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Abstract

Background. Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in
aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed
by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls
(HCs) into their respective groups.
Methods. Ninety-day actigraphy records from 25 interepisode BD patients (ie, Montgomery–
Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) < 15) and
25 sex- and age-matched HCs were used in order to identify latent actigraphic biomarkers
capable of discriminating between BD patients and HCs. Mean values and time variations of a
set of standard actigraphy features were analyzed and further validated using the random forest
classifier.
Results. Using all actigraphy features, this method correctly assigned 88% (sensitivity = 85%,
specificity = 91%) of BD patients and HCs to their respective group. The classification success
may be confounded by differences in employment between BD patients and HCs. When motor
activity features resistant to the employment status were used (the strongest feature being time
variation of intradaily variability, Cohen’s d =1.33), 79% of the subjects (sensitivity = 76%,
specificity = 81%) were correctly classified.
Conclusion. A machine-learning actigraphy-based model was capable of distinguishing
between interepisode BD patients and HCs solely on the basis of motor activity. The classifi-
cation remained valid even when features influenced by employment status were omitted. The
findings suggest that temporal variability of actigraphic parameters may provide discriminative
power for differentiating between BD patients andHCswhile being less affected by employment
status.

Introduction

Bipolar disorder

The factors contributing to relapse in bipolar disorder (BD) are not yet clearly understood, but it
has been suggested that there is an association with dysregulation of circadian rhythm1,2 and
sleep,3–7 where BD has been reported to be associated with a later chronotype.8,9 Circadian
rhythm dysregulation appears both in acute episodes and in euthymic periods of BD. Therefore,
measurements of circadian rhythm viamotor activity profiles may provide a valid trait marker of
BD,10 and a deeper understanding of this dysregulation may contribute to improved manage-
ment of the disease.11,12

Actigraphy studies in BD patients

Actigraphy is a convenient way to study motor activity patterns. Existing findings from
actigraphy studies suggest that circadian rhythm and sleep are disrupted in patients with BD,
even in the remitted state. Current evidence, including reviews (meta-analyses),1,4,12,13 docu-
ments lower overall activity7,12,14–16 and longer andmore disrupted sleep in remitted BDpatients
than in healthy controls (HCs).5,6,17–19 Similar observations have been found also in unaffected
child and adolescent offspring of parents with BD.20 Although previous studies have improved
the understanding of motor activity in BD patients, most existing studies are based on a limited
period of actigraphy monitoring and therefore miss the opportunity to assess and account for
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intraindividual temporal variations in actigraphy parameters. Var-
iability in sleep and in circadian parameters, obtained from acti-
graphy, suggests lower levels of synchronization of BD patients
with the day and night rhythm5,13,16,17,21 and may be closely con-
nectedwith the symptomatic periods.12,22 The short duration of the
studies (mostly < 14 days, the longest being 50 days—see Supple-
mentaryMaterial) is a limitation for variability assessment.6,17,23 In
order to overcome these issues, we increased the observation period
in the actigraphy study presented here to 90 days, aiming to focus
on intraindividual long-term temporal variability (LTTV) in cir-
cadian rhythm and sleep parameters.

Contrary to statistical evaluation, the machine-learning tech-
niques provide a means to quantify between-group differences by
evaluation classification power of a set of features (biomarkers),
considering complex nonlinear relationships and correction
among features. There are at least two recent actigraphy studies
employing this approach for actigraphy-based BD–HC classifica-
tion. The first was done by Faedda et al.24 who reached 83%
accuracy with 64% sensitivity and 92% specificity, using 3 to 5 days
of actigraphy and diary data from children (5-18 years old). There
was nomedication used, and all data were recorded during a similar
regime (school days). The second recent study by Krane-Gartiser
et al.25 applied classification algorithms to a set of 61 HCs and
61 remitted BD patients, with stable medication, resulting in 78%
accuracy (75% sensitivity and 80% specificity) using selected acti-
graphy features and MADRS scores, resulting in 70% accuracy
using actigraphy alone. The main advantages were the use of
matched groups (including employment status) and strict remis-
sion criteria (MADRS and YMRS≤ 8 for ≥3months).

Literature-based differences between BD patients and HCs

Following the available literature, we expected lower overall motor
activity7,14–16,26 and also lower peak activity27 in BD patients vs
HCs. Based on diminished adaptability to changes in circadian
rhythm, lower rhythm robustness was expected.28 Additionally,
due to greater mood instability, higher fragmentation of activity
profiles within a day and instability between days was expected,
including higher variability in most of the actigraphy parameters,
both motor activity based or time based.9

Reduction in sleep quality has been reported in BD patients13,29;
therefore, higher motor activity and longer awake or mobile
periods were expected during night sleep. Further, since BD is
associated with longer sleep1,4,6,18,30 (though some reports did
not confirm this finding7,14,31), we expected sleep time to be longer
and more variable. Moreover, since longer sleep latency is associ-
ated with BD,5,6,17,18 we expected lower activity before sleep onset
and greater activity (restless sleep [RSL]) after sleep onset, with
higher variability in both sleep latency and RSL. Finally, BD is
associated with later chronotype,1,8,9 represented as a later activity
peak and a later sleep midtime.

