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On the Combinatorics of Gentle Algebras

homas Brüstle, Guillaume Douville, Kaveh Mousavand,
Hugh homas, and Emine Yıldırım

Abstract. For A a gentle algebra, and X and Y string modules, we construct a combinatorial basis
for Hom(X , τY). We use this to describe support τ-tilting modules for A. We give a combinatorial
realization of maps in both directions realizing the bijection between support τ-tilting modules and
functorially ûnite torsion classes. We give an explicit basis of Ext1(Y , X) as short exact sequences. We
analyze several constructions given in amore restricted, combinatorial setting byMcConville, showing
that many but not all of them can be extended to general gentle algebras.

1 Introduction

In this paper, we study the combinatorics of gentle algebras. Suppose that X and Y

are string modules for a gentle algebra A = kQ/I. (Terminology not explained in
the introduction will be deûned in the next section.) An explicit basis of Hom(X ,Y)
has been known for a long time [CB]. We give an analogous construction for
Hom(X , τAY).

Our construction proceeds by embedding A = kQ/I into a larger gentle algebra
Â = kQ̂/Î, which we call the fringed algebra of A. he reason for embedding A in Â
is that, although τA is well-understood thanks to work of Butler and Ringel [BR], its
behaviour is somewhat complicated. It turns out that the behaviour of τ

Â
on modA

is more uniform and thus easier to analyze than that of τA.
Using our construction, in Section 5 we give an explicit description in terms of

combinatorics of strings of the support τ-tilting modules for A as certain maximal

non-kissing collections of strings. Support τ-tiltingmodules are in bijection with func-
torially ûnite torsion classes; in Section 7, we show explicitly in terms of the combina-
torics of strings how to pass from a maximal non-kissing collection to its associated
functorially ûnite torsion class and how to return from a functorially ûnite torsion
class to the maximal non-kissing collection. If there are only ûnitely many functo-
rially ûnite torsion classes, we give, in Section 6, a combinatorial description of the
poset of functorially ûnite torsion classes as a combinatorially-deûned poset on the
maximal non-kissing collections.
By Auslander–Reiten duality, Ext1(Y , X) is dual to a quotient of Hom(X , τY). In

Section 8, we use our construction of Hom(X , τY) to ûnd a basis for Ext1(Y , X), and
we realize that basis as a collection of extensions of Y by X.
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Our paper was inspired throughout by work of McConville [McC]. He was work-
ing in a combinatorial context, studying certain generalizations of the Tamari lattice.
Rephrasing his work in terms of gentle algebras, the algebras that appear have the
property that their quivers can be drawn in a natural way on a square grid, but he
uncovered many phenomena that extend practically verbatim to arbitrary gentle al-
gebras.

One phenomenon that does extend beyond McConville’s setting, but not to all
gentle algebras, is his observation that when twomaximal non-kissing collections are
related by a single mutation, the exchanged strands kiss exactly once. In Section 9,
we give an example (originally due to [GLS]) showing that this does not hold for all
gentle algebras. We then show that it holds for all gentle algebras such that all τ-rigid
modules are bricks.

While working on this project, we were informed of two other papers that over-
lap with our results. [PPP] also constructs the fringed algebra (which they call the
“blossoming algebra”). hey apply this to realize and study the support τ-tilting fan
for gentle algebras. [CPS] studies Hom groups in the derived category of represen-
tations of a gentle algebra. From this, they also deduce an explicit description of the
extensions between string modules, extending the work in [CS] that considers gentle
Jacobian algebras from triangulations of surfaces. Another recent paper that is rele-
vant is [EJR]; they also studyHom(X , τY), but because they work in themore general
setting of string algebras, the combinatorics that they analyze is more complicated.

2 Preliminaries and Background

Notations and Conventions

hroughout this paper, k denotes an arbitrary ûeld. A quiver Q = (Q0 ,Q1 , s, e) is a
directed graph, whichwe always assume to be ûnite and connected, withQ0 the vertex
set, Q1 the set of arrows, and s, e ∶ Q1 → Q0 two functions that respectively send each
arrow γ ∈ Q1 to its source s(γ) and its target e(γ). We use lower case Greek letters α,
β, γ, . . . to denote arrows of Q.
A path of length m ≥ 1 inQ is a ûnite sequence of arrows γm ⋅ ⋅ ⋅ γ2γ1 where s(γ j+1) =

e(γ j), for every 1 ≤ j ≤ m − 1. By kQ we denote the path algebra of Q, where the
product of two paths is their concatenation, if that is a path, and is otherwise zero.
A zero (monomial) relation in Q is given by a path of the form γm ⋅ ⋅ ⋅ γ2γ1, where

m ≥ 2. A two sided ideal I is called admissible if Rm
Q ⊂ I ⊆ R2

Q for some m ≥ 2, where
RQ denotes the arrow ideal in kQ. In what follows, I always denotes an admissible
ideal generated by a set of zero relations in Q. We use capital letters A and B to denote
quotients of kQ by such ideals.

Gentle Algebras

B = kQ/I is called a string algebra if the following conditions hold:

(S1) here are at most two incoming and two outgoing arrows at every vertex of Q.
(S2) For every arrow α, there is at most one β and one γ such that αβ ∉ I and γα ∉ I.

A string algebra is called gentle if the following additional conditions are satisûed:
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(G1) he ideal I is quadratic; i.e., there is a set of monomials of length two that
generate I.

(G2) For every arrow α, there is at most one β and one γ such that 0 ≠ αβ ∈ I and
0 ≠ γα ∈ I.

Strings and Bands

To introduce the notion of string, we need the following deûnitions.
For a given quiver Q, let Qop be the opposite quiver, obtained from Q by reversing

its arrows. We consider the arrows in Qop as the formal inverses of arrows in Q and
denote them by γ−1, for every γ ∈ Q.

Let Q s be the double quiver of Q, which has Q0 as the vertex set and Q1 ∪ Q
op

1
as the arrow set. A string walk in Q is a path C = γn ⋅ ⋅ ⋅ γ1 in Q s with the following
properties:
(A1) No γ i is followed by its inverse.
(A2) Neither C nor C−1 contains a subpath in I.

In such a case, C = γn ⋅ ⋅ ⋅ γ1 is called a string walk of length n which starts at
s(C) = s(γ1) and ends at e(C) = e(γn). In addition, to every vertex x ∈ Q0 we asso-
ciate a zero-length string walk ex starting and ending at x, which is its own
formal inverse.

he string walks C and C−1 are equivalent. We deûne the equivalence classes under
this relation to be the strings. he set of strings in Q is denoted by str(Q). It is clear
that str(Q) really depends on Q and I, but we suppress I from the notation, because
it will be clear from context. When we choose C ∈ str(Q), we are implicitly selecting
a particular representative C of the equivalence class that consists of C and C−1, but
nothing will hinge on which representative we choose. If we want to attend to the
choice, we will speak of picking a string walk.

We call C = γn ⋅ ⋅ ⋅ γ1 a direct string walk if γ i ∈ Q1 for every 1 ≤ i ≤ n, and dually
C is called inverse if C−1 is direct. A band in Q is a string C = γn ⋅ ⋅ ⋅ γ1 such that Cn is
well deûned for each n ∈ N, and, furthermore, C itself is not a strict power of another
string of a smaller length.

Deûnition 2.1 For every string walk C = γn ⋅ ⋅ ⋅ γ1, the associated diagram of C is
the illustration by a sequence of up and down arrows, from right to le�, by putting a
le�-down arrow starting at the current vertex for an original arrow and a right-down
arrow ending at the vertex for an inverse arrow.

Example 2.2 In the following quiver Q:

●2
α1ÐÐÐÐ→ ●4

β1
Õ×××

Õ×××
β2

●1 ÐÐÐÐ→
α2

●3 ,

since R3
Q = 0, the zero ideal I = 0 is admissible. It is easy to see that A = kQ/I = kQ

is a gentle algebra. Following the description above, the diagram of the string walk
C = α2β

−1
1 α

−1
1 β2 is the following:
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●1

β1   

α2

~~●3 ●2

α1
  

●3 .
β2

}}●4

String Modules

Considering a string algebra B, to every string C we associate an indecomposable B-
module M(C), constructed as follows: in the diagram of C, as deûned in
Deûnition 2.1, put a one dimensional k-vector space at each vertex and the identity
map for each arrow connecting two consecutive vertices of the diagram. In the rep-
resentation M(C), the dimension of the vector space associated to each vertex of the
quiver is given by the number of times that the string C passes through the aforemen-
tioned vertex. Consequently, the dimension vector of M(C) has an explicit descrip-
tion. Provided it does not cause confusion, we do not distinguish between a string C
and the associated string module M(C), and we use C to refer to both. For details,
see [CB,BR].

Note that M(C) andM(C−1) are isomorphic, so M is well deûned (up to isomor-
phism) as a map from str(Q) to B-modules. If C and C′ are not equivalent, then
M(C) and M(C′) are not isomorphic.

he indecomposablemodules that are not stringmodules are associatedwith bands,
and are called band modules. Since our focus is on string modules, we do not discuss
the details of band modules here.
As shown in [BR], theAuslander–Reiten translation of stringmodules over a string

algebra admits an explicit combinatorial description. In order to state it, we will need
to introduce some further combinatorial notions.

