described by its own DL law, to get acceptable results
(Fig. R5).

Full vision in this specific example seems to help the
subject using a strategy based on a series of commands, the

Figure R5. Reconstruction of Chua & Elliott data. R5A. No
visual feedback condition: the velocity profile can be easily recon-
structed from a single delta-lognormal equation. R5B. Visual
feedback condition: at least two delta-lognormal velocity profiles
are needed to reconstruct this more complex movement. The
dotted line and the thin line show the two individual submove-
ments.

first activated at t01 5 115 msec and the second at t02 5 583
msec. Analyzing the two classes of movements similar to
those depicted in Figure R5 as if they were all simple
movements is questionable. Here again, the kinematic
theory would allow a detailed study of these two sets of
velocity profiles, comparing statistically the changes in the
parameters of each individual movement (or submove-
ment) used to reconstruct the complex velocity profiles.
Instead of mixing many types of velocity profiles, the theory
would allow for a better separation of the two classes of
movements (single versus complex) and would provide new
ways to analyze the effects of vision in such an experiment.
Knowing that two submovements are hidden in the signal of
Figure R5B, we understand easily why “subjects take more
time to complete movements when full vision is available”
(Chua & Elliott). As one can see, the kinematic theory is
not at odds with the concept of corrective submovements
(Wright & Meyer); it provides a systematic method for
extracting and analyzing these individual components and
perhaps a new method for deepening our understanding of
the effect of vision in rapid movement control.

I agree with Hancock & Verwey that “slower aiming
movements especially rely on closed-loop control.” I sus-
pect that the kinematic theory alone will fail in analyzing,
for example, tracking movements, where continuous visual
feedback is probably used to track the on-line difference
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vector (Grossberg) and where very different velocity pro-
files are generally observed (Desmurget et al.). Here
again the quality of the data fit might be one criterion
among others for distinguishing between closed-loop and
open-loop conditions, as suggested in section 5.4.

R3.3. Terminology. A couple of commentators criticize the
use of the word prediction in the target article (Mitnitski;
Goodman), suggesting that it be reserved for new results
rather than for predicting old data. I partly disagree be-
cause I believe that when one is trying to develop a general
theory in a domain, one should first check whether the
predictions of one’s model are consistent with what is
already known, particularly if the domain is very rich in
consistent data and observations. I agree, however, that
once this first test is passed, new experimental results
should be predicted, as suggested by Gielen. This will be
the topic of forthcoming papers. For the moment, if I stick
to the rigorous interpretation of the verb “predict,” the only
predictions in this target article should have been:

1. The velocity profile of an end-effector executing a
simple rapid movement will follow a delta-lognormal law
because the impulse response of a neuromuscular system
made up of a large number of coupled subsystems tends
toward a lognormal function.

2. All the kinematic observations reported in the field of
simple rapid movements can be described using the delta-
lognormal law and some corollary equations.

I used the word predict in the more general sense in
which it “commonly implies inferences from facts or ac-
cepted laws of nature” (See “foretell” in Webster’s Ninth
New Collegiate Dictionary). Hence I started directly with
the delta-lognormal law, an unknown equation, and studied
the predictions that would emerge from that new equation
in the different types of experimental conditions used so far
to study rapid human movements. Unless one is a very
powerful calculator, I think that none of my predictions can
be derived from mere visual inspection of equation 39.

The terminological problem is probably still more pro-
found than this. It is probably grounded in differences at
not only the scientific level but probably also the cultural
one. Whenever one attempts to take a global view of several
phenomena previously studied independently, whenever
one tries to bridge the gap between different disciplines,
semantic problems do occur, as they have in some of the
comments presented above. For example, some commen-
tators refer incorrectly to “transfer functions” (Latash &
Schöner), which are used to study linear systems in the
frequency domain, although this paper deals only with time
domain analysis using impulse responses. These same com-
mentators also refer to statistical terms such as “distribu-
tion” when they talk about the delta-lognormal law, al-
though the whole demonstration of section 3.1 is based on
the central limit theorem as applied to a large number of
coupled linear systems. It is a common mistake to associate
the central limit theorem with statistical analysis although
“the central-limit theorem can be stated independently of
any probabilistic considerations. It is merely a property of
convolutions involving a large number of positive func-
tions” (Papoulis 1965, p. 267).

Another confusion that seems to arise from a termi-
nological problem introduced by Wright & Meyer, Good-
man, and Heuer concerning the notion of accuracy and
variability, the first term being estimated from one mea-

surement and the second being a characteristic of a set of
measurements. This is a key point and I will focus on the
intuitive approach that guided me when I developed the
kinematic theory. One problem I faced was that when a
subject is asked to perform one simple gesture he has both
to measure visually the distance to be covered and to
evaluate the acceptable error for success in the task. These
estimates must be performed through a single “visual
measurement,” not through continuous iterated computa-
tion of statistical estimates. I accordingly sought a variable
that had the same general meaning for single and multiple
measurements. This suggested using the absolute error,
which has both a unitary and a statistically consistent
meaning. According to the physics of measurement, the
absolute error is the unsigned difference between the
measured value (xm) and the ideal value (xi) required by the
task:

Dx 5 uxm 2 xiu (R3.1)
It also has a statistical meaning for a set of measurements:

Dx 5

nO
m51

uxm 2 xi u (R3.2)

n
and the latter equation reduces to R3.1 when n 5 1. A
similar approach with, for example, the standard deviation
is not straightforward because the mean (x̄) is also required
to compute it. In other words, standard deviation cannot be
intuitively extracted from a single visual measurement. It
might be a good tool for data analysis, but it seems useless
for planning single movements. Therefore, using the con-
cept of absolute error (to be more precise I should probably
have used the term “mean absolute error” for the second
case, equation R3.2), it was possible to link the subject’s
individual task, described by the delta-lognormal law, to the
statistical values reported in the field.

