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On the Combinatorics of Gentle Algebras

Thomas Briistle, Guillaume Douville, Kaveh Mousavand,
Hugh Thomas, and Emine Yildirim

Abstract. For A a gentle algebra, and X and Y string modules, we construct a combinatorial basis
for Hom(X, 7Y). We use this to describe support 7-tilting modules for A. We give a combinatorial
realization of maps in both directions realizing the bijection between support 7-tilting modules and
functorially finite torsion classes. We give an explicit basis of Ext! (Y, X) as short exact sequences. We
analyze several constructions given in a more restricted, combinatorial setting by McConville, showing
that many but not all of them can be extended to general gentle algebras.

1 Introduction

In this paper, we study the combinatorics of gentle algebras. Suppose that X and Y
are string modules for a gentle algebra A = kQ/I. (Terminology not explained in
the introduction will be defined in the next section.) An explicit basis of Hom(X, Y)
has been known for a long time [CB]. We give an analogous construction for
Hom(X,7,Y).

Our construction proceeds by embedding A = kQ/I into a larger gentle algebra
A = kQ/T, which we call the fringed algebra of A. The reason for embedding A in A
is that, although 7, is well-understood thanks to work of Butler and Ringel [BR], its
behaviour is somewhat complicated. It turns out that the behaviour of 74 on mod A
is more uniform and thus easier to analyze than that of 74.

Using our construction, in Section 5 we give an explicit description in terms of
combinatorics of strings of the support 7-tilting modules for A as certain maximal
non-kissing collections of strings. Support 7-tilting modules are in bijection with func-
torially finite torsion classes; in Section 7, we show explicitly in terms of the combina-
torics of strings how to pass from a maximal non-kissing collection to its associated
functorially finite torsion class and how to return from a functorially finite torsion
class to the maximal non-kissing collection. If there are only finitely many functo-
rially finite torsion classes, we give, in Section 6, a combinatorial description of the
poset of functorially finite torsion classes as a combinatorially-defined poset on the
maximal non-kissing collections.

By Auslander-Reiten duality, Ext'(Y, X) is dual to a quotient of Hom (X, 7Y). In
Section 8, we use our construction of Hom(X, 7Y) to find a basis for Ext'(Y, X), and
we realize that basis as a collection of extensions of Y by X.
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Our paper was inspired throughout by work of McConville [McC]. He was work-
ing in a combinatorial context, studying certain generalizations of the Tamari lattice.
Rephrasing his work in terms of gentle algebras, the algebras that appear have the
property that their quivers can be drawn in a natural way on a square grid, but he
uncovered many phenomena that extend practically verbatim to arbitrary gentle al-
gebras.

One phenomenon that does extend beyond McConville’s setting, but not to all
gentle algebras, is his observation that when two maximal non-kissing collections are
related by a single mutation, the exchanged strands kiss exactly once. In Section 9,
we give an example (originally due to [GLS]) showing that this does not hold for all
gentle algebras. We then show that it holds for all gentle algebras such that all 7-rigid
modules are bricks.

While working on this project, we were informed of two other papers that over-
lap with our results. [PPP] also constructs the fringed algebra (which they call the
“blossoming algebra”). They apply this to realize and study the support 7-tilting fan
for gentle algebras. [CPS] studies Hom groups in the derived category of represen-
tations of a gentle algebra. From this, they also deduce an explicit description of the
extensions between string modules, extending the work in [CS] that considers gentle
Jacobian algebras from triangulations of surfaces. Another recent paper that is rele-
vant is [EJR]; they also study Hom(X, 7Y), but because they work in the more general
setting of string algebras, the combinatorics that they analyze is more complicated.

2 Preliminaries and Background

Notations and Conventions

Throughout this paper, k denotes an arbitrary field. A quiver Q = (Qo, Q1,s,¢€) isa
directed graph, which we always assume to be finite and connected, with Qg the vertex
set, Q; the set of arrows, and s, e: Q; — Qo two functions that respectively send each
arrow y € Q to its source s(y) and its target e(y). We use lower case Greek letters a,
B, ¥, ... to denote arrows of Q.

A path of length m > 1in Q is a finite sequence of arrows y,,, - - - 2y, where s(yj41) =
e(y;), for every 1 < j < m — 1. By kQ we denote the path algebra of Q, where the
product of two paths is their concatenation, if that is a path, and is otherwise zero.

A zero (monomial) relation in Q is given by a path of the form y,, --- y,y1, where
m > 2. A two sided ideal I is called admissible if Ry c I ¢ R, for some m > 2, where
Rq denotes the arrow ideal in kQ. In what follows, I always denotes an admissible
ideal generated by a set of zero relations in Q. We use capital letters A and B to denote
quotients of kQ by such ideals.

Gentle Algebras

B = kQ/I is called a string algebra if the following conditions hold:

(S1) There are at most two incoming and two outgoing arrows at every vertex of Q.
(S2) For every arrow a, there is at most one f$ and one y such that a8 ¢ I and p« ¢ I.

A string algebra is called gentle if the following additional conditions are satisfied:
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(G1) The ideal I is quadratic; i.e., there is a set of monomials of length two that
generate I.

(G2) For every arrow a, there is at most one f3 and one y such that 0 # «f3 € I and
0+yacl

Strings and Bands

To introduce the notion of string, we need the following definitions.

For a given quiver Q, let Q% be the opposite quiver, obtained from Q by reversing
its arrows. We consider the arrows in Q°? as the formal inverses of arrows in Q and
denote them by y%, for every y € Q.

Let Q° be the double quiver of Q, which has Qg as the vertex set and Q; U QIOP
as the arrow set. A string walk in Q is a path C = y,---y; in Q° with the following
properties:

(Al) No y; is followed by its inverse.
(A2) Neither C nor C™! contains a subpath in I.

In such a case, C = y,---y; is called a string walk of length n which starts at
s(C) =s(y1) and ends at e(C) = e(y,). In addition, to every vertex x € Qo we asso-
ciate a zero-length string walk e, starting and ending at x, which is its own
formal inverse.

The string walks C and C™" are equivalent. We define the equivalence classes under
this relation to be the strings. The set of strings in Q is denoted by str(Q). It is clear
that str(Q) really depends on Q and I, but we suppress I from the notation, because
it will be clear from context. When we choose C € str(Q), we are implicitly selecting
a particular representative C of the equivalence class that consists of C and C™*, but
nothing will hinge on which representative we choose. If we want to attend to the
choice, we will speak of picking a string walk.

We call C =y, ---y; a direct string walk if y; € Q; for every 1 < i < n, and dually
C is called inverse if C™" is direct. A band in Q is a string C = y,, - -+ y; such that C" is
well defined for each n € N, and, furthermore, C itself is not a strict power of another
string of a smaller length.

Definition 2.1 For every string walk C = y,,--- y;, the associated diagram of C is
the illustration by a sequence of up and down arrows, from right to left, by putting a
left-down arrow starting at the current vertex for an original arrow and a right-down
arrow ending at the vertex for an inverse arrow.

Example 2.2 In the following quiver Q:

ay
& ———— %y

]

) > @3,
o

since Rz = 0, the zero ideal I = 0 is admissible. It is easy to see that A = kQ/I = kQ
is a gentle algebra. Following the description above, the diagram of the string walk
C = ay i a; ' B, is the following:
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N

3 ) ®3.

N

€4
String Modules

Considering a string algebra B, to every string C we associate an indecomposable B-
module M(C), constructed as follows: in the diagram of C, as defined in
Definition 2.1, put a one dimensional k-vector space at each vertex and the identity
map for each arrow connecting two consecutive vertices of the diagram. In the rep-
resentation M(C), the dimension of the vector space associated to each vertex of the
quiver is given by the number of times that the string C passes through the aforemen-
tioned vertex. Consequently, the dimension vector of M(C) has an explicit descrip-
tion. Provided it does not cause confusion, we do not distinguish between a string C
and the associated string module M(C), and we use C to refer to both. For details,
see [CB,BR].

Note that M(C) and M(C™") are isomorphic, so M is well defined (up to isomor-
phism) as a map from str(Q) to B-modules. If C and C’ are not equivalent, then
M(C) and M(C'") are not isomorphic.

The indecomposable modules that are not string modules are associated with bands,
and are called band modules. Since our focus is on string modules, we do not discuss
the details of band modules here.