Variability measurements and primary objectives

This work is focused on motor activity and intraindividual tempo-
ral changes inmotor activity during waking hours and during sleep.
Motor activity was measured using a wrist-worn actigraphy device,
an instrument specifically tailored for use in psychiatry
(MINDPAX). Temporal variability is connected to changes in daily
routine and in circadian rhythm synchronization. Temporal vari-
ability may, therefore, be a more straightforward way to measure
the assumed triggers/predictors of BD symptoms1,10 than a

standard comparison of average activity levels. We also expected
the variability measurements to be comparatively insensitive to
basic differences in daily routine between BD patients and HCs.

Aims of the study were: (a) to evaluate the motor activity pro-
files of interepisode BD patients vs HCs, (b) to use machine
learning to distinguish between BD patients and HCs using
actigraphy-derived features with a focus on variability measure-
ments, and (c) to evaluate the effect of employment status on the
results (post hoc).

Data and Method

Participants

Actigraphy data were recorded for more than 90 days in 35 BD
patients mainly with BD type I diagnosis, recruited from the
outpatient BD clinic at the National Institute of Mental Health
(NIMH), in Klecany, Czech Republic, and in 26 HCs, matched for
age and sex, who were recruited by advertisement in the commu-
nity. All BD patients underwent a baseline psychiatric examination
by a trained institutional psychiatrist, confirming euthymic state or
low levels of depressive/manic symptoms, using the Montgomery–
Asberg Depression Rating Scale (MADRS)32 and the YoungMania
Rating Scale (YMRS).33 Inclusion criteria: all BD patients were
diagnosed according to Diagnostic and Statistical Manual of Men-
tal Disorders, fifth edition (DSM-5) criteria.34 At the study entry, all
patients had to be euthymic or be in a remitted state35 (ie, YMRS≤
12 and MADRS≤ 9, see Table 1) with no reported mood episodes
for ≥ 60 days prior to study entry.

Exclusion criteria for BD patients were the presence of an acute
depressive episode, dysthymia, suicidal thoughts, a (hypo)manic
episode or diagnosis of schizoaffective disorder at enrolment.

HC exclusion criteria were: past or acute presence of a moderate
depressive or (hypo)manic episode or suicidal thoughts, diagnosed
neurological, sleep or mood disorders, or a first-degree family
history of mood or psychotic disorder among their first-order
relatives.

The study was approved by the ethical committee of the NIMH,
Czech Republic, and all BD patients and HCs signed written
informed consent.

Procedure

On enrolment into the study, all participants answered a demo-
graphic questionnaire. TheHCpool was contacted through an email
screening questionnaire that asked for basic information (age, sex,
and employment status) and family disease history (neurological:
epilepsy, Parkinson’s disease, etc., sleep disorders: insomnia, sleep
apnea, narcolepsy, etc.). Subjects who fulfilled the screening criteria
were further evaluated using the M.I.N.I. structured questionnaire36

for neuropsychiatric disorders.
All participants were equipped with a wrist-worn actigraphic

monitoring device (MINDPAX) and were instructed to remove it
only when necessary.

During follow-up (the period when the data were recorded), BD
participants were assessedmonthly by their treating psychiatrist via
in-person visits and/or a telephone interview to identify their
current psychiatric state. We allowed for some minor increase of
symptoms during follow-up (ie, YMRS<15 and MADRS<15).
The criteria for clinical episodes included psychiatric hospitaliza-
tions, work incapacity, MADRS≥ 15, YMRS≥ 15,37 suicidal idea-
tion, and/or substantial deterioration of the patient’s clinical state.
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Table 1. Demographic, Health and Activity Characteristics in Patients and Controls Groups

Metadata BD HCs P value

Participants count
final (original)
[BDI/BDII]

25 (35)
[16 BDI, 9 BDII]

25 (26) –

Age 39.72 (SD 12.85, range 22-63) 39.68 (SD 11.19, range 25-63) P = .6549a

Sex 60% female (N = 15) 68% female (N = 17) P = .7688b

Days in study
(recorded/valid)

134 (SD 39) [range 61-179]/
86 (SD 21) [range 50-124]

97 (SD 12) [range 72-126]/86 (SD 13)
[range 62-108]

(for recorded)
P = .0018a*
(for valid)
P = .2977a

Working status
(full-time/part-time/no work)

6/12/7 22/3/0 P = .0125c*

Total days in the study (recorded/valid) 3341/2158 2426/2113 –

MADRS

At admission to the study
2.3 (SD 3.9)
Through the study—with relapses 8.8 (SD 7.1)
—without relapses
6.6 (SD 3.8)

– –

YMRS

At admission to the study
0.4 (SD 0.81)
Through the study—with relapses 1.8 (SD 3.3)
—without relapses
2.1 (SD 3.5)

– –

Mood episodes

In study: two patients with episode/s
(2 dep., 1 hypomania)

Excluded: 5 patients with episode/s
(7 dep., 1 mania - psychosis)

