
Proceedings of the Edinburgh Mathematical Society (2021) 64, 675–688

doi:10.1017/S0013091521000444

POSITIVE SOLUTIONS FOR A DEGENERATE KIRCHHOFF
PROBLEM

DAVID ARCOYA1, JOÃO R. SANTOS JÚNIOR2 AND ANTONIO SUÁREZ3
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1. Introduction

In the last decade, non-local Kirchhoff problems have turned into an extremely active
field of research in nonlinear partial differential equations. In particular, from differ-
ent perspectives and approaches, many authors have investigated problems like (or its
variations) {

−m(‖u‖2)Δu = f(u) in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ IRN (N ≥ 1) is a smooth bounded domain, ‖u‖ := |∇u|2 is the usual norm in
the Sobolev space H1

0 (Ω), m : [0,∞) → IR and f : IR → IR are continuous functions with
m positive and away from zero. Without any intention to provide a complete overview
about the matter, we just refer the reader to the following references [1, 7, 9–12] which

© The Author(s), 2021. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society

675

https://doi.org/10.1017/S0013091521000444 Published online by Cambridge University Press

mailto:darcoya@ugr.es
mailto:joaojunior@ufpa.br
mailto:suarez@us.es
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091521000444&domain=pdf
https://doi.org/10.1017/S0013091521000444


676 D. Arcoya, J. R. Santos Júnior and A. Suárez

can give a first glimpse about mathematical, physical and historical aspects involving
stationary Kirchhoff models.

Nevertheless, most recently, it has grown the interest of some authors, attracted by
inherent mathematical difficulties, in investigating the case in which m is a degenerate
function, i.e., when m is not required to be bounded from below by a positive constant. In
fact, Ambrosetti and Arcoya [2, 3] took a first step towards the understanding of this class
of problems. In [3], the function m is allowed to verify m(0) = 0 and/or limt→+∞ m(t) = 0.
It is worth to point out that in such a paper remains the assumption m(t) > 0 for t > 0.
On the other hand, Theorem 2.1 (see also Remark 2.2) in [2] assures the existence of a
non-trivial solution even if m(t) = 0 for some t > 0.

Inspired by [5, 8], in [13], the authors considered the case in which m has many different
positive zeroes and they proved that the number of positive solutions of (P) is related
to the number of points which vanish m. In order to state the result, we denote by tk,
k = 1, 2, . . . K, the zeroes of m, F (t) :=

∫ t

0
f , for every t ≥ 0, λ1 the first eigenvalue of

Laplacian operator with homogeneous Dirichlet boundary condition and

αk := max
u∈H1

0 (Ω),‖u‖≤t
1/2
k

∫
Ω

F ∗(u) dx, k ∈ {1, . . . , K}. (1.1)

where

F ∗(t) =
∫ t

0

f∗(s) ds, with f∗(t) =

⎧⎪⎨
⎪⎩

f(0) if t < 0,

f(t) if 0 ≤ t < s∗,

0 if s∗ ≤ t.

(1.2)

and s∗ > 0 such that f(t) > 0 in (0, s∗) and f(s∗) = 0.
It is proved the following theorem.

Theorem 1.1 (Santos Júnior and Siciliano [13]). If m : [0,∞) → IR is a continu-
ous function and f : [0,∞) → IR is a locally Lipschitz continuous function satisfying:

(m) there exist positive numbers 0 =: t0 < t1 < t2 < · · · < tK such that

m(tk) = 0 andm > 0in(tk−1, tk), for allk = 1, . . . ,K;

(f) there exists s∗ > 0 such that f(t) > 0 in (0, s∗) and f(s∗) = 0;

(A) αk < 1
2

∫ tk

tk−1
m(s)ds < |Ω| ∫ s∗

0
f , for all k = 1, . . . , K,

then, problem (P) possesses at least K non-trivial positive solutions. Furthermore,
these solutions are ordered in the H1

0 (Ω)-norm, i.e.,

0 < ‖u1‖2 < t1 < ‖u2‖2 < t2 < . . . < tK−1 < ‖uK‖2 < tK .