The DD in Fitts’ law is a task parameter specifying the
largest permissible absolute error for any individual trial to
be considered successful; it accordingly refers to equation
R3.1. In practice, for any experiment where the required
distance D is specified, DD can be computed as:

DD 5 uMA 2 Du (R3.3)
where MA is the amplitude of the executed movement.
Alimi (1996), in his dissertation, has reported that this
definition of DD provides higher correlation coefficients for
the quadratic law than the required target width DD gener-
ally used in a Fitts’ task. He did not however, follow
Heuer’s suggestion to use the overshoot for estimating DD.
In another thesis (Guerfali 1996) on more complex move-
ment in handwriting this idea was successfully used as a
criterion to be minimized in selecting a proper set of initial
parameter values for nonlinear regression. In most experi-
ments reporting statistical results, it is not the absolute
error as defined in R3.2 that is used but the standard
deviation is reported. As shown by Schultz and Roy (1973)
and contrary to Goodman’s comment, it is possible to
estimate the absolute error from the variable and constant
errors. In this context, I have used equation 68 to study
Wright and Meyer’s (1983) data (see Fig. 7), as these
commentators fortunately provided both the variable and
constant errors. Some commentators have gone further to
hypothesize that if the constant errors were small in some
experiments the kinematic theory could also explain other
experimental results (Newell et al. 1993a; 1993b) on vari-
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able errors because in such cases the “variable error can be
substituted for absolute error” (Carlton & Liu). I have not
gone this far in my analysis because I had decided from the
start to work only with directly published data in the target
article. The proper analysis of the Newell et al. (1993a;
1993b) experiments would be to work with absolute errors
and individual velocity profiles using not only temporal and
spatial errors but also the neuromuscular parameters to
evaluate the predictions of equation 60 (or preferably
equation 59) which is the formal space-time relationship
(Sternad & Newell) predicted from the kinematic theory.

This point highlights a confusion that might emerge if
one only uses statistical values to study a phenomenon. In
daily life, as stated by a few commentators (Hermann &
Soechting; Hancock & Verwey; Morasso & San-
guineti) we do not keep repeating simple pointing as in
Fitts’ task. Many of our gestures can be assimilated to
pointing tasks, but we do not repeat these continuously. We
execute one movement and then do something else. If some
statistical relationship does emerge when a simple task is
repeated, this relationship must be grounded in some more
fundamental phenomenon that applies to any single trial. I
have tried to show in this target article that the typical
velocity profile that emerges from the typical impulse
response of the neuromuscular system might be a way to
avoid this confusion. Most of the other models published to
date require proceeding in the opposite direction and make
only statistical predictions regarding any specific individual
movement as too noisy to reflect anything about the system
under study.

This bring me to another interesting point made by
Heuer, as well as by Wright & Meyer: the theory does not
conform to empirical definitions. I partly agree except that
my reaction is not to reject the theory on these grounds but
to propose that we modify our way of measuring some
variables. For example, the kinematic theory defines move-
ment time (MT) (perhaps I should have used activation
time as suggested in footnote 5, to avoid confusion) as
t1 2 t0 and experimenters generally measure MT using
tf 2 tb, where tb and tf are two time values defined by a
threshold that must be exceeded to consider that a move-
ment has started and finished. What is interesting here is
the relationship between t1 2 t0 and tf 2 tb. In the target
article I assumed that these were proportional for a specific
class of movements so that the theory dealing with t1 2 t0
should apply directly to the known measured data, using
tf 2 tb. The simulations of Heuer show that a direct
proportionality is not necessarily a good assumption de-
pending, as it does, on the definition of the threshold used
to compute tf 2 tb but “nevertheless the power function
provided a good fit.”

If one goes further on this avenue and tries to find a
relationship that links t1 2 t0 and tf 2 tb, an interesting
observation can be made. For example, Figure R6 shows
that for the four sets of distances used in the Fitts’ experi-
ment with the 1-ounce stylus, using DD values that corre-
spond to the index of difficulties used by Fitts, a quasilinear
relationship can be plotted between tf 2 tb and ln(t1 2 t0)
for each class of distances. This means that for velocity
profiles described by a delta-lognormal law, t1 2 t0 can be
roughly approximated by:

t1 2 t0 > u1exp[u2(tf 2 tb)] (R3.4)

Figure R6. Plot of tf 2 tb versus lnt1 2 t0 for the four sets of
distances used in Fitts’ experiment with the 1-ounce stylus (see
Heuer).

Since the kinematic theory predicts, in the simplest case, a
power relationship between t1 2 t0 and D/DD, it is imme-
diately concluded from equation R.3.4 that, at most, a
logarithmic relationship will be observed between tf 2 tb
and D/DD:

tf 2 tb > a ln
D

DD
1 ln K 2 lnu1 (R3.5)

u2

tf 2 tb > a 1 b ln
D

DD
(R3.6)

which corresponds to Fitts’ law. So, not only does the
empirical definition tf 2 tb partly mask the fundamental
power (or quadratic) relationship between movement time
and the relative spatial error predicted by the kinematic
theory, but it also constrains researchers to observe an
apparent logarithmic relationship in this case where the
parameters a and b (equation R3.6) or u1 and u2 (equation
R3.5) are meaningless. Analyzing the movement in terms
of a power law (equation 54) instead allows an interpreta-
tion of the parameters K and a (equation 54) in terms of the
neuromuscular parameters m1 m2 s1 s2 that have a physical
meaning, as depicted in Figure R2.

