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Abstract. For r ≥ 3, p ≥ 2, we classify all actions of the groups Diffr
c(R) and Diffr

+(S
1) by

C p-diffeomorphisms on the line and on the circle. This is the same as describing all non-
trivial group homomorphisms between groups of compactly supported diffeomorphisms
on 1-manifolds. We show that all such actions have an elementary form, which we call
topologically diagonal. As an application, we answer a question of Ghys in the 1-manifold
case: if M is any closed manifold, and Diff∞(M)0 injects into the diffeomorphism group
of a 1-manifold, must M be one-dimensional? We show that the answer is yes, even under
more general conditions. Several lemmas on subgroups of diffeomorphism groups are of
independent interest, including results on commuting subgroups and flows.

1. Introduction
For a manifold M (assumed connected and without boundary but not necessarily closed),
let Diffr

c(M) denote the group of compactly supported, orientation-preserving, Cr -
diffeomorphisms of M isotopic to the identity. We study all non-trivial homomorphisms
8 : Diffr

c(M1)→ Diffp
c (M2) between two such diffeomorphism groups. Here are some

easy examples to keep in mind.

Example 1.1.
(a) If M1 is an open submanifold of M2, there is a natural inclusion Diffr

c(M1) ↪→

Diffr
c(M2) by extending any compactly supported diffeomorphism of M1 to be the

identity on M2\M1.
(b) A Cr -diffeomorphism f : M1→ M2 induces an isomorphism 8 : Diffr

c(M1)→

Diffr
c(M2) defined by 8(g)= f g f −1.

(c) Combining the two examples above, a diffeomorphism f from M1 to an open subset
of M2 can be used to define a natural injection 8 : Diffr

c(M1) ↪→ Diffr
c(M2) by

8(g)(x)=

{
f g f −1(x) if x ∈ f (M1),

x otherwise.

If f is instead C p for some p < r , then the image of 8 will lie in Diffp
c (M2).
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(d) Finally, there are some special cases where M1 ⊂ M2 is a non-open submanifold
and diffeomorphisms of M1 still extend to M2 in a natural way. This happens, for
example, if M2 = M1 × N for a compact manifold N , or if M2 is the unit tangent
bundle of M1.

Our goal is to find conditions on M1 and M2 that guarantee the existence of non-trivial
homomorphisms Diffr

c(M1)→ Diffr
c(M2), and to describe as much as possible what these

homomorphisms look like. Note that even though all the examples of homomorphisms
above are continuous, we make no assumptions on continuity.

The analogous question for isomorphisms rather than homomorphisms between
diffeomorphism groups is completely answered by a theorem of Filipkiewicz. It says that
case (b) of Example 1.1 is all that can occur.

THEOREM 1.2. (Filipkiewicz [5]) Let M1 and M2 be smooth manifolds and suppose that
there is an isomorphism8 : Diffr

c(M1)→ Diffp
c (M2). Then M1 and M2 are diffeomorphic.

In fact, more is true: r = p and 8 is induced by a Cr -diffeomorphism f : M1→ M2.

Filipkiewicz’s original statement was for isomorphisms between the identity
components of the full diffeomorphism groups, but his theorem holds for the group of
compactly supported diffeomorphisms as well. More recently, Filipkiewicz’s theorem
has been generalized to isomorphisms between other groups of diffeomorphisms (e.g.
symplectomorphisms, contact diffeomorphisms) by Banyaga, Rybicki, and others (see, for
example, [1, 15]). The spirit of all these results is the same: given a ‘sufficiently large’ class
of diffeomorphisms C, the existence of an isomorphism between C(M1) and C(M2) implies
that M1 and M2 are diffeomorphic and the isomorphism is induced by a diffeomorphism.

By contrast, we know almost nothing about homomorphisms between diffeomorphism
groups. As an example of our ignorance, consider the following question of Ghys. Here
Diff∞(M)0 denotes the identity component of the group of C∞-diffeomorphisms of M .

Question 1.3. (Ghys [6]) Let M1 and M2 be closed manifolds, and suppose that there is an
(injective) homomorphism Diff∞(M1)0→ Diff∞(M2)0. Does it follow that dim(M1)≤

dim(M2)?

In fact, Diff∞(M)0 is a simple group, so any non-trivial homomorphism is necessarily
injective. That Diff∞(M)0 is simple follows from a deep result due to Mather and
Thurston, non-trivial even in the case of 1-manifolds (!). Simplicity holds for a larger class
of groups as well; for any connected manifold M and any r 6= dim(M)+ 1, the group
Diffr

c(M)0 is simple [9, 10]. Thus, it makes sense to ask Question 1.3 for non-compact
manifolds, replacing Diffr (Mi )0 with Diffr

c(Mi ).
Ghys’s question appeared in print in 1991, and to our knowledge, this paper is the first

to give even a partial answer in a special case.

1.1. Our results. We study the special case of homomorphisms 8 : Diffr
c(M1)→

Diffp
c (M2) when M2 is a 1-manifold. The reader will see the difficulty of the problem and

some of the richness in examples already apparent at the one-dimensional level. However,
we are able to give a complete answer to the question of which manifolds M1 admit non-
trivial homomorphisms 8 : Diffr

c(M1)→ Diffr
c(M2) or 8 : Diffr (M1)0→ Diffr

c(M2) for
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some 1-manifold M2, and describe precisely what all such homomorphisms look like.
Essentially, M1 must be one-dimensional, and 8 described by a slight generalization
of the obvious embedding of diffeomorphism groups given in Example 1.1(c). This
generalization is constructed by taking multiple embeddings M1 ↪→ M2 and having
diffeomorphisms of M1 act ‘diagonally’ on M2. We call this a topologically diagonal
embedding.

Definition 1.4. (Topologically diagonal embedding) Let M1 and M2 be manifolds, and
suppose that { f1, f2, f3, . . .} is a collection (finite or infinite) of Cr embeddings M1→

M2 whose images are pairwise disjoint and contained in some compact subset of M2.
Define 8 : Diffr

c(M1)→ Diffr
c(M2) by

8(g)(x)=

{
fi g f −1

i (x) if x ∈ fi (M1),

x otherwise.

A Cr -topologically diagonal embedding is a homomorphism 8 : Diffr
c(M1)→ Diffr

c(M2)

obtained by this construction.
A topologically diagonal embedding is an embedding 8 : Diffr

c(M1)→ Diffp
c (M2)

obtained by the same construction when the embeddings fi are only required to be
continuous.

Our main theorem says that these define basically all homomorphisms between
1-manifold diffeomorphism groups.

THEOREM 1.5. Let r ≥ 3, p ≥ 2 and let M1 and M2 be 1-manifolds. Every homo-
morphism 8 : Diffr

c(M1)→ Diffp
c (M2) is topologically diagonal. If r = p, then 8 is

Cr -topologically diagonal.

We also have a stronger version.

THEOREM 1.6. Let r ≥ 3, p ≥ 2, let M1 be any manifold and M2 a 1-manifold. Suppose
that 8 : Diffr

c(M1)→ Diffp
c (M2) is an injective homomorphism. Then dim(M1)= 1 and

8 is topologically diagonal. If r = p, then 8 is Cr -topologically diagonal.

In particular, this answers the 1-manifold case of Ghys’s Question 1.3 in the affirmative.

1.2. The algebra–topology link. There are two points to note regarding Theorems 1.5
and 1.6. First, our results parallel that of Filipkiewicz by establishing a relationship
between the topology of a manifold and the algebraic structure of its group of
diffeomorphisms. In fact, our proof strategy will be to gradually pin down this relationship
as closely as possible.

Second, our results say that the richness of the algebraic structure of diffeomorphism
groups forces continuity: group homomorphisms 8 : Diffr

c(M1)→ Diffp
c (M2), where M2

is a 1-manifold, are continuous (assuming appropriate constraints on p and r ). This need
not be true if Diffr

c(M1) is replaced with another topological group! Consider the following
example.