In this paper, we improve Theorem 1.1 by proving under some appropriated conditions
on functions m and f , the existence of K further positive solutions for (1.1). Moreover,
we show concentration phenomena of these solutions at the zeroes of m, when the area
F (s∗) =

∫ s∗
0

f tends to zero. Specifically, we have the following result.
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Theorem 1.2. Suppose that hypotheses (m) and (f) hold.

(i) If αk given by (1.1) satisfies that

(A’) αk ≤ 1
2

∫ tk

tk−1
m(s)ds, for all k = 1, . . . ,K,

then, problem (P) possesses at least K − 1 positive solutions which are ordered in
H1

0 (Ω)-norm, i.e.,

t1 < ‖v2‖2 < t2 < · · · < tK−1 < ‖vK‖2 < tK .

(ii) Furthermore, if, in addition, the following condition holds

(mf) there exists γ := limt↘0
f(t)

t ∈ (0,∞) and m(0) < γ/λ1,
then there is one more positive solution v1 ∈ H1

0 (Ω) with

0 < ‖v1‖2 < t1.

(iii) If we assume the stronger condition (A) instead of (A’), then for every k = 1, . . . , K,
the solution uk provided in Theorem 1.1 verifies uk 
= vk and hence problem (P)
has at least 2K positive solutions.

(iv) Moreover, if for each λ > 0, we denote by (Pλ) the problem (P) with F (s∗) = λ
and by vk,λ, k = 1, . . . ,K, the solutions of (Pλ) obtained in (i)–(ii), then,

lim
λ↘0

‖vk,λ‖2 = tk−1, ∀ k = 1, . . . ,K.

Observe that hypothesis (A’) is weaker than (A).
Let fλ be a function f satisfying (f), (mf), (A’) and F (s∗) = λ, where λ is a positive

parameter. In Theorem 1.2-iv), we are interested in proving that if f∗
λ := (fλ)∗ and λ

goes to zero, then the square of the H1
0 -norm of the solutions of{

−m(‖u‖2)Δu = f∗
λ(u) in Ω,

u = 0 on ∂Ω,
(Pλ)

are concentrating at the points which vanish function m. This concentration result is
somewhat more general than those commonly found in the literature, mainly because the
nonlinearity is not required tending to zero in a uniform way. In fact, in [6], for example,
in order to study concentration phenomena of the solutions, when λ tends to infinity, of
the problem {

−Δu = λf(u) in Ω,

u = 0 on ∂Ω,

the authors require λf goes uniformly to infinity. Instead, we are just assuming F (s∗) → 0.
This assumption allows f∗

λ going to zero in different ways for each t ∈ (0, s∗).
The paper is organized as follows. In §2, we provide a technical lemma which plays an

important role in the existence result. In §3, we prove items (i), (ii) and (iii) of Theorem
1.2 by looking for critical points with norm in the interval (t1/2

k−1, t
1/2
k ) of a truncated

functional Ik defined in H1
0 (Ω). In §4, we study the part (iv) of the cited theorem, that

is, the concentration phenomena of the solutions obtained in Theorem 1.2 as λ = F (s∗)
tends to zero.
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2. A technical lemma

Taking into account that f∗ is continuous and bounded, we deduce by the compact
embedding Rellich–Kondrachov theorem that the function J : H1

0 (Ω) → IR defined by

J(v) =
∫

Ω

F ∗(v) dx, ∀ v ∈ H1
0 (Ω)

is weakly continuous and then it attains its maximum in any closed ball in H1
0 (Ω). In

particular, the map α : [0,∞) → IR given by

α(t) = max
u∈H1

0 (Ω),‖u‖≤t1/2

∫
Ω

F ∗(u) dx, ∀ t ≥ 0, (2.1)

is well defined; i.e., the set

St := {u ∈ H1
0 (Ω) : ‖u‖2 ≤ t and

∫
Ω

F ∗(u) dx = α(t)} (2.2)

is non-empty for every t ≥ 0.
The following technical lemma collects the main properties of α and St. In order to

state it, we define the function Mk : IR → IR by

Mk(t) =
∫ t

0

mk, with mk(t) =

{
m(t), if tk−1 ≤ t ≤ tk,

0, otherwise.
(2.3)