Similarly, some commentators mention that the experi-
mental conditions “do not match the description provided
or the assumptions that are used to produce the equations
to predict time accuracy” (Carlton & Liu). Referring to
experiment 1 of Newell et al. (1979, p. 51), the subject has
“to move through the target distance and not to stop
directly opposite the target in a line as close as possible to
the target MT.” So in this experiment D is fixed, as is MT.
Moreover, DD is defined indirectly by “the gap in the metal
unit which contained pairs of photoelectric cells.” In this
context, equations 59 or 60 apply directly as confirmed by
Figure 8. The fact that the subjects do not stop directly on
the target again means that the thresholds for defining MT
differ from those described by the kinematic theory (which
is based on t1 2 t0). Hence there are some links between
any of these thresholds, since any velocity profile is defined
by a DL law.

R3.4. Mathematical clarifications and new support. A few
commentators (Latash & Schöner; Sternad & Newell)
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have reported that some of the mathematical derivations
reported in the paper were not correct. I will try to clarify
these points, although I refer these commentators to the
two original papers (Plamondon 1993b; 1993c; or 1995a;
1995b) where the theory was first developed for more detail.

The first concern of Latash & Schöner is with the
derivation of the delta-lognormal law. First of all, my
approach does not rely on the statistical version of the
central limit theorem but on its interpretation in the context
of convolutions of a large number of positive functions.
These commentators accordingly miss the mark. However,
an analogy can be made by analyzing a random variable that
is the outcome of a discrete random process. Kapteyn and
Van Uven (1916) and Gibrat (1931) have clearly shown that
a lognormal distribution will be observed, provided that the
change in the variable is a random proportion of its momen-
tary value (cf. equation 38). There are also other ways to get
a lognormal distribution and I refer the reader to classical
monographs on the subject (e.g., Aitchison & Brown 1966
or Crow & Shimizu 1988).

Similarly, Sternad & Newell seem to misunderstand the
derivation of equation 59. My approach is based on a
method for deriving absolute error predictions once an
equation describing a process is known. Taking the partial
derivative of that equation with respect to any variable, one
gets the predicted absolute error that will be observed
experimentally as a function of a change in that variable.
[The reader is referred to classical books like Topping
(1972) for more details on this method.] This method could
be generalized to study the effect of any parameter of the
model by performing a partial differentiation of equations
39, 52, or 54 with respect to this specific parameter.

I agree that by “combining the known formulae one can
come to a new result” as proposed by (Goodman). In his
thesis, Alimi (1996) has shown how different relationships
between task parameters could be derived from the delta-
lognormal law. He focuses particularly on relationships
between:

[ln(time to maximum velocity)]2 versus ln(time to maxi-
mum velocity)

[ln(movement time)]2 versus [ln(movement time)]
[ln(time to maximum velocity)] versus [ln(movement

time)]
[(maximum velocity 4 movement amplitude)] versus

[movement time]
[maximum velocity 3 movement time] versus [movement

amplitude]
[maximum velocity] versus [movement amplitude]
[ln(maximum velocity)] versus ln[movement amplitude]
[maximum velocity] versus [movement amplitude]
[ln(maximum velocity)] versus [ln(movement amplitude)]

In all these cases, Alimi (1996) demonstrates that the
predictions of the kinematic theory for the four classes of
movement described in section 2 of the target article are
verified. This study was done using digitizer data, four
subjects and more than 6,000 pen strokes. I agree with
Goodman that the usefulness of these new formulae needs
to be demonstrated but the fact that the kinematic theory
leads to new analytical expressions might be an advantage
over some other models – for example, over the vite and
flete models (Grossberg) that are not analytic and where
many parameters are hidden in the form of the input go
signals.

Some commentators (Holly; Latash & Schöner) do not
seem to understand the link between D2/D1 and DD/D.
The rationale behind my approach has been explained in
section R3.1. I will try to focus only on the misunderstand-
ing: Contrary to the interpretation of (Latash & Schöner),
g1 in equation 48 is not a coefficient; it is a numerical value,
for example, 0.1, describing the maximum relative spatial
error associated with a specific Fitts’ task. Similarly, g2 is a
numerical value depending on the minimum movement
time that a subject is able to achieve in executing the task
with his neuromuscular network, as described by mi, si. If,
for example, g2 5 0.3, we are led by equation 51 to the
conclusion that this subject should use a ratio of agonist to
antagonist commands three times the required relative
spatial error to succeed with the task. Holly’s suggestion to
use the square root of DD/D or its squared value in the
development would also lead to quadratic and power laws,
but this choice does not make sense physically because the
task requirement is specified in terms of the relative spatial
error DD/D. Unless it is clearly shown that a square root, a
squared function or any power function of DD/D describes
the output of the human perception system, such a general-
ization is not justified.

Wright & Meyer report that a linear relationship has
been observed when MT varies in experiments where D is
fixed and the standard deviation of D is measured, contrary
to the predictions of equation 56. This observation does not
invalidate equation 56 but again suggests that a more
detailed analysis of individual data will be needed to check
for the effect of MT because many parametric conditions
could lead to an approximately linear relation over the
range of measured values. For an example, let us have a
closer look at the Wright & Meyer data. Equation 56 does
in fact predict an MT effect more complex than linear in this
case. For a given D, this equation can be rewritten as:

lnDD 5 2a1(ln MT)2 2 a2ln MT 1 a4 1 ln D (R.3.7)
So, the kinematic theory predicts a quadratic relationship
between ln DD and ln MT for a fixed D. To test this
prediction, I use the data provided by Wright and Meyer
1983; Tables 2 and 4). Here again the DD values were not
directly available because these authors reported only the
constant and the variable errors. Using equation 68, I
estimate EhDDj for the two conditions where a sufficient
amount of data was available, that is, for D 5 19.98 and D 5
26.48.