Example 1.7. (A non-continuous, injective group homomorphism R→ Diffr
c(M)) Let M

be a manifold, and let α : R→ R be a non-continuous, injective additive group
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homomorphism. Such a homomorphism may be constructed by permuting the elements
of a basis for R over Q and extending linearly to R. Then for any compactly supported Cr

flow ψ t on M , the map t 7→ ψα(t) is a non-continuous, injective homomorphism from R
to Diffr

c(M).
For an even more pathological example, consider a second flow φt with support disjoint

from ψ t . Then

t 7→

{
ψ t for t ∈Q,
φα(t) for t /∈Q,

also gives a non-continuous, injective homomorphism from R to Diffr
c(M).

A key step in our proof will be showing that this example cannot occur within the
context of diffeomorphism groups: if 8 : Diffr

c(M1)→ Diffp
c (M2) is a homomorphism

between 1-manifold diffeomorphism groups, then any topological R-subgroup of
Diffr

c(M1) maps continuously into Diffp
c (M2).

1.3. Outline. In §2 we establish a preliminarily algebraic–topological relationship using
commuting subgroups. This is done by developing the elementary theory of 1-manifold
diffeomorphism groups stemming from Kopell’s lemma and Hölder’s theorem.

In §3 we attack continuity. Using the tools of §2, we show that R-subgroups
of diffeomorphisms of a 1-manifold (flows) behave well under homomorphisms of
diffeomorphism groups. This rules out the kind of behavior in Example 1.7.

We prove Theorem 1.5 in §4, strengthening the algebraic–topological relationship from
§2 and using continuity of R-subgroups to construct continuous maps fi from M1 to M2

that define a topologically diagonal embedding.
In §5 we then compare 1-manifold diffeomorphism groups to n-manifold diffeo-

morphism groups and show that dim(M)= 1 can be detected as an algebraic invariant
of a diffeomorphism group. This is used to prove Theorem 1.6, answering the 1-manifold
case of Ghys’s question.

Finally, §6 concludes with some remarks on the necessity of our hypotheses (e.g.
compact supports) and further questions.

2. Commuting groups of diffeomorphisms
Algebraic–topological associations. Our first goal is to associate the algebraic data of
a group of diffeomorphisms of a manifold to the topological data of the manifold. One
example of the kind of association we have in mind appears in Filipkiewicz’s proof
of Theorem 1.2. Given an isomorphism between the diffeomorphism groups of two
manifolds, Filipkiewicz builds a map between the manifolds by associating points of each
manifold with their stabilizers—the subgroups {g ∈ Diffr

c(M) : g(x)= x}. Point stabilizers
are maximal subgroups of Diffr

c(M), so this gives a loose association between an algebraic
property (maximality) and a topological object (point). This association is eventually used
to build a point-to-point map out of the algebraic data of a group isomorphism.

However, Filipkiewicz’s point/maximal subgroup association will not work for our
purposes. The main problem is that the maximality is not preserved under group
homomorphisms. Whereas an isomorphism 8 : Diffr

c(M1)→ Diffr
c(M2) maps maximal
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subgroups of Diffr
c(M1) to maximal subgroups of Diffr

c(M2), a homomorphism may
not. To prove that group homomorphisms Diffr

c(M1)→ Diffr
c(M2) have nice topological

properties, we need to make use of an algebraic–topological correspondence robust under
homomorphisms. We will look at commuting, rather than maximal, subgroups. Our
analysis starts with a trivial observation.

Observation 2.1. Let M be a manifold, N ⊂ M a submanifold, and H the subgroup of
Diffr (M) that fixes N pointwise. Then H commutes with the subgroup of diffeomorphisms
supported on N . In other words, the centralizer of H in Diffr (M) is ‘large’.

It turns out that when M is one-dimensional, this property is characteristic of subgroups
of Diffr

c(M) that fix a submanifold. Specifically, we have the following proposition.

PROPOSITION 2.2. If G is a non-abelian subgroup of Diffr
c(R) or Diffr (I ) and G has

non-abelian centralizer, then there is an open interval contained in Fix(G).

Here, and in the following, Fix(G) denotes the set {x ∈ M : g(x)= x for all g ∈ G}.
Similarly, for a single diffeomorphism g, we set Fix(g) := {x ∈ M : g(x)= x}.

A similar statement to Proposition 2.2 holds for S1; it is stated as Proposition 2.12
below. But before we consider the S1 case, let us first develop some of the necessary
background for the proof of Proposition 2.2.

2.1. Hölder–Kopell theory. To prove Proposition 2.2 and its counterpart for diffeo-
morphisms of S1, we extend the theory of commuting diffeomorphisms of 1-manifolds that
stems from two classical theorems (Theorems 2.3 and 2.4 below) due to Hölder and Kopell.
This theory for 1-manifolds is already surprisingly rich—one can use Theorems 2.3 and 2.4
to prove, for instance, that all nilpotent groups of Diff2

+(S
1) are abelian, and that certain

dynamically characterized subgroups of Diff2
+(R) are all conjugate into the affine group.

Details and some background can be found in [4] and in [14, Ch. 4]. Here we restrict our
attention to results needed to prove Proposition 2.2.

THEOREM 2.3. (Kopell’s lemma [8]) Let g and h be commuting C2-diffeomorphisms of
the half-open interval I := [0, 1). If g is fixed point-free on the interior of I and h is not
the identity, then h is also fixed-point-free on int(I ).

THEOREM 2.4. (Hölder [7]) Let G be a group of orientation-preserving homeo-
morphisms of S1 or of the open interval. If G acts freely (i.e. no element other than the
identity has a fixed point), then G is abelian.

Both of these theorems admit elementary proofs. A nice proof of Theorem 2.3 is given
in [14, §4.1.1], and also in [4, Theorem 2.4]. The result most useful to us is the following
combination of Hölder’s theorem and Kopell’s lemma.

COROLLARY 2.5. (Hölder–Kopell lemma) Let g ∈ Diff2
+(I ). If g has no interior fixed

points, then the centralizer of g in Diff2
+(I ) is abelian.

Proof. Each element h in the centralizer C(g) commutes with g, so by Kopell’s lemma h
is either the identity or acts without fixed points on int(I ). Thus, C(g) acts freely and so
by Hölder’s theorem C(g) is abelian. 2
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Remark 2.6. Corollary 2.5 also follows from a more general theorem of Szekeres
(Theorem 3.2 in §3). We do not need the generality of Szekeres’s theorem here, and as it
is a deeper result than Hölder’s theorem and Kopell’s lemma we postpone its introduction
to §3.

We now make use of Corollary 2.5 to prove Proposition 2.2. We note that this
proposition can be easily deduced from [3, Lemma 3.2 and Theorem 3.5] (which
also proves some similar results for S1), but we give a self-contained proof here for
completeness.

Proof of Proposition 2.2. We will repeatedly use the following elementary fact.

FACT 2.7. Fix(hgh−1)= h Fix(g). In particular, if g and h commute, then Fix(g) is
h-invariant.

Let G be a non-abelian subgroup of Diffr
+(I ) with r ≥ 2. Let H be the centralizer of G

in Diffr
+(I ), and assume that H is non-abelian.

First, note that each element g ∈ G must have a fixed point in (0, 1), for if g is fixed-
point-free, then Corollary 2.5 says that C(g) is abelian, but H (which we assumed to be
non-abelian) is a subset of C(g).

We claim that in fact every endpoint of each component of I\Fix(g) is fixed by each
h ∈ H . To see this, let h ∈ H . If some point x ∈ Fix(g) is not fixed by h, then it lies in
some connected component J of I\Fix(h). Since g and h commute, Fix(h) is g-invariant.
In particular, g permutes the connected components of I\Fix(h). Since x ∈ J is fixed by
g, the interval J must be g-invariant. Apply the Hölder–Kopell lemma to g| J̄ . Since h has
no fixed points in J , but g does, we conclude that g| J̄ = id. Thus, the only fixed points of
g not necessarily fixed by h are interior points of Fix(g).

Since the endpoints of each component of I\Fix(g) are fixed by each h ∈ H , each
component of I\Fix(g) is H -invariant. Consider again a particular connected component
J of I\Fix(g). Kopell’s lemma implies that H | J̄ is abelian. Thus, if we let supp(g) denote
the closure of I\Fix(g), we know that H is abelian when restricted to

⋃
g∈G supp(g), and

hence on the closure of
⋃

g∈G supp(g). It follows that either there is some open set fixed
by each g ∈ G or H is abelian everywhere.