Lemma 2.3 Let W be a string walk of positive length, and let us pick an orientation

є where є ∈ {direct, inverse}. here is at most one way to add an arrow preceding s(W)
whose orientation agrees with є, such that the resulting path is still a string. Similarly,

there is at most one way to add such an arrow following e(W).

Proof he lemma follows immediately from conditions (S1) and (S2). ∎

In these cases we say thatW can be extended at its start, or at its end, by an inverse
arrow, or a direct arrow, as applicable. Note that the lemma is not true as stated ifW
is of length zero.

If a string walkW can be extended at its start by an inverse arrow, then we consider
the result of adding an inverse arrow at s(W), followed by adding as many direct
arrows as possible. We call this adding a cohook at s(W). We denote the result of this
operation Wc . It is well deûned by Lemma 2.3.
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Symmetrically, ifW can be extended by a direct arrow at e(W), then we consider
the result of adding a direct arrow at e(W) followed by as many inverse arrows as
possible, and we call this adding a cohook at e(W). We denote the result of this
by cW .

If it is possible to add a cohook at each end of W , we write cWc for the result of
doing so.

IfW is of length zero, i.e., a single vertex, theremay be two arrows pointing towards
W , and in that case, two cohooks can be added to W . We deûne cWc to be the result
of adding both cohooks.

We now describe the operation of removing a hook from W . To remove a hook
from the start ofW (i.e., its right-hand endpoint), we look for the ûrst (i.e., rightmost)
direct arrow in W , and we remove it, together with all its preceding inverse arrows.
In other words, we ûnd a factorization W = XθI, with I an inverse string walk and
θ a direct arrow. he result of removing a hook from the beginning of W is X. We
write X =W/h . Note that this is not deûned ifW contains no direct arrows.

Similarly, to remove a hook from the end of W (i.e., its le�hand endpoint), we
look for the last (i.e., le�most) inverse arrow of W and remove it, together with all
subsequent direct arrows. In otherwords, we ûnd a factorization ofW asW =Dγ−1Y ,
with D direct; then the result of removing a hook from the end ofW is Y . We write
Y = h/W .

heorem 2.4 ([BR]) Let B = kQ/I be a string algebra, and let W be a string module.

At either end of W, if it is possible to add a cohook, add a cohook. hen, at the ends at

which it was not possible to add a cohook, remove a hook. he result is τBW.

Note that if it is possible to add a cohook at exactly one endpoint ofW , then a�er
having done so, it will be possible to remove a hook from the other end. If it is impos-
sible to add a cohook at either end, then either it is possible to remove a hook from
each end, or else the module was projective, in which case we interpret the result of
removing a hook from each end as the zero module (which is consistent with the fact
that the Auslander–Reiten translation of a projective module is zero).

Morphisms Between String Modules

A basis for the space of all homomorphisms between two strings was given by W.
Crawley-Boevey in [CB] in a more general setting. In [S], J. Schröer reformulated
the aforementioned basis for string modules. In this paper, we mainly use Schröer’s
reformulation and notation for the description of Hom-space.

Deûnition 2.5 For C ∈ str(Q), the set of all factorizations of C is deûned as

P(C) = {(F , E ,D) ∣ F , E ,D ∈ str(Q) and C = FED}.
Moreover, if (F , E ,D) ∈ P(C), we write (F , E ,D)−1 = (D−1 , E−1 , F−1) ∈ P(C−1).
A triple (F , E ,D) ∈ P(C) is a called a quotient factorization of C if the following

hold:
(i) D = es(E) or D = γD′ with γ in Qop;
(ii) F = ee(E) or F = F′θ with θ in Q.
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A quotient factorization (F , E ,D) induces a surjective quotient map from C to E.
he set of all quotient factorizations of C is denoted by F(C).
A quotient factorization of C is generally of the following form, where D and F can

also be lazy paths.

θ γ

E
s(E)e(E)

●●
DF

.

Dually, (F , E ,D) ∈ P(C) is called a submodule factorization of C if the following
hold:
(i) D = es(E) or D = γD′ with γ in Q;
(ii) F = ee(E), or F = F′θ with θ in Qop.

he set of all submodule factorizations of C is denoted by S(C). A submodule
factorization (F , E ,D) induces an inclusion of E into C.

Deûnition 2.6 ForC1 andC2 in str(Q), a pair ((F1 , E1 ,D1), (F2 , E2 ,D2)) ∈ F(C1)×
S(C2) is called admissible if E1 ∼ E2 (i.e., E1 = E2 or E1 = E−1

2 ). he collection of all
admissible pairs is denoted byA(C1 ,C2).

For each admissible pair T = ((F1 , E1 ,D1), (F2 , E2 ,D2)) inA(C1 ,C2), there exists
a homomorphism between the associated string modules

fT ∶ C1 Ð→ C2 ,

deûned as the composition of the projection from C1 to E1, followed by the iden-
tiûcation of E1 with E2, followed by the inclusion of E2 into C2. We refer to these
homomorphisms fT as graph maps.

he following theorem plays a crucial role in this paper.

heorem 2.7 ([CB]) If A = kQ/I is a string algebra and C1 and C2 are stringmodules,

the set of graph maps { fT ∣ T ∈ A(C1 ,C2)} is a basis for HomA(C1 ,C2).

Auslander–Reiten Duality

Write Hom
B
(M ,N) = HomB(M ,N)/P(M ,N) for the quotient of HomB(M ,N) by

the morphisms factoring through a projective module.
Similarly, write I(M ,N) for the morphisms from M to N factoring through injec-

tives, and HomB(M ,N) for HomB(M ,N)/I(M ,N).
he following functorial isomorphisms, known as the Auslander–Reiten formulas,

play an important role in the rest of this paper:

heorem 2.8 For every pair of B-modules X and Y, we have the following:

● HomB(X , τBY) ≃ D Ext1B(Y , X);
● DHom

B
(Y , X) ≃ Ext1B(X , τBY).
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Figure 1. he Auslander–Reiten quiver of a particular gentle algebra.

heAuslander–Reiten quiver of an algebra is a quiver whose vertices are labelled by
the indecomposable modules. he arrows correspond to certain (irreducible)
morphisms, while the action of τ is indicated by dotted arrows. We will only use
Auslander–Reiten quivers in examples, as an easy way to describe succinctly the ac-
tion of τ; for that reason, we do not provide more details. he interested reader can
refer to [ASS, Chapter 4] for more.

Example 2.9 Consider the gentle algebra A = kQ/I given by the quiver

1

α

��
2

βoo

and the admissible ideal I = ⟨α2⟩. he Auslander–Reiten quiver of A is given in
Figure 1, where the vertices with the same labels must be identiûed.

We now give some instances of Auslander–Reiten duality. Consider Ext1(1, 1
1 ). By

Auslander–Reiten duality, it is dual as a vector space to Hom( 1
1 , τ1) = Hom( 1

1 ,
2
1 ).

Note that Hom( 1
1 ,

2
1 ) is one-dimensional, but these morphisms factor through the

injective module I1, so Hom( 1
1 ,

2
1 ) = 0. his is consistent with the fact that any short

exact sequence 0→ 1
1 → E → 1→ 0 splits.

Consider also Ext1( 2
1 ,

2
1 ). By Auslander–Reiten duality, it is dual to Hom( 2

1 , τ(
2
1 ))

= Hom( 2
1 ,

1 2
1 ). his space of morphisms is one-dimensional, spanned by the in-

clusion. he inclusion does not factor through an injective, so we conclude that
Ext1( 2

1 ,
2
1 ) is one-dimensional. his is consistent with the fact that Ext1( 2

1 ,
2
1 ) is gen-

erated by the class of the short exact sequence

0Ð→ 2
1
Ð→

2
1 2
1
Ð→ 2

1
Ð→ 0.
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τ-Tilting Theory

τ-tilting theory was recently introduced by Adachi, Iyama, and Reiten [AIR]. An A-
module is said to be τ-rigid if Hom(X , τX) = 0. he module X is said to be τ-tilting

if it is τ-rigid and has as many non-isomorphic indecomposable summands as A. he
module X is said to be support τ-tilting if X is τ-rigid and the number of indecom-
posable summands of X equals the number of non-isomorphic simple modules in its
composition series.
A torsion class in modA is a full subcategory closed under quotients and exten-

sions. If X is an A-module, we write FacX for the full subcategory of modA consist-
ing of quotients of sums of copies of A. A torsion class is called functorially ûnite if it
can be written as FacX for some A-module X.
An Ext-projective module in a subcategory T of modA is a module X such that

Ext1A(X ,−) vanishes on all modules in T .

heorem 2.10 ([AIR, heorem 2.7]) here is a bijection from basic support τ-tilting

modules to functorially ûnite torsion classes that sends the support τ-tilting module X

to FacX and sends the functorially ûnite torsion class T to the direct sum of its Ext-
projective indecomposables.