Figure R7 shows a plot of ln(EhDDj) as a function of
ln(MT) for these two conditions. The solid lines show the
best quadratic fit using equation R3.7. In both cases, the
quadratic prediction leads to correlation coefficients R2 $
0.993. A similar analysis using a linear regression between
MT and the variable error lead to a correlation coefficient of
R2 5 0.991 and 0.850 for D 5 26.4 and 19.9, respectively. It
seems that a linear relationship does not necessarily provide
the best representation of the MT effect in this case, as
compared with the predictions of equation R3.7 or 56.
These new results provide further support for the kinema-
tic theory and again calls into question the use of the
variable error in these studies.

R4. Generalization and applications

Apart from what has already been said in section R3.4, a few
commentators (MacKenzie & Graham; Zelaznik &
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Figure R7. Best quadratic relationship between ln(EhDDj) and
lnMT as predicted by equation R3.7 using equation (68) to
estimate EhDDj. Data from Wright and Meyer (1983; Tables 2 and
4).

Proctor; Stelmach & Thomas) have brought up other phe-
nomena that can be given a specific interpretation in the
context of the kinematic theory. I will focus on some of
these examples in the first part of this last section. I will
limit my analysis to single upper limb movements and will
not discuss the interesting comments on bimanual tasks
(Sherwood) and on experimental protocols using HCT
that introduce external nonlinearities in the input data
(MacKenzie & Graham). There is too much work to be
done to describe these phenomena from the actual status of
the theory without falling into the trap of pure speculation.
Similarly, I will not discuss in detail the Bizzi et al. (1984)
experiment, as summarized by van Wieringen & Beek.
These commentators seem to overlook an important differ-
ence in the experimental protocol for normal and deaf-
ferented monkeys: “before each experiment with a deaf-
ferented monkey, the monkey was allowed to practice the
pointing task for a few minutes with the opaque cover
removed” (Bizzi et al., 1984, p. 2739). In this context, the
fast motor relearning hypothesis cannot be neglected and a
more detailed analysis of the individual data would be
necessary to understand the experiment. If rapid motor
relearning is taken into account, Bizzi et al.’s experimental
results can easily be simulated using the superimposition of
two individual movements described by the DL law. I also
remind these commentators that Nougier et al. (1996) used
a similar experimental protocol with deafferented human
subjects to reject the equilibrum point hypothesis.

Some commentators (Hermann & Soechting; Han-
cock & Verwey; Morasso & Sanguineti) also raise a few
questions concerning the limited scope of the kinematic
theory if it is only valid for simple pointing movements; in
everyday life, movements are generally more complex. One
of the basic hypotheses underlying the kinematic theory is
that many complex movements are made up of a temporal
sequence of simple movements, each of these being de-
scribed by a DL law (Plamondon 1995c; Plamondon &
Guerfali 1996a; 1996b). The kinematic theory hence covers
a broader field than the speed/accuracy tradeoffs on which
this target article focuses. It can be expanded to more

complex movements and has been applied as a key solution
to a few engineering problems. I will provide some exam-
ples later in this Response to answer the most frequent
comments on this point. Each example constitutes a re-
search subject in itself and raises more questions than it
answers. Most of my examples will come from handwriting
data as collected from a digitizer. Here again I wish to
emphasize the fact that, to my knowledge, none of the other
models proposed so far to study speed/accuracy tradeoffs
has been systematically challenged by an analysis-by-
synthesis of real complex individual data. Finally, I will
conclude my Response by recalling some of the remaining
technical problems associated with the exploitation of the
kinematic theory.

R4.1. New explanations to some classical experiments.
MacKenzie & Graham’s point about separating the ef-
fects of D and DD in Fitts’ tasks can be analyzed and
interpreted in a slightly different way using the kinematic
theory. This will highlight another interpretation of the
command parameters with respect to the task parameters.
Indeed, according to equations 47 and 51 (with g1/g2 5 1
for simplicity), one can easily demonstrate the relationship
that must exist between the command parameters D1 and
D2 and the task parameters D and DD to succeed in a Fitts’
experiment:

D1 5
D

(1 2 DD/D)
(R4.1)

D2 5
DD

(1 2 DD/D)
(R4.2)

The latter equations provide a link between the defini-
tion of the task in the external world and its internal
representation in terms of input commands (see Holly). In
other words, these equations predict that the input agonist
(D1) and antagonist (D2) commands have to be coupled and
linked, respectively, to the movement amplitude D and the
required target width (DD), with the inverse of the relative

spatial accuracy FS 1
(1 2 DD /D DG playing the role of a

scaling factor. For example, if a task requires a relative

spatial accuracy of S 1 2
DD
D D $ 90% then the subject

should select D1 # 1.1 D and D2 # 1.1 DD to succeed.
So, in an experiment where D is changed while DD is

kept constant, both the agonist D1 and the antagonist D2
commands have to be changed. The same is true for an
experiment where D is fixed and DD varies. Figure R8A
shows the delta-lognormal velocity profiles for the first 
situation, while Figure R8B depicts the second case. As can
be seen from Figure R8A and equations R4.1 and R4.2, if,
for example, the movement amplitude is multiplied by four
from 7.5 cm (curve A) to 30 cm (curve B), with DD 5 4.8
cm, D1 must be increased while D2 must be reduced. This
means that agonist activity will increase whereas antagonist
activity will decrease. In contrast, for D 5 15 cm (see Fig.
R8B), when DD changes from 1.2 cm (curve A) to 4.8 cm
(curve B), D1 increases and D2 likewise increases. So, both
the agonist and antagonist systems will increase their activ-
ity provided that the neuromuscular parameters are kept
constant or vary slightly around their means.