– –

Lithium
Antipsychotics used:
Quetiapine
Olanzapine
Antidepressants used:
Bupropion
Sertraline
Antiepileptic used:
Lamotrigine
Valproate
Carbamazepine
Mixed/single treatment

7 (28%)
12 (48%)
10 (40%)
4 (16%)
6 (24%)
5 (20%)
2 (8%)
9 (36%)
6 (24%)
3 (12%)
1 (4%)
19 patients/6 patients

–
–
–
–
–
–
–
–
–
–
–
–

Average featuresd

ADA (average daily activity)
Sleep duration
Circadian quotient
M10 time
RSL (restless sleep)
MSFcs (chronotype)

605 (SD 110)
8.98 (SD 1.22) h
0.78 (SD 0.12)
14.7 (SD 1.3) o’clock
2.6 (SD 0.9) %
3.7 (SD 1.0) o’clock

778 (SD 92)
7.40 (SD 0.51) h
0.66 (0.07)
14.9 (SD 1.3) o’clock
2.1 (SD 0.6) %
3.6 (SD 1.1) o’clock

For statistical comparison
see Table 2

LTTV in featuresd

ADA
Sleep duration
IV (intradaily variability)
IS (interdaily stability)
M10
M10 time
L5
L5 time
RSL

103 (SD 32)
1.7 (SD 0.6) h
0.07 (SD 0.02)
0.06 (SD 0.02)
166 (SD 50)
2.1 (SD 0.8) h
31 (SD 23)
1.8 (SD 0.6) h
1.8 (SD 0.8)%

94 (SD 25)
1.3 (SD 0.3) h
0.05 (SD 0.01)
0.06 (SD 0.02)
148 (SD 42)
2.6 (SD 0.5) h
38 (SD 23)
1.4 (SD 0.5) h
1.5 (SD 1.0)%

For statistical comparison
see Table 2

Abbreviations: ADA, average daily activity; BD, bipolar disorder; IS, interdaily stability; IV, intradaily variability; LTTV, long-term temporal variability; MADRS, Montgomery–Asberg Depression
Rating Scale (MADRS); RSL, restless sleep; SD, standard deviation; YMRS, Young Mania Rating Scale.
aMann–Whitney test.
bFisher exact test.
cχ2 test (Chi-square = 8.77).
dSelected features, for all see Supplementary Material.
*P < .05.
**P < .01.
***P < .001.
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The relapse episodes were omitted from the data, and, thus, we used
only patient data from interepisode periods, therefore, the results
were not affected bymotor activity changes due to clinical episodes.
The rating scales were not used in any of the models. In order to
reduce possible seasonal effects, the data were collected in both
groups during a similar time period from December 2016 to May
2017.

Actigraphy data and feature extraction

The actigraphy wearable was set to capture motor activity aggre-
gated over 30-second epochs. The data were transferred wirelessly
through a base station at the subject’s home to a server for storage
and offline evaluation. Missing data, detected wearable lay-off
periods, and segments starting 1week before and ending 1week
after an episode of mania or depression were excluded from the
trait-focused analysis. Data from mood episodes (mania/depres-
sion) were excluded in order to minimize contamination of the
data, which might lead to increased differences between BD
patients and HCs. For feature estimation, 80% of valid samples
within a given time frame were required; otherwise, they were
marked as a missing value. All calculations were performed in local
time, using weekends and national holidays as free days.

In order to perform the statistical and machine-learning ana-
lyses, we derived a set of standard features from the raw actigraphy
recordings, based on cosinor, nonparametric and sleep analysis. All
actigraphy features were calculated for each day, while a 7-day
sliding time window was used for some features (see below).
Chronotype and social jetlag (SJL) were estimated using the whole
actigraphy recording.38

Circadian analysis
Cosinor analysis28,39 estimated regular activity patterns by fitting a
cosine function with a fixed 24-hour period. The resulting features
are the acrophase (the time of the activity peak), the mesor (the
offset of the fitted cosine function), the amplitude, the circadian
quotient (CQ) (the amplitude and mesor ratio, that is, the robust-
ness of the daily activity rhythm), and the goodness of fit (GOF)
(the sum of absolute residuals from fitted cosine function).

Nonparametric analysis14,27,40 estimated activity patterns for
each day, without assuming an underlying analytical function.
The estimated features are M10 (average activity during the most
active 10 hours), L5 (average activity during the least active 5
hours), timings of M10 and L5 (midwindow daytime), and RA
(relative amplitude: (M10�L5)/(M10+L5)). Additional features
estimated for each day include ADA (average daily activity) and
AQA1–4 (average activity in quarters of a day).

The nonparametric features, based on the 7-day slidingwindow,
were IV (intradaily variability, describing rhythm fragmentation)
and IS (interdaily stability). For an estimate of IV and IS, the signal
was aggregated into 20-minute segments, according to previously
reported more favorable properties.27

Sleep analysis
Sleep epochs were detected using the MINDPAX algorithm.41 To
reduce overestimation of sleep duration (SDur) based on algorith-
mic analysis, as observed by Boudebesse et al.,42 the results were
manually checked and corrected. The distinction between sleep and
wake time using actigraphy is generally considered reliable.31,43

Themain SDur, that is, the longest SDur on a given day, withminor
interruptions, was used for the analyses.