Example 2.11 For the algebra A of Example 2.9, it is easily veriûed that the support
τ-tilting modules, ordered by inclusion on their corresponding torsion classes, are as
in Figure 2.

3 Fringed Algebras

Deûnition 3.1 For a gentle algebra A = kQ/I, we call a vertex of Q defective if it
does not have exactly two incoming arrows and two outgoing arrows.

Our strategy is to deûne a larger quiver Q̂ containing Q, and an ideal Î in kQ̂

containing I, such that

● all the vertices of Q will be non-defective in Q̂, and
● kQ̂/Î is still a gentle algebra.

We call this process fringing. As we recently learned, this procedure was ûrst intro-
duced byAsashiba in connectionwith theAvella-Alamino–Geiss invariants of a gentle
algebra [As]. As alreadymentioned, it also plays an important rôle in [PPP]. We begin
by describing Q̂.

Deûnition 3.2 For a gentle algebra A = kQ/I, let Q̂ be the quiver obtained by
adding up to two new vertices with arrows pointing towards v and up to two new
vertices with arrows from v, for each defective vertex v of Q, such that in Q̂, none
of the original vertices of Q is defective anymore. We call Q̂ the fringed quiver of Q,
Q̂0 ∖ Q0 the fringe vertices, and Q̂1 ∖ Q1 the fringe arrows.

We now deûne Î.
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Figure 2. he support τ-tilting modules of a particular gentle algebra, ordered by inclusion of
corresponding torsion classes.

Deûnition-Proposition 3.3 Let A = kQ/I be a gentle algebra. Let Î be the ideal
of kQ̂ that contains I, such that Â = kQ̂/Î is a gentle algebra. Î is well deûned up
to relabelling the vertices of kQ̂. We call Î the fringed ideal and Â the fringed algebra.

he well-deûnedness of Î is immediate from the fact that the relations added to
Î consist of certain length two paths through vertices that were defective in Q, and
there is no choice about which relations to add up to relabelling the fringe vertices. It
is obvious that A is a subalgebra of Â. Also, A = Â/(eF), where eF = ∑ f ∈Q̂0∖Q0

e f , is
the sum of all the idempotents associated to the fringe vertices of Q̂. We refer to eF as
the fringe idempotent of Â.

Example 3.4 Let Q be the quiver in Figure 3 consisting of the black vertices and the
arrows between them. All the vertices of Q are defective. he corresponding fringed
quiver Q̂ is obtained by adding the white vertices and arrows, with the result that
every black vertex has exactly two incoming and two outgoing arrows.

If we consider the admissible ideal I in kQ generated by α1β1 and β2α2, we have
that A = kQ/I is a gentle algebra. he corresponding ideal Î in kQ̂ is generated by
{β2α2 , α1β1 , γ2α1 , α2γ3 , θ2β2 , β1θ3 , θ4γ4 , γ1θ1}. Note that we could have swapped the
roles of, for example, γ3 and θ3 in Î, but that is equivalent to relabelling their sources.
he associated fringed algebra is Â = kQ̂/Î.

he previous example admits a natural generalization that is closely related to the
work of McConville [McC].

Example 3.5 Let Qk ,n be the quiver in Figure 4, which is an orientation of a k by
n − k grid.
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Figure 3. An example of a fringed quiver.

Figure 4. he grid quiver Qk ,n .

Figure 5. he fringed quiver Q̂k ,n .

Consider the ideal I generated by all relations of the form αβ and βα.
he fringed quiver Q̂k ,n is obtained by adding the white vertices and incident ar-

rows, so that none of the black vertices is defective (Figure 5).
he new ideal Î is generated by all relations of the form αβ and βα, including the

fringe arrows.
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his class of examples is suõciently complicated to illustrate most of the phenom-
ena that will be of interest to us in this paper. We will therefore sometimes draw
examples of string modules in a shape as in Example 3.5, suppressing the underly-
ing grid-shaped quiver, and drawing only the strings. On the other hand, the reader
should also be warned that grid quivers are very special among gentle algebras. For
just one example, they do not admit any bands. One should therefore not rely exclu-
sively on them for one’s intuition. See also Section 9.

Example 3.6 Another example of fringing a gentle algebra is as follows. Let A be
the gentle algebra from Examples 2.9 and 2.11,

1

α

��
2

βoo

with the relation α2.
he fringed algebra is

○
δ

��
1

α

��

γ

��

2
βoo

ζ

��

○єoo

○ ○

with fringed ideal ⟨α2 , γβ, ζє, βδ⟩.

Deûnition 3.7 For a string X in Q, we write cohook(X) for the result of adding
cohooks to both ends of X in the fringed quiver Q̂. We call this the cohook completion
of X.

he diagram of cohook(X) is illustrated as follows.

X

β α

Here we refer to the arrows α and β adjacent to X as the shoulders of cohook(X)
and the sequence of direct arrows on the right and the sequence of inverse arrows on
the le� as the arms of cohook(X).

In the following proposition we give the description of τ
Â
(X) for X a string in

mod A.

Proposition 3.8 For a pair of strings X and Y in A, we have the following:

(i) τ
Â
Y = cohook(Y);

(ii) Ext1A(Y , X) ≃ Ext1
Â
(Y , X).
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Proof (i) Because Y is an A-module, it is possible to add cohooks to both ends
of it when we think of it inside Q̂. herefore,heorem 2.4 tells us that τ

Â
Y is obtained

by adding cohooks to both ends of Y .
(ii) Recall that eF is the fringe idempotent in Â, and that A = Â/(eF). Hence,

Ext1A(Y , X) ≃ Ext1
Â
(Y , X). ∎

he following lemma relates τAY and τ
Â
Y .

Lemma 3.9 Let Y be a string for Q. hen τAY is a submodule of τ
Â
Y.

In fact, it is known that if B is an algebra, B/I is a quotient algebra, and M is a
B/I-module, then τB/IM is a submodule of τBM; see [ASS, Lemma VIII.5.2]. We
include a proof of the special case we state, because it is an easy consequence of the
combinatorics of strings.

Proof his follows from the fact that τ
Â
Y is deûned by adding cohooks in Q̂ to Y ,

while τAY is deûned by, at each end, either adding a cohook in Q (which will coincide
with the cohook in Q̂ except that it will be missing the ûnal arrow) or subtracting a
hook; the result is that τAY is a substring of τ

Â
Y and at each end, the ûrst arrow

missing from τAY points towards τAY . hus, τAY is a submodule of τ
Â
Y . ∎

4 Kisses

In this section, we give an interpretation of Hom
Â
(X , τ

Â
Y) for a pair of strings X

and Y in A. Our technique is inspired by work of Schröer [S] and the combinatorial
framework developed by McConville [McC].

In order to apply heorem 2.4 to analyze Hom
Â
(X , τ

Â
Y), we need to introduce a

new notion and ûx some notation, as follows.

Deûnition 4.1 For a pair of strings X and Y , with factorizations X = (X′′ , Z , X′)
and Y = (Y ′′ , Z ,Y ′), we say there exists a kiss from X to Y along Z, provided:

(i) (X′′ , Z , X′) is a quotient factorization;
(ii) (Y ′′ , Z ,Y ′) is a submodule factorization;
(iii) all of X′′ , X′ ,Y ′′ ,Y ′ have strictly positive length.

Such a kiss is denoted by [ Y
′′

X′′
Z
Y
′

X′
].

We emphasize that the notion of kiss is directed. A kiss from X to Y can be illus-
trated as follows. Note that the four arrows γ, ζ, θ, and σ must all appear, and must
be oriented as shown.

Z
γ

Y
′′

Y
′

θ

ζ

X
′′

X
′

.

σ
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By kiss(X ,Y), we denote the number of kisses from X to Y , whereas we use
Kiss(X ,Y) for the set of all kisses from X to Y , thought of as a set of pairs of triples,
as above. his is a generalization of a notion introduced by McConville [McC].

Lemma 4.2 Let X and Y be strings in Q. Let [ Y
′′

X′′
Z
Y
′

X′
] be a kiss from cohook(X) to

cohook(Y). hen

(i) Z is a quotient of X;

(ii) Z is a submodule of τAY.

Note that Z is by deûnition a quotient of cohook(X); the point of (i) is that it is
really a quotient of X (though not necessarily a proper quotient: it might be equal
to X). Note also that Z is by deûnition a submodule of τ

Â
Y , but, as depicted in

the following example, Z is not necessarily a submodule of Y . In this example, the
cohooks are drawn dashed. Note that α and β belong to the kiss from cohook(X) to
cohook(Y), but they are not in Y :

X

Y

α

β

Note that in this examplewe are following the convention of considering our strings
to lie in a grid quiver as in Example 3.5, without drawing the underlying grid.

Proof (i) If the start of Z were before the start of X in cohook(X), then X′ would
consist only of direct arrows, which is contrary to the deûnition of a kiss. A similar
argument shows that the end of Z cannot be later than the end of X, so Z is a substring
of X. Because of the direction of the arrows just outside Z in cohook(X) (which are
part of the deûnition of a kiss), Z is a quotient of X.