The proof for G ⊂ Diffr
c(R) follows quickly from the following observation.

Observation 2.8. There is an embedding ι : Diffr
c(R)→ Diffr (I ) whose image is the set of

diffeomorphisms of I supported away from the endpoints of I . In particular, for x ∈ int(I )
we may define ι(g)(x) by f g( f −1(x)), where f : R→ int(I ) is a C∞-diffeomorphism.

Hence, if G ⊂ Diffr
c(R) has non-abelian centralizer, then so does ι(G) as in

Observation 2.8. Our proof above shows that Fix(ι(G)) contains an open interval, hence
Fix(G) does as well. 2

A schematic picture of what fixed sets of non-abelian commuting G and H may look
like is given in Figure 1. In particular, we note the following corollary of the proof.
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FIGURE 1. Fix sets of G and H indicated above and below the line. If H has a fixed point in J and is not abelian
on J , then J ⊂ Fix(H).

COROLLARY 2.9. Let G ⊂ Diffr
+(I ) be as in Proposition 2.2, and let H be the centralizer

of G. Then G and H have a common fixed point in int(I ). Similarly, if G ⊂ Diffr
c(R) and

H is the centralizer of G, then G and H have a common fixed point.

Proof. We know that Fix(G) contains a non-trivial interval, and the proof of
Proposition 2.2 implies that each endpoint of this interval is fixed by all h ∈ H . 2

As another immediate consequence of Proposition 2.2, we have the following corollary.

COROLLARY 2.10. Let r ≥ 2 and let G and H be commuting, non-abelian subgroups of
Diffr
+(I ) or Diffr

c(R). If H is perfect, then H acts trivially on the complement of Fix(G).

Proof. We showed above that for any g ∈ G, the restriction of its centralizer to R\Fix(g)
is abelian. Since H is contained in the centralizer, its restriction to R\Fix(g) is abelian as
well. If H is perfect, this restriction must be trivial. 2

Since the groups Diffr
c(M) and Diffr (M)0 are perfect as long as r 6= dim(M)+ 1, we

will be able to apply Corollary 2.10 in the following.
We would like to have an analog of Proposition 2.2 for diffeomorphisms of the circle.

To do this, we develop a version of the Hölder–Kopell lemma for S1.

2.2. Circle diffeomorphisms. A major tool for studying homeomorphisms (or diffeo-
morphisms) of S1 is the rotation number. This is an R/Z-valued number, well defined for
each g ∈ Homeo+(S1). If we consider S1 as R/Z, the rotation number of an element g
is given by limn→∞ gn(0)/n, taken mod Z. A good exposition of the basic theory can be
found in [14]. We need only three facts here.
(1) A homeomorphism has rotation number 0 if and only if it has a fixed point.
(2) Homeomorphisms with rational rotation number of the form m/k are precisely those

with periodic points of period k.
(3) (Denjoy’s theorem) If g is a C2-diffeomorphism of the circle with irrational rotation

number θ , then g is topologically conjugate to rotation by θ .
Using fact (2), we see that if g is a diffeomorphism with rational rotation number,

then some iterate gk has a fixed point, hence can be viewed as a diffeomorphism of the
interval. This puts us in a situation where Kopell’s lemma applies. If instead g has
irrational rotation number, fact (3) tells us that g is conjugate to an irrational rotation. Since
any homeomorphism that commutes with an irrational rotation must also be a rotation
(see [14]), we conclude the following corollary.

COROLLARY 2.11. Let g ∈ Diff2
+(S

1). Then there is either some k ∈ N such that gk has a
fixed point, or the centralizer of g in Diff2

+(S
1) is abelian.
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This is the analog of the Hölder–Kopell lemma for S1. Now we state and prove our
analog of Proposition 2.2.

PROPOSITION 2.12. Let r ≥ 2 and let G ⊂ Diffr
+(S

1) be non-abelian. Let H be contained
in the centralizer of G. Then either:
(a) (H is abelian after powers) for each pair of elements h1, h2 ∈ H, there are integers

k1 and k2 such that hk1
1 and hk2

2 commute; or
(b) (G fixes an interval after powers) there is a subinterval J ⊂ S1 and for each g ∈ G

an integer kg such that J is fixed pointwise by gkg .

Proof. Let G and H be as in the statement of Proposition 2.12. Let g ∈ G. Since H is
non-abelian and centralizes g, Corollary 2.11 implies that g has rational rotation number.
Thus, after replacing g with gkg if necessary we can assume that g has a fixed point. We
may also assume that g was chosen so that gkg 6= 1, for if every element of G has finite
order, then case (b) holds. (In fact, in this case one can use Hölder’s theorem to show that
G is abelian.)

Now let h1 and h2 be any two elements of H . Since H and G commute, Corollary 2.11
implies again that h1 and h2 have rational rotation numbers, so there are integers k1 and k2

such that hk1
1 and hk2

2 have fixed points. The same argument as in Proposition 2.2 shows that

endpoints of components of S1
\Fix(gkg ) are fixed by each hki

i . Cutting S1 at any one of the

points of Fix(gkg ) reduces the action of gkg , hk1
1 and hk2

2 to an action on the interval, and

the proof of Proposition 2.2 again shows that hk1
1 and hk2

2 must commute when restricted
to S1
\Fix(gkg ).

Thus, if hk1
1 and hk2

2 do not commute everywhere, then there is some open set J ⊂ S1

that is fixed pointwise by some iterate gkg for every g ∈ G. This is exactly what we wanted
to prove. 2

Remark 2.13. Note that the collection of elements gkg that fix J in case (b) of
Proposition 2.12 are precisely the elements of G with rotation number zero. In general,
a collection of elements of Diff2

+(S
1) that all have rotation number zero need not be a

group, since the composition of two diffeomorphisms with fixed points need not have a
fixed point. But in this case the set of elements with rotation number zero is equal to the
subgroup of diffeomorphisms that fix J pointwise.

We remark also that Proposition 2.12 fails without the ‘after powers’ hypothesis—there
exist examples of two non-abelian, commuting subgroups of S1, neither of which fixes any
interval pointwise. However, it would be interesting to know whether the ‘after powers’
condition could be replaced by ‘virtually’ (i.e. after taking a finite index subgroup).

3. Flows and continuity
Example 1.7 in the introduction shows that not all R-actions on a manifold are continuous.
Our goal in this section is to see (roughly) that whenever M1 and M2 are 1-manifolds, and
Diffr

c(M1) includes in Diffp
c (M2), then R-subgroups of Diffr

c(M1) do act continuously—at
least on part of M2.

Definition 3.1. By a flow on a manifold M , we mean a continuous family of Cr -
diffeomorphisms φ(t, x) : R× I → I ; in other words, an R-subgroup of Diffr (M)
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or Diffr
c(M). We denote φ(t, x) by φt (x), and by {φt

} we mean the full R-subgroup
{φt
∈ G : t ∈ R}.

We will use the tools we developed in §2, as well as the following further result in the
spirit of Hölder–Kopell theory. Keeping our notation from §2, let I := [0, 1). We will also
use CG(H) to denote the centralizer of a subgroup H in a group G and CG(g) for the
centralizer of g ∈ G.

THEOREM 3.2. (Szekeres, see [14, Theorem 4.1.11]) Let r ≥ 2 and let ψ ⊂ Diffr
+(I ) be

a diffeomorphism with no interior fixed points. Then there is a unique flow ψ t of class
Cr−1 on (0, 1) and C1 on I such that ψ = ψ1 and the centralizer of ψ in Diff1

+(I ) is {ψ t
}.

Compare this theorem with the Hölder–Kopell lemma (Corollary 2.5). Under the same
hypotheses, the Hölder–Kopell lemma concludes that the centralizer of ψ in Diffr

+(I )
is abelian. Using Szekeres, we can conclude that CDiffr

+(I )(ψ) is a subgroup of a C1

flow on I .