Lemma 2.1. Assume that (f) holds and consider the map α : [0,∞) → IR defined by
(2.1) and the set St given by (2.2) for t ≥ 0. We have:

(i) for every t > 0, α(t) > 0 and each maximizer u ∈ St, satisfies

• ‖u‖2 = t, 0 < u ≤ s∗,

• u ∈ C2,β(Ω) for some β ∈ (0, 1) and

• ∂u/∂τ < 0 on ∂Ω, where τ stands for the outward unit normal vector;

(ii) the map α is differentiable in (0,∞) with α′(t) = (1/2t)maxu∈St

∫
Ω

f∗(u)u dx and
α′ is upper semicontinuous. In particular, α is increasing. Moreover, if there exists
γ = limt→0 f(t)/t, then

lim
t↘0

α′(t) =
γ

2λ1
and lim inf

t→t∗
α′(t) > 0, ∀ t∗ > 0;

(iii) if, in addition, condition (m) holds, then for every k ∈ {2, . . . ,K}, there exists
δk−1 > 0 such that the map gk(t) = (1/2)Mk(t) − α(t) is decreasing in (0, tk−1 +
δk−1). Moreover, if (mf) holds, the same is true in the case k = 1.
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Proof. (i) Fix t > 0. For any positive function ϕ ∈ H1
0 (Ω) with ‖ϕ‖2 ≤ t, we have

0 <

∫
Ω

F ∗(ϕ) dx ≤ max
v∈H1

0 (Ω),‖v‖≤t1/2

∫
Ω

F ∗(v) dx = α(t),

and then α(t) > 0. In particular, if u ∈ St, then u 
= 0. Since

∫
Ω

F ∗(v) dx ≤
∫

Ω

F ∗(|v|) dx and ‖v‖ = ‖|v|‖,

with strict inequality if v 
≡ |v|, we derive that a maximizer u ∈ St is also non-negative.
In addition, we have ‖u‖ = t1/2. Indeed, if, by contradiction, it would be satisfied that

‖u‖ < t1/2, then u would be a local maximum point in the interior of the ball Bt1/2(0) of
the functional J ∈ C1(H1

0 (Ω)). We would get

0 = J ′(u)v =
∫

Ω

f∗(u)v dx, ∀ v ∈ H1
0 (Ω),

and then f∗(u) = 0, contradicting that u is non-negative and non-trivial and proving the
claim.

In particular, by Lagrange multipliers theorem, there exists λ ∈ IR verifying

∫
Ω

f∗(u)v dx = 2λ

∫
Ω

∇u∇v dx, ∀ v ∈ H1
0 (Ω).

Choosing v = u in the previous equality, we obtain

λ =
1
2t

∫
Ω

f∗(u)u dx > 0.

Thus, u is a non-trivial and non-negative weak solution of

⎧⎨
⎩−Δu =

1
2λ

f∗(u) in Ω,

u = 0 on ∂Ω.

To see that u ≤ s∗, it is sufficient to choose v = (u − s∗)+ as test function in the above
boundary value problem. Since f∗(u) = f(u) ∈ L∞(Ω), it also follows from [4, Theorem
0.5(ii)] that u ∈ C1,β(Ω) for some 0 < β < 1. Now, since f is locally Lipschitz continuous,
we get f(u) ∈ C0,β(Ω). Hence, by [4, Theorem 0.5(iii)], we have u ∈ C2,β(Ω). Applying
then the strong maximum principle and Hopf lemma, we obtain u > 0 in Ω and ∂u/∂τ < 0
on ∂Ω and case (i) is proved.