(ii) Recall from heorem 2.4 that τAY is obtained from Y by adding cohooks if
possible, and otherwise removing hooks.

Suppose that it was possible to add a cohook to the start of Y in A. In this case,
both τAY and τ

Â
Y add a cohook at the start of Y . he only diòerence is that τ

Â
Y will

include one additional inverse arrow from a fringe vertex. By the deûnition of a kiss,
Z cannot include that additional arrrow.

Now suppose that it was not possible to add a cohook at the start of Y . In this case,
τAY was obtained by removing up to the ûrst direct arrow of Y . By the deûnition of a
kiss, there is a direct arrow before Z, so what was removed does not intersect Z, and
thus the start of Z is not before the start of τAY .

We have therefore established that the start of Z is a�er the start of τAY . Similarly,
the end of Z is before the end of τAY . Because of the directions of the arrows just
outside Z in τAY , Z is a submodule of τAY . ∎
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By the previous lemma, a kiss from cohook(X) to cohook(Y) determines a non-
zero morphism from X to τAY and from X to τ

Â
Y .

heorem 4.3

(i) he elements of Hom(X , τ
Â
Y) corresponding to kisses from cohook(X) to

cohook(Y) form a basis.

(ii) he elements of Hom(X , τAY) corresponding to kisses from cohook(X) to

cohook(Y) form a basis.

Proof By the description of morphisms between string modules in terms of graph
maps, Lemma 4.2 implies that the kisses deûne a linearly independent collection
inside each of the Hom spaces, and also span the Hom spaces. ∎

heorem 4.4 Let X and Y be strings in Q.

kiss(cohook(X), cohook(Y)) = dimHom
Â
(X , τ

Â
Y) = dimHomA(X , τAY).

Proof his theorem is immediate from the stronger heorem 4.3 above. ∎

Proposition 4.5 Let X and Y be strings in Q. he canonical map from τAY to τ
Â
Y

induced by the fact that the former is a submodule of the latter induces an isomorphism

from Hom(X , τAY) to Hom(X , τ
Â
Y).

Proof his is immediate from heorem 4.3 and Lemma 3.9. ∎

5 Maximal Non-kissing Collections

In this section, we show that support τ-tilting modules for a gentle algebra corre-
spond to certain collections of strings in its fringed quiver that can be combinatorially
characterized.

Let B be an algebra with n simples. We consider the set of τ-rigid indecompos-
able modules together with n formal objects Pi[1], on which we deûne a relation
of compatibility. Two B-modules M and N are compatible if Hom(M , τN) = 0 =
Hom(N , τM). A B-module M and Pi[1] are compatible if Hom(Pi ,M) = 0. Pi[1]
and Pj[1] are always compatible. here is a bijective correspondence from maximal
compatible collections to basic support τ-tilting modules (see [AIR]): one takes the
sum of the modules in the collection, and throws away whatever Pi[1] appear.

Let A = kQ/I be a gentle algebra, and let Â = kQ̂/I be its fringed algebra. For v a
vertex of Q̂, deûne the injective string of v to be the string obtained by adding to the
lazy path at v both maximal sequences of arrows oriented towards v in Q̂. We denote
it by Iv . he corresponding Â-module is an indecomposable injective module.

We deûne the set of long strings of Q̂, denoted lstr(Q̂), to consist of {cohook(X) ∣
X ∈ str(Q)}∪{Iv ∣ v ∈ Q0}. We call these long strings because they run between two
fringe vertices, so they are in a sense maximally long. Note, though, that not every
string that runs between two fringe vertices counts as a long string. Also, as in our
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deûnition of str(Q) above, the elements of lstr(Q̂) are formally equivalence classes of
string walks, with C and C−1 being considered equivalent.

heorem 5.1 here is a bijective correspondence from maximal compatible collec-

tions of A-modules to maximal non-kissing collections from lstr(Q̂), induced by the

correspondence

X ∈ str(Q) Ð→ cohook(X)
Pv[1] for v ∈ Q0 Ð→ Iv .

Proof We have to check that the bijection above takes the compatibility relation to
the non-kissing relation.

Two A-modules are compatible if and only if the corresponding long strings do
not kiss, by heorem 4.4.
Any two injective strings are non-kissing, which is consistent with the fact that

Pi[1] and Pj[1] are compatible.
An A-module M is compatible with Pv[1] if and only if HomA(Pv ,M) = 0, if and

only if M does not pass through vertex v. It suõces to show that there is a kiss from
cohook(M) to Iv if and only if M passes through v, and there is never a kiss from Iv

to cohook(M). We now verify this.
IfM passes through v, then in each direction from v, cohook(M) eventually leaves

the injective string from v (at the endpoint ofM if not before), and it leaves it along an
arrow pointing away from the injective string. hus, there is a kiss from cohook(M)
to Iv .

IfM does not pass through v, then any common substring ofM and Iv must consist
of arrows all oriented in the same direction, with the arrow of Iv on either side of the
substring also having the same orientation. Since this means that the arrows of Iv on
either side of the common substring point in opposite directions, it cannot be a kiss.
he same argument applies to a common substring of an arm of cohook(M) and Iv ,
unless v lies on an arm of cohook(M). But in that case, there is a direction in which
cohook(M) and Iv never separate, so this is not a kiss either.
Because all the arrows of Iv are oriented towards v in the middle of the string, it is

impossible for there to be a kiss from Iv to any string. ∎

6 Poset of Functorially Finite Torsion Classes

It is natural to order the functorially ûnite torsion classes by inclusion. Since by
heorem 2.10 there is a bijection between functorially ûnite torsion classes and sup-
port τ-tilting modules, this can also be thought of as a poset structure on support
τ-tilting modules. Having shown in the previous section that we can give a combina-
torial description of the support τ-tiltingmodules asmaximal non-kissing collections,
we proceed in this section to interpret this poset structure on maximal non-kissing
collections.

he following theorem combines a few diòerent results from [AIR]: heorem 2.18,
the discussion following Deûnition 2.19, and Corollary 2.34.
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heorem 6.1 ([AIR]) Let T and U be two functorially ûnite torsion classes with T

properly contained in U and with no functorially ûnite torsion class properly between

them. In this case, their corresponding maximal compatible collections can be written

as S∪{P}, S∪{R}. Conversely, given two maximal compatible collections S∪{P} and
S ∪ {R}, they correspond to functorially ûnite torsion classes that form a cover in the

poset of torsion classes.

Supposewe have twomaximal nonkissing collections of the formS∪{cohook(X)}
and S ∪ {cohook(Y)}. Clearly, cohook(X) and cohook(Y) kiss; otherwise, this
would violate maximality of the collections. By heorem 6.1, these two collections
correspond to a pair of torsion classes that form a cover. Suppose that the torsion
class corresponding to S ∪ {cohook(X)} contains the torsion class corresponding
to S ∪ {cohook(Y)}. It follows that Y is also in the ûrst torsion class, while X is
Ext-projective in the torsion class, so Hom(Y , τAX) = 0 by [AS, Proposition 5.8].
he kiss(es) between cohook(X) and cohook(Y) are therefore from cohook(X) to
cohook(Y). Similarly, if we have twomaximal nonkissing collectionsS∪{cohook(X)}
and S ∪ {Iv}, then we see that there is a kiss from cohook(X) to Iv . his establishes
the following theorem.

heorem 6.2 he cover relations in the poset of functorially ûnite torsion classes of

A can be described in terms of their maximal non-kissing collections as follows: they

correspond to pairs of maximal non-kissing collections of the form S ∪ {C}, S ∪ {D},
and S ∪ {C} > S ∪ {D} if the kisses go from C to D.

An inûnite poset is not necessarily characterized by its cover relations, but a ûnite
poset is. We therefore have the following corollary.

Corollary 6.3 If A has only ûnitely many functorially ûnite torsion classes, then the

poset of torsion classes is isomorphic to the poset of maximal non-kissing collections,

ordered by the transitive closure of S∪ {C} > S∪ {D} where the kisses go from C to D.

7 Combinatorics of Torsion Classes

In this sectionwe consider how the bijection between functorially ûnite torsion classes
and support τ-tilting module plays out for gentle algebras in terms of the combina-
torics we have been developing.

We begin with the following theorem, describing the strings in the category of
quotients of copies of a collection of strings.

heorem 7.1 Let A = kQ/I be a gentle algebra. Let X = ⊕X i with each X i a string.

A string Y is in FacX if and only if Y can be written as a union of strings each of which

is a substring of Y and a quotient of some X i .

Here, when we write that Y is a union of a certain set of strings, we mean that the
strings may overlap, but each arrow of Y occurs in at least one of the strings.
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Proof Y is in FacX if and only if there is a quotient map from a sum of copies of X
onto Y . his means that, for each arrow of Y , we have to be able to ûnd some X i that
maps to Y and hits that arrow. hemap from X i to Y corresponds to a quotient of X i

and a submodule of Y . ∎

Let S be a collection of strings in Q, and let α be an arrow of Q̂. We will deûne
Mc(S, α) to be a certain long string of Q̂. We will construct it arrow by arrow in both
directions from α. (We use the symbol Mc for this map to emphasize that this is the
algebraic version of a map deûned by McConville [McC, Section 8].)