As can be seen from Figure R8, increasing D (Fig. R8A)
results in an increase of movement time, of peak velocity,
and of the first acceleration peak (as indicated by the slope
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Figure R8. R8A: Effects of D on a velocity profile described by a
DL law (see MacKenzie & Graham). R8B: Effects of DD on a
similar velocity profile (see MacKenzie & Graham).

of the velocity curve at the first inflexion point). The time to
peak velocity as well as the time from peak velocity both
increase, the latter being more influenced. Increasing DD
(Fig. R8B) results in a decrease of movement time, a slight
increase in peak velocity and of the first acceleration peak.
The time to peak velocity slightly decreases in these condi-
tions and the time from peak speed decreases to a greater
extent. These results are perfectly consistent with the data
reported in Table 1 of MacKenzie et al. (1987, p. 635).

In the previous examples, we assumed that the neuro-
muscular parameters were not affected by D or DD. What
happens if they are? Figure R9 shows a simulated example
using the power law (equation 54). The circle a1 on the
solid line represents a specific MT value for a given D/DD
and a given set of misi. If we wish, for example, to increase
D/DD by a factor of 2, two extreme cases can be tested:
doubling D or diminishing DD by a factor of two. If the mi
and si are affected by these changes, then two other power
laws will be involved. For example, when D is doubled, MT
will be predicted by, say, circle a2 on the corresponding
new power law. Similarly, reducing DD by a factor 2 might
lead to another power law at circle a3. Since mi and si are
not measured here, to make full MT predictions the
changes observed in MT for both conditions leading to a
doubling of the initial value of D/DD will be interpreted as
an asymmetric effect of D versus DD. This might be an

Figure R9. A possible interpretation of the apparent asymmet-
ric effect of a change of D versus DD (see MacKenzie &
Graham).

explanation for the phenomenon reported by MacKenzie
& Graham. A complete data analysis will be needed to
check this explanation of the asymmetric effect of a change
of D versus DD.

In a similar fashion, the “crucial test” of Carlton’s (1994)
experiment can be interpreted in a quite different way from
that of Zelaznik & Proctor, to show that the kinematic
theory is indeed perfectly consistent with the reported data.
To do so, we must take into account the fact that the mi and
si are tunable, within certain limits, according to task
requirements. We then come to the conclusion that when
the DL law is valid, any experiment can be interpreted with
the same approach and the parameter tuning strategy used
by the subject can be studied and modelled.

According to equation 54, for any task where the spatial
error is specified, there is a power relationship (in the
simplest case) between MT and D/DD. So for a time
accuracy condition in Carlton’s experiment, MT (400 msec)
as well as D (12 cm) are fixed, and DD is required to be
minimal:

400 ms 5 Ka S 12
DDmin

Daa

(R4.3)

where Ka and aa depend on m1a, m2a, and sa. So, to execute
this task, the subject has to tune m1a, m2a, and sa to get the
minimum absolute error permitted within the specified
movement time because all the other parameters are fixed.

In the corresponding time minimization task, the same
power relationship is valid:

MTmin 5 Km S 12
DDmin

Dam

(R4.4)

where Km and am now depend on m1m, m2m, and sm. Here
again, the subject has no choice. Since D and DDmin are
fixed, the only way to succeed in this experiment is to tune
m1, m2, and s to some new values, m1m, m2m, and sm.

Substituting in equation R4.4, the values found for
DDmin in the previous equation R4.3, the kinematic theory
predicts the following relationship between MTmin and the
400 ms required for MT in the time accuracy task:

MTmin 5
Km

Ka
(400)am/aa (R4.5)
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Figure R10. A simulation of the effect of a change of the neuromuscular parameters with instructions.
Three simple scenarios leading to a doubling of the velocity peak, with a relative spatial error reduced by
four (see Latash & Schöner).

So MTmin will differ from 400 msec, contrary to the inter-
pretation of Zelaznik & Proctor. Moreover, one can easily
see that:

m1m , m1a

m2m , m2a (R4.6)

and sm , sa

to obey equation (R4.4). This will result in a tendency for
the velocity curves to encompass two (or three) submove-
ments in the time minimization task and a single submove-
ment in the temporal accuracy task. In this context, the
kinematic theory fully accounts for the data reported by
Carlton (1994). A single basic equation, the delta-
lognormal law, is thus the basis of the different control
strategies that explain both time minimization and tempo-
rally constrained tasks. The mistake made by Zelaznik &
Proctor in their interpretation of Carlton’s experiment
arises from their unrealistic assumption that the mi, si
parameters were fixed, once and for all, as if humans were
simple robots.

Similarly, the phenomenon reported by Latash &
Schöner concerning the effect on the peak velocity of a
change in instructions and behavioral information provides
further evidence that the neuromuscular parameters mi, si
are tunable. Figure R10 shows how this modulation with
instructions can be modeled using the DL law. The dotted
curve represents a typical simulation of a velocity profile for
a Fitts’ task with a given relative spatial error DD/D. The
other three curves show some possible ways to generate a
velocity profile for a task requiring a spatial error reduced
by four (DD/4D), but covering the same distance D (same

surface under the curve). By tuning either the mi alone, the
si alone or a combination of these, several curves with peak
velocity twice as high as the one obtained in the former task
(dotted curve) can be simulated.

What does this phenomenon suggest? It probably re-
flects the fact that for a typical task there are preferential
values or a distribution of values for the neuromuscular
parameters, according to the natural pathways that react to
the commands. It is thus easy to succeed in a certain range
of tasks by merely modifying the command parameters D1
and D2. If the task parameters exceed a certain limit then
preferential values of the neuromuscular parameters must
be tuned to another range of values. This tuning from one
set of values to another can also be done voluntarily, even if
the new set of values does not reflect the set of parameters
that would be used by the subject under normal conditions.