3.1. Flows on the interval. Though our ultimate goal is a theorem about Diffr
+(S

1) and
Diffr

c(R), we first prove a result about flows in Diffr
+(I ). This allows us to use Szekeres’s

theorem in a straightforward way, and to make the simplifying assumption that our flows
have full support.

PROPOSITION 3.3. Let p, r ≥ 2 and let 8 : Diffr
+(I )→ Diffp

+(I ) be an injective group
homomorphism. Let {φt

} ⊂ Diffr
+(I ) be a flow that is fixed-point-free on (0, 1), and

suppose that there is some s such that 8(φs) is fixed-point-free on (0, 1). Then 8({φt
}) is

continuous in t. Moreover, there is a flow {ψ t
} such that 8(φt )= ψλt for some λ ∈ R.

The proof of Proposition 3.3 has several steps. We use Szekeres to find a candidate
flow {ψ t

} and reduce the question to continuity of a group homomorphism R→ R. We
next establish a simple criterion for continuity, and then relate this criterion to fixed
sets and commutators and apply our work from §2. Our main results of this section
(Propositions 3.8 and Corollary 3.12) are essentially built from this proof with the
assumption of full supports removed.

Proof of Proposition 3.3. To simplify notation let G = Diffr
+(I ). Suppose that8 : G→ G

is injective. Let {φt
} ⊂ G be a flow with no fixed points in (0, 1) and assume that

ψ :=8(φs) has no fixed points in (0, 1). Since {φt
} is contained in CG(φ

1), its image
{8(φt ) : t ∈ R} is contained in C8(G)(ψ). By Szekeres’s theorem, there is a C1 flow {ψ t

}

on I such that {8(φt )} ⊂ {ψ t
}. Moreover, that 8 is a group homomorphism implies that

8(φt )= ψα(t) for some additive group homomorphism α : R→ R. Thus, we now only
need to show that α is continuous.

We can detect continuity in a very simple way using intersections of open sets.
Essentially, α being continuous just means that if t is small enough then φα(t) will not
push an open set off itself. Formally, we have the following lemma.

LEMMA 3.4. (Continuity criterion) Let {ψ t
} be a flow on (0, 1) such that ψ t is fixed-

point-free for some (hence all) t 6= 0. Let α : R→ R be a group homomorphism, and
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let U ⊂ (0, 1) be an open set that is bounded away from 0 and 1. Then α is continuous if
and only if there is some δ > 0 such that (ψα(t)(U )) ∩U 6= ∅ for all t < δ.

Proof. One direction is almost immediate: if α is a continuous R→ R homomorphism,
then α(t)= λt for some λ ∈ R (easy exercise). Given δ sufficiently small and U open, for
any t < δ we have ψλt (U ) ∩U 6= ∅.

For the converse, suppose that α is not continuous. In this case, using the fact that α
is an additive group homomorphism, it is elementary to show that for any T > 0 there are
arbitrarily small t ∈ R such that |α(t)|> T . Suppose that U is bounded away from 0 and 1.
Since ψ t has no fixed points in (0, 1), for T large enough, ψ s(U ) will either be contained
in a small neighborhood of 0 or a small neighborhood of 1 whenever |s|> T . We can
ensure that this neighborhood is disjoint from U by taking T large. In particular, when
|α(t)|> T we will have ψα(t)(U ) ∩U = ∅. 2

The next step in the proof of Proposition 3.3 is to detect intersections of sets
algebraically (i.e. through the algebraic structure of the diffeomorphism group), using the
results of §2. The following notation will be useful.

Notation 3.5. For a group G of diffeomorphisms of a manifold M and a subset U ⊂ M , let

GU
:= {g ∈ G : g(x)= x for all x ∈U }.

The link between set intersections, subgroups, and centralizers comes from an
elementary corollary of Proposition 2.2.

COROLLARY 3.6. Let U ⊂ I and V ⊂ I be closed subsets properly contained in I . The
group 〈GU , GV

〉 generated by GU and GV has non-abelian centralizer if and only if
U ∩ V contains an open set.

Proof. The condition that U and V are closed and properly contained in I implies that
GU and GV are non-trivial and in this case non-abelian. If 〈GU , GV

〉 has non-abelian
centralizer, then Fix(〈GU , GV

〉) contains an open subset of I by Proposition 2.2. This
subset must be fixed pointwise by both GU and GV , so is a subset of U ∩ V .

Conversely, if U ∩ V contains an open set J , then the group of all diffeomorphisms
supported on J commutes with GU and GV , so commutes with 〈GU , GV

〉. 2

Now we can begin the real work of the proof of Proposition 3.3, using our continuity
criterion. Let U ⊂ I be an open set bounded away from 0 and 1. Since φt is continuous
in t , there is some δ > 0 such that for all t < δ we have φt (U ) ∩U 6= ∅. By Corollary 3.6,
this is equivalent to the statement that 〈GU , Gφt (U )

〉 has non-abelian centralizer. We want
to translate this into a statement about 8(GU ) and ψα(t).

To do this, note first that

Gφt (U )
:= {g ∈ G : g(x)= x for all x ∈ φt (U )}

= {φt gφ−t
: g(x)= x for all x ∈U }

= φt (GU )φ−t , (1)

and more generally, for any group of diffeomorphisms H and any diffeomorphism g, we
have

g Fix(H)= Fix(gHg−1). (2)
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FIGURE 2. Continuity of α detected by intersections of open sets.

Now consider 8(GU ). Since GU has non-abelian centralizer, 8(GU ) has non-abelian
centralizer as well. By Proposition 2.2, Fix8(GU ) contains an open set. Using (1), we
have

8(Gφt (U ))=8(φt )8(GU )8(φ−t )= ψα(t)(8(GU ))ψ−α(t),

and, letting U ′ denote Fix8(GU ), it follows from (2) that

Fix(8(Gφt (U )))= ψα(t)(U ′). (3)

For any t < δ, consider the subgroup

Ht := 〈8(G
U ), 8(Gφt (U ))〉 = 〈8(GU ), ψα(t)(8(GU ))ψ−α(t))〉.

Using (3), we have

Fix(Ht )= Fix(8(GU )) ∩ Fix(ψα(t)(8(GU ))ψ−α(t))=U ′ ∩ ψα(t)(U ′).

Ht also has non-abelian centralizer, so by Proposition 2.2, Fix(Ht )=U ′ ∩ ψα(t)(U ′)
contains an open set. If V = int(U ′), we know that V ∩ ψα(t)(V ) contains an open set as
well. (A picture of the situation so far is given in Figure 3.) If we knew further that V was
bounded away from 0 and 1, then we could apply Lemma 3.4 to V and conclude that α is
continuous.

This would finish our proof. Thus, it remains only to show that V is bounded away from
0 and 1. This is not hard to see, but uses a well-known theorem about diffeomorphism
groups called the fragmentation property.

THEOREM 3.7. (Fragmentation property) Let M be a manifold and B an open cover
of M. Then the group Diffr (M)0 is generated by the set {g ∈ Diffr (M)0 : supp(g) ∈ B
for some B ∈ B}.

Recall that supp(g) is the support of g, the closure of M\Fix(g). A proof of
Theorem 3.7 can be found in [2, Ch. 2].

Since {φt
} is a flow, for large enough s we have φs(Ū ) ∩ Ū = ∅. It follows from

the fragmentation property that GU and Gφs (U ) together generate G, so 8(GU ) and
8(Gφs (U )) generate 8(G). In particular, any point in I that is fixed by both 8(GU ) and
8(Gφs (U )) is fixed by every element of 8(G).

To show now that int(U ′) is bounded away from 0 and 1, assume for contradiction
that U ′ := Fix(8(GU )) contains a neighborhood of 0 (the case where it contains a
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neighborhood of 1 is identical). Then ψα(s)(U ′) contains a neighborhood of 0 as well,
but ψα(s)(U ′)= Fix(8(Gφs (U ))). By the previous paragraph, we conclude that 8(G)
pointwise fixes a neighborhood of 0, contradicting the fact that ψ had no fixed points
in (0, 1). This concludes the proof of Proposition 3.3. 2

Our next goal is to remove the assumption that our flows had no fixed points and work
with R instead of I . There is some technical work to do here to keep track of supports, but
the key ideas are really contained in the proof of Proposition 3.3.