Let Γ0 be the lazy path at e(α), and γ0 = α. We will deûne a sequence of arrows
γ i , and string walks Γi = γ iΓi−1, for i = 1, 2, . . . . (Note that we do not include α in Γ0.)
Suppose we have already constructed γ1 , . . . , γ i , and let u = e(γ i) = e(Γi). If u is a
fringe vertex, we set imax = i and stop. Otherwise, we divide into cases:

● If Γi ∈ S, deûne γ i+1 to be the unique direct arrow such that γ i+1Γi ∈ str(Q̂).
● If Γi /∈ S, deûne γ i+1 to be the unique inverse arrow such that γ i+1Γi ∈ str(Q̂).

If i = 0, instead of demanding that γ1Γ0 ∈ str(Q̂), we demand that γ1α ∈ str(Q̂). We
continue in this way until we reach a fringe vertex.

We now extend the string walk in the opposite direction. Deûne Θ0 to be the
lazy path at s(α). We will proceed to deûne a sequence of arrows γ− j and string walks
Θ j =Θ j−1γ− j for j = 1, 2, . . . . Suppose thatwehave already constructed γ−1 , γ−2 ⋅ ⋅ ⋅ γ− j ,
and let v = s(γ− j). If v is a fringe vertex, we set jmax = j and stop. Otherwise, we de-
ûne γ− j−1 using the previous rule, but reversing the roles of direct and indirect arrows
throughout. Explicitly, we divide into cases as follows:

● If Θ j ∈ S, deûne γ− j−1 to be the unique inverse arrow such that Θ jγ− j−1 ∈ str(Q̂).
● If Θ j /∈ S, deûne γ− j−1 to be the unique direct arrow such that Θ jγ− j−1 ∈ str(Q̂).

As before, if j = 0, instead of demanding that Θ0γ−1 ∈ str(Q̂), we demand that αγ−1 ∈
str(Q̂).

Now deûne Mc(S , α) to be the concatenation of Γimax , α, and Θ jmax .

heorem 7.2 Let T be a functorially ûnite torsion class in modA. Let ST ⊆ str(Q)
be the strings in T. he collection of modules Mc(ST , α), as α runs through the arrows

of Q̂, yields the following:

● cohook(M) for M an Ext-projective of T (each appearing for two choices of

arrow α),

● the injective string at each vertex of Q over which no module in T is supported

(each appearing twice), and

● the injective string at each fringe vertex that is a sink (each appearing once).

Before proving the theorem, we give a couple of examples of it in action.

Example 7.3 Consider the gentle algebra A = kQ/I, where Q = A2 and I = 0, with
the fringed bound quiver (Q̂ , Î) as follows.
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2 1α○

○

○

○

○

○.

For the (functorially ûnite) torsion classT =modA, the set of stringsST={e1 , e2 , α}
is drawn in bold:

● ●.

We now verify that as α runs through the arrows of Q̂, we indeed obtain exactly the
strings given in heorem 7.2. he strings of the form cohook(M), where M is an
Ext-projective indecomposable, are as follows. Each is generated twice, by the arrows
drawn as double lines:

Moreover, the injective strings corresponding to the fringe sink vertices are each gen-
erated once, as indicated by the double lines:

.

Example 7.4 LetAbe the algebra from2.9. Recall fromExample 3.6 that the fringed
quiver is

○
δ

��
1

α

��

γ

��

2
βoo

ζ

��

○єoo

○ ○
with fringed ideal ⟨α2 , γβ, ζє, βδ⟩.

Let T be the torsion class Fac(I1 ⊕ S2). he strings in T are S = {β−1αβ, e2 , β}.
We compute
● Mc(S, є) = ζβ−1αβє;
● Mc(S, β) = є−1β−1α−1βζ−1;
● Mc(S, ζ) = ζβ−1α−1βζ−1;
● Mc(S, α) = ζβ−1αβζ−1;
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● Mc(S, δ) = ζδ;
● Mc(S, γ) = γαβє.

he ûrst two give the cohook completion of S2. he third and fourth give the cohook
completion of I1. he û�h and sixth are injective strings associated to fringe sinks.

We divide the proof of heorem 7.2 into the next four propositions.
Let M be a string walk in Q. Let cohook(M) = γr ⋅ ⋅ ⋅ γ0, and let M = γb ⋅ ⋅ ⋅ γa . IfM

has positive length, then 0 < a ≤ b < r. If M is a lazy string, then b = a − 1, meaning
that M is the lazy string at s(γa) = e(γb). Deûne

X(M) = { i ∣ b + 1 ≥ i ≥ 1, γ i is direct, γb ⋅ ⋅ ⋅ γ i+1 ∈ ST}.
We consider the condition γb ⋅ ⋅ ⋅ γ i+1 ∈ ST to be vacuous when i = b + 1, and γb+1 is
a direct arrow since it is a shoulder of cohook(M), so b + 1 ∈ X(M). For i = b, the
condition that γb ⋅ ⋅ ⋅ γ i+1 ∈ ST is interpreted as meaning that the lazy path at e(γb) is
in ST .

Proposition 7.5 Let M be Ext-projective in T, with cohook(M) = γr ⋅ ⋅ ⋅ γ0. Let x be
the minimum element of X(M). hen Mc(ST , γx) = cohook(M).

Proof Let us write Ω for the string walk γb ⋅ ⋅ ⋅ γx+1, which is, by assumption, in ST .
(If x = b + 1, then Ω is not deûned.)

he proof is by induction. Suppose that, in the construction of Mc(ST , γx), we
have constructed Γi and it is a substring of cohook(M), say Γi = γy ⋅ ⋅ ⋅ γx+1. Suppose
now that γy+1 is direct. By our choice of x, γb ⋅ ⋅ ⋅ γx+1 ∈ ST , and since γy+1 is direct, Γi

is a quotient substring of γb ⋅ ⋅ ⋅ γx+1, so it is also in ST . hus, our algorithm chooses a
direct arrow, necessarily γy+1.

Suppose next that γy+1 is inverse. here is a kiss from cohook(Γi) to cohook(M).
his implies that Γi cannot be in ST . hus, our algorithm chooses an inverse arrow,
necessarily γy+1.

It follows by induction that Γimax agrees with γr ⋅ ⋅ ⋅ γx+1, i.e., the part of cohook(M)
a�er γx .

Now let us consider the part of cohook(M) before γx . Suppose that we have al-
ready constructed Θ j , and it is a substring of cohook(M), say Θ j = γx−1 ⋅ ⋅ ⋅ γz . Sup-
pose now that γz−1 is direct. If Θ j were in ST , then since, by assumption, Ω is in ST ,
so is their extension, which contradicts the minimality of x. (If x = b + 1, so Ω is
not deûned, then Θ j ∈ ST and γz−1 direct contradicts the minimality of x.) hus, our
algorithm chooses a direct arrow, necessarily γz−1.

Suppose that γz−1 is inverse. hen Θ j is a quotient of M, so it is in ST . hus,
our algorithm chooses an inverse arrow, necessarily γz−1. It follows by induction that
Θ jmax agrees with γx−1 ⋅ ⋅ ⋅ γ0, i.e., the part of cohook(M) before γx . his completes the
proof. ∎

he above proposition shows that we can construct any Ext-projective of T in two
ways: once as in the proposition, and once applying the proposition to the reverse
string walk. Note that the orientations of the two chosen edges will be opposite, so
this does indeed yield two distinct arrows α1 , α2 of Q̂ such that M = Mc(ST , α1) =
Mc(ST , α2).
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We now consider the simpler case of injective strings.

Proposition 7.6 Let T be a torsion class in modA. Let v be a vertex such that no

module of T is supported at v, and let Iv = γr ⋅ ⋅ ⋅ γ0, with γ j direct for i ≥ j ≥ 0 and
γ j inverse for r ≥ j ≥ i + 1. Let x be minimal such that γ i−1 ⋅ ⋅ ⋅ γx+1 ∈ ST . (Again, this

condition is vacuous for x = i.) hen Mc(ST , γx) = Iv .

Proof he proof is essentially the same as for Proposition 7.5.
Let us write Ω for the string walk γ i−1 ⋅ ⋅ ⋅ γx+1 which is, by assumption, in ST . (If

x = i + 1, then Ω is not deûned.)
Since Ω ∈ ST , it also follows that γ j ⋅ ⋅ ⋅ γx+1 ∈ ST for all i − 1 ≥ j ≥ x. It follows that

Mc(ST , γx) proceeds along direct arrows to v. From that point on, by the deûning
condition for v, the string walk constructed so far will not lie in ST , and so it will
continue by inverse arrows away from v.

Now consider the extension of γx in the opposite direction. If the segment
γx−1 ⋅ ⋅ ⋅ γy were in ST , then the extension of it and Ω would be too, violating the min-
imality of x. (If Ω is not deûned, then γx−1 ⋅ ⋅ ⋅ γy itself violates the minimality of x.)
hus, the extension from s(γx) proceeds entirely by direct arrows. his completes the
proof. ∎

Again, as for the Ext-projectives of T , this shows that for each injective string Iv

corresponding to a vertex v outside the support of T , there are two arrows α1 , α2 of
opposite orientations such that Iv = Mc(ST , α1) = Mc(ST , α2).
Finally, we consider the injective strings at sink fringe vertices.