What would be of interest in these experiments is again
to perform an analysis-by-synthesis of each individual ve-
locity profile and then to study the statistical properties of
each group of parameters. This might provide new ways to
analyze the various subjects’ strategies under normal and
forced conditions.

R4.2. Perturbed and oscillatory movements. The kinema-
tic theory provides a powerful tool for analyzing more
complex movements under the hypothesis that these move-
ments result from the vector addition of the individual
velocity profile composing them:

Wv(t) 5

nO
i5n

Wvi(t 2 t0i) (R4.7)

where each uWvi(t 2 t0i)u obeys a DL law.
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As previously mentioned, the theory does not include
continuous feedback as it is used, for example, in tracking
experiments, but it provides some clues for analyzing and
understanding the role of discontinuous feedback as it
occurs, for example, in perturbed movements. According to
the kinematic theory (Plamondon 1995c; Plamondon &
Guerfali 1996a; 1996b), once a given pair of commands D1
and D2 has been input to the agonist and antagonist
neuromuscular systems, a subject is able to anticipate the
distance that will be covered as well as the time it will take to
execute that movement and reach the target (T1). If in the
course of action the trajectory for reaching a new target (T2)
has to be modified for one reason or another, the subject
starts another movement as if he had already reached the
first target T1. The resulting velocity profile is thus the
vector sum of the two single velocity profiles, each one
being described by its specific DL law (Plamondon 1995;
Plamondon & Guerfali 1996b). The speed/accuracy trade-
offs are hence not only simple properties of single move-
ments but constitute the basis upon which more complex
movements are planned and controlled, providing a link
between the acceptable relative spatial error tolerated for a
trajectory and its motor planning (Plamondon & Privitera
1995).

I disagree with Desmurget et al. that the kinematic
theory is to be rejected because “several studies demon-
strate the inability of the additive procedures to account for
the movement reorganisation observed during double step
trials.” In many of these studies, the way data were pro-
cessed casts serious doubt on their conclusions, at least in
the context of what I have written in section 5.3 about the
superimposition of movements. To provide just one exam-
ple, Massey et al. (1986) check for the possibility of recon-
structing a target shift movement (from a point A to a point
C via point B) by adding algebraically the velocity profiles of
two unperturbed movements from point A to B and from
point B to C, where A is the starting point and B is 8 cm
above and C, 8 cm below A. To do so, these authors add
algebraically (because the two movements are in the oppo-
site direction) to a control velocity profile from A to B, a
second velocity profile corresponding to a movement from
B to C as measured when enough time was given between
stimuli to consider that the second movement was not
influenced by the first.

First of all, under these conditions, the kinematic theory
predicts that the second peak of the complex velocity
profile of the target shift movement can and probably will
exceed the peak of the second velocity profile of the
unperturbed movement since the complete velocity profile
of the first unperturbed movement generally encompasses
a sign reversal (see Fig. 2 or 3). This secondary inverted
peak will add to the peak of the second constituent move-
ment, making it larger. As reported by Massey et al. (1986,
p. 249) “peak second velocities in the target shift trial often
exceed those of the movements made all the way from the
first to the second target.” This observation, which was used
by Massey et al. (1986) to reject the superimposition
principle, in fact provides further support for the kinematic
theory and the vectorial superimposition principle. Another
drawback of Massey et al.’s (1986) approach is the way they
take into account the time interval between the two signals
before adding them. This operation was done empirically
using a threshold on the change of the measured force. This
approach is very sensitive to the selected threshold value

and any small error in the estimated time interval can result
in large errors in the algebraic addition, as shown clearly in
Figure 6 of Massey et al. With the kinematic theory, each
velocity profile is described by a delta-lognormal equation
where the parameter t0i defines the time of occurrence of
the ith velocity profile. Any addition of velocity profiles can
thus be done by optimizing the reconstruction of the
complex velocity profile of an individual target shift trial
with two delta-lognormal laws, using the difference of t0i to
take into account the time interval between successive
velocity profiles. When such a procedure is used, not only
simple perturbed movements but also very complex move-
ments such as handwriting or signing can be reproduced
and described using the vector superimposition of velocity
profiles (Plamondon 1995c; Plamondon & Guerfali 1996a;
1996b) (see also Figs. R12, R13, R14, and R15).

The interest of having an analytical description of indi-
vidual velocity profiles is a key solution to the study of
complex movements. The use of averaged values has a
masking effect, as already pointed out by Holly, and nonop-
timized signal synchronization simply destroys the informa-
tion. It would be interesting to reanalyze the data from
studies of perturbed movements with the analysis-by-
synthesis methods that are currently in use in my laboratory
(Guerfali & Plamondon 1997). For example, it is clear that
there is more than one velocity profile in the data reported
in Figure 4 of Pelisson et al. (1986). Although this figure
refers to the averaged horizontal components of the veloc-
ity and acceleration instead of the whole velocity vector, the
small “glitch” in the acceleration curve is typical of a
movement composed of two submovements, the second
smaller than the first (Plamondon 1995c; Plamondon &
Guerfali 1996b). Moreover, as the delta-lognormal law also
describes eye velocity profiles (Plamondon 1995a), both
eye and hand movements could be synchronized and an-
alyzed using the kinematic theory.

Figure R11 depicts the general scheme that can be used
to analyze real perturbed trajectories. A first movement
aiming at a target T1 is modified in the course of action to
reach T2. Both the image of the trajectory and the compo-
nents of the velocity vector can be reconstructed by vec-
torial addition using the kinematic theory. This makes it
possible, for example, to recover t01 and t02 and to adjust
these timing parameters in relation to the time of occur-
rence of the requisite visual stimuli for a change of trajec-
tory.