In order to cope with issues connected with sleep parameters
requiring a sleep diary (eg, efficiency, latency), we decided to use
actigraphy features only. The extracted features were SDur, sleep
onset, sleep offset, midsleep (MS), RSL (the percentage of minutes
within the main sleep, above preset inactivity threshold), and
immobile parts of sleep (ISL: the percentage of minutes within
the main sleep, below preset activity threshold), sleep instability
(RMSSD: Root mean square of successive differences—based on
raw actigraphy during detected sleep), and average activity 2 hours
prior to sleep onset (APSO), and 2hours after sleep onset (AASO).

Chronotype and social jetlag
Circadian chronotype and SJL are commonly evaluated by the
Munich Chronotype Questionnaire (MCTQ),38 estimated as the
mid-sleep on free days corrected for sleep debt on work days
(MSFsc). In the analysis presented here, we estimated both MSFcs
and SJL using actigraphy-derived sleep starts and sleep ends44 and
calendar free days, using the whole follow-up period. The non-
parametric M10 and L5 times were used for the LTTV evaluation.

Statistical analysis

The LTTV and average values were calculated from all available
daily values, using the standard deviation and the mean, respec-
tively. Between-group statistical comparison was performed on an
a priori selected subset of features (Table 2), based on the available
literature.

The features were checked for normality using Q–Q plots and
were normalized on the basis of skewness and kurtosis (for details
see Supplementary Material). When normality was not disproved
in the transformed values (Jarque–Bera test, α= 5%), a student t test
was used; otherwise, theWilcoxon rank-sum test was used for non-
normally distributed data. One-sided tests were used, based on an a
priori hypothesis from the existing literature (“Literature-based
differences between BD patients and HC” section). See the supple-
ment for details on existing studies and feature normality. See the
data processing scheme in Figure 1.

The results were corrected for multiple comparisons using the
Holm45 procedure (n = 25). The corrected results are marked as
“corr” after each result in the “Results” section. The effect size was
calculated as the standardized mean difference (SMD). The area
under the receiver operating characteristic (AUC)was computed to
measure the classification power of individual actigraphy features.

All data processing and statistical analyses were conducted with
Matlab 2015b, The MathWorks, Inc.

Classification

In order to illustrate the discriminatory power of the entire feature
set combined (as opposed to the statistical analysis, which was
aimed at individual features/biomarkers), we designed a set of
classifiers for discriminating between BD patients and HCs. In
total, we used three models differing by the features that were
employed: (a) a model with all the features presented above, (b) a
model based only on temporal variabilities, and (c) a model using
only features with low dependency on employment status (see
details below).

Themodels were trained using a random forest (RF) classifier,46

commonly used for heterogeneous biomedical data including
actigraphy,24 and the out-of-sample performance was estimated
using fivefold cross-validation. In each fold, data from 20 BD
patients and 20 HC participants were used for training the
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Table 2. Group Differences Between Patients and Controls

Temporal Variability Average Values

Rationale

Hypothesis—LTTV in
Feature is Higher/Lower in
BD Patients P value AUC

SMD
(nonparam)

Hypothesis—Average Value in
Feature is Higher/Lower in BD
Patients P value AUC

SMD
(nonparam)

Var. in IV is higher in BD
patients

<.001*** 0.8544 1.33 (0.97) IV is higher in BD patients .131 0.5872 0.32 (0.26) Fragmentation of activity within a 24-h cycle.1

Var. of M10 time is higher in
BD patients‡

<.001* 0.7680 �0.74 (�0.71) M10 time is later in BD patients .707 0.5168 �0.15 (�0.24) Finding daily activity extremes on a daily basis.1

Var. of L5 time is higher in BD
patients

.003* 0.7456 0.71 (0.65)
L5 time is later in BD

patients‡
.197 0.5712 0.04 (0.35) See M10 time

Var. in sleep duration is
higher in BD patients

.004 0.7168 0.79 (0.56)
Sleep duration is higher in BD

patients‡
<.001*** 0.8592 1.68 (2.03) A basic sleep-describing feature.

Var. in AASO is higher in BD
patients

.039 0.6448 0.47 (0.40) AASO is higher in BD patients <.001** 0.76 0.99 (0.88) Used as an approximation of sleep latency.

Var. of CQ is higher in BD
patients

.041 0.6352 0.5 (0.27) CQ is higher in BD patients‡ <.001*** 0.8512 1.23 (1.23)
An estimate of how well-circumscribed periods of activity are

during a day; a proxy for rhythm robustness 23

Var. of M10 is higher in BD
patients

.074 0.6112 0.41 (0.23) M10 is lower in BD patients <.001** 0.792 �1.16 (�0.53)
Approximates the amplitude of peak daily activity (M10) and

sleep quality (L5) for each day. It is related to motor
capability21

Var. in RSL is higher in BD
patients

.081 0.6304 0.26 (0.41) RSL is higher in BD patients .012 0.6624 0.67 (0.31)
Feature describing sleep quality. Represents sleep

inefficiency based on actigraphy

Var. in IS is higher in BD .110 0.6272 0.29 (0.31) IS is lower in BD .417 0.5328 �0.11 (�0.14)
Synchronization to the light–dark cycle and stability of daily

rhythm.