Proposition 7.7 Let v be a sink fringe vertex. Let Iv = γr ⋅ ⋅ ⋅ γ0 be the injective at v
with e(γr) = v that is composed entirely of direct arrows. Let x be minimal such that

γr−1 ⋅ ⋅ ⋅ γx+1 is contained in ST . hen Iv = Mc(ST , γx).

Proof he proof is the same as for Proposition 7.6, except that since v is a fringe
vertex, once the string reaches v, it ends. ∎

Proposition 7.8 No strings are constructed with greater multiplicity than given in

heorem 7.2. In particular, those strings not listed there are notMc(ST , α) for any arrow
α of Q̂.

Proof he number of arrows in Q̂ can be determined by counting the number of
arrows going to each vertex. his is the number of sink fringe vertices of Q̂ plus twice
the number of vertices of Q. Since the Ext-projectives of T are support τ-tilting, the
number of Ext-projectives of T equals the number of vertices in the support of T ; this
plus the number of vertices not in the support of T equals the number of vertices of
Q. herefore, the number of strings listed in heorem 7.2 equals the total number of
arrows in Q̂. herefore, each string is constructed with exactly the multiplicity given
in heorem 7.2. ∎

his completes the proof of heorem 7.2.
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8 Extension Groups of Strings

he aim of this section is to study the Ext1-groups of string modules over gentle alge-
bras. By the Auslander–Reiten formula (see heorem 2.8), this amounts to studying
the quotient of a Hom-space by morphisms factoring through an injective.
Although for a gentle algebra A, HomA(X , τAY) admits a nice basis, given by

graphmaps as inheorem 2.7, it appears diõcult to decide which of these could form
a basis for the quotient by IA(X , τAY). his question turns out to be easier to answer
in the fringed algebra case, and since we have the isomorphism

Ext1A(Y , X) ≃ Ext1
Â
(Y , X)

from Proposition 3.8, it is enough to study fringed algebras.
In the following, we ûrst study graph maps starting in an injective string. We give

an explicit combinatorial description of the graphmaps inHom
Â
(X , τ

Â
Y) that factor

through injectives in Subsection 8.2. hen we use that information to determine a
basis for Ext1A(Y , X) in terms of short exact sequences in Subsection 8.3.

8.1 Graph Maps From an Injective Module

We ûrst study graph maps starting in an injective string It over A. Such an injective
string module can be written as It = (α−1

n+m ⋅ ⋅ ⋅ α−1
n+1) ⋅t (βn ⋅ ⋅ ⋅ β1), for a vertex t ∈ Q0

and some arrows α i , β j ∈ Q1. Here we write ⋅t rather than ⋅ to indicate that the paths
we compose meet at t.

he following notion turns out to be central. A graph map fT given by an admissi-
ble pair T = ((F1 , E ,D1), (F2 , E ,D2)) is called two-sided if at least one of D1 and D2
has positive length, and the same holds for F1 and F2.

Lemma 8.1 A graphmap fT ∶ It → Y starting in an injective string It is not two-sided.

Proof here is no quotient factorization (F′1θ , E , γ−1D′1) of It with arrows γ, θ in Q

because an inverse arrow cannot precede a direct arrow in It . hus, in any quotient
factorization (F1 , E ,D1) of It , one of D1 or F1 has length zero. We consider, without
loss of generality, the case whereD1 has length zero, thus It = F1E. Since It is injective,
there is no arrow β in Q such that Eβ is a string. Hence, Y cannot admit a submodule
factorization of the form (F2 , E , βD′2). We conclude that D2 has length zero in any
submodule factorization of Y of the form (F2 , E ,D2). So, fT is not two-sided. ∎

8.2 Graph Maps Factoring through an Injective String Module

For a pair of string walks X and Y in A, we now investigate which graph maps in
Hom

Â
(X , τ

Â
Y) factor through an injective string It in the fringed algebra Â. From

Proposition 3.8, we know that the Auslander–Reiten translation of a string module Y
in Â is obtained by cohook completion:

cohook(Y) = τ
Â
Y =c Yc = I ⋅ β ⋅ Y ⋅ α−1 ⋅D,

where I andD respectively denote inverse and direct paths in Q̂:
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Y

β

I

α

D.

We say a string walk E lies on one of the arms of cohook(Y) if E is a substring
(possibly of length zero) of I orD. Moreover, we call Y connectable to X if there exists
an arrow α such that Yα−1X is a string walk in Q, or dually, XαY is a string walk
in Q:

X
α

Y

Note that if Y is connectable to X, there exists a graph map fT ∈ Hom
Â
(X , τ

Â
Y)

given by an admissible pair T = ((F1 , E ,D1), (F2 , E ,D2)) where E lies on one of the
arms of cohook(Y) as follows: Denote by E the longest direct string walk at the end
of X and write X = ED1. his gives, with F1 of length zero, the quotient factorization
(F1 , E ,D1) of X. By the cohook construction,D is the longest direct string walk in Â
ending in e(α). But E is a direct string walk ending in e(α). hus, E is a submodule
of D, and we can write D = ED2. Setting F2 = I ⋅ β ⋅ Y ⋅ α−1 gives the submodule
factorization (F2 , E ,D2) of τ

Â
Y .

We refer to this graph map fT as a connecting map. he following is an illustration
of the factorization T , where the cohooks of Y are drawn dashed:

X

E

α

Y

●e(α)

heorem 8.2 For string walks X and Y in Q, let fT ∈ Hom
Â
(X , τ

Â
Y) be a graph

map given by an admissible pair T = ((F1 , E ,D1), (F2 , E ,D2)). If E lies on one of the

arms of cohook(Y) and fT is not a connectingmap, then fT factors through an injective

string of mod Â.

Proof Consider a graphmap fT ∈ Hom
Â
(X , τ

Â
Y)where E lies on one of the arms of

cohook(Y). Without loss of generality, assume E is a substring ofD. Since (F2 , E ,D2)
is a submodule factorization of cohook(Y), the string E lies on the end of the direct
stringD, so we haveD = ED2. We want to ûnd an injective string It and graph maps
fT′ ∈ Hom

Â
(X , It) and fT′′ ∈ Hom

Â
(It , τÂY) such that fT = fT′′ ○ fT′ .

In the factorization (F1 , E ,D1) of the string walk X, write F1 = F′1γc ⋅ ⋅ ⋅ γ1, where F′1
does not start with a direct arrow. he assumptions of the theorem imply that such a
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direct string γc ⋅ ⋅ ⋅ γ1 always exists. If F1 has length zero, then Y is connectable to X via
the arrow α, and fT is the corresponding connecting map. Otherwise, if F1 starts with
an inverse arrow, then E is not a quotient module of X and (F1 , E ,D1) not a quotient
factorization. herefore, the direct arrow γc exists in X. Denote its end point by t; see
the following ûgure:

γ1 γc ● It
E α

β
τ
Â
Y

Set E′ = I′γc ⋅ ⋅ ⋅ γ1E, where I′ is the longest inverse substring in X immediately
following t. hen E′ is a quotient module of X and a submodule of It ; therefore, there
exists a graph map fT′ ∈ Hom

Â
(X , It) with E′ as middle term of the factorizations.

Similarly, E′′ =D is a quotient module of It and a submodule of τ
Â
Y ; therefore, there

exists a graph map fT′′ ∈ Hom
Â
(It , τÂY) with E′′ as middle term. By construction,

we get fT = fT′′ ○ fT′ . ∎

In the following corollary we describe a basis of I
Â
(X , τ

Â
Y) in terms of graph

maps.

Corollary 8.3 Let X and Y be two strings in Q. hen a basis for I
Â
(X , τ

Â
Y) is formed

by the graphmaps fT ∈ Hom
Â
(X , τ

Â
Y), with T = ((F1 , E ,D1), (F2 , E ,D2)), such that

E lies on one of the arms of cohook(Y) and fT is not a connecting map.