As shown in [BR], the Auslander-Reiten translation of string modules over a string
algebra admits an explicit combinatorial description. In order to state it, we will need
to introduce some further combinatorial notions.

Lemma 2.3 Let W be a string walk of positive length, and let us pick an orientation
€ where € € {direct, inverse}. There is at most one way to add an arrow preceding s(W)
whose orientation agrees with €, such that the resulting path is still a string. Similarly,
there is at most one way to add such an arrow following e(W).

Proof The lemma follows immediately from conditions (S1) and (S2). [ |

In these cases we say that W can be extended at its start, or at its end, by an inverse
arrow, or a direct arrow, as applicable. Note that the lemma is not true as stated if W
is of length zero.

If a string walk W can be extended at its start by an inverse arrow, then we consider
the result of adding an inverse arrow at s(W), followed by adding as many direct
arrows as possible. We call this adding a cohook at s(W'). We denote the result of this
operation W.. It is well defined by Lemma 2.3.
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Symmetrically, if W can be extended by a direct arrow at e( W), then we consider
the result of adding a direct arrow at e(W) followed by as many inverse arrows as
possible, and we call this adding a cohook at e(W). We denote the result of this
by .W.

If it is possible to add a cohook at each end of W, we write . W, for the result of
doing so.

If W is of length zero, i.e., a single vertex, there may be two arrows pointing towards
W, and in that case, two cohooks can be added to W. We define . W, to be the result
of adding both cohooks.

We now describe the operation of removing a hook from W. To remove a hook
from the start of W (i.e., its right-hand endpoint), we look for the first (i.e., rightmost)
direct arrow in W, and we remove it, together with all its preceding inverse arrows.
In other words, we find a factorization W = X807, with J an inverse string walk and
0 a direct arrow. The result of removing a hook from the beginning of W is X. We
write X = W);,. Note that this is not defined if W contains no direct arrows.

Similarly, to remove a hook from the end of W (i.e., its lefthand endpoint), we
look for the last (i.e., leftmost) inverse arrow of W and remove it, together with all
subsequent direct arrows. In other words, we find a factorization of W as W = Dy~'Y,
with D direct; then the result of removing a hook from the end of W is Y. We write
Y= W.

Theorem 2.4 ([BR]) Let B = kQ/I be a string algebra, and let W be a string module.
At either end of W, if it is possible to add a cohook, add a cohook. Then, at the ends at
which it was not possible to add a cohook, remove a hook. The result is g W.

Note that if it is possible to add a cohook at exactly one endpoint of W, then after
having done so, it will be possible to remove a hook from the other end. If it is impos-
sible to add a cohook at either end, then either it is possible to remove a hook from
each end, or else the module was projective, in which case we interpret the result of
removing a hook from each end as the zero module (which is consistent with the fact
that the Auslander-Reiten translation of a projective module is zero).

Morphisms Between String Modules

A basis for the space of all homomorphisms between two strings was given by W.
Crawley-Boevey in [CB] in a more general setting. In [S], J. Schroer reformulated
the aforementioned basis for string modules. In this paper, we mainly use Schroer’s
reformulation and notation for the description of Hom-space.

Definition 2.5 For C € str(Q), the set of all factorizations of C is defined as
P(C) = {(F,E,D) | F,E,D e str(Q) and C = FED}.
Moreover, if (F, E, D) € P(C), we write (F,E,D)™ = (D™, E", F!) e P(C™).

A triple (F,E, D) € P(C) is a called a quotient factorization of C if the following
hold:

(i) D =eyg)or D = yD" with y in Q%;
(ii) F = e,(g) or F = F'0 with 0 in Q.
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A quotient factorization (F, E, D) induces a surjective quotient map from C to E.
The set of all quotient factorizations of C is denoted by F(C).

A quotient factorization of C is generally of the following form, where D and F can
also be lazy paths.

F e(E) E s(E) D

0 4

Dually, (F,E, D) € P(C) is called a submodule factorization of C if the following
hold:
(i) D =eygyorD=yD" withyinQ;
(ii) F = e(g), or F = F'0 with 0 in Q°*.
The set of all submodule factorizations of C is denoted by 8§(C). A submodule
factorization (F, E, D) induces an inclusion of E into C.

Definition 2.6  For Cyand C, instr(Q), apair ((Fy, Ey, D1), (F2, E2, Dy)) € F(Cy)x
8(C,) is called admissible if E; ~ E, (i.e., Ey = E, or E; = E;'). The collection of all
admissible pairs is denoted by A(C;, C,).

For each admissible pair T = ((Fy, E1, D1), (F2, E2, D2)) in A(Cy, C,), there exists
a homomorphism between the associated string modules

fT: C— Gy,

defined as the composition of the projection from C; to E;, followed by the iden-
tification of E; with E,, followed by the inclusion of E, into C,. We refer to these
homomorphisms fr as graph maps.

The following theorem plays a crucial role in this paper.

Theorem 2.7 ([CB]) IfA = kQ/I is astring algebra and C, and C, are string modules,
the set of graph maps {fr | T € A(Cy, C3)} is a basis for Hom4 (Cy, Cy).

Auslander-Reiten Duality

Write Hom, (M, N) = Homg(M, N)/P(M, N) for the quotient of Homg(M, N) by
the morphisms factoring through a projective module.

Similarly, write I(M, N) for the morphisms from M to N factoring through injec-
tives, and Homp(M, N) for Homg(M, N)/I(M, N).

The following functorial isomorphisms, known as the Auslander-Reiten formulas,
play an important role in the rest of this paper:

Theorem 2.8  For every pair of B-modules X and Y, we have the following:

« Homp(X,13Y) ~ DExty(Y, X);
« DHom,(Y, X) ~ Exty(X, 73Y).
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Figure 1. The Auslander-Reiten quiver of a particular gentle algebra.

The Auslander-Reiten quiver of an algebra is a quiver whose vertices are labelled by
the indecomposable modules. The arrows correspond to certain (irreducible)
morphisms, while the action of 7 is indicated by dotted arrows. We will only use
Auslander-Reiten quivers in examples, as an easy way to describe succinctly the ac-
tion of 7; for that reason, we do not provide more details. The interested reader can
refer to [ASS, Chapter 4] for more.

Example 2.9  Consider the gentle algebra A = kQ/I given by the quiver

a

o

1<=—2

and the admissible ideal I = (a?). The Auslander-Reiten quiver of A is given in
Figure 1, where the vertices with the same labels must be identified.

We now give some instances of Auslander-Reiten duality. Consider Ext'(1, i) By
Auslander-Reiten duality, it is dual as a vector space to Hom(l, 1) = Hom(l, |
Note that Hom(l, 1) is one-dimensional, but these morphisms factor through the
injective module I}, so Hom( i, f) = 0. This is consistent with the fact that any short
exact sequence 0 — 1 — E - 1 - 0 splits.

Consider also Ext (2 b 2). By Auslander—Reiten duality, it is dual to Hom(? . T( )
= Hom(f, 112). This space of morphisms is one-dimensional, spanned by the in-
clusion. The inclusion does not factor through an injective, so we conclude that
Ext'(? 1 %) is one-dimensional. This is consistent with the fact that Ext!(? b 1 is gen-
erated by the class of the short exact sequence

2
00— — 12—  —0.

1
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7-Tilting Theory

7-tilting theory was recently introduced by Adachi, Iyama, and Reiten [AIR]. An A-
module is said to be 7-rigid if Hom(X, 7X) = 0. The module X is said to be 7-tilting
ifit is 7-rigid and has as many non-isomorphic indecomposable summands as A. The
module X is said to be support r-tilting if X is 7-rigid and the number of indecom-
posable summands of X equals the number of non-isomorphic simple modules in its
composition series.

A torsion class in mod A is a full subcategory closed under quotients and exten-
sions. If X is an A-module, we write Fac X for the full subcategory of mod A consist-
ing of quotients of sums of copies of A. A torsion class is called functorially finite if it
can be written as Fac X for some A-module X.

An Ext-projective module in a subcategory T of mod A is a module X such that
Ext!, (X, ) vanishes on all modules in T.

Theorem 2.10 ([AIR, Theorem 2.7]) There is a bijection from basic support t-tilting
modules to functorially finite torsion classes that sends the support T-tilting module X
to Fac X and sends the functorially finite torsion class T to the direct sum of its Ext-
projective indecomposables.