PROPOSITION 3.8. Let r ≥ 3, p ≥ 2 and let 8 : Diffr
c(R)→ Diffp

c (R) be a homo-
morphism. For any z ∈ R, there is an n ∈ N such that any flow {φt

} ⊂ Diffr
c(R) without

fixed points in (−n, n) has 8({φt }) continuous in t on some neighborhood containing z.

Remark 3.9. It will follow from Theorem 1.5 that for any flow {φt
}, the image 8({φt

})

will be continuous in t everywhere, but we will not see this until we finish the whole proof
of the theorem.

Proof of Proposition 3.8. Let G denote Diffr
c(R). We start by taking some steps to make

the set-up in this situation as close as possible to the hypotheses of Proposition 3.3.
First, we may assume without loss of generality that Fix(8(G))= ∅. This is because

each connected component C of R\Fix(8(G)) is 8(G)-invariant, so we can consider
the restriction of elements in the image of 8 to C , giving a homomorphism Diffr

c(R)→
Diffp

c (C)∼= Diffp
c (R). Since G is perfect, this homomorphism is still injective.

Let {φt
} ⊂ G be a flow, and consider a connected component of R\Fix({φt

}). Identify
this interval with (0, 1) and consider its half-closure to be [0, 1)= I . As in the proof of
Proposition 3.3, let U ⊂ I be an open interval bounded away from 0 and 1.

Choose any s 6= 0 and let ψ =8(φs). Since ψ is compactly supported, it has non-
empty fixed set in R. Let J be a connected component of R\Fix(ψ). Since φt and φs

commute, J is {φt
}-invariant and we can apply Szekeres’s theorem to J̄ and conclude as

before that there is some flow {ψ t
} on J and an additive group homomorphism αJ : R→ R

such that 8(φt )|J = ψ
αJ (t). If Fix(8(GU )) ∩ J contains an open set, then the argument

from Proposition 3.3 applies verbatim to show that αJ is continuous, and so 8({φt
}) is

continuous on J .
Thus, the next lemma will finish the proof of Proposition 3.8.

LEMMA 3.10. Let G = Diffr
c(R) and suppose that 8 : G→ Diffp

c (R) satisfies
Fix(8(G))= ∅. Then:
(a) for any z ∈ R, there is a bounded set U ⊂ R such that z is in the interior of

Fix(8(GU )); and
(b) any flow {φt

} ⊂ G with sufficiently large support has z /∈ Fix(8(φs)) for some s.

Given this lemma, we know that any flow with sufficiently large support will have
a connected component J of R\Fix(8(φs)) with z contained inside an open set in
Fix(8(GU )) ∩ J , so the argument we just gave shows that 8({φt

}) is continuous on J .

Proof of Lemma 3.10. Let z ∈ R. Suppose for contradiction that there is no bounded, open
interval U such that z ∈ int(Fix(8(GU ))). Let GU := {g ∈ G : g(x)= x for all x /∈U }.
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FIGURE 3. If φs (Ū ) ∩ Ū = ∅, then z is not fixed by 8(φs ).

By the fragmentation property (Theorem 3.7), the subgroups GU generate G as U ranges
over open intervals of R.

Now for any open set U , the subgroup GU commutes with GU . Also, GU is perfect
and GU non-abelian, so by Corollary 2.10, R\Fix(8(GU ))⊂ Fix(8(GU )). It follows that
z ∈ Fix(8(GU )) for every U . Since the 8(GU ) generate 8(G), we have z ∈ Fix(8(G)),
a contradiction. This proves (a).

To prove (b), take a bounded set U such that z is in the interior of Fix(8(GU )).
We claim that any flow {φt

} ⊂ G with support containing U satisfies z /∈ Fix(8(φs)) for
some s. To show this, suppose that {φt

} is such a flow. We know that there is some s such
that φs(Ū ) ∩ Ū = ∅, so φs and GU generate G (using fragmentation again). In particular,
if z ∈ Fix(8(GU )) ∩ Fix(8(φs)), then z ∈ Fix(8(G)), which we assumed to be empty. So
z /∈ Fix(8(φs)) and this is what we wanted to show.

This completes the proof of the lemma and the proof of Proposition 3.8. 2

To extend Proposition 3.8 to homomorphisms 8 : Diffr
c(R)→ Diffp

+(S
1), we need a

lemma. This is the diffeomorphism group analog to the fact that any injection R ↪→ S1

must miss a point.

LEMMA 3.11. Let r, p ≥ 2 and let 8 : Diffr
c(R)→ Diffp

+(S
1) be a homomorphism. Then

Fix(8(Diffr
c(R))) 6= ∅.

Proof. Let Gn be the group of diffeomorphisms with support contained in (−n, n). Then
Gn ⊂ Gn+1 and

G =
⋃
n∈N

Gn .

It follows that 8(Gn)⊂8(Gn+1), so

Fix(8(Gn))⊃ Fix(8(Gn+1)). (4)

Moreover, since
8(G)=

⋃
n∈N

8(Gn)

we have also
Fix(8(G))=

⋂
n∈N

Fix(8(Gn)). (5)

Now each Gn commutes with the subgroup Hn of diffeomorphisms fixing [−n, n]
pointwise and the subgroups8(Gn) and8(Hn) satisfy the hypotheses of Proposition 2.12.
In particular, if we let G ′n be the group of elements of 8(Gn) with rotation number zero,
this is a non-trivial subgroup (by Remark 2.13) so by simplicity of Gn , we have G ′n = Gn .
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It now follows from Proposition 2.12 that Fix(8(Gn)) 6= ∅. Since fixed sets are closed, it
follows from (4) and (5) that Fix(8(G)) 6= ∅. 2

The following corollary of Proposition 3.8 is now immediate.

COROLLARY 3.12. Let r ≥ 3, p ≥ 2, and suppose that 8 : Diffr
c(R)→ Diffp

+(S
1) is a

homomorphism. For any z ∈ S1
\Fix(8(G)), there is an n ∈ N such that if {φt

} ⊂ Diffr
c(R)

is a flow without fixed points in (−n, n), then8({φt }) is continuous in t on a neighborhood
containing z.

Proof. By Lemma 3.11, there is some point x ∈ Fix(8(Diffr
c(R))). Moreover, the

derivative of every element 8(g) ∈8(Diffr
c(R)) at x is zero, for g 7→ D8(g)(x) is a

homomorphism to R, and since Diffr
c(R) is perfect, it must be trivial. The same applies

to higher order derivatives. Cutting S1 at x , we can consider 8 to be a homomorphism
into the subgroup of diffeomorphisms in Diffp

+(S
1
\{x}) where all derivatives vanish at

the endpoints. This is isomorphic to a subgroup of Diffp
c (R), and Proposition 3.8 now

applies. 2

A similar conclusion holds for homomorphisms 8 : Diffr
+(S

1)→ Diffr
+(S

1). Since we
will not use this in the following, we state it informally and only sketch the proof, leaving
the details to the reader.

COROLLARY 3.13. Let r ≥ 3, and suppose that 8 : Diffr
+(S

1)→ Diffr
+(S

1) is a
homomorphism. Then for any z ∈ S1, any flow {φt

} ⊂ Diffr
+(S

1) with sufficiently large
support has 8({φt

}) continuous at z.