Var. in ADA is higher in BD .151 0.5904 0.31 (0.34) ADA is lower in BD <.001*** 0.8992 �1.71 (�1.05) Describes how active a person is throughout the day.

Var. in APSO is lower in BD .160 0.5808 �0.27 (�0.24) APSO is lower in BD <.001** 0.7712 �1.14 (�0.45) See AASO

Var. in L5 is higher in BD .952 0.3424 �0.32 (�0.25) L5 is higher in BD .932 0.3696 �0.38 (�0.38) See M10

BD patients are generally a later
chronotype

.249 0.5568 0.08 (0.15) Objectively assess the values from MCTQ36 questionnaire.

Significance after Holm’s45 (n = 25) *P < .05, **P < .01, ***P < .001.
Abbreviations: AASO, activity 2 hours after to sleep onset; ADA, average daily activity; APSO, activity 2 hours prior to sleep onset; AUC, area under the curve; BD, bipolar disorder; CQ, circadian quotient; IS, interdaily stability; IV, intradaily variability; LTTV,
long-term temporal variability; MCTQ, Munich Chronotype Questionnaire: RSL, restless sleep; SD, standard deviation; SMD, standardized mean difference.
‡tested using Wilcoxon rank-sum test (non-normally distributed data).
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classifier, the rest were used for evaluating the classification per-
formance. In subsequent folds, the data from 5+ 5 different sub-
jects were used for validation, until all patients were iterated. The
entire fivefold procedure was repeated 100 times to estimate
the uncertainty of the results, caused by the random division of
the patients into folds and random feature selection in RF. See the
supplement for more details on RF structure and evaluation.
See the data processing scheme in Figure 1.

Post hoc analysis of employment status

An analysis of the classification results revealed a strong association
between the misclassification of individual subjects and employ-
ment status. We, therefore, investigated the association between
employment status, group membership (BD patients or HCs), and
individual actigraphy feature values. A set of linear models was
built that the parameter value was a linear combination of BD
patients/HC group status, employment status, and intercept:

feature~1þBD=HCþemployment status: (1)

The model was fitted using a least-square means approach with
robust bi-square weights, and the significance of the coefficient
values was evaluated using standard T-statistic. Based on the
results, the identified features independent of employment status
were used for training classification model C.

Results

Subject characteristics

The BD patients andHC group characteristics, after exclusions, are
shown in Table 1. Ten (29%) of the 35 BD patients enrolled in the
study were excluded: five subjects were excluded due to insufficient
length of recorded interepisode data (≤50 days—four for depres-
sion episodes and one for psychosis after childbirth), four for an
excessive amount of missing actigraphy data (due to wearable
removal or malfunction of the wearable device), and one resigned
from the study upon personal request, resulting in 25 DB patients

in the final set. All of the subjects were attending a standard BD
treatment program and were using clinician’s choice medication.
Among 26 HCs, one subject was excluded due to an excessive
amount of missing data, resulting in 25 HCs in the final set. The
HC set was recruited after the BD set, when deterioration in the
same patient’s state was observed. A lower dropout rate in HCs was
expected.

Statistical comparison

In terms of LTTV, compared with HCs, BD patients showed
significantly greater variation in the IV feature (t(48) =�4.71,
Pcorr = .0005, AUC=0.85), greater variability in the activity-peak-
time (M10-time; z =3.24, Pcorr = .0107, AUC=0.77), and greater
variability in the L5 time (t(48) =�2.88, Pcorr = .0500, AUC=0.75).
In the IS feature, the variability had higher predictive capacity than
the mean value (both nonsignificant). For actual differences, see
Table 1, and for effect sizes see, Table 2.

When evaluating individual averages (Tables 1 and 2), com-
pared to HCs, BD was associated with lower ADA (t(48) = 6.06,
Pcorr < .0001, AUC=0.90), longer sleep duration (z =�4.35,
Pcorr = .0002, AUC=0.86), and lower CQ (z =�4.25, Pcorr = .0002,
AUC=0.85). However, in some features, mainly the overall aver-
ages, the observed differences were highly associated with BD
employment status. For more details and posthoc analysis on the
effect of employment status, see “Effect of employment status”
section.

Classification of BD and HCs

The full actigraphy-based model (model A) was successful in
distinguishing between people with interepisode BD and HCs.
Accuracy was around 88% with specificity 91%—see Table 3.