(ii) We begin by proving the continuity of α in (0,∞). Let {tn} be a sequence of
positive numbers with tn → t∗, t∗ > 0, and un ∈ Stn

. Since {un} is bounded in H1
0 (Ω),

there exists u∗ ∈ H1
0 (Ω) such that, up to a subsequence, {un} is weakly convergent to

u∗. Using that the norm is weakly lower semicontinuous and the weak continuity of J ,

https://doi.org/10.1017/S0013091521000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000444


680 D. Arcoya, J. R. Santos Júnior and A. Suárez

we get

‖u∗‖2 ≤ lim inf
n→∞ ‖un‖2 = t∗ and lim

n→∞α(tn) = lim
n→∞

∫
Ω

F ∗(un) dx =
∫

Ω

F ∗(u∗) dx.

Hence, by definition of α, it is clear that∫
Ω

F ∗(u∗) ≤ α(t∗).

On the other hand, for the converse inequality, choosing u0 ∈ St∗ we have

∫
Ω

F ∗
(

t
1/2
n

t
1/2
∗

u0

)
dx ≤

∫
Ω

F ∗(un) dx, ∀n ∈ IN,

and passing to the limit as n goes to infinity, we get∫
Ω

F ∗(u0) dx = α(t∗) ≤
∫

Ω

F ∗(u∗) dx,

concluding that

lim
n→∞α(tn) = lim

n→∞

∫
Ω

F ∗(un) dx →
∫

Ω

F ∗(u∗) dx = α(t∗),

and the continuity of α has been proved.
Fix now t0 > 0. For each t ∈ (−t0,∞), we take a function ut0 (respectively, ut0+t) in

St0 (respectively, in St+t0). Thus, by definition of St+t0 ,

α(t0 + t) − α(t0)
t

=
1
t

∫
Ω

[F ∗(ut0+t) − F ∗(ut0)] dx

≥ 1
t

∫
Ω

[
F ∗
((

1 +
t

t0

)1/2

ut0

)
− F ∗(ut0)

]
dx

=
1

2t0(1 + tct/t0)1/2

∫
Ω

f∗
((

1 +
tct

t0

)1/2

ut0

)
ut0 dx,

where 0 < |ct| < 1. Consequently,

lim inf
t→0

[
α(t0 + t) − α(t0)

t

]
≥ 1

2t0

∫
Ω

f∗(ut0)ut0 dx, ∀ut0 ∈ St0 .

Since f∗ is bounded, it is a consequence of the definition of St that maxu∈St0

∫
Ω

f∗(u)u dx
is attained. Therefore,

lim inf
t→0

[
α(t0 + t) − α(t0)

t

]
≥ 1

2t0
max
u∈St0

∫
Ω

f∗(u)u dx. (2.4)
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On the other hand, by definition of St0 , we get

α(t0 + t) − α(t0)
t

≤ 1
t

∫
Ω

[
F ∗ (ut0+t) − F ∗

((
1 − t

t0 + t

)1/2

ut0+t

)]
dx

=
1

2(t0 + t)(1 − tdt/(t0 + t))∫
Ω

f∗
((

1 − tdt

t0 + t

)1/2

ut0+t

)(
1 − tdt

t0 + t

)1/2

ut0+t dx,

where 0 < |dt| < 1. Therefore,

α(t0 + t) − α(t0)
t

≤ 1
2(t0 + t)(1 − tdt/(t0 + t))

max
u∈St0+t(1−dt)

∫
Ω

f∗(u)u dx. (2.5)

�

Claim. lim supt→0[maxu∈St0+t(1−dt)

∫
Ω

f∗(u)u dx] ≤ maxu∈St0

∫
Ω

f∗(u)u dx.
Let {tn} be a sequence of real numbers converging to zero. For each n, choose un ∈

St0+tn(1−dtn ) such that∫
Ω

f∗(un)un dx = max
u∈St0+tn(1−dtn )

∫
Ω

f∗(u)u dx.

Since ‖un‖2 ≤ t0 + tn(1 − dtn
), we have that {un} is bounded in H1

0 (Ω) and, as before,
there exists u0 ∈ H1

0 (Ω) such that, up to a subsequence,

un ⇀ u0 inH1
0 (Ω),

and

‖u0‖2 ≤ lim inf
n→∞ ‖un‖2 ≤ t0.