Example 2.11 For the algebra A of Example 2.9, it is easily verified that the support
7-tilting modules, ordered by inclusion on their corresponding torsion classes, are as
in Figure 2.

3 Fringed Algebras

Definition 3.1 For a gentle algebra A = kQ/I, we call a vertex of Q defective if it
does not have exactly two incoming arrows and two outgoing arrows.

Our strategy is to define a larger quiver Q containing Q, and an ideal Tin kQ
containing I, such that

. alLthe vertices of Q will be non-defective in Q, and
« kQ/Tis still a gentle algebra.

We call this process fringing. As we recently learned, this procedure was first intro-
duced by Asashiba in connection with the Avella-Alamino-Geiss invariants of a gentle
algebra [As]. As already mentioned, it also plays an important réle in [PPP]. We begin
by describing Q.

Definition 3.2 For a gentle algebra A = kQ/I, let Q be the quiver obtained by
adding up to two new vertices with arrows pointing towards v and up to two new
vertices with arrows from v, for each defective vertex v of Q, such that in Q, none
of the original vertices of Q is defective anymore. We call Q the fringed quiver of Q,
Qo ~ Qo the fringe vertices, and Qi \ Q the fringe arrows.

We now define T.
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Figure 2. The support 7-tilting modules of a particular gentle algebra, ordered by inclusion of
corresponding torsion classes.

Definition-Proposition 3.3 Let A = kQ/I be a gentle algebra. Let T be the ideal
of kQ that contains I, such that A = kQ/T is a gentle algebra. T is well defined up
to relabelling the vertices of kQ. We call T the fringed ideal and A the fringed algebra.

The well-definedness of T is immediate from the fact that the relations added to
T consist of certain length two paths through vertices that were defective in Q, and
there is no choice about which relations to add up to relabelling the fringe vertices. It
is obvious that A is a subalgebra of A. Also, A = A/(er), where e = Y reQono Ef> 18
the sum of all the idempotents associated to the fringe vertices of Q. We refer to e as
the fringe idempotent of A.

Example 3.4 Let Q be the quiver in Figure 3 consisting of the black vertices and the
arrows between them. All the vertices of Q are defective. The corresponding fringed
quiver Q is obtained by adding the white vertices and arrows, with the result that
every black vertex has exactly two incoming and two outgoing arrows.

If we consider the admissible ideal I in kQ generated by o5, and f,«,, we have
that A = kQ/I is a gentle algebra. The corresponding ideal T in kQ is generated by
{Braz, a1B1, y201, a2y3, 022, $103, 04y4, 7101 }. Note that we could have swapped the
roles of, for example, y; and 65 in T, but that is equivalent to relabelling their sources.
The associated fringed algebra is A = kQ/T.

The previous example admits a natural generalization that is closely related to the
work of McConville [McC].

Example 3.5 Let Qy,, be the quiver in Figure 4, which is an orientation of a k by
n — k grid.
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01 aq 0o
(¢] L a1 (D) o
Al 5|
03 a2 04
(¢] o3 oy o
'YST ’Y4T
O.

a2 Q1,n—k—1
®.1 ®2 ®n—k
o] 82| Brnei|
Q2,2 Q2,n—k—1
®.1 22 2 n—k

52,nfkT
ﬁk—l,n—kT

Qg1 2 QAk,n—k—1
k.1 k2 ®k.n—k-
Figure 4. The grid quiver Q..
o o o
Kfu,]T ﬁ(l.'zT ﬂo,n—kT
1,0 a,1 aq,2 Q1 n—k-1 Q1n—k
o ®.1 ® 2 1 n—k °
o] 82| Broet |
Q2,0 Q2,1 Q2,2 Q2,n—k-1 Q2,n—k
(PR > o n—k o
oas | pas| Bans|
N ]
k.0 k.2 Qfn—k—1 Qk,n—k
° ®p1 k2 ®kn—k o
ﬂk,lT ﬂk,zT ﬁk.n—kT
o o o.

Figure 5. The fringed quiver Q..

Consider the ideal I generated by all relations of the form «aff and Ba.

The fringed quiver Q_, is obtained by adding the white vertices and incident ar-
rows, so that none of the black vertices is defective (Figure 5).

The new ideal T is generated by all relations of the form a8 and B, including the
fringe arrows.
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This class of examples is sufficiently complicated to illustrate most of the phenom-
ena that will be of interest to us in this paper. We will therefore sometimes draw
examples of string modules in a shape as in Example 3.5, suppressing the underly-
ing grid-shaped quiver, and drawing only the strings. On the other hand, the reader
should also be warned that grid quivers are very special among gentle algebras. For
just one example, they do not admit any bands. One should therefore not rely exclu-
sively on them for one’s intuition. See also Section 9.

Example 3.6 Another example of fringing a gentle algebra is as follows. Let A be
the gentle algebra from Examples 2.9 and 2.11,

with the relation 2.

The fringed algebra is

with fringed ideal (a?, yB, (e, 6).

Definition 3.7 For a string X in Q, we write cohook(X) for the result of adding

cohooks to both ends of X in the fringed quiver Q. We call this the cohook completion
of X.

The diagram of cohook(X) is illustrated as follows.

N e

X

\/ﬁf\/\/\/wox/

Here we refer to the arrows « and f adjacent to X as the shoulders of cohook(X)
and the sequence of direct arrows on the right and the sequence of inverse arrows on
the left as the arms of cohook(X).

In the following proposition we give the description of 74(X) for X a string in
mod A.

Proposition 3.8  For a pair of strings X and Y in A, we have the following:

(i) 77Y = cohook(Y);
(i) Exty(Y,X) =~ Exti(Y, X).
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Proof (i) Because Y is an A-module, it is possible to add cohooks to both ends
of it when we think of it inside Q. Therefore, Theorem 2.4 tells us that 7Y is obtained
by adding cohooks to both ends of Y.

(ii) Recall that ey is the fringe idempotent in A, and that A = A/(er). Hence,
Ext) (Y, X) = Ext,(Y, X). [

The following lemma relates 74Y and 75Y.
Lemma 3.9 LetY be a string for Q. Then 14Y is a submodule of T5Y.

In fact, it is known that if B is an algebra, B/I is a quotient algebra, and M is a
B/I-module, then 75/, M is a submodule of 73 M; see [ASS, Lemma VIIL5.2]. We
include a proof of the special case we state, because it is an easy consequence of the
combinatorics of strings.

Proof This follows from the fact that 7Y is defined by adding cohooks in Q to Y,
while 7, Y is defined by, at each end, either adding a cohook in Q (which will coincide
with the cohook in Q except that it will be missing the final arrow) or subtracting a
hook; the result is that 7,Y is a substring of 7;Y and at each end, the first arrow
missing from 7, Y points towards 7,Y. Thus, 74Y is a submodule of 75Y. ]

4 Kisses

In this section, we give an interpretation of Hom (X, 77Y) for a pair of strings X
and Y in A. Our technique is inspired by work of Schréer [S] and the combinatorial
framework developed by McConville [McC].

In order to apply Theorem 2.4 to analyze Hom (X, 77Y ), we need to introduce a
new notion and fix some notation, as follows.

Definition 4.1 For a pair of strings X and Y, with factorizations X = (X", Z, X")
and Y = (Y",Z,Y’"), we say there exists a kiss from X to Y along Z, provided:

(i) (X",Z,X')isa quotient factorization;
(i) (Y”,Z,Y’) is a submodule factorization;
(iii) all of X", X', Y"”, Y’ have strictly positive length.

Such a kiss is denoted by [ ., Y: ]

X=X

We emphasize that the notion of kiss is directed. A kiss from X to Y can be illus-
trated as follows. Note that the four arrows y, {, 6, and o must all appear, and must
be oriented as shown.
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By kiss(X,Y), we denote the number of kisses from X to Y, whereas we use
Kiss(X, Y) for the set of all kisses from X to Y, thought of as a set of pairs of triples,
as above. This is a generalization of a notion introduced by McConville [McC].

Lemma 4.2 Let X and Y be strings in Q. Let [;Z z ;:] be a kiss from cohook(X) to
cohook(Y). Then

(i) Zis a quotient of X;
(ii) Zis a submodule of T4Y.