When only time variability of the actigraphy features were used
(model B), the classification accuracy dropped, mainly due to a
higher HC misclassification rate (ie, a drop in specificity). The
accuracy drop in the B model was apparently also due to the
removal of the strongest feature, which was the average SDur

CONTROLS PATIENTS

5-FOLD  crossvaliation

#1

#2

#3

#4

#5

TRAIN SET

• classifier training

• training set error

TEST SET

• classifier testing

• test set error

5 ITERATIONS

• different fold used for testing each time

• results aggregated over all 5 steps

ACTIGRAPHY DATA

(1 participant, up to 90 days)

 �
�d

a
te

hour�

missing data or
symptomatic periods

� �

FEATURE VALUES

(1 value daily)

TEMPORAL

AGGREGATES

(1 value per subject)day 1:  ADA, sleep_dur, ...

day 2:  ADA, sleep_dur, ...

                ...

                ...

                ...

                ...

 day 7: N/A, N/A, N/A...

 day 8: N/A, N/A, N/A...

 day 9: ADA, sleep_dur, ...

                ...

                ...

                ...

                ...
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PREPROCESSING: SINGLE PARTICIPANT’S DATA MACHINE LEARNING USING TEMPORAL AGGREGATES

Figure 1. Preprocessing and machine-learning classification scheme. The left side shows the estimation of individual values (average and long-term temporal variability [LTTV])
from features, based on all valid days for each patient. In the right part, the machine-learning cross-validation process is shown, where the same number of bipolar disorder
(BD) patients and healthy controls (HCs) is repetitively left out from the learning dataset for results.
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(BD 8.97� 1.22 hours vs HC 7.40� 0.51—this corresponds to
adult sleep duration).47 Most of the misclassifications were in
full-time-/part-time-working BD patients (see the last column in
Table 3). For model A, in the working patients, 1.7 out of 6 were on
average misclassified; in the part-time-working patients, 2.1 out of
12 were misclassified, while there were no misclassifications in the
unemployed/pensioned patients. For model B, 0.2 out of 7 unem-
ployed/pensioned patients were misclassified. (For model C, which

uses features that do not show dependency on employment status,
see “Effect of employment status” section.)

Based on the out-of-bag estimation (see Supplementary Mate-
rial), we assessed the importance of each feature in the classification
task. Figure 2 shows features ordered by their average classification
strength, depicting their approximate effect sizes based on model
A. Models B and C differ by not including the unused features (the
order of classification strength does not change).

Table 3. Random Forest Classifier Model Results in Participants Whose Data Were Not Used During Model Training

Model
Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

Misclassification in BD Patients Based on
Employmenta—Full-Time/Part-Time/Pensioned

A. All features 87.8 (2.6)% 84.8 (3.5)% 91.0 (4.0)% 29%/17.2%/0%

B. Time variations 78.5 (4.2)% 77.7 (5.2)% 79.3 (5.8)% 36%/26.7%/3%

C. Employment status independent features 78.7 (3.4)% 76.2 (5.3)% 81.2 (4.2)% 33%/29%/7%

Abbreviations: SD, standard deviation; BD, bipolar disorder.
aThe number of bipolar disorder (BD) patients working full-time was 6 (therefore, 1 patient corresponds to 16.7%) part-time working n = 12 (1 patient ~ 8.3%) and unemployed n = 7
(1 patient ~ 14.3%).
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Figure 2. All features used in classification the (Model A) ordered by their classification strength, showing the effect size for each feature (non-normalized data), LTTVs in blue,
average values in orange, and global features in gray. The effect size (with a 95% confidence interval) is an approximation because the distributionwas not always normal. The grey
diamond shows the effect size estimated by the median values and shows how precise the blue approximation is.

88 J. Schneider et al.

https://doi.org/10.1017/S1092852920001777 Published online by Cambridge University Press

https://doi.org/10.1017/S1092852920001777


Effect of employment status

Using linear models, we identified four types of features based on
their association with employment status (see Table 4). We trained
a new random forest distinguishing BD patients and HCs, using
exclusively the variables that weremost affected by the BDpatients/
HC group difference and not by employment status. Model C,
which used only type 1 features LTTV in M10 time, IV, and SDur
and averages of M10, and activities prior and after sleep onset
reached 78.7% accuracy, for details see Table 3—model C.

Discussion

This study shows that a machine-learning model using only acti-
graphic recording was capable of distinguishing between interepi-
sode BD patients and HCs with 88% accuracy on the test data. In
addition, when the effect of working status was suppressed by
empirically derived feature selection, our results indicated that
actigraphic data on motor activity patterns in BD may contain a
clinically informative and scalable biosignal that differentiates
between BD patients and HCs. In an article, Ortiz et al.48 used
machine learning for forecasting a clinical episode based on
patient-perceived energy during the evening. The motor activity
is associated with future mood and energy11; therefore, long-term
actigraphy may be promising for relapse forecasting.