Moreover, by the continuity of α,

α(t0) = lim
n→∞α(t0 + tn(1 − dtn

)) = lim
n→∞

∫
Ω

F ∗(un) dx =
∫

Ω

F ∗(u0) dx.

Consequently, u0 ∈ St0 and, by (i), ‖u0‖2 = t0. The claim follows now by observing that
the weak convergence of un to u0 implies that

lim sup
n→∞

max
u∈St0+tn(1−dtn )

∫
Ω

f∗(u)u dx = lim sup
n→∞

∫
Ω

f∗(un)un dx

=
∫

Ω

f∗(u0)u0 dx

≤ max
u∈St0

∫
Ω

f∗(u)u dx.
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Now, by previous claim, passing to the upper limit as t tends to zero in (2.5), we get

lim sup
t→0

[
α(t0 + t) − α(t0)

t

]
≤ 1

2t0
max
u∈St0

∫
Ω

f∗(u)u dx.

By comparing this inequality with (2.4), we conclude that α is differentiable in t0 and

α′(t0) =
1

2t0
max
u∈St0

∫
Ω

f∗(u)u dx.

To prove the upper semicontinuity of the derivative, let {tn} be a sequence of real numbers
converging to a positive number t0. For each n, choose un ∈ Stn

such that∫
Ω

f∗(un)un dx = max
u∈Stn

∫
Ω

f∗(u)u dx.

Since un ∈ Stn
, as previously, it follows that there exists u0 ∈ H1

0 (Ω) such that, up to a
subsequence,

un ⇀ u0 inH1
0 (Ω),

‖u0‖2 ≤ lim inf
n→∞ ‖un‖2 ≤ t0,

lim
n→∞α(tn) = lim

n→∞

∫
Ω

F ∗(un) dx =
∫

Ω

F ∗(u0) dx,

lim
n→∞

∫
Ω

f∗(un)un dx =
∫

Ω

f∗(u0)u0 dx.

Using the continuity of α,

α(t0) =
∫

Ω

F ∗(u0) dx,

and consequently

u0 ∈ St0 ,

and by the computation of the derivative α′(t0), we obtain

lim sup
n→∞

α′(tn) = lim sup
n→∞

1
2tn

∫
Ω

f∗(un)un dx =
1

2t0

∫
Ω

f∗(u0)u0 dx ≤ α′(t0).

To prove the last part of (ii), let tn ↘ 0 and un ∈ Stn
be such that

α′(tn) =
1

2tn

∫
Ω

f∗(un)un dx.

Define vn := un/t
1/2
n and observe that, by (i), ‖un‖ = t

1/2
n and thus {vn} is bounded in

H1
0 (Ω). Consequently, there exists v∗ such that, up to a subsequence,

vn ⇀ v∗ in H1
0 (Ω). (2.6)
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Thus, by Lebesgue Dominated Convergence Theorem and the definition of γ, we get

α′(tn) =
1

2tn

∫
Ω

f∗(un)un dx =
1
2

∫
Ω

[
f∗(t1/2

n vn)

t
1/2
n vn

]
v2

n dx → γ

2

∫
Ω

v2
∗ dx. (2.7)

Moreover, by the definition of γ again and the L’Hospital rule, we have limt↘0 F ∗(t)/t2 =
γ/2. Thence, from (2.6), up to a subsequence, we obtain

lim
n→∞

F ∗(un)
tn

= lim
n→∞

[
F ∗(t1/2

n vn)

(t1/2
n vn)2

]
v2

n =
γ

2
v2
∗ a.e. in Ω.

and ∣∣∣∣F ∗(un)
tn

∣∣∣∣ =
∣∣∣∣∣F

∗(t1/2
n vn)

(t1/2
n vn)2

∣∣∣∣∣ |v2
n| ≤ γh(x) a.e. in Ω,

for some h ∈ L1(Ω). (Observe that the convergence (2.6) implies, passing to a subsequence
if necessary, the existence of such a function h(x)). Therefore, by Lebesgue Dominated
Convergence Theorem ∫

Ω

F ∗(un)
tn

dx → γ

2

∫
Ω

v2
∗ dx. (2.8)