Note that Z is by definition a quotient of cohook(X); the point of (i) is that it is
really a quotient of X (though not necessarily a proper quotient: it might be equal
to X). Note also that Z is by definition a submodule of 7Y, but, as depicted in
the following example, Z is not necessarily a submodule of Y. In this example, the
cohooks are drawn dashed. Note that & and 3 belong to the kiss from cohook(X) to
cohook(Y), but they are not in Y:

Lo,

Y T
|
|

Note that in this example we are following the convention of considering our strings
to lie in a grid quiver as in Example 3.5, without drawing the underlying grid.

Proof (i) If the start of Z were before the start of X in cohook(X), then X’ would
consist only of direct arrows, which is contrary to the definition of a kiss. A similar
argument shows that the end of Z cannot be later than the end of X, so Z is a substring
of X. Because of the direction of the arrows just outside Z in cohook(X) (which are
part of the definition of a kiss), Z is a quotient of X.

(ii) Recall from Theorem 2.4 that 74Y is obtained from Y by adding cohooks if
possible, and otherwise removing hooks.

Suppose that it was possible to add a cohook to the start of Y in A. In this case,
both 74Y and 7Y add a cohook at the start of Y. The only difference is that 75 will
include one additional inverse arrow from a fringe vertex. By the definition of a kiss,
Z cannot include that additional arrrow.

Now suppose that it was not possible to add a cohook at the start of Y. In this case,
74Y was obtained by removing up to the first direct arrow of Y. By the definition of a
kiss, there is a direct arrow before Z, so what was removed does not intersect Z, and
thus the start of Z is not before the start of 7, Y.

We have therefore established that the start of Z is after the start of 7, Y. Similarly,
the end of Z is before the end of 7,Y. Because of the directions of the arrows just
outside Z in 74 Y, Z is a submodule of 7, Y. ]
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By the previous lemma, a kiss from cohook(X) to cohook(Y) determines a non-
zero morphism from X to 74Y and from X to 75Y.

Theorem 4.3

(i) The elements of Hom(X,17Y) corresponding to kisses from cohook(X) to
cohook(Y') form a basis.

(i) The elements of Hom(X,14Y) corresponding to kisses from cohook(X) to
cohook(Y') form a basis.

Proof By the description of morphisms between string modules in terms of graph
maps, Lemma 4.2 implies that the kisses define a linearly independent collection
inside each of the Hom spaces, and also span the Hom spaces. [ ]

Theorem 4.4 Let X and Y be strings in Q.

kiss(cohook(X), cohook(Y)) = dim Hom (X, 77Y) = dimHomy (X, 7,Y).
Proof This theorem is immediate from the stronger Theorem 4.3 above. ]

Proposition 4.5 Let X and Y be strings in Q. The canonical map from 14Y to 17Y
induced by the fact that the former is a submodule of the latter induces an isomorphism
from Hom(X, 7Y to Hom(X, 75Y).

Proof This is immediate from Theorem 4.3 and Lemma 3.9. ]

5 Maximal Non-kissing Collections

In this section, we show that support 7-tilting modules for a gentle algebra corre-
spond to certain collections of strings in its fringed quiver that can be combinatorially
characterized.

Let B be an algebra with n simples. We consider the set of 7-rigid indecompos-
able modules together with n formal objects P;[1], on which we define a relation
of compatibility. Two B-modules M and N are compatible if Hom(M,TN) = 0 =
Hom(N, tM). A B-module M and P;[1] are compatible if Hom(P;, M) = 0. P;[1]
and P;[1] are always compatible. There is a bijective correspondence from maximal
compatible collections to basic support 7-tilting modules (see [AIR]): one takes the
sum of the modules in the collection, and throws away whatever P;[1] appear.

Let A = kQ/I be a gentle algebra, and let A = kQ/I be its fringed algebra. For v a
vertex of Q, define the injective string of v to be the string obtained by adding to the
lazy path at v both maximal sequences of arrows oriented towards v in Q. We denote
it by I,. The corresponding A-module is an indecomposable injective module.

We define the set of long strings of Q, denoted Istr(Q), to consist of {cohook(X) |
X estr(Q)}u{l, | v € Qo}. We call these long strings because they run between two
fringe vertices, so they are in a sense maximally long. Note, though, that not every
string that runs between two fringe vertices counts as a long string. Also, as in our
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definition of str(Q) above, the elements of Istr( Q) are formally equivalence classes of
string walks, with C and C™! being considered equivalent.

Theorem 5.1 ‘There is a bijective correspondence from maximal compatible collec-
tions of A-modules to maximal non-kissing collections from lIstr(Q), induced by the
correspondence

X € str(Q) — cohook(X)
P,[1] forve Qo — 1I,.

Proof We have to check that the bijection above takes the compatibility relation to
the non-kissing relation.

Two A-modules are compatible if and only if the corresponding long strings do
not kiss, by Theorem 4.4.

Any two injective strings are non-kissing, which is consistent with the fact that
P;[1] and P;[1] are compatible.

An A-module M is compatible with P,[1] if and only if Hom4 (P,, M) = 0, if and
only if M does not pass through vertex v. It suffices to show that there is a kiss from
cohook(M) to I, if and only if M passes through v, and there is never a kiss from I,
to cohook(M ). We now verify this.

If M passes through v, then in each direction from v, cohook (M) eventually leaves
the injective string from v (at the endpoint of M if not before), and it leaves it along an
arrow pointing away from the injective string. Thus, there is a kiss from cohook (M)
to I,.

If M does not pass through v, then any common substring of M and I, must consist
of arrows all oriented in the same direction, with the arrow of I,, on either side of the
substring also having the same orientation. Since this means that the arrows of I, on
either side of the common substring point in opposite directions, it cannot be a kiss.
The same argument applies to a common substring of an arm of cohook(M) and I,,
unless v lies on an arm of cohook(M). But in that case, there is a direction in which
cohook(M) and I, never separate, so this is not a kiss either.

Because all the arrows of I,, are oriented towards v in the middle of the string, it is
impossible for there to be a kiss from I, to any string. [ ]

6 Poset of Functorially Finite Torsion Classes

It is natural to order the functorially finite torsion classes by inclusion. Since by
Theorem 2.10 there is a bijection between functorially finite torsion classes and sup-
port 7-tilting modules, this can also be thought of as a poset structure on support
7-tilting modules. Having shown in the previous section that we can give a combina-
torial description of the support 7-tilting modules as maximal non-kissing collections,
we proceed in this section to interpret this poset structure on maximal non-kissing
collections.

The following theorem combines a few different results from [AIR]: Theorem 2.18,
the discussion following Definition 2.19, and Corollary 2.34.
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Theorem 6.1 ([AIR]) Let T and U be two functorially finite torsion classes with T
properly contained in U and with no functorially finite torsion class properly between
them. In this case, their corresponding maximal compatible collections can be written
as SU{P}, 8U{R}. Conversely, given two maximal compatible collections SU{P} and
8 U {R}, they correspond to functorially finite torsion classes that form a cover in the
poset of torsion classes.

Suppose we have two maximal nonkissing collections of the form Su{cohook(X)}
and 8 U {cohook(Y)}. Clearly, cohook(X) and cohook(Y) kiss; otherwise, this
would violate maximality of the collections. By Theorem 6.1, these two collections
correspond to a pair of torsion classes that form a cover. Suppose that the torsion
class corresponding to 8 U {cohook(X)} contains the torsion class corresponding
to 8 U {cohook(Y)}. It follows that Y is also in the first torsion class, while X is
Ext-projective in the torsion class, so Hom(Y,74X) = 0 by [AS, Proposition 5.8].
The kiss(es) between cohook(X) and cohook(Y) are therefore from cohook(X) to
cohook(Y). Similarly, if we have two maximal nonkissing collections Su{cohook (X )}
and S U {I, }, then we see that there is a kiss from cohook(X) to I,.. This establishes
the following theorem.

Theorem 6.2  The cover relations in the poset of functorially finite torsion classes of
A can be described in terms of their maximal non-kissing collections as follows: they
correspond to pairs of maximal non-kissing collections of the form 8 u {C},8 u {D},
and 8 U{C} > 8 u {D} if the kisses go from C to D.

An infinite poset is not necessarily characterized by its cover relations, but a finite
poset is. We therefore have the following corollary.