When compared to existing actigraphy-basedmachine-learning
studies Krane-Gartiser et al.25 and Faedda et al.,24 our model using
all features is more accurate than both. When only features with
low dependency on employment status are used, the results are
slightly better than the results by Krane-Gartiser (acc. 79% vs 78%)
and lower than Faedda’s (acc. 83%) with higher sensitivity (76% vs
64%) and lower specificity (81% vs 92%). These results have to be
considered bearing in mind that our remission criteria were more
lenient than in the Krane-Gartiser paper, whose dataset was
matched for employment status. Faedda used children with a
similar daily regimen (school) and without any medication treat-
ment but also cleaned noisy data based on additional information
obtained from parents. In addition to actigraphy, the Krane-
Gartiser25 employed MADRS as an additional predictor variable
as well. Post hoc analyses demonstrated that the inclusion of this
psychopathology score contributed critically to the overall efficacy
of the model. When MADRS was excluded, the accuracy-based
selectively onmotor activity dropped to 70%,25 which is lower than
our results.

Matching the BDpatients andHCgroups based on employment
status, Krane-Gartiser et al.25 reduced the confounding effect of

differences in social engagement. This approach has been substan-
tiated by the identification of employment status as a significant
confounder. The fact that HCs are typically employed and, at the
same time, many BD patients are either unemployed or pensioned,
may itself introduce a significant bias, due to the systematic effect of
the dissimilar social clock and demands in the two groups. To
address this problem at least partially, some studies have used shift
work as an exclusion criterion.6,7,49 Only a small number of acti-
graphy studies have attempted to match HCs on employment
status.14,17,25,50 Unfortunately, even using age-matched HC groups
with a similar rate of unemploymentmay introduce a different type
of bias,6 due to the reasons causing a healthy person of productive
age to be unemployed.

To control specifically for these potential biases, we identified
and modeled a set of actigraphic features with low dependency on
employment status and possibly also other aspects affecting motor
activity during the day, such as family status and type of employ-
ment. The contribution of these different factors to the BD-specific
characteristics of motor activity patterns is beyond the presented
dataset and has to be evaluated in a separate study. According to
our analysis, LTTV in interdaily variability feature, LTTV in M10
time, LTTV in SDur and average M10, and average activity before
sleep onset and after sleep onset fulfil these requirements. In a post
hoc analysis, the model incorporating exclusively features with low
dependency on employment status achieved predictive accuracy of
79% in discriminating between BD patients and HCs.

Long-term temporal variability

Recent evidence suggests that not only previously reported changes
in the sleep and activity of BD patients but also, in particular, the
temporal variability of these parameters may be a disease-specific
trait marker.51 Despite this promising report, only a few studies
have been able to specifically address time variation features in
actigraphy. The reasons for this situation are mainly technical, as
the analysis typically requires long-term continuous actigraphy.
These limited number of studies found for BD: (a) increased stan-
dard deviation and RMSSD in actigraphy,22 (b) a positive correla-
tion between mood variability and variability in activity,52 and
(c) greater variability in afternoon activity (BDI) and in nighttime
activity (BDII), without differences in peak time variation,51 but
(d) greater variability in peak activity time.9 For a review of vari-
ability in actigraphy, see Bei.21

Consistently, our analysis of the long-term time variability of
actigraphy and sleep features revealed a significantly higher vari-
ability in the IV feature and in day-peak and day-trough activity

Table 4. Categories of Features Based on Employment Status Effects

Category Category Description
Time-Variability of the
Feature

Average of the
Feature

1 Features affected exclusively by BD/HC difference (used for model C).
M10 time, IV, SDur

M10, APSO,
AASO

2 Features affected exclusively by employment status. L5 time L5 time

3 Features affected by both BD group and employment status. The ↑↑ reduces the BD effect (are in the
same direction and combine into a bigger difference) and the ↑↓ feature supports the BD effect due
to employment status (is in the opposite direction and the difference is greater).

↑↑ CQ, ↑↑ ADA,
↑↑ SDura, ↑↓
RSL

4 Features not significantly affected either by BD or by working status. CQ, M10, IS, ADA, L5,
APSO, AASO, RSL

L5, M10 time,
IS, IV, MSFcs

Abbreviations: AASO, activity 2 hours after sleep onset; ADA, average daily activity; APSO, activity 2 hours prior to sleep onset; BD, bipolar disorder; CQ, circadian quotient; HC, healthy control; IS,
interdaily Sstability; IV, intradaily Vvariability; RSL, restless sleep; SDur, sleep duration.
aFor sleep duration, the effect of the disease is twice as strong, resulting in the finding that even working BD patients differed significantly from HCs.
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times (M10 time and L5 time) in BD patients vs HCs. In sleep
features, we observed a difference in SDur time variability
(although not significant after correcting for multiple comparisons
P < .1, see the limitation of the power analysis in the Supplementary
Material).

Average actigraphy and sleep

As in previous studies, a lower overall activity (ADA) and flattening
in rhythmicity (CQ) were detected in BD patients vs HCs. Lower
activity is a widely reported trait-marker of BD, even in remitted
cases.7,14–16,19,26,49,53 Unfortunately, ADA also showed significant
dependency on employment status. A lower daily activity peak was
observed by prior studies,19,53 where it was connected with wors-
ening of the disease.