If it were v∗ = 0, then by (2.7) and (2.8), we would conclude that

0 = lim
n→∞α′(tn) =

1
2

lim
n→∞

1
tn

∫
Ω

f∗(un)un dx = lim
n→∞

∫
Ω

F ∗(un)
tn

dx. (2.9)

On the other hand, since un ∈ Stn
, it follows again from Lebesgue Dominated Conver-

gence Theorem and L’Hospital rule, that

lim
n→∞

∫
Ω

F ∗(un)
tn

dx ≥ lim
n→∞

∫
Ω

F ∗(t1/2
n ϕ1)

(t1/2
n ϕ1)2

ϕ2
1 dx =

γ

2λ1
, (2.10)

where ϕ1 is the eigenfunction of Laplacian operator with homogeneous Dirichlet boundary
condition, associated with λ1 with ‖ϕ1‖ = 1. By comparing (2.9) and (2.10), we get a
contradiction proving that v∗ 
= 0 (v∗ ≥ 0).

Finally, since un ∈ Stn
and ‖un‖ = t

1/2
n , we can again use the Lagrange multipliers

theorem (see proof of item (i)) to conclude that⎧⎨
⎩
−Δun =

1
2α′(tn)

f∗(un) in Ω,

un = 0 on ∂Ω.

Consequently,

∫
Ω

∇vn∇w dx =
1

2α′(tn)

∫
Ω

[
f∗(t1/2

n vn)

t
1/2
n vn

]
vnw dx, ∀w ∈ H1

0 (Ω). (2.11)
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By passing to the limit as n goes to infinity in (2.11), it follows from (2.6) and (2.7) that∫
Ω

∇v∗∇w dx =
1∫

Ω
v2∗ dx

∫
Ω

v∗w dx, ∀w ∈ H1
0 (Ω).

Since v∗ ≥ 0, v∗ 
≡ 0, we have
∫
Ω

v2
∗ dx = 1/λ1 and (2.7) implies that limn→∞ α′(tn) =

γ/(2λ1).
Finally, suppose by contradiction that there exists a sequence of positive numbers {tn}

and {un} ⊂ Stn
such that tn → t∗ (for some t∗ > 0), ‖un‖ = t

1/2
n ,

∫
Ω

F ∗(un) dx = α(tn)
and

α′(tn) =
1

2tn

∫
Ω

f∗(un)un dx → 0. (2.12)

In particular, {un} is bounded and hence there exists u∗ ∈ H1
0 (Ω) with u∗ ≥ 0 (because

un > 0) and such that, up to a subsequence,

un ⇀ u∗ inH1
0 (Ω).

The weak continuity of J and of the map
∫
Ω

f∗(v)v dx, (2.12), (i) and the continuity of
α imply by taking limits when n tends to infinity that∫

Ω

F ∗(u∗) dx = α(t∗) > 0 (2.13)

and
1

2t∗

∫
Ω

f∗(u∗)u∗ dx = 0 (2.14)

Identity (2.14) implies that u∗ = 0, but that leads us to a contradiction with (2.13). The
result is now proved.

(iii) Let us consider first k = 2, . . . , K. By (ii), gk : (0,∞) → IR is differentiable with
g′k(t) = mk(t) − α′(t) for every t > 0. If t ∈ (0, tk−1], by the definition of mk we have
gk(t) = −α(t) and thus

g′k(t) = −α′(t) = − 1
2t

max
u∈St

∫
Ω

f∗(u)u dx < 0, ∀ t ∈ (0, tk−1].

On the other hand, by (m), limt↘tk−1 mk(t) = mk(tk−1) = 0 and (ii)

lim sup
t↘tk−1

g′k(t) = mk(tk−1) − lim inf
t↘tk−1

α′(t) = − lim inf
t↘tk−1

α′(t) < 0.

Finally, assuming hypothesis (mf), if k = 1 then, by g1(0) = 0 and (ii), we have

lim
t↘0

g′1(t) =
1
2

[
m(0) − γ

λ1

]
< 0.