Corollary 6.3 If A has only finitely many functorially finite torsion classes, then the
poset of torsion classes is isomorphic to the poset of maximal non-kissing collections,
ordered by the transitive closure of SU{C} > 8§ U { D} where the kisses go from C to D.

7 Combinatorics of Torsion Classes

In this section we consider how the bijection between functorially finite torsion classes
and support 7-tilting module plays out for gentle algebras in terms of the combina-
torics we have been developing.

We begin with the following theorem, describing the strings in the category of
quotients of copies of a collection of strings.

Theorem 7.1 Let A = kQ/I be a gentle algebra. Let X = @ X; with each X; a string.

A string Y is in Fac X if and only if Y can be written as a union of strings each of which
is a substring of Y and a quotient of some X;.

Here, when we write that Y is a union of a certain set of strings, we mean that the
strings may overlap, but each arrow of Y occurs in at least one of the strings.
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Proof Y isin Fac X if and only if there is a quotient map from a sum of copies of X
onto Y. This means that, for each arrow of Y, we have to be able to find some X; that
maps to Y and hits that arrow. The map from X; to Y corresponds to a quotient of X;
and a submodule of Y. [ ]

Let § be a collection of strings in Q, and let & be an arrow of Q. We will define
Mc(8, a) to be a certain long string of Q. We will construct it arrow by arrow in both
directions from «. (We use the symbol Mc for this map to emphasize that this is the
algebraic version of a map defined by McConville [McC, Section 8].)

Let Ty be the lazy path at e(«), and yo = «. We will define a sequence of arrows
yi, and string walks I'; = y;T;_;, for i = 1,2,. ... (Note that we do not include « in Tj.)
Suppose we have already constructed y;,...,y;, and let u = e(y;) = e(T;). fuisa
fringe vertex, we set imax = i and stop. Otherwise, we divide into cases:

o IfT; € §, define ;4 to be the unique direct arrow such that y;,,T; € str(a).
o« IfT; ¢ 8, define y;4; to be the unique inverse arrow such that y;,,I; € str(a ).

If i = 0, instead of demanding that y, Ty € str(Q), we demand that y,a € str(Q). We
continue in this way until we reach a fringe vertex.

We now extend the string walk in the opposite direction. Define ®, to be the
lazy path at s(«). We will proceed to define a sequence of arrows y_; and string walks
®;=0;1y_jforj=1,2,.... Suppose that we have already constructed y_1, y_» -+~ y_j,
and let v = s(y_;). If v is a fringe vertex, we set jmax = j and stop. Otherwise, we de-
fine y_;_; using the previous rule, but reversing the roles of direct and indirect arrows
throughout. Explicitly, we divide into cases as follows:

* If®; € 8, define y_;_; to be the unique inverse arrow such that ® ;y_;_; € str(Q).
« If®; ¢ 8, define y_;_; to be the unique direct arrow such that ®;y_;_; € str(Q).

As before, if j = 0, instead of demanding that ®,y_; € str(Q), we demand that ay_; €
str(Q).

Now define Mc(S, ) to be the concatenation of I, &, and @, .
Theorem 7.2  Let T be a functorially finite torsion class in mod A. Let St € str(Q)
be the strings in T. The collection of modules Mc(8, &), as o runs through the arrows
of Q, yields the following:

 cohook(M) for M an Ext-projective of T (each appearing for two choices of
arrow o),

« the injective string at each vertex of Q over which no module in T is supported
(each appearing twice), and

* the injective string at each fringe vertex that is a sink (each appearing once).

Before proving the theorem, we give a couple of examples of it in action.

Example 7.3 Consider the gentle algebra A = kQ/I, where Q = A; and I = 0, with
the fringed bound quiver (Q,T) as follows.
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o [¢]

)

o < f,/a />11\ —

For the (functorially finite) torsion class T = mod A, the set of strings Sy={e;, €2, a }
is drawn in bold:

We now verify that as « runs through the arrows of Q, we indeed obtain exactly the
strings given in Theorem 72. The strings of the form cohook(M), where M is an
Ext-projective indecomposable, are as follows. Each is generated twice, by the arrows
drawn as double lines:

Moreover, the injective strings corresponding to the fringe sink vertices are each gen-
erated once, as indicated by the double lines:

Example 74  Let Abe the algebra from 2.9. Recall from Example 3.6 that the fringed
quiver is

with fringed ideal (a?, yB, (e, B6).
Let T be the torsion class Fac(I; @ S,). The strings in T are § = {7'af, 2, f}.
We compute

o Mc(8,¢€) = (B afe;
 Me(S.B) = o B
* Mc(8,0) = ¢ a7 BCY
o Mc(S,a) =B aBl
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e Mc(8,9) =(9;

e Mc(8,y) = yape.
The first two give the cohook completion of S,. The third and fourth give the cohook
completion of I;. The fifth and sixth are injective strings associated to fringe sinks.

We divide the proof of Theorem 7.2 into the next four propositions.

Let M be a string walk in Q. Let cohook(M) =y, ---pg,and let M = yp -+ y,. f M
has positive length, then 0 < a < b < r. If M is a lazy string, then b = a — 1, meaning
that M is the lazy string at s(y,) = e(y; ). Define

X(M):{i|b+12i21,yi isdirect,yb~-~yi+168T}.

We consider the condition yy, - - p;41 € St to be vacuous when i = b + 1, and y;; is
a direct arrow since it is a shoulder of cohook(M), so b +1 € X(M). For i = b, the
condition that y;, - - - y;,1 € St is interpreted as meaning that the lazy path at e(y) is
in ST.

Proposition 7.5 Let M be Ext-projective in T, with cohook(M) =y, -+ yo. Let x be
the minimum element of X(M). Then Mc(S7, y,) = cohook(M).

Proof Let us write Q) for the string walk y;, - - - 41, which is, by assumption, in Sr.
(If x = b +1, then Q is not defined.)

The proof is by induction. Suppose that, in the construction of Mc(87, ), we
have constructed T; and it is a substring of cohook(M), say T; = y,, -+ yx+1. Suppose
now that y,,, is direct. By our choice of x, y; - -+ 541 € 87, and since y,,, is direct, T;
is a quotient substring of y, - - - yx+1, S0 it is also in 8. Thus, our algorithm chooses a
direct arrow, necessarily y ..

Suppose next that y,,; is inverse. There is a kiss from cohook(T;) to cohook(M).
This implies that I'; cannot be in St. Thus, our algorithm chooses an inverse arrow,
necessarily y, 1.

It follows by induction that '
after y,.

Now let us consider the part of cohook(M) before y,. Suppose that we have al-
ready constructed @ ;, and it is a substring of cohook(M), say ®; = yx_;---y.. Sup-
pose now that y,_; is direct. If ®; were in 87, then since, by assumption, Q is in 87,
so is their extension, which contradicts the minimality of x. (If x = b +1, so Q is
not defined, then ®; € 87 and y._; direct contradicts the minimality of x.) Thus, our
algorithm chooses a direct arrow, necessarily y,_;.

Suppose that y,_; is inverse. Then @; is a quotient of M, so it is in 8. Thus,
our algorithm chooses an inverse arrow, necessarily y,_;. It follows by induction that
0j,... agrees with y,_; --- yo, i.e., the part of cohook (M) before y,. This completes the
proof. [ ]

agrees with y, -+ - y,.41, i.e., the part of cohook(M)

Imax

The above proposition shows that we can construct any Ext-projective of T in two
ways: once as in the proposition, and once applying the proposition to the reverse
string walk. Note that the orientations of the two chosen edges will be opposite, so
this does indeed yield two distinct arrows a;, a, of Q such that M = Mc(8t,01) =
Mc(87, az).
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We now consider the simpler case of injective strings.

Proposition 7.6  Let T be a torsion class in mod A. Let v be a vertex such that no
module of T is supported at v, and let I, = y,---yo, with y; direct for i > j > 0 and
yj inverse for r > j > i + 1. Let x be minimal such that y;_1---y.41 € S1. (Again, this
condition is vacuous for x = i.) Then Mc(S, yx) = I,.

Proof The proof is essentially the same as for Proposition 7.5.

Let us write Q for the string walk y;_; - - - yx41 which is, by assumption, in 7. (If
x =i +1, then Q is not defined.)