Figure R12 shows a similar analysis-by-synthesis on an
oscillatory pen tip movement (Guerfali 1996). The global
curvilinear velocity output is reconstructed using a set of
individual movements, each one described by a DL law.
One interesting observation that emerges from this analysis
is that the timing of each individual movement is very stable
here with (t0i11 2 t0i) > 100 msec (SD 5 12.2 msec). As
can be seen in Figure R12, the kinematic theory allows a
very good and continuous reconstruction of the velocity
profile.

Many types of oscillatory patterns can be reconstructed
using the superposition of individual delta-lognormal veloc-
ity profiles. The kinematic theory could help in comparative
studies of cyclic versus discrete movements to analyze the
suggestions put forward by Thomassen & Meulenbroek.
For example, the data of Sherwood on sequential move-
ments can be analyzed for a possible correlation between
movement parameters. Patterns similar to those studied by
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Figure R11. Result of an anlysis-by-synthesis of a perturbed
movement. Solid lines–original digitizer data; dotted lines–
reconstructed data using the kinematic theory. R11A: Trajectory.
R11B: Curvilinear velocity. R11C: Angular velocity.

Mottet et al. (1995) can also be analyzed in the linear
context of the kinematic theory. As the relative spatial error
increases, peak velocity increases. Velocity profiles become
more symmetric around their first peak and secondary
peaks emerge (see Fig. 3). With proper tuning of the
logtime delays and logresponse times, the superposition of
velocity profiles corresponding to movements of larger
spatial error will result in a more symmetric oscillatory
pattern than the superposition of movements with smaller
relative spatial error. Hence a plot of acceleration versus
position will automatically look more similar to a straight
line in the former condition. In the Mottet et al. (1995)
interpretation, the dynamic system will look more linear at
larger spatial error values.

R4.3. Cursive script segmentation and signature repre-
sentation. The reconstruction of complex movements
using temporal superposition of a set of simple basic move-
ments is at odds with many models in which the basic unit of
movement is an oscillatory one and a single movement is
seen as a specific case of an interrupted oscillation. Using an
oscillatory movement instead of a single movement as a
basic unit often leads to discontinuities in the reconstructed
velocity signal (Stettiner & Chazan 1994; Singer & Tishby
1994) that are not apparent in the real signals.

Figure R12. Result of an analysis-by-synthesis of an oscillatory
movement. Solid lines–original digitizer data; dotted lines–
reconstructed data using the kinematic theory. R12A: Trajectory.
R12B: Curvilinear velocity. R12C: Angular velocity.

I have recently extended the kinematic theory to study
bidimensional movements, providing analytical equations
for both the curvilinear and the angular velocity (Plamon-
don 1995c). Figure R13A shows a handwritten cursive
word with its curvilinear (R13B) and angular velocity
(R13C) profiles (Guerfali 1996), while Figure R14 pre-
sents a similar set of data using a European hand-written
signature (Leclerc 1996). In both cases, the whole bidi-
mensional trajectory (both spatial and kinematic informa-
tion) can be reconstructed using a certain number of
circular strokes, by superimposing them in time, using
vector addition.

The handwriting and signing action plans can be seen as a
sequence of virtual targets distributed over a neural map
representing external space. Contrary to Bootsma & Mot-
tet’s comments, Plamondon & Privitera (1995) have shown
that using this representation it is possible to develop a
stable neural net model interfaced to a neuromuscular
synergy described by a delta-lognormal law, one that can
generate the proper sequence of input commands to pro-
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Figure R13. Result of an analysis-by-synthesis of a cursive hand-
writing movement. Solid lines–original digitizer data: crosses lines
reconstructed data using the kinematic theory. R13A: Cursive
word trajectory. R13B: Curvilinear velocity. R13C: Angular veloc-
ity. (Reprinted with permission from Guerfali 1996.)

duce a specific instance of a trajectory. This approach also
provides some cues about learning mechanisms (Gross-
berg) that extract a set of virtual targets from a given
trajectory to construct an action plan.

Although many other models have been proposed over
the last 10 years to describe handwriting generation (see
Plamondon & Maarse 1989, for a review of the models
published prior to 1989; Bullock et al. 1993; Morasso et al.
1994; Stettiner & Chazan 1994; Singer & Tishby 1994),
none has been tested at such a level of details on real data.
For example, the vitewrite model (Bullock et al., 1993)
has been used mainly to simulate “human-like” letters and
no direct quantitative comparison with real digitizer data
has so far been reported.

As can be seen, in Figures R11C, R12C, R13C, and
R14C, the angular velocity is also easily described by the
kinematic theory (Plamondon 1995c; Plamondon & Guer-
fali 1996a; 1996b) (MacKay). It simply emerges from the
vectorial summation process. Plamondon and Guerfali
(1996b) have shown that the kinematic theory can easily
take into account several well-known phenomena in the
field of handwriting: the spatial scaling (Freeman 1914), the
isochrony principle (Binet & Courtier 1893), the two-thirds
power law (Laquaniti et al. 1983), the effector indepen-
dence (Merton 1972), and so forth. They also show how
handwriting characteristics such as dimension, slant, base-
line, and shape are affected and controlled using an action

Figure R14. Result of an analysis-by-synthesis of a European
signature. Solid lines–original digitizer data; crosses–
reconstructed data using the kinematic theory. R14A: Signature
trajectory. R14B: Curvilinear velocity. R14C: Angular velocity.
(Reprinted with permission from Leclerc 1996.)

plan made up of virtual targets fed into a neuromuscular
synergy that is governed by a delta-lognormal law (Plamon-
don & Privitera 1996).