Proof heorem 8.2 assures that each graphmap fT belongs to I
Â
(X , τ

Â
Y). We show

that everymorphism f ∈ Hom
Â
(X , τ

Â
Y) that factors through an injective I is a linear

combination of the graph maps as described in the hypothesis. Since graph maps are
linearly independent, we therefore get a basis for I

Â
(X , τ

Â
Y).

hus, assume f = g ○ h where h ∈ Hom
Â
(X , I) and g ∈ Hom

Â
(I, τ

Â
Y). Write the

maps g and h in the basis of graphmaps; thus, g = ∑ a i g i and h = ∑ b jh j with scalars
a i , b j ∈ k and graph maps g i , h j . Each f i j = g i ○ h j is either zero or a composition of
graph maps (which is again a graph map). It suõces to show that the f i j satisfy the
conditions stated above.

he graphmap f i j factors via h j and g i through some injective string It (which is a
direct summand of I). In general, if a composition of graph maps, given by factoriza-
tions T ′ = ((F′1 , E′ ,D′1), (F′2 , E′ ,D′2)) and T ′′ = ((F′′1 , E′′ ,D′′1 ), (F′′2 , E′′ ,D′′2 )), yields
a graph map given by the factorization T = ((F1 , E ,D1), (F2 , E ,D2)), one necessarily
has E ⊂ E′ and E ⊂ E′′. Since g i starts in It , Lemma 8.1 implies that the factorization
T ′′ deûning the graphmap g i cannot be two-sided. herefore, without loss of general-
ity, we can assume that both D′′1 and D

′′

2 have length zero; that is, we have It = F′′1 E′′
and τ

Â
Y = F′′2 E′′. If E′′ is a proper quotient of It , we conclude that E′′ is a direct

string walk, properly contained in the armD of τ
Â
Y = cohook(Y). his implies that
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E lies on one of the arms of cohook(Y) and f i j is not a connecting map. Otherwise,
if E′′ = It , we get that τÂY = F′′2 E′′ contains e(E′′) as internal vertex, which is impos-
sible, since this does not belong to Q, or else τ

Â
Y = E′′ = It , which is also impossible,

since an injective is not an image under the Auslander–Reiten translate. ∎

8.3 The Vector Space Ext1A(Y , X)

Recall from heorem 2.8 and Proposition 3.8 that we have the isomorphisms

(8.1) Ext1A(Y , X) ≃ Ext1
Â
(Y , X) ≃ D(Hom

Â
(X , τ

Â
Y)/I

Â
(X , τ

Â
Y)).

In Subsection 8.2 we determined a basis for this space given by the graph maps in
Hom

Â
(X , τ

Â
Y) that do not belong to I

Â
(X , τ

Â
Y). In Corollary 8.3 we gave a precise

description of which graph maps have to be excluded. We aim in this subsection for
a description of a basis for Ext1A(Y , X) in terms of short exact sequences.
Clearly, every connecting graph map fT gives rise to a non-zero extension

(8.2) єT ∶ 0Ð→ X Ð→ Yα
−1
X Ð→ Y Ð→ 0.

Moreover, a two-sided graph map

fT ∈ HomA(X ,Y) with T = ((F1 , E ,D1), (F2 , E ,D2))
yields a non-zero extension єT as follows (see [S])

(8.3) єT ∶ 0Ð→ X Ð→ F1ED2 ⊕ F2ED1 Ð→ Y Ð→ 0

Lemma 8.4 For strings X and Y in Q, there is a bijection between the two-sided

graph maps fT ∈ HomA(X ,Y) and the non-connecting graph maps inHom
Â
(X , τ

Â
Y)

that do not belong to I
Â
(X , τ

Â
Y).

Proof Assume fT ∈ HomA(X ,Y) is a two-sided graph map given by the factor-
ization T = ((F1 , E ,D1), (F2 , E ,D2)). he following construction associates to fT a
graph map f

T̂
∈ Hom

Â
(X , τ

Â
Y) given by T̂ = ((F̂1 , Ê , D̂1), (F̂2 , Ê , D̂2)). As before,

we denote τ
Â
Y = IβYα−1D. If F2 has positive length, we deûne F̂2 = IβF2 and leave

E unchanged. Otherwise, since T is two-sided, we know that F1 has positive length.
As E is a submodule, the string walk F1 starts with a direct arrow, and this must be
the arrow β since in the gentle algebra A there is only one way to extend the string
walk E. We subdivide F1 as F1 = F̂1I

′β, where I′ is the longest inverse substring in X

immediately following β, and extend E at the end by I′β, that is, we put Ê = I′βE. We
proceed in the same way for the D side. hese basis elements f

T̂
∈ Hom

Â
(X , τ

Â
Y)

are clearly distinct, non-connecting and do not lie in I
Â
(X , τ

Â
Y), by the descrip-

tion given in Corollary 8.3. It is moreover easy to see that every such basis element
f
T̂
∈ Hom

Â
(X , τ

Â
Y) is obtained by this construction. ∎

heorem 8.5 For strings X and Y in Q, the extensions єT given in equations (8.2)
and (8.3), with T connecting or two-sided, form a basis for Ext1A(Y , X).

Proof We know from the isomorphism in (8.1) and the bijection in Lemma 8.4 that
we listed the correct number of elements єT in Ext1A(Y , X). It is therefore suõcient to
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show that they are linearly independent. We do so by showing that the єT correspond
to linearly independent elements in an isomorphic space.
Consider an injective envelope I of X and extend to a short exact sequence:

0Ð→ X
ιÐ→ I

πÐ→ Z Ð→ 0.

Applying the functor Hom(Y ,−) yields the exact sequence

0Ð→ Hom(Y , X) ι
∗

Ð→ Hom(Y , I) π
∗

ÐÐ→ Hom(Y , Z) δÐ→ Ext1(Y , X) Ð→ 0,

where we use Ext1(Y , I) = 0, since I is injective. hus, Ext1(Y , X) is isomorphic to
Coker π∗, with isomorphism induced by the connecting homomorphism δ. To study
the map δ, denote by s1 , . . . , sn the sinks of the string X. hen I = Is1 ⊕ ⋅ ⋅ ⋅ ⊕ Isn .
Assume the extension єT is given by a connecting graph map as in equation (8.2).

Denote by E the longest inverse substring of Y such that Eα−1 is a string. hen E is
a quotient module of Y , and it also a quotient module of Isn and a submodule of the
summand of Z induced by Isn . he corresponding graphmap fE ∈ Hom(Y , Z) clearly
satisûes δ( fE) = єT .

Moreover, denote by t1 , . . . , tm the sources of the string X that have two arrows in
X attached to it. hen the socle of the module Z contains the same vertices t1 , . . . , tm .
Now let fT ∈ HomA(X ,Y) be a two-sided graph map given by the factorization
T = ((F1 , E ,D1), (F2 , E ,D2)), and let t i , . . . , t j be the sources of X that are contained
in the string E. Note that diòerent factorizations T , T ′ give rise to diòerent intervals
[i , j], [i′ , j′]. We let fE ∈ HomA(Y , Z) be the map identifying the elements tk of
Y with the corresponding elements tk in Z, for k ∈ [i , j]. It is an exercise in linear
algebra to see that δ( fE) = єT .

hemaps fE stemming from a two-sided graphmap are linearly independent from
the maps induced by connecting graph maps, and they are linearly independent
amongst each other. his comes from the fact that the middle factors E , E′ of two-
sided graph maps fT , fT′ cannot properly overlap. In fact, the only way that E and E′

intersect non-trivially is that one is contained in the other.
Moreover, the classes of fE are linearly independent in Coker π∗, since graphmaps

factoring through an injective I are described in Corollary 8.3, and these cannot alter
the linear independence for the graph maps fE . herefore, the same holds for the
short exact sequences єT . ∎

9 Uniqueness of Kisses Between Exchangeable Modules

Let A be a ûnite dimensional algebra over a algebraically closed ûeld k. Let Z be an
almost complete support τ-tilting A-module. hen by [AIR, heorem 2.18] we know
that there exist exactly two support τ-tilting A-modules, say T and T ′, having Z as a
direct summand. We recall from Section 6 that in this case, one of FacT and FacT ′

covers the other in the poset of functorially ûnite torsion classes. Supposing FacT
covers FacT ′, we say that T ′ is the le� mutation of T , and we write T ′ = µ−

X
(T). Let

us write T = X⊕Z and T ′ = Y ⊕Z where X is a τ-rigid indecomposable module, and
Y is a τ-rigid indecomposable module that is not isomorphic to X or else zero.
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If A is gentle, consider the maximal non-kissing collections corresponding to T

and T ′. here is a string C = cohook(X) in the maximal non-kissing collection cor-
responding to T . In the maximal non-kissing collection corresponding to T ′, this
string is replaced by another string, D. We call such a pair of strings exchangeable.
As shown in Section 6, there will be one or more kisses from C to D. In his more re-
stricted setting,McConville showed that exchangeable strings kiss exactly once [McC,
heorem3.2(3)]. It is natural to askwhether this, like somany of the other results from
[McC], extends verbatim to the general gentle setting.

It turns out that this is not the case. A referee pointed out a smaller example than
we had come up with, as follows. Let Q be a quiver consisting of a single vertex 1 with
a loop, and consider the quotient of its path algebra by the square of the loop. here
are two support τ-tilting modules for this algebra, P1 and 0, and the corresponding
strings kiss twice.
For a slightly larger example, consider the gentle algebra A = kQ/I given by the

quiver

1

α

��
2

βoo

and the admissible ideal I = ⟨α2⟩, which we studied in Examples 2.9 and several times
subsequently. he direct sum of the projectives, P1⊕P2, is a τ-rigid module. Its muta-
tion at P1 is τ−(P1)⊕P2. One has that dimk Hom(P1 , τ(τ−P1)) = dimk Hom(P1 , P1)= 2.
his example comes from [GLS, Section 13.6]. We thank Gustavo Jasso for pointing
out its relevance to our situation.