Since Q € 8, it also follows that p; - -y, € 87 forall i —12> j > x. It follows that
Mc(8r,yx) proceeds along direct arrows to v. From that point on, by the defining
condition for v, the string walk constructed so far will not lie in 87, and so it will
continue by inverse arrows away from v.

Now consider the extension of y, in the opposite direction. If the segment
Yx-1-*+ )y were in 8, then the extension of it and Q2 would be too, violating the min-
imality of x. (If Q2 is not defined, then y._; ---y, itself violates the minimality of x.)
Thus, the extension from s(y, ) proceeds entirely by direct arrows. This completes the
proof. [ ]

Again, as for the Ext-projectives of T, this shows that for each injective string I,
corresponding to a vertex v outside the support of T, there are two arrows ay, ay of
opposite orientations such that I, = Mc(8, a;) = Mc(S7, 7).

Finally, we consider the injective strings at sink fringe vertices.

Proposition 7.7  Let v be a sink fringe vertex. Let I, = y,---yo be the injective at v
with e(y,) = v that is composed entirely of direct arrows. Let x be minimal such that
Yro1+** Px41 is contained in St. Then I, = Mc(8r, yx ).

Proof The proof is the same as for Proposition 7.6, except that since v is a fringe
vertex, once the string reaches v, it ends. [ ]

Proposition 7.8  No strings are constructed with greater multiplicity than given in
Theorem 7.2. In particular, those strings not listed there are not Mc(St, ) for any arrow

aof Q.

Proof The number of arrows in Q can be determined by counting the number of
arrows going to each vertex. This is the number of sink fringe vertices of Q plus twice
the number of vertices of Q. Since the Ext-projectives of T are support 7-tilting, the
number of Ext-projectives of T equals the number of vertices in the support of T; this
plus the number of vertices not in the support of T equals the number of vertices of
Q. Therefore, the number of strings listed in Theorem 7.2 equals the total number of
arrows in Q. Therefore, each string is constructed with exactly the multiplicity given
in Theorem 7.2. ]

This completes the proof of Theorem 7.2.
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8 Extension Groups of Strings

The aim of this section is to study the Ext'-groups of string modules over gentle alge-
bras. By the Auslander-Reiten formula (see Theorem 2.8), this amounts to studying
the quotient of a Hom-space by morphisms factoring through an injective.

Although for a gentle algebra A, Homy (X, 7,4Y) admits a nice basis, given by
graph maps as in Theorem 2.7, it appears difficult to decide which of these could form
a basis for the quotient by I4 (X, t4Y). This question turns out to be easier to answer
in the fringed algebra case, and since we have the isomorphism

Ext), (Y, X) = Exti(Y, X)

from Proposition 3.8, it is enough to study fringed algebras.

In the following, we first study graph maps starting in an injective string. We give
an explicit combinatorial description of the graph maps in Hom (X, 74Y) that factor
through injectives in Subsection 8.2. Then we use that information to determine a
basis for Ext)y (Y, X) in terms of short exact sequences in Subsection 8.3.

8.1 Graph Maps From an Injective Module

We first study graph maps starting in an injective string I; over A. Such an injective
string module can be written as I; = (&}, -~ a,%;) ¢+ (Bn -+ P1), for a vertex t € Q
and some arrows «a;, B; € Q;. Here we write -; rather than - to indicate that the paths
we compose meet at £.

The following notion turns out to be central. A graph map fr given by an admissi-
ble pair T = ((Fy, E, D1), (F5, E, D;)) is called two-sided if at least one of D; and D,
has positive length, and the same holds for F; and F,.

Lemma 8.1 Agraphmap fr: I, — Y starting in an injective string I is not two-sided.

Proof There is no quotient factorization (F|6, E, y~'D}) of I, with arrows y, 0 in Q
because an inverse arrow cannot precede a direct arrow in I;. Thus, in any quotient
factorization (Fy, E, D;) of I;, one of D; or F; has length zero. We consider, without
loss of generality, the case where D, has length zero, thus I; = F,E. Since I, is injective,
there is no arrow f in Q such that Ef3 is a string. Hence, Y cannot admit a submodule
factorization of the form (F,, E, D}). We conclude that D, has length zero in any
submodule factorization of Y of the form (F,, E, D;). So, fr is not two-sided. ]

8.2 Graph Maps Factoring through an Injective String Module

For a pair of string walks X and Y in A, we now investigate which graph maps in
Hom (X, 74Y) factor through an injective string I; in the fringed algebra A. From
Proposition 3.8, we know that the Auslander-Reiten translation of a string module Y
in A'is obtained by cohook completion:

cohook(Y) =15Y =Y. =7-B-Y-a" D,

where J and D respectively denote inverse and direct paths in Q:
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N\ v

J - Y - D.

N /ﬁf\/\/\/\ﬁ‘h v

We say a string walk E lies on one of the arms of cohook(Y) if E is a substring
(possibly of length zero) of J or D. Moreover, we call Y connectable to X if there exists
an arrow « such that Ya™' X is a string walk in Q, or dually, XaY is a string walk

in Q:
U

Note that if Y is connectable to X, there exists a graph map fr € Homz(X, 77Y)
given by an admissible pair T = ((Fy, E, D1), (F», E, D,)) where E lies on one of the
arms of cohook(Y') as follows: Denote by E the longest direct string walk at the end
of X and write X = ED;. This gives, with F; of length zero, the quotient factorization
(F, E, Dy) of X. By the cohook construction, D is the longest direct string walk in A
ending in e(a). But E is a direct string walk ending in e(e). Thus, E is a submodule
of D, and we can write D = ED,. Setting F, =J--Y - ol gives the submodule
factorization (F;, E, D,) of 73Y.

We refer to this graph map fr as a connecting map. The following is an illustration
of the factorization T, where the cohooks of Y are drawn dashed:

Theorem 8.2  For string walks X and Y in Q, let fr € Homy(X, 17Y) be a graph
map given by an admissible pair T = ((Fy, E, D), (Fa, E, Dy)). If E lies on one of the
arms of cohook(Y') and fr is not a connecting map, then fr factors through an injective
string of mod A.

Proof Consider agraph map fr € Homg(X, 77Y) where E lies on one of the arms of
cohook(Y'). Without loss of generality, assume E is a substring of D. Since (F,, E, D,)
is a submodule factorization of cohook(Y'), the string E lies on the end of the direct
string ‘D, so we have D = ED,. We want to find an injective string I; and graph maps
fr € Homz(X,I;) and fr» € Homz(I;, 77Y) such that fr = fr o fr.

In the factorization (Fy, E, Dy) of the string walk X, write F; = F|y. - -y, where F;
does not start with a direct arrow. The assumptions of the theorem imply that such a
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direct string y, - - - y; always exists. If F; has length zero, then Y is connectable to X via
the arrow a, and fr is the corresponding connecting map. Otherwise, if F; starts with
an inverse arrow, then E is not a quotient module of X and (F, E, D;) not a quotient
factorization. Therefore, the direct arrow y, exists in X. Denote its end point by t; see
the following figure:

Set E' = J'y.---yE, where J’ is the longest inverse substring in X immediately
following ¢. Then E’ is a quotient module of X and a submodule of I;; therefore, there
exists a graph map fr € Homy(X, I;) with E’ as middle term of the factorizations.
Similarly, E” = D is a quotient module of I; and a submodule of 77Y; therefore, there
exists a graph map fr» € Homz(I;, 77Y) with E” as middle term. By construction,

we get fr = frv o fp. -
In the following corollary we describe a basis of I3(X, 75Y) in terms of graph
maps.

Corollary 8.3 Let X and Y be two strings in Q. Then a basis for I(X, t4Y) is formed
by the graph maps fr € Hom4(X, 73Y), with T = ((F, E, D1), (F, E, D;)), such that
E lies on one of the arms of cohook(Y') and fr is not a connecting map.

Proof Theorem 8.2 assures that each graph map fr belongs to (X, 77Y). We show
that every morphism f € Hom (X, 77Y) that factors through an injective I is a linear
combination of the graph maps as described in the hypothesis. Since graph maps are
linearly independent, we therefore get a basis for I+(X, 77Y).

Thus, assume f = g o h where h e Homy(X, I) and g € Hom(I, 77Y). Write the
maps g and 4 in the basis of graph maps; thus, g = 3> a;g; and h = 3 b;h; with scalars
a;,bj € k and graph maps g;, h;. Each f;; = g; o h; is either zero or a composition of
graph maps (which is again a graph map). It suffices to show that the f;; satisfy the
conditions stated above.