Proof sketch. There are two classes of R-subgroups of Diff+(S1): those with non-empty
fix set and those conjugate to the rotation subgroup. If Fix({φt

}) 6= ∅, we can cut S1

at a point x ∈ Fix({φt
}) and apply Corollary 3.12 with the group of diffeomorphisms of

S1
\{x} ∼= R as the domain. Otherwise, {φt

} is conjugate to the rotation subgroup, and we
can use torsion elements and Hölder–Kopell theory to show that 8({φt

}) is conjugate to
the rotation subgroup as well. Continuity in t can be demonstrated for small t , since for
small t we can choose x and y ∈ S1 and write rotation by t as f t gt , where f t is a flow
supported on S1

\{x} and gt a flow supported on S1
\{y}. We may also choose f t and gt to

have arbitrarily large supports. Corollary 3.12 then implies that 8({ f t
}) and 8({gt

}) are
continuous at every point, hence so is 8({φt

})—at least for small t . But since 8({φt
}) is

an R-subgroup, it must be continuous for all t . 2

4. Proof of Theorem 1.5
We start by proving Theorem 1.5 for diffeomorphisms of R. Namely, we show the
following.

THEOREM 4.1. Let r ≥ 3, p ≥ 2, and let 8 : Diffr
c(R)→ Diffp

c (R) be non-trivial. Then
8 is topologically diagonal. If r = s, then 8 is Cr -topologically diagonal.

The proof of this theorem contains the essence of the proof of Theorem 1.5. The only
difference in the statement of Theorem 1.5 is that Diffr

c(R) and/or Diffp
c (R) can be replaced

with Diffr
+(S

1) (and/or Diffp
+(S

1)). We deal with this easily at the end of this section.
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Proof of Theorem 4.1. Let G denote the group Diffr
c(R) and, as before, for a subset U ⊂ R

let GU denote the subgroup {g ∈ G : gx = x for all x ∈U }.
Let 8 : G→ G be a non-trivial homomorphism. Assume first for simplicity that

Fix(8(G))= ∅. In this case, we need only construct one map f : R→ R such that
8(g)= f g f −1 for all g ∈ G. To construct f , we use Proposition 3.8 (continuity of flows)
along with Proposition 2.2 to show that particular subgroups of point stabilizers in G map
under 8 to subgroups of point stabilizers. This lets us build a point-to-point R→ R map
out of the data of 8.

For x ∈ int(I ), let

Gx
:= 〈G(−∞,x], G[x,∞)〉.

Since G(−∞,x] and G[x,∞) commute, we have

Gx ∼= G(−∞,x]
× G[x,∞). (6)

Note that the set Gx is contained in, but not equal to, the point stabilizer Gx —we will need
to use the fact that Gx decomposes as a direct product so the full point stabilizer will not
work. However, the fragmentation property still implies that

if g(x) 6= x then 〈Gx , g〉 = G. (7)

Now let Ax := Fix(8(Gx )). The product structure of Gx in (6) means that

8(Gx )=8(G(−∞,x])×8(G[x,∞)).

Corollary 2.9 shows that two non-abelian, commuting subgroups must have a common
fixed point. In particular, 8(G(−∞,x]) and 8(G[x,∞)) have a common fixed point, so
Ax = Fix(8(Gx )) 6= ∅. Eventually we will see that Ax consists of a single fixed point and
f (x)= Ax will be our map.

LEMMA 4.2. (Easy properties of Ax ) Let 8 : G→ G be a homomorphism and assume
that Fix(8(G))= ∅. Let Ax = Fix(8(Gx )) as above. Then:
(1) Ax 6= ∅;
(2) Ax ∩ Ay = ∅ whenever x 6= y;
(3) if g ∈ G and g(x)= y, then 8(g)(Ax )= Ay .

Proof. (1) follows from our discussion above. To prove (2), note that, by the fragmentation
property (Theorem 3.7), if x 6= y then Gx and G y together generate G. Now if some
point z ∈ R is fixed by both 8(Gx ) and 8(G y), then z is fixed by every element of
8(G)= 〈8(Gx ), 8(G y)〉, contradicting our assumption that Fix(8(G))= ∅. This shows
that Ax ∩ Ay = ∅.

The proof of (3) is elementary: if g is a diffeomorphism with g(x)= y, then

G y
= gGx g−1,

and so

Ay = Fix(8(gGx g−1))=8(g)(Fix(Gx ))=8(g)(Ax ). 2
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FIGURE 4. The definition of f : R→ R.

Using Lemma 4.2, we now show that Ax consists of isolated points. Let z ∈ Ax and let
{φt
} ⊂ G be a flow such that φt (x) 6= x for t 6= 0, and such that8(φt ) is continuous in t at

z. Such a flow exists by Proposition 3.8; in fact any flow φt with large enough support will
work. Let J be the connected component of R\Fix(8(φt )) containing z. Proposition 3.8
says that there is a flow ψ t on J such that 8(φt )|J = ψ

λt . If ψλt (z)= z for t 6= 0, then
z is fixed by both ψλt and 8(Gx ). It follows from (7) above that z is then fixed by all of
8(G). This contradicts our assumption. Thus, z is not fixed by any such flow.

This shows that z must be an isolated point of Ax ; if not, there is some z′ ∈ Ax ∩ J
and some small t 6= 0 such that ψλt (z)= z′. But property (3) of Lemma 4.2 says that
z′ ∈ Aφt (x), and property (1) says that Aφt (x) ∩ Ax = ∅.

We now build a continuous map f : R→ R. For y ∈ R define f (y) as follows. Take
any flow {φt

} ⊂ G such that φs(x)= y for some s and such that 8(φt ) is continuous in t
at z. Then set f (y)=8(φs)(z). See Figure 4. We will show that f is:
(a) well defined;
(b) continuous and injective;
(c) G-equivariant, meaning that f g(y)=8(g)( f (y)) for all g ∈ G and y ∈ R;
(d) surjective;
(e) Cr in the case where r = p.
These will all follow from the continuity of flows at z and the easy properties of the sets
Ax . In particular, we will use the fact that for any flow {φt

} used in the definition of f (y),
we have

8(φs)(z) ∈8(φs)(Ax )= Ay .

Well defined. Let {φt
} and {ηt

} be two flows such that φs(x)= ηr (x)= y and such
that both 8(φt ) and 8(ηt ) are continuous in t at z. Suppose for contradiction that
8(φs)(z) 6=8(ηr )(z). Then 8(φs)(z)=8(ηq)(z) for some q 6= r . But then ηq(x)= y′

for some y′ 6= y. It follows that 8(ηq)(z) ∈ Ay′ ∩ Ay , a contradiction.

Continuity and injectivity. Continuity is immediate from the definition of f since8(φt ) is
continuous on the connected component of its support that contains z. Injectivity follows
from continuity and the fact that Ay′ ∩ Ay = ∅ for y 6= y′.

G-equivariance. By construction, the image of f contains exactly one point of Ay for each
y ∈ R. Given y ∈ R and g ∈ G, let {φt

} be a flow such that φ1(x)= y and φs(x)= g(y)
for some s. We may also choose {φt

} to have as large support as we want, so as to ensure
it is continuous at z. Then

f (y)=8(φ1)(z)
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and
8(g) f (y)=8(g)8(φ1)(z)=8(gφ1)(z) ∈ Ag(y).

We also have
f (g(y))= f (φs(x))=8(φs)(z) ∈ Ag(y),

so it follows that f g(y)=8(g)( f (y)).

Surjectivity. The G-equivariance of f implies that the image of f is8(G)-invariant. Since
we assumed that Fix(8(G))= ∅, the image of f must be R.

It remains to show that f is Cr under the assumption that p = r . To do this, we need a
generalization of the following theorem of Takens.

THEOREM 4.3. (Takens [17]) Let f : M1→ M2 be a bijection between two smooth
manifolds M1 and M2 with the property that g : M1→ M2 is a C∞-diffeomorphism if
and only if f g f −1 is a C∞-diffeomorphism. Then f is also a C∞-diffeomorphism.

In our case, f : R→ R satisfies the property that for each g ∈ G the conjugate f g f −1
=

8(g) is Cr . We also know that8(G) acts transitively on the image of f . Takens’s original
proof can be easily adapted to this case to show that f is of class Cr . We omit the details.
The reader may also consult the main theorem of Rybicki in [15] for a similar (but more
complicated to state) theorem that applies directly to our situation.

Thus, we have shown that Theorem 4.1 holds provided that Fix(8(G))= ∅. If instead
Fix(8(G)) 6= ∅, we can pick any connected component J of R\Fix(8(G)) and run the
proof above for the induced group homomorphism 8J : G→ Diffr (J ) given by 8J (g)=
8(g)|J . What we get is a homeomorphism (or Cr -diffeomorphism in the p = r case)
f : R→ J such that f (g(x))=8(g)( f (x)) for all g ∈ G. Doing this separately on each
connected component defines the topologically diagonal embedding.