The result follows.
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3. Existence of K further solutions for (p)

As in [13], our approach to prove the existence of a solution vk for each k ∈ {1, . . . , K} is
based on looking for critical points with norm in the interval (t1/2

k−1, t
1/2
k ) of the truncated

functional Ik : H1
0 (Ω) → IR defined by

Ik(u) =
1
2
Mk(‖u‖2) −

∫
Ω

F ∗(u) dx, ∀u ∈ H1
0 (Ω), (3.1)

where F ∗ is given by (1.2) and Mk by (2.3).
Indeed, every critical point vk ∈ H1

0 (Ω) of Ik with ‖vk‖2 ∈ (tk−1, tk) satisfies

∫
Ω

∇vk∇ϕ dx =
1

m(‖vk‖2)

∫
Ω

f∗(vk)ϕ dx ≥ 0, ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0,

(because mk(‖vk‖2) = m(‖vk‖2)). Hence, by the maximum principle, we conclude that
vk ≥ 0 in Ω. In addition, by choosing ϕ = (vk − s∗)+ as a test function, we get

0 ≤ m(‖vk‖2)‖(vk − s∗)+‖2 =
∫

Ω

f∗(vk)(vk − s∗)+ dx = 0.

Since m(‖vk‖2) > 0 (by (m)), we conclude that 0 ≤ vk ≤ s∗ is a weak solution of (P). By
elliptic regularity and the maximum principle, vk > 0 is a classical solution.

Proof of case (i) of Theorem 1.2. Fix k = 2, . . . , K. It follows from (m) that Mk ≥
0 and thus by the definition of αk that

Ik(u) ≥ −
∫

Ω

F ∗(u) dx ≥ −αk,

for all u ∈ H1
0 (Ω) with ‖u‖ ≤ t

1/2
k . Consequently, it makes sense to define the real number

bk := inf
u∈H1

0 (Ω),‖u‖≤t
1/2
k

Ik(u) = inf
0<t≤tk

{
inf

u∈H1
0 (Ω),‖u‖2=t

Ik(u)
}

= inf
0<t≤tk

gk(t).

We deduce from (iii) of Lemma 2.1 that

bk < gk(tk−1) = −αk−1. (3.2)

To conclude the proof, it suffices to show that bk is a critical value of Ik with an associated
critical point vk ∈ H1

0 (Ω) of norm t
1/2
k−1 < ‖vk‖ < t

1/2
k . To prove it, let {un} ⊂ H1

0 (Ω) be

https://doi.org/10.1017/S0013091521000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000444


686 D. Arcoya, J. R. Santos Júnior and A. Suárez

a minimizing sequence: i.e., such that

lim
n→∞ Ik(un) = bk and ‖un‖ ≤ t

1/2
k .

Hence, up to a subsequence, there exists vk ∈ H1
0 (Ω) and τk ∈ [0, tk] such that

un ⇀ vk inH1
0 (Ω) and ‖un‖ → τ

1/2
k ,

‖vk‖ ≤ lim inf
n→∞ ‖un‖ = τ

1/2
k ≤ t

1/2
k ,

and, by the weak continuity of J ,

lim
n→∞

∫
Ω

F ∗(un) dx =
∫

Ω

F ∗(vk) dx.

Observe that

bk = lim
n→∞ Ik(un) =

1
2

lim
n→∞Mk(‖un‖2) − lim

n→∞

∫
Ω

F ∗(un) dx =
1
2
Mk(τk) −

∫
Ω

F ∗(vk) dx.

(3.3)
Moreover, it is worth to point out that

τk > tk−1, (3.4)

because in the contrary case we will have Mk(τk) = 0, ‖vk‖2 ≤ tk−1 and we will deduce
by (3.3) and the definition of αk−1 that

bk = −
∫

Ω

F ∗(vk) dx ≥ −αk−1,

contradicting (3.2). Therefore, (3.4) holds. Now, we can prove that ‖vk‖2 = τk. Indeed,
we get a contradiction if we assume that ‖vk‖2 < τk because this implies by (m) and (3.4)
that Mk(τk) > Mk(‖vk‖2) and hence (3.3) gives

bk >
1
2
Mk(‖vk‖2) −

∫
Ω

F ∗(vk) dx = Ik(vk),

a contradiction with the definition of bk. Therefore, {un} is weakly convergent to vk with
the norms {‖un‖} converging also to ‖vk‖, which is equivalent to the strong convergence
of {un} to vk. As a consequence,

bk = Ik(vk)

and vk is a minimum point of Ik on the ball with radio τ
1/2
k and centered at the origin.