The graph map f;; factors via ; and g; through some injective string I; (which isa
direct summand of I). In general, if a composition of graph maps, given by factoriza-
tions T’ = ((F{,E', D}), (F3,E',D}))and T = ((F{', E", D), (Fy, E", D})), yields
a graph map given by the factorization T = ((Fy, E, Dy), (F, E, D,)), one necessarily
has E ¢ E' and E c E”. Since g; starts in I;, Lemma 8.1 implies that the factorization
T" defining the graph map g; cannot be two-sided. Therefore, without loss of general-
ity, we can assume that both D{’ and D} have length zero; that is, we have I; = F|'E"”
and 77Y = FJE". If E” is a proper quotient of I;, we conclude that E” is a direct
string walk, properly contained in the arm D of 77Y = cohook(Y’). This implies that
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E lies on one of the arms of cohook(Y') and f;; is not a connecting map. Otherwise,
if E" = I,, we get that 7Y = F}'E"” contains e(E") as internal vertex, which is impos-
sible, since this does not belong to Q, or else 7Y = E" = I, which is also impossible,
since an injective is not an image under the Auslander-Reiten translate. [ ]

8.3 The Vector Space Ext), (Y, X)

Recall from Theorem 2.8 and Proposition 3.8 that we have the isomorphisms
(8.1) Ext), (Y, X) = Exty(Y, X) = D(Homg(X, 1Y) /Iz(X, 77Y)).

In Subsection 8.2 we determined a basis for this space given by the graph maps in
Hom (X, 7;Y) that do not belong to I(X, 77Y). In Corollary 8.3 we gave a precise
description of which graph maps have to be excluded. We aim in this subsection for
a description of a basis for Ext), (Y, X) in terms of short exact sequences.

Clearly, every connecting graph map fr gives rise to a non-zero extension

(8.2) er:0—X—Ya'X—Y—0.
Moreover, a two-sided graph map

fr e Hom4 (X, Y) with T = ((F,, E, Dy), (F5, E, D))
yields a non-zero extension er as follows (see [S])

(8.3) €r:0— X — FED,® HbED,— Y —0

Lemma 8.4  For strings X and Y in Q, there is a bijection between the two-sided
graph maps fr € Homy (X, Y) and the non-connecting graph maps in Hom (X, 77Y)
that do not belong to I+(X, 13Y).

Proof Assume fr € Homy(X,Y) is a two-sided graph map given by the factor-
ization T = ((Fy, E, Dy), (F2, E, D;)). The following construction associates to fr a
graph map fz € Homg(X, 77Y) given by T = ((F,E,Dy), (F, E, Dy)). As before,
we denote 757Y = JBYa ' D. If F, has positive length, we define F; = JBF, and leave
E unchanged. Otherwise, since T is two-sided, we know that F; has positive length.
As E is a submodule, the string walk F; starts with a direct arrow, and this must be
the arrow f since in the gentle algebra A there is only one way to extend the string
walk E. We subdivide F, as F; = F;J'B, where ' is the longest inverse substring in X
immediately following 8, and extend E at the end by J’, that is, we put E = J'BE. We
proceed in the same way for the D side. These basis elements fz € Hom (X, 77Y)
are clearly distinct, non-connecting and do not lie in I;(X, 77Y), by the descrip-
tion given in Corollary 8.3. It is moreover easy to see that every such basis element
f7 € Homz(X, 77Y) is obtained by this construction. ]

Theorem 8.5  For strings X and Y in Q, the extensions e given in equations (8.2)
and (8.3), with T connecting or two-sided, form a basis for Ext, (Y, X).

Proof We know from the isomorphism in (8.1) and the bijection in Lemma 8.4 that
we listed the correct number of elements e in Extly (Y, X). It is therefore sufficient to
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show that they are linearly independent. We do so by showing that the e correspond
to linearly independent elements in an isomorphic space.
Consider an injective envelope I of X and extend to a short exact sequence:

Applying the functor Hom(Y, —) yields the exact sequence

0 — Hom(Y, X) — Hom(Y,I) “— Hom(Y, Z) - Ext'(Y, X) — 0,

where we use Ext' (Y, I) = 0, since I is injective. Thus, Ext'(Y, X) is isomorphic to
Coker 7%, with isomorphism induced by the connecting homomorphism §. To study
the map J, denote by sy, ..., s, the sinks of the string X. Then I =I;, & --- & I;,.

Assume the extension er is given by a connecting graph map as in equation (8.2).
Denote by E the longest inverse substring of Y such that Ea™" is a string. Then E is
a quotient module of Y, and it also a quotient module of I;, and a submodule of the
summand of Z induced by I, . The corresponding graph map fr € Hom(Y, Z) clearly
satisfies 8(fg) = er.

Moreover, denote by t1, . .., t,, the sources of the string X that have two arrows in
X attached to it. Then the socle of the module Z contains the same vertices ty, .. ., t,,.
Now let fr € Homu(X,Y) be a two-sided graph map given by the factorization
T = ((F,E,Dy),(F,,E,D;)),andlet t;, ..., t; be the sources of X that are contained
in the string E. Note that different factorizations T, T’ give rise to different intervals
[i,7],[i',j]. Welet fr € Homu(Y,Z) be the map identifying the elements t; of
Y with the corresponding elements ¢ in Z, for k € [i, j]. It is an exercise in linear
algebra to see that 6( f5) = €.

The maps fg stemming from a two-sided graph map are linearly independent from
the maps induced by connecting graph maps, and they are linearly independent
amongst each other. This comes from the fact that the middle factors E, E’ of two-
sided graph maps fr, f+ cannot properly overlap. In fact, the only way that E and E’
intersect non-trivially is that one is contained in the other.

Moreover, the classes of fg are linearly independent in Coker 7*, since graph maps
factoring through an injective I are described in Corollary 8.3, and these cannot alter
the linear independence for the graph maps fg. Therefore, the same holds for the
short exact sequences €. u

9 Uniqueness of Kisses Between Exchangeable Modules

Let A be a finite dimensional algebra over a algebraically closed field k. Let Z be an
almost complete support 7-tilting A-module. Then by [AIR, Theorem 2.18] we know
that there exist exactly two support 7-tilting A-modules, say T and T’, having Z as a
direct summand. We recall from Section 6 that in this case, one of Fac T and Fac T’
covers the other in the poset of functorially finite torsion classes. Supposing Fac T
covers Fac T, we say that T is the left mutation of T, and we write T = u%(T). Let
uswrite T = X®Z and T' = Y @ Z where X is a 7-rigid indecomposable module, and
Y is a 7-rigid indecomposable module that is not isomorphic to X or else zero.
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If A is gentle, consider the maximal non-kissing collections corresponding to T
and T’. There is a string C = cohook(X) in the maximal non-kissing collection cor-
responding to T. In the maximal non-kissing collection corresponding to T, this
string is replaced by another string, D. We call such a pair of strings exchangeable.
As shown in Section 6, there will be one or more kisses from C to D. In his more re-
stricted setting, McConville showed that exchangeable strings kiss exactly once [McC,
Theorem 3.2(3)]. Itis natural to ask whether this, like so many of the other results from
[McC], extends verbatim to the general gentle setting.

It turns out that this is not the case. A referee pointed out a smaller example than
we had come up with, as follows. Let Q be a quiver consisting of a single vertex 1 with
a loop, and consider the quotient of its path algebra by the square of the loop. There
are two support 7-tilting modules for this algebra, P; and 0, and the corresponding
strings kiss twice.

For a slightly larger example, consider the gentle algebra A = kQ/I given by the
quiver

1<—2

and the admissible ideal I = (a?), which we studied in Examples 2.9 and several times
subsequently. The direct sum of the projectives, P, @ P, is a 7-rigid module. Its muta-
tionat P, is 77 (P;) @ P,. One has that dim; Hom(P;, (7™ P;)) = dim; Hom(Py, P;) = 2.
This example comes from [GLS, Section 13.6]. We thank Gustavo Jasso for pointing
out its relevance to our situation.