This completes the proof of Theorem 4.1. 2

Using the fact that the image of our homomorphism is Diffp
c (R), that is, all

diffeomorphisms in the image have compact support, we may conclude something stronger
about the topologically diagonal embedding.

PROPOSITION 4.4. Suppose that p, r ≥ 2 and8 : Diffr
c(R)→ Diffp

c (R) is a topologically
diagonal embedding. Then there are only finitely many connected components of
R\Fix(8(Diffr

c(R))).

Proof. This will follow from the fact that 8(G) acts by C2-diffeomorphisms along with
the ‘diagonality’ of the action of 8(G). That the embedding is topologically diagonal
means exactly that for any two connected components J1 and J2 of R\Fix(8(G)) with
embeddings fi : R→ Ji , we have

( f2 f −1
1 ) ◦8(g)|J1 ◦ ( f1 f −1

2 )=8(g)|J2

for each g ∈ G. In other words, f2 f −1
1 conjugates the action of G on J1 with the action

of G on J2. We also know that there is some compact subset of R that contains all the
connected components Ji that are bounded. Moreover, Takens’s theorem (Theorem 4.3)
implies that each f2 f −1

1 is of class Cs , where s =min(p, r)≥ 2. One can show that such
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an action can be made C1, but it will necessarily have unbounded derivatives. See, for
example, [14] for more details. 2

4.1. Finishing the proof of Theorem 1.5. We conclude by stating the necessary
modifications to replace either copy of R with S1 in the statement of Theorem 4.1 and
therefore prove Theorem 1.5. There are three cases to consider.
(1) Homomorphisms 8 : Diffr

+(S
1)→ Diffp

c (R). There are no non-trivial such homo-
morphisms since Diffr

+(S
1) is simple and has torsion.

(2) Homomorphisms 8 : Diffr
c(R)→ Diffp

+(S
1). For this, the proof of Theorem 4.1

above works verbatim and shows that this embedding is topologically diagonal.
Note, in particular, that there must be some point in S1 fixed by every diffeo-
morphism in the image of 8.

(3) Homomorphisms 8 : Diffr
+(S

1)→ Diffp
+(S

1). Diffr
+(S

1) contains many copies of
Diffr

c(R) (as in Example 1.1(c)) since there are many embeddings of R in S1. For any
such copy, consider the restriction of 8 to the Diffr

c(R) subgroup, a homomorphism
Diffr

c(R)→ Diffp
+(S

1). We know already that this must be topologically diagonal.
The fact that this is true for any copy means that the embeddings are compatible,
in the sense that if fi and f j are any two maps R→ S1 coming from any two
embeddings of copies of Diffr

c(R), then fi and f j agree on their common domain.
It follows that the fi patch together to define a globally defined, continuous map
f : S1

→ S1, which is locally a homeomorphism. The fact that f is equivariant with
respect to the action of Diffr

+(S
1) and that Diffr

+(S
1) contains finite order rotations

means that f must be a global homeomorphism. Again, we can use Takens’s theorem
to show that f is Cr provided that p = r . It is also possible to show that 8 is
topologically diagonal in this case by using flows on S1 and Corollary 3.13.

5. Application: dimension as an algebraic invariant
Recall the statement of Theorem 1.6.

THEOREM 1.6. Let r ≥ 3, p ≥ 2, let M1 be any manifold and M2 a 1-manifold. Suppose
that 8 : Diffr

c(M1)→ Diffp
c (M2) is an injective homomorphism. Then dim(M1)= 1 and

8 is topologically diagonal. If r = p, then 8 is Cr -topologically diagonal.

To prove this it will be enough to show that dim(M1)= 1, since in that case it follows
from Theorem 1.5 that 8 is topologically diagonal.

We start with an easy corollary of Szekeres’s theorem.

COROLLARY 5.1. Let r ≥ 2 and let g be a Cr -diffeomorphism of I = [0, 1) with no
interior fixed points. Then g2 and g have the same centralizer in Diffr

+(I ).

Proof. By uniqueness of the flow in Szekeres’s theorem, CDiff1
+(I )

(g)= CDiff1
+(I )

(g2).
Since

CDiffr
+(I )(g)= CDiff1

+(I )
(g) ∩ Diffr (I ),

we have also
CDiffr

+(I )(g)= CDiffr
+(I )(g

2). 2
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With a little more work, we can show that Corollary 5.1 is also true for compactly
supported diffeomorphisms of R.

LEMMA 5.2. Let r ≥ 2 and let g ∈ Diffr
c(R). Then CDiffr

c(R)(g)= CDiffr
c(R)(g

2).

Proof. That C(g)⊂ C(g2) is immediate. We prove that the reverse containment also holds.
Let g ∈ Diffr

c(R) and suppose that r ≥ 2. Then Fix(g) 6= ∅ and for any connected
component J of R\Fix(g) we can apply Szekeres’s theorem to g| J̄ . Note that since g
is orientation-preserving, Fix(g)= Fix(g2).

Consider a connected component J of R\Fix(g). By Corollary 5.1, any diffeomorphism
that leaves J invariant and commutes with g2 on J also commutes with g on J . A Cr -
diffeomorphism h that commutes with g2 but does not leave J invariant must map J to an-
other connected component of R\(Fix(g)), say J ′. Moreover, h must conjugate the action
of g2 on J to the action of g2 on J ′. By uniqueness of the flow from Szekeres’s theorem, if
gt

J is the flow on J that commutes with g2
|J then hgt

J h−1 is the flow on J ′ that commutes
with g2

|J ′ . It follows that h conjugates the action of g = (g2)1/2 on J to the action of g on
J ′. In other words, for any x ∈ J , we have hg(x)= gh(x), that is, h commutes with g on J .
Since this is true for any component of R\Fix(g), it follows that h commutes with g. 2

Now we can easily prove Theorem 1.6 if M2 = R.

Proof of Theorem 1.6, M2 = R case. Suppose that M1 is a manifold of dimension n ≥ 2
and that 8 is an injective homomorphism Diffr

c(M1)0→ Diffp
c (R). Let Bn be an open

ball in M1 and consider the induced injective homomorphism Diffr
c(B

n)→ Diffr
c(R) given

by restricting the domain of 8 to elements supported in Bn . We claim that no such
homomorphism exists.

To see this, we will construct a diffeomorphism g ∈ Diffr
c(B

n) such that

C(g2)Diffr
c(Bn) 6= C(g)Diffr

c(Bn),

that is, such that there is some h∈Diffr
c(B

n)⊂Diffr
c(M1), where [h, g2

]=1 but [h, g] 6=1.
In this case we will have that [8(h), 8(g2)] = 1 but [8(h), 8(g)] 6= 1 in Diffr

c(R),
contradicting Lemma 5.2.

To construct g, choose any diffeomorphism that acts as rotation by π on a small cylinder
B2
× [0, 1]n−2 inside Bn , and has trivial centralizer outside D2

× [0, 1]n−2. Precisely,
we want the restriction of g to B2

× [0, 1]n−2 to be given by (reiθ , x) 7→ (rei(π+θ), x).
Now let h be any diffeomorphism supported inside D2

× [0, 1]n−2 that does not commute
with g. By construction, the restriction of g2 to D2

× [0, 1]n−2 is trivial, so h commutes
with g2, as desired. 2

Unfortunately, there are elements g ∈ Diffr (S1) such that C(g) 6= C(g2)—finite order
rotations are one example, but there are infinite order such elements as well. Thus, our
proof above will not work if M2 = S1. To prove Theorem 1.6 when M2 = S1, we will use
the description of Diffr

c(R) actions from Theorem 1.5.

Proof of Theorem 1.6, M2 = S1 case. Suppose that M1 is a manifold of dimension n ≥ 2
and that8 is an injective homomorphism Diffr

c(M1)0→ Diffp
c (S1). We want to produce a

contradiction. We claim that it is enough to show that there is no injective homomorphism

210 K. Mann

https://doi.org/10.1017/etds.2013.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.31


FIGURE 5. Diffrc(R) embeds in Diffrc(B) by acting on the radii of an annulus.

