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Abstract
This work presents the design and the corresponding stability analysis of a desired model-based, joint position
constrained, controller formulation for robotic manipulators. Specifically, provided that the initial joint position
tracking error signal starts within some predefined region, the proposed controller ensures that the joint tracking
error signal remains inside this region and approaches to zero asymptotically. Extensive numerical simulations
and experimental studies performed on a two-link direct-drive planar robot are provided in order to illustrate the
effectiveness and feasibility of the proposed controller.

1. Introduction

One drawback of controller designs for multi-input multi-output (MIMO) systems based on Lyapunov-
type analysis techniques is the lack of direct knowledge of the transient performance of the system states.
As the outcome of the stability analysis via Lyapunov-based arguments is usually stated with respect to
increasing time. Specifically, when the overall stability result obtained through a Lyapunov-based anal-
ysis is asymptotic stability of the system states, we can conclude that the states of the system remain
bounded (i.e., in L∞ ) and will eventually converge to the desired states, but this does not give informa-
tion on how the states behave during the transient. However, on real-world systems, transient behaviour
is as important as the type of the stability obtained, as this also frames the steady-state behaviour. When
the direct manipulation of transient behaviour is not possible, then at least a reasonable bound should
be ensured preferably a priori. Special to the robotic manipulators, transient behaviour of the system
states, and the overshoot is of critical importance [1]. The upper bound of the state overshoot values are
restrictive in most robotic applications when there are humans in the proximity of the operating region.

A possible solution to this problem relies on barrier Lyapunov function (BLF) approach-based
designs. Although applying constraints was considered in optimisation field for quite some time, its
application to non-linear control field is relatively new and dates back to early 2000s [2, 3]. Some line
of the past studies applied BLFs to deal with constraints for systems in the Brunovsky form [2], in strict
feedback form [3], in strict feedback form with time-varying output constraints [4] and in pure feedback
form [5]. An asymmetric BLF was proposed for systems in pure feedback form under time-varying full-
state constraints in ref. [6]. In ref. [7], bounding both the trajectory tracking error and the parameter
estimation error vector within user-defined constraint sets have been considered. A constraint-based
model predictive controller for the tracking control of mobile manipulation was considered
in ref. [8].
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One line of research have focused on applying BLF type control designs to mechatronic systems.
In ref. [9], a systematic motion controller based on BLF was designed for servo systems. In refs. [10]
and [11] used prescribed performance criteria for regulation control of robot manipulators, which are
extended to tracking control in refs. [12], [13] and [14]. Hackl and Kennel, in ref. [15], designed a
position controller with prescribed performance criteria for robot manipulators when dynamic model
is partially known. In ref. [16], a task space regulator guaranteeing prescribed performance was pro-
posed while ref. [17] used BLF-based approach for joint limit avoidance sub-task of redundant robot
manipulator control problem. In ref. [18], prescribed performance methods were utilised for referential
control of human-like movements of redundant arms. In refs. [19] and [20] considered force/position
control of robot manipulators with prescribed performance while guaranteeing contact. In ref. [21] a
robust adaptive controller was proposed to deal with the joint level constraints of robotic manipulator
via use of BLF and an adaptive neural network controller for robot manipulators using integral BLF was
proposed in ref. [22]. Recently, some work on adaptive and robust compensation of parametric uncer-
tainties for robot manipulators based on Fourier series expansion has been proposed in refs. [23] and
[24], respectively.

In this work, tracking control of robot manipulators in joint space is aimed. In addition to the joint
position tracking objective, ensuring a priori limits for the entries of the joint tracking error is aimed
as the secondary control objective. The control problem is further complicated due to the presence
of parametric uncertainties in the mathematical model of the robot manipulator. To ensure tracking
control objective, a non-linear proportional derivative feedback component is designed. To deal with the
parametric uncertainties, desired model compensation-based adaptive controller component is proposed
as part of the control input. Different from the similar designs in the literature, in a novel approach, the
control gain of the tracking error is proposed to be error-