To prove that vk is a critical point of Ik with level bk < 0 (by (3.2) and (i) of Lemma
2.1), it remains us to show that ‖vk‖ < t

1/2
k . Suppose by contradiction that ‖vk‖ = t

1/2
k .

It follows from (A’) that

bk = Ik(vk) ≥ 1
2

∫ tk

tk−1

m(s) ds − αk ≥ 0,

which contradicts that bk < 0 and therefore we have proved that vk is a critical point of
Ik with tk−1 < ‖vk‖2 < tk. �
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Proof of case (ii) of Theorem 1.2. In this case, we can give exactly the same proof
as in the previous case. The hypothesis (mf) is only required due to item (iii) of the
Lemma 2.1. �

Proof of case (iii) of Theorem 1.2. For every k = 1, . . . , K, the solution vk, pro-
vided by items (i) and (ii) in Theorem 1.2, corresponds with a critical point of the
truncated functional Ik : H1

0 (Ω) → IR given by (3.1) with Ik(vk) < 0. On the other hand,
the solution uk provided in [13, Theorem 1.1] corresponds with a critical point of the trun-
cated functional Ik with 0 < Ik(uk). Since Ik(vk) < 0 < Ik(uk), we deduce that vk 
= uk

obtaining then 2 K positive solutions of (P). �

4. Concentration phenomena of solutions

Throughout this section, we are going to denote by fλ a function f which satisfies (f),
(mf), (A′) and F (s∗) = λ, where λ is a positive parameter. We also denote the dependence
on this parameter λ of the functional Ik = Ik,λ given by (3.1). It follows from previous
section that problem (Pλ) has K positive solutions vk,λ, with Ik,λ(vk) < 0, k = 1, . . . ,K.
Before proving the main result of this section, we need the following lemma

Lemma 4.1. Let bk,λ = inf
u∈H1

0 (Ω),‖u‖≤t
1/2
k

Ik,λ(u), where Ik,λ is the truncated func-

tional associated with the problem (Pλ) (and given in (3.1)). Then,

lim
λ↘0

bk,λ = lim
λ↘0

∫
Ω

F ∗
λ (vk,λ)dx =0, ∀ k = 1, . . . ,K.

Proof. It is sufficient to note that

0 > bk,λ = Ik,λ(vk,λ) > −
∫

Ω

F ∗
λ (vk,λ) ≥ −λ|Ω|,

where F ∗
λ is the primitive of f∗

λ . The proof will be finished by passing to the limit as
λ ↘ 0 in the previous inequality. �

Proof of case (iv) of Theorem 1.2. Assume by contradiction that for some fixed
k = 1, . . . ,K there exists a sequence of positive numbers such that λn ↘ 0 and

‖vk,λn
‖ → τ

1/2
k−1 asn → ∞,

for some tk−1 < τk−1 ≤ tk. Since

tk−1 < ‖vk,λn
‖2 < tk, ∀n ∈ IN,

there exists vk,0 ∈ H1
0 (Ω) such that, up to a subsequence, as n tends to infinity, we obtain

vk,λn
⇀ vk,0 in H1

0 (Ω).

By Lemma 4.1, we deduce that

0 = lim
n→∞ bk,λn

= lim
n→∞ Ik,λ(vk,λn

) = lim
n→∞

[
1
2
Mk(‖vk,λn

‖2) −
∫

Ω

F ∗
λn

(vk,λn
) dx

]

=
1
2
Mk(τk−1)
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and taking into account that by hypothesis (m), we have Mk(τk−1) > Mk(tk−1) = 0,
contradicting the previous inequality. �
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