Note that in this example, dimy Hom(Y, Y) = 2. In the following we show that this
is the reason that the exchangeable pair of strings X and Y could kiss more than once.
Namely, we prove that when a mutation replaces the 7-rigid indecomposable X by a
module Y with dim; Hom(Y,Y) = 1, the dimension of Hom(X, 7Y) is indeed one.
In particular, if A is a gentle algebra and dimy Hom(Y, Y) = 1, then the corresponding
strings kiss once.

Let us recall that for a finite dimensional k-algebra A, a module M € mod A is
called a brick if End (M) is a division ring. Using this definition, we can state two
sufficient conditions for dimy Hom(Y,Y) = L

Y is a brick and k is algebraically closed (since the only division ring finite
dimensional over k is k itself).

* Y is a brick which is also a string module (since the only invertible graph map
is the identity map).

Now we state the main theorem of this section.
Theorem 9.1 If Ais a finite-dimensional k-algebra, and Y & Z is obtained by a left

mutation from T = X & Z, thatis, Y ® Z = pux(T), and dimy Hom(Y,Y) =1, then
dim; Homyu (X, 1Y) = 1.
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Before proving the theorem we will explain the necessary background and alemma
that will be used in the proof of the theorem. Let

p—2op o 0,

q1 qo

Q Qo Y 0,

n To

R Ro z 0

be minimal projective presentations, and we denote by P, Q, and R the corresponding
two-term complexes of projective modules in K?(proj A).

We are going to prove some results in this setting before proving the main theorem
of this section.

Lemma 9.2  We have the following properties.

(i) dimg Home(proj A) (Qa Q) =L
(11) HOme(ijA)(Q,R[l]) =0.

Proof (i) Let fe, go € Homgs (,roj4)(Q, Q). By the universal property of cokernels,
they induce the morphisms f, g € Hom4(Y, Y) such that fqo = qo fo and gqo = qo£o-
Since dim; Hom,4 (Y, Y) =1, so there exists a A € k such that f — Ag = 0.

Denote by Q, the projective resolution of Y obtained by completing Q. We get the
commutative diagram

Q7% q,

qu [/qo
f-1g=0

Y ——7Y.

Finally, by homotopy uniqueness of projective resolutions [W, Theorem 2.2.6] one
can easily prove that f, — 1 g, is null-homotopic.

(ii) Following [AIR, Lemma 3.4], this is true if and only if Hom4 (Z, 7Y) = 0. Now,
since Y @ Z is 7-tilting, Homu (Y ® Z, 7(Y @ Z)) = 0, which yields the result.

(iii) By [AIR, Theorem 3.2 and Corollary 3.9] we can write the exchange of X and Y
on the level of two-term complexes. By [AIR, Definition-Proposition 1.7], this guar-
antees that there exists a triangle in K?(proj A),

P R’ Q P[1],

with R’ € add R.
Applying the functor Homa (105 4) (Q, =), we get the long exact sequence

-+ —= Hom(Q, Q) — Hom(Q, P[1]) —= Hom(Q,R'[1]) —---.

https://doi.org/10.4153/50008414X19000397 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000397

1578 T. Briistle, G. Douville, K. Mousavand, H. Thomas, and E. Yildirim

Using parts (i) and (ii) and the fact that R’[1] € addR[1], we now get that
dimy Homgs (o5 4)(Q, P[1]) is either 0 or 1. Assume it is 0; then by [AIR, Lemma 3.4]
we have that Hom(X, 7Y") = 0. This leads to a contradiction. Since X and Y are not
compatible, Hom4 (X, 7Y) or Hom, (Y, 7X) is nonzero. However, Hom4 (Y, 7X) =
0. This follows from the definition of a left mutation [AIR, Definition-Proposition
2.28], which guarantees that FacY ¢ FacZ ¢ Fac T, the fact that X is Ext-projective
in Fac T, and [AIR, Proposition 1.2(a)], which states that Hom4 (Y, 7X) = 0 if and

only if Ext)y (X, Fac Y) = 0. Thus, dimj Homgs pr0; 4y(Q, P[1]) has to be 1. ]
Proof of Theorem 9.1 Rewriting slightly [AIR, Proposition 2.4], we get an exact
sequence

HomA(QO,X) HomA(Ql,X)—>DH0mA(X 1Y) —— 0.

This gives that dimy Hom4 (X, 7Y) is equal to the dimension of the quotient of
Homy (Qi, X) by Im(q, X).

We now show that the dimension of this quotient is one. Let f, g €¢ Hom, (Q1, X).
Since Q, is projective, there exists f, g € Homy (Qy, Py) such that po f = f and pog = g.

These functions give chain morphism in Homgs (py; 4)(Q, P[1]), which is of di-
mension one by Lemma 9.2(iii). It follows that there exists hy € Homa(Qo, Py),
hy € Homy (Qy, Py) and A € k such that f — Ag = p1h; + hoq.

Composing the last equality with py, we get that

f =g = pohoqi = (q1, X)(poho),

which is to say that f — Ag = 0 in the quotient space.
Since Hom 4 (X, 7Y) is nonzero, we conclude the desired result. [ ]

This result supposes that the mutation produces a nonzero module Y. In general,
the support of Z can be smaller than the support of X ® Z, in which case Z is itself a
support 7-tilting module, and left mutation of X @ Z at X yields Z. In this case, let v
be the vertex in the support of X that is not in the support of Z. Denote by P, and I,
the projective and injective modules at vertex v, respectively.

Proposition 9.3  Let Z be a support 1-tilting module obtained by a left mutation from
T = X ® Z, and let v be the vertex in the support of X which is not in the support of Z.
Suppose that dimy Homy4 (P,, P,) = 1. Then dimy Hom, (X, I,) = L

Proof As before, define P and R to be the two-term complexes corresponding to
minimal projective presentations of X and Z. Let Q be the two-term complex
P, — 0. We now check that the statements of Lemma 9.2 still hold. Part (i)
follows from the fact that P, is a brick. Part (ii) follows from Q @ R being a silt-
ing complex [AIR, Definition 1.5]. We conclude as in the proof of Lemma 9.2(iii) that
dimy Homgs (prj 4)(Q, P[1]) < 1. This means that

dimy Hom(P,, Py)/p;(Hom(P,, P;)) < 1.
Since Hom(P,, Py)/p1 Hom(P,, P;) = Hom(P,, X), we conclude that
dimy Hom(P,, X) < L
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Since X is supported over the vertex v, the dimension is exactly one. Finally, since we
have dimy Homy (P,, X) = dimy Homyu (X, I,,), this yields the desired result. ]

From the previous results in this section, we deduce a combinatorial corollary.

Theorem 9.4  Suppose that A is a gentle algebra such that every t-rigid indecompos-
able A-module is a brick. If two maximal non-kissing collections of long strings in Q
differ by replacing one string by another, then these two strings kiss exactly once.

Proof By Theorem 5.1, we know that there is a bijective correspondence between
maximal non-kissing collections of long strings in Q and basic support 7-tilting mod-
ules for A. Let the basic support 7-tilting modules corresponding to the given maxi-
mal non-kissing collections be T and T". Since the two maximal non-kissing collec-
tions differ by replacing a single string by another, the corresponding support 7-tilting
modules differ by a single mutation. Without loss of generality, let T’ be the left mu-
tation of T. Let C and D be the corresponding strings. Theorem 6.2 shows that there
are no kisses from D to C, but there is at least one kiss from C to D. We wish to show
that there is in fact exactly one kiss.

Let X be the A-module associated to the long string C (i.e., C = cohook(X)).
There are two possibilities regarding D. Either it also corresponds to an A-module,
or else it is an injective string in Q. Suppose first that it corresponds to an A-module,
say Y. Since Y is 7-rigid, it is a brick by assumption, and we can apply Theorem 9.1
to conclude that dim Hom(X, 7Y’) = 1. By Theorem 4.4, it follows that C and D kiss
exactly once.

Now, we consider the possibility that D is an injective string in Q, corresponding
to the vertex v € Qq. In this case, Proposition 9.3 tells us that dim Hom, (X, I,) = L
Each kiss from C to D gives rise to such a morphism, so there is only one kiss between
C and D in this case as well. ]

This recovers the uniqueness of kisses shown in [McC], since in that setting, bricks,
strings, and 7-rigid indecomposable modules all coincide. For a characterization of
those gentle algebras for which all strings are bricks, see [GMM, Section 4].
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