In contrast to previous studies,1,9,13 we did not observe a
between-group difference in chronotype based on motor activity,
although all subjects were evaluated at approximately the same
time of year. Similarly, we did not observe any later activity onset in
BD patients vs HCs, as had been observed previously.9,15,50,51,53

Prolonged SDur (in our study for >1 hour) has been observed by
some5,6,18 but not other studies.7,14,17 It is possible that the observed
differencemay be caused (a) by persistent subdepressive symptoms
because even between-episodes BD patients show more
depression-related symptoms,5,54 (b) bymedication, whereby espe-
cially atypical antipsychotics are related to hypersomnia,30 and/or
(c) by the difference in employment status, as already has been
mentioned.

Other commonly observed differences in BD are lower sleep
efficiency6,16 and prolonged sleep latency.5,6,17,18 These values can-
not be estimated without the use of sleep diaries or patient mark-
ings of sleep time, which were not collected in our study. Our fully
automatic approximation of these features are RSL, for sleep effi-
ciency, and decline in activity on sleep onset, measured by APSO
and AASO, for sleep latency. The between-group difference in RSL
was not significant after corrections for multiple comparisons.
Further, a slower decline in activity was observed in BD vs HCs
during sleep onset was observed (APSO was lower and AASO was
higher in BD patients vs HCs).

Limitations

Results of this study need to be interpreted considering the follow-
ing limitations. First, the relatively small sample size can reduce the
power of the statistical tests (see the Supplementary Material for a
power analysis). Although the sample size was small, it is in line
with many previous actigraphy studies, each of which had a much
shorter follow-up duration than our 90-day period.

Second, we had a relatively high dropout/exclusion rate of about
29% in BD patients, due to loss of interest in participating in the
study, occurrence of a relapse, or due to technical difficulties.
However, a comparable dropout rate is not exceptional in this type
of study. For example, Krane-Gartiser et al.25 had a dropout rate of
54% in the BD patients group, as a consequence of very strict
exclusion criteria.

Third, BD patients and HCs were not matched for employment
status. There are reasons that might cause unemployment in
“healthy” productive age individuals. However, contaminating
the HC group with the risk of morbidity might add a different type
of bias as the oversampling employed BD patients. To address this
issue, we did not select the sample on the basis of employment
status. Instead, we conducted a sensitivity analysis, creating a

model, whereby actigraphy features that were highly correlated
with employment status were removed, showing the robustness
of our discrimination/prediction models.

Fourth, all BD patients should have been using their prescribed
medication. There are reported effects of medication on sleep,55

and effects on activity can also be expected, although Jones et al.14

stated that “no evidence was found for a significant association
between medication use and any of the circadian activity measures”
and Shou et al.51 did not observe any association between psycho-
tropic medication and levels of activity. It has been shown that
mood stabilizers can affect several circadian parameters.56 The
assumed major mechanism is through the regularization (normal-
ization) of the sleep and circadian rhythm as it has been shown for
lithium (seven patients in our study) and valproate (three patients
in our study).5 Considering the combination of medications, Gon-
zalez et al.28 observed that individual medication type (mood
stabilizers, antidepressants, antipsychotics, etc.) had higher associ-
ation with motor activity changes than the number of medications
from each type. The medications may nonetheless impact the
results and therefore present a limitation of the study. However,
withdrawal from medication during the follow-up period is unjus-
tified due to the risk of relapse and related ethical issues.

Fifth, the BD subjects were not fully euthymic, and residual
symptoms may have affected the results. Our relapse threshold
allowed the presence of subclinical symptoms in the examined
sample, for example, residual depression.54Monthly clinical assess-
ments may also miss, or may underestimate, briefer but clinically
relevant mood shifts.

Sixth, there are findings of high prevalence of comorbidities in
BD.57 Althoughmany are hard to distinguish from symptoms of BP
itself (sleep disorders, anxiety disorders, borderline personality
disorder), there are other diseases that have higher prevalence in
the BD group such as drug/alcohol abuse, asthma, hypothyroidism
migraine, etc., which may also affect circadian rhythm and motor
activities throughout the day. These were not matched with the HC
group and thus present a possible confounder and a limitation of
the study.

Finally, we did not include patients with psychiatric disorders
other than BD in order to evaluate the degree to which the iden-
tified actigraphic biosignature is specific to BD or is more globally a
marker of mental illness. Thus, future studies should include
psychiatric control groups to investigate this issue.

Conclusions

There are significant differences in activity patterns between BD
patients and HCs. A clinically applicable, cost-effective, and scal-
able classifier-based approach was able to distinguish BD patients
from HCs with approximately 88% accuracy, which is better than
previous studies by a large margin. Some of the strongest discrim-
inants, for example, ADA and SDur, could be closely associated
with differences in employment status and also with differences in
the use of medications. The time variance in some features (intra-
daily variability, peak activity time, SDur) showed lower depen-
dency on employment status and may therefore be a preferable
actigraphy biomarker candidate. When only features that are less
dependent on employment status were used, the model was still
able to distinguish BD patients from HCs with approximately 79%
accuracy, which is still comparable with the best results obtained by
other groups.24,25 Future studies are needed in order to identify
actigraphy features that are global trait-markers of mental illness
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from those that are more specific to BD and, eventually, to identify
features (state-markers) that may be associated with an impending
relapse.
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