Diffr
c(B

2)→ Diffp
+(S

1). (Recall that B2 is the open two-dimensional disc.) This is
because of the following easy lemma.

LEMMA 5.3. Diffr
c(B

2) embeds as a subgroup of Diffr
c(M1) for any manifold M1 of

dimension at least two.

Proof of Lemma 5.3. This is trivial if dim(M1)= 2, since B2 embeds in M1 as an open
submanifold. If dim(M1)= n > 2, we can embed Diffr

c(B
2) in Diffr

c(B
2
× Sn−2) via

g · (b, s)= (g(b), s). Then take any embedding of B2
× Sn−2 in M1 as an open

submanifold. This defines an embedding Diffr
c(B

2
× Sn−2) ↪→ Diffr

c(M1). 2

Thus, we have reduced the proof of Theorem 1.6 to the following lemma.

LEMMA 5.4. There is no injective homomorphism Diffr
c(B

2)→ Diffp
+(S

1).

Proof of Lemma 5.4. First, we show that Diffr
c(B

2) has a subgroup H isomorphic to
Diffr

c(R). To do this, let τ : Diffr
c(R)→ Diffr

c(R× S1) be the map given by τ(g)(x, s) 7→
(g(x), s), and let f : (R× S1)→ B2 be a Cr embedding. Then f∗τ : Diffr

c(R)→
Diffr

c(B
2) is injective with image H ∼= Diffr

c(R). See Figure 5.
Suppose for contradiction that 8 : Diffr

c(B
2)→ Diffp

+(S
1) is injective. By

Theorem 1.5, 8(H) is a topologically diagonal embedding, and by Proposition 4.4,
Fix(8(H)) has finitely many connected components. Let N be the number of components
of Fix(8(H)). Note that if φ is any diffeomorphism of S1 that permutes the components
of S1
\Fix(8(H)), then φN ! leaves each component of S1

\Fix(8(H)) invariant.
We will find a diffeomorphism g ∈ Diffr

c(B
2) with support disjoint from supp(H), and

such that the centralizer of g2(N !) is not equal to the centralizer of gN !. To construct such
a g, we may use a diffeomorphism that acts as rotation by π/N ! on a small cylinder
disjoint from supp(H), similar to the construction in the M2 = R case above. Let g′ be
a diffeomorphism supported on the cylinder that does not commute with gN !. As in our
construction for the M2 = R case, g′ commutes with H and with g2(N !) but not with gN !.

Homomorphisms between diffeomorphism groups 211

https://doi.org/10.1017/etds.2013.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.31


Since g and H commute, 8(g) commutes with 8(H), and 8(g)N ! leaves invariant
each subinterval or isolated point of Fix(8(H)). Moreover, since 8(g)N ! commutes with
8(H) and H is non-abelian,8(g)N ! must be supported on the subintervals fixed by8(H)
(we are using the proof of Proposition 2.2 again here). In particular, we can regard8(g)N !

and 8(g)2N ! as diffeomorphisms of an interval, both with the same support.
Finally, consider 8(g′). Since 8(g′) commutes with 8(H), we also have that 8(g′)N !

leaves invariant each isolated point or subinterval of Fix(8(H)). In particular, it fixes
some point and we may regard8(g′)N ! as a diffeomorphism of the interval. Then8(g′)N !

commutes with 8(g)2N ! but not with 8(g)N !, contradicting Lemma 5.2.
This completes the proof of Lemma 5.4 and the proof of Theorem 1.6. 2

6. Compact support, simplicity, and smoothness
We remark on some of the hypotheses of our theorems and ask about generalizations.

6.1. Compact support. As mentioned in the introduction, the group Diffr
c(M) is simple

for r 6= dim(M)+ 1. We believe that it should be possible to prove an analog of
Theorem 1.5 for Diffr (R)0 rather than Diffr

c(R) using the following theorem of Schweitzer,
which classifies all normal subgroups of Diffr (R)0.

THEOREM 6.1. (Schweitzer [16]) Let r ≥ 3. There are only three proper normal
subgroups of Diffr (R)0:
(a) the group of diffeomorphisms coinciding with the identity in a neighborhood of∞;
(b) those coinciding with the identity in a neighborhood of −∞;
(c) Diffr

c(R).

Remark 6.2. This is actually a special case of a much more general theorem which
classifies normal subgroups of Diffr (Rn)0, for any r ≥ 1, such that r 6= n + 1.

Thus, any non-injective homomorphism8 : Diffr (R)0→ Diffp(R)0 has kernel equal to
one of the subgroups above. We conjecture that no such homomorphism exists.

Note also that we did not make very heavy use of the fact that the target group
was a group of compactly supported diffeomorphisms (or even orientation-preserving
diffeomorphisms). It may be possible to adapt our proofs for homomorphisms 8 :
Diffr

c(R)→ Diffr (R), starting with a modified version of Proposition 2.2.

6.2. Manifolds with boundary. Our results are not true for manifolds with boundary. For
example, Diffr

[0, 1] admits non-trivial homomorphisms to R given by taking the derivative
at 0 or at 1. These can be used to build homomorphisms of Diffr

[0, 1] into Diffr
[0, 1] or

Diffr
c(R) that are not topologically diagonal.

However, I do not know whether it is possible to construct any counterexamples without
using derivatives.

Question 6.3. Let G∞ be the group of C∞ diffeomorphisms of the interval that are
infinitely tangent to the identity at 0 and at 1. Do there exist homomorphisms 8 : G∞→
Diffr

c(R) that are not topologically diagonal?
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6.3. Smoothness. There are also counterexamples to some of our tools when we
remove assumptions on smoothness. In §2 on commuting subgroups, we assumed all
diffeomorphisms were of class at least C2. Although C1+bv would have sufficed, Kopell’s
lemma and Denjoy’s theorem do not hold for C1-diffeomorphisms. Namely, there are
fixed-point-free C1-diffeomorphisms of the interval commuting with C1-diffeomorphisms
that have fixed points, as well as C1-diffeomorphisms of the circle with irrational rotation
number that are not conjugate to irrational rotations (see [14]). Note also that the group
Diff1+bv(S1) is known to be not simple (see [11]) and whether the group Diff2(S1) is
simple is unknown! In particular, Diff1+bv(S1) admits non-topologically diagonal and even
non-continuous homomorphisms to other groups of diffeomorphisms, and it is possible that
Diff2(S1) does as well.

However, working in the category of homeomorphisms rather than diffeomorphisms,
Militon has recently obtained results in the same spirit as ours, using different techniques.
See [12, 13].

6.4. Higher dimensions. We conclude with a final remark on one of the difficulties in
extending the results of this paper to manifolds of dimension n > 1. Our methods here
relied heavily on properties of commuting subgroups, namely, the Hölder–Kopell theory
and Proposition 2.2. The following example shows that Proposition 2.2 does not hold in
higher dimensions.

Example 6.4. (Large centralizers in higher dimensions) Consider the following two sub-
groups of Diffr (R2):

G := { f ∈ Diffr (R2) : f (x, y)= ( f1(x), y) for some f1 ∈ Diffr (R)};
H := { f ∈ Diffr (R2) : f (x, y)= (x, f2(y)) for some f2 ∈ Diffr (R)}.

These commute, that is, H is a subset of the centralizer of G, they are both ‘large’ in
the sense that they are infinite-dimensional, non-abelian, etc. and yet neither one fixes any
non-empty subset of R2.

Similar subgroups can be found in Diffr (T2), in Diffr (Rn) and Diffr (Tn) for the n-
dimensional torus. However, we note that the groups G and H above are not groups of
compactly supported diffeomorphisms.

Question 6.5. Do there exist examples of large (for any reasonable definition of ‘large’)
commuting subgroups in Diffr

c(Rn) that do not fix any open set? Do there exist examples
in Diffr

c(M
n) for all n-manifolds?

A negative answer to this question would be the first step towards finding an
algebraic–topological correspondence for manifolds of higher dimension, analogous to the
correspondence we found here for 1-manifolds.
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