Note that in this example, dimk Hom(Y ,Y) = 2. In the following we show that this
is the reason that the exchangeable pair of strings X and Y could kiss more than once.
Namely, we prove that when a mutation replaces the τ-rigid indecomposable X by a
module Y with dimk Hom(Y ,Y) = 1, the dimension of Hom(X , τY) is indeed one.
In particular, ifA is a gentle algebra and dimk Hom(Y ,Y) = 1, then the corresponding
strings kiss once.

Let us recall that for a ûnite dimensional k-algebra A, a module M ∈ modA is
called a brick if EndA(M) is a division ring. Using this deûnition, we can state two
suõcient conditions for dimk Hom(Y ,Y) = 1.

● Y is a brick and k is algebraically closed (since the only division ring ûnite
dimensional over k is k itself).

● Y is a brick which is also a string module (since the only invertible graph map
is the identity map).

Now we state the main theorem of this section.

heorem 9.1 If A is a ûnite-dimensional k-algebra, and Y ⊕ Z is obtained by a le�

mutation from T = X ⊕ Z, that is, Y ⊕ Z = µ−
X
(T), and dimk Hom(Y ,Y) = 1, then

dimk HomA(X , τY) = 1.

https://doi.org/10.4153/S0008414X19000397 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000397


On the Combinatorics of Gentle Algebras 1577

Before proving the theoremwewill explain the necessary background and a lemma
that will be used in the proof of the theorem. Let

P1
p1 // P0

p0 // X // 0,

Q1
q1 // Q0

q0 // Y // 0,

R1
r1 // R0

r0 // Z // 0

beminimal projective presentations, andwe denote by P,Q , and R the corresponding
two-term complexes of projective modules in Kb(projA).

We are going to prove some results in this setting before proving themain theorem
of this section.

Lemma 9.2 We have the following properties.

(i) dimk HomKb(proj A)(Q ,Q) = 1.
(ii) HomKb(proj A)(Q , R[1]) = 0.
(iii) dimk HomKb(proj A)(Q , P[1]) = 1.

Proof (i) Let f● , g● ∈ HomKb(proj A)(Q ,Q). By the universal property of cokernels,
they induce themorphisms f , g ∈ HomA(Y ,Y) such that f q0 = q0 f0 and gq0 = q0g0.
Since dimk HomA(Y ,Y) = 1, so there exists a λ ∈ k such that f − λg = 0.
Denote by Q● the projective resolution of Y obtained by completing Q. We get the

commutative diagram

Q

q0

��

f●−λg● // Q●

q0

��
Y

f−λg=0 // Y .

Finally, by homotopy uniqueness of projective resolutions [W,heorem 2.2.6] one
can easily prove that f● − λg● is null-homotopic.

(ii) Following [AIR, Lemma 3.4], this is true if and only if HomA(Z , τY) = 0. Now,
since Y ⊕ Z is τ-tilting, HomA(Y ⊕ Z , τ(Y ⊕ Z)) = 0, which yields the result.

(iii) By [AIR,heorem 3.2 andCorollary 3.9] we canwrite the exchange of X andY
on the level of two-term complexes. By [AIR, Deûnition-Proposition 1.7], this guar-
antees that there exists a triangle in Kb(projA),

P // R′ // Q // P[1] ,

with R′ ∈ addR.
Applying the functor HomKb(proj A)(Q ,−), we get the long exact sequence

⋅ ⋅ ⋅ // Hom(Q ,Q) // Hom(Q , P[1]) // Hom(Q , R′[1]) // ⋅ ⋅ ⋅ .
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Using parts (i) and (ii) and the fact that R′[1] ∈ addR[1], we now get that
dimk HomKb(proj A)(Q , P[1]) is either 0 or 1. Assume it is 0; then by [AIR, Lemma 3.4]
we have that Hom(X , τY) = 0. his leads to a contradiction. Since X and Y are not
compatible, HomA(X , τY) or HomA(Y , τX) is nonzero. However, HomA(Y , τX) =
0. his follows from the deûnition of a le� mutation [AIR, Deûnition-Proposition
2.28], which guarantees that FacY ⊆ Fac Z ⊆ FacT , the fact that X is Ext-projective
in FacT , and [AIR, Proposition 1.2(a)], which states that HomA(Y , τX) = 0 if and
only if Ext1A(X , FacY) = 0. hus, dimk HomKb(proj A)(Q , P[1]) has to be 1. ∎

Proof of Theorem 9.1 Rewriting slightly [AIR, Proposition 2.4], we get an exact
sequence

HomA(Q0 , X)
(q1 ,X) // HomA(Q1 , X) // DHomA(X , τY) // 0.

his gives that dimk HomA(X , τY) is equal to the dimension of the quotient of
HomA(Q1 , X) by Im(q1 , X).

We now show that the dimension of this quotient is one. Let f , g ∈ HomA(Q1 , X).
SinceQ1 is projective, there exists f , g ∈ HomA(Q1 , P0) such that p0 f = f and p0g = g.

hese functions give chain morphism in HomKb(proj A)(Q , P[1]), which is of di-
mension one by Lemma 9.2(iii). It follows that there exists h0 ∈ HomA(Q0 , P0),
h1 ∈ HomA(Q1 , P1) and λ ∈ k such that f − λg = p1h1 + h0q1.
Composing the last equality with p0, we get that

f − λg = p0h0q1 = (q1 , X)(p0h0),
which is to say that f − λg = 0 in the quotient space.

Since HomA(X , τY) is nonzero, we conclude the desired result. ∎

his result supposes that the mutation produces a nonzero module Y . In general,
the support of Z can be smaller than the support of X ⊕ Z, in which case Z is itself a
support τ-tilting module, and le� mutation of X ⊕ Z at X yields Z. In this case, let v
be the vertex in the support of X that is not in the support of Z. Denote by Pv and Iv

the projective and injective modules at vertex v, respectively.

Proposition 9.3 Let Z be a support τ-tilting module obtained by a le� mutation from

T = X ⊕ Z, and let v be the vertex in the support of X which is not in the support of Z.

Suppose that dimk HomA(Pv , Pv) = 1. hen dimk HomA(X , Iv) = 1.

Proof As before, deûne P and R to be the two-term complexes corresponding to
minimal projective presentations of X and Z. Let Q be the two-term complex
Pv → 0. We now check that the statements of Lemma 9.2 still hold. Part (i)
follows from the fact that Pv is a brick. Part (ii) follows from Q ⊕ R being a silt-
ing complex [AIR, Deûnition 1.5]. We conclude as in the proof of Lemma 9.2(iii) that
dimk HomKb(proj A)(Q , P[1]) ≤ 1. his means that

dimk Hom(Pv , P0)/p1(Hom(Pv , P1)) ≤ 1.

Since Hom(Pv , P0)/p1 Hom(Pv , P1) = Hom(Pv , X), we conclude that

dimk Hom(Pv , X) ≤ 1.
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Since X is supported over the vertex v, the dimension is exactly one. Finally, since we
have dimk HomA(Pv , X) = dimk HomA(X , Iv), this yields the desired result. ∎

From the previous results in this section, we deduce a combinatorial corollary.

heorem 9.4 Suppose that A is a gentle algebra such that every τ-rigid indecompos-

able A-module is a brick. If two maximal non-kissing collections of long strings in Q̂

diòer by replacing one string by another, then these two strings kiss exactly once.

Proof By heorem 5.1, we know that there is a bijective correspondence between
maximal non-kissing collections of long strings in Q̂ and basic support τ-tiltingmod-
ules for A. Let the basic support τ-tilting modules corresponding to the given maxi-
mal non-kissing collections be T and T ′. Since the two maximal non-kissing collec-
tions diòer by replacing a single string by another, the corresponding support τ-tilting
modules diòer by a single mutation. Without loss of generality, let T ′ be the le� mu-
tation of T . Let C and D be the corresponding strings. heorem 6.2 shows that there
are no kisses from D to C, but there is at least one kiss from C to D. We wish to show
that there is in fact exactly one kiss.

Let X be the A-module associated to the long string C (i.e., C = cohook(X)).
here are two possibilities regarding D. Either it also corresponds to an A-module,
or else it is an injective string in Q̂. Suppose ûrst that it corresponds to an A-module,
say Y . Since Y is τ-rigid, it is a brick by assumption, and we can apply heorem 9.1
to conclude that dimHom(X , τY) = 1. By heorem 4.4, it follows that C and D kiss
exactly once.

Now, we consider the possibility that D is an injective string in Q̂, corresponding
to the vertex v ∈ Q0. In this case, Proposition 9.3 tells us that dimHomA(X , Iv) = 1.
Each kiss from C to D gives rise to such amorphism, so there is only one kiss between
C and D in this case as well. ∎

his recovers the uniqueness of kisses shown in [McC], since in that setting, bricks,
strings, and τ-rigid indecomposable modules all coincide. For a characterization of
those gentle algebras for which all strings are bricks, see [GMM, Section 4].

Acknowledgements his paper was developed in the context of the LaCIM Repre-
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ticipants, including, in particular, Mathieu Guay-Paquet and Amy Pang. We thank
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