These typical analysis-by-synthesis studies are very help-
ful in segmenting a word or a signature into basic strokes
(Plamondon & Guerfali 1996a). Although these strokes are
hidden in the signal, they can be theoretically recovered
using the kinematic theory and the DL law. In doing so, one
gets information about the time of each stroke as well as
about the different commands used by the writer and the
system parameters that describe the status of its neuro-
muscular networks when the subject executes these
strokes. The new representation provided by the theory
could be used to develop robust handwriting recognition or
signatures verification systems.

We are currently working on several related applications:
the generation of oriental characters (Plamondon & Guer-
fali 1997), the recovery of odometric information from
handwritten words (Plamondon & Privitera 1997), the
segmentation of cursive script (Li et al. 1996), the genera-
tion of letter models (Guerfali & Plamondon 1995b), the
recognition of cursive script using a syntactical approach
(Parizeau & Plamondon 1995), the off-line segmentation of
cursive script (Privitera & Plamondon 1995), the design of
an on-line signature verification system (Plamondon 1994),
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Figure R15. Reconstruction of Stelmach & Thomas data.
R15A,B: Attempt to reconstruct velocity profile of a child and an
aged subject with a single DL law. R15C,D: Successful reconstruc-
tions using four and three strokes, respectively.

the design of an interactive tool to help children learning
handwriting (Carrières & Plamondon 1994), the develop-
ment of a complexity measure to model the difficulty of
forging signatures (Brault & Plamondon 1993a), the seg-
mentation of handwritten signatures (Brault & Plamondon
1993b), and so forth.

R4.4. Still a long way to go. I hope to have convinced some
readers with this Response that the kinematic theory (Pla-
mondon 1993b; 1993c; 1995a; 1995b) offers a new window
on human movement and a complement to the numerous
methods used so far. If the theory produced a perfect fit for
only a single specific set of experiments, the negative
arguments put forward by some commentators about curve
fitting would make sense. The fact that the theory explains,
from a single basic equation, a vast number of experimental
results consistently observed over the last century, certainly
suggests that there is something there and that we should
explore its possibilities in more detail. The field covered by
the theory is not as narrow as some commentators (Mor-
asso & Sanguineti; Hancock & Verwey) have suggested.
I agree that it is still young and needs further development
in terms of underlying processes in order to give its parame-
ter a deeper meaning that leads to new insights into the
control and organization of movement, which is certainly
the ultimate goal of this work. If we do so we will find that
the theory has a range of application and some limits, as is
the case with any theory. For example, Figures R15A and
R15B show the best result when one tries to fit the velocity
profiles provided by Stelmach & Thomas with a single
delta-lognormal equation. As one can see, the fit is not
acceptable, compared with what I presented in the other
figures of my Response. This might suggest that the theory
does not apply to children or older subjects. However, if one
tries to fit the same patterns with more than one velocity
profile treating these data as the result of a complex
movement instead of a simple one, it is evident in Figures
R15C and R15D that quite good results can be obtained
even in this case. The child velocity profile can be recon-
structed using four individual DL curves while the older

adult data require three single movements to be super-
posed. So, what seems to be a limit of the theory at first
glance might rather reflect different control processes that
are age dependent but still exploit the basic delta-
lognormal law. A similar approach could be used to study
“prolongations of the accelerative phase of movement that
occurs in patients with movement disorders” (Phillips et
al.). In the latter cases, the parameters of each individual
constituent curve can be studied and analyzed to better
understand the learning strategies used by children as well
as the aging problem that senior subjects are faced with
and how they achieve corrective actions (Stelmach &
Thomas).

Specifying this range of validity of the theory will proba-
bly force us to include new concepts and to link the theory
to some concepts that are already used in other models.
There are conditions where a detailed analysis will call for
other control principles. For example, as noted by van
Wieringen & Beek, the kinematic theory does not seem to
require cost-optimizing principles to describe a single
movement, but it is clear that such a principle will be
needed to explain human strategies in the generation of
complex movements. The theory does not avoid the prob-
lem of reverse kinematics. When it comes to extracting
model parameters, we are often faced with a set of almost
equivalent solutions in terms of mean square errors but
different ones in terms of parameter values. Optimization
principles will certainly be needed to better analyze, com-
pare, and select among these potential solutions. It emerges
from the kinematic theory, however, that as is often done in
the study of physical systems, it is probably preferable to
track this problem as action (DE ⋅Dt) minimization, rather
than as minimizing jerk (Flash & Hogan 1985), snap (Edel-
man & Flash 1987), or torque (Uno et al. 1989).

The development of robust methods for automatic pa-
rameter extraction from a delta-lognormal law requires
solving many problems to ensure the convergence of the
algorithms. We have used several successful approaches so
far but we still need to explore new techniques. We have
principally compared nonlinear regression methods based
on the Marquart (1963) approach (Plamondon et al. 1993;
Guerfali & Plamondon 1994; Guerfali 1996; Leclerc 1996)
as well as more general methods based on genetic algo-
rithms (Ménier et al. 1997). The former approaches require
some heuristics to define initial conditions (an initial ap-
proximation of the solution) for the search process and the
solution obtained depends on these conditions. As long as a
study focusses on changes of parameter values relative to
changes in experimental conditions, this approach is proba-
bly sufficient, provided that the same heuristic is used to
determine the initial values. If one is interested in a more
global view of possible solutions, genetic algorithms are of
interest because they are designed to explore a continuous
space of parameters and to optimize an error function given
an a priori condition or heuristic approximation of the
solution. The latter method was used to produce Figure R4
while Figures R1, R5, R11, R12, R13, R14, and R15 were
obtained using nonlinear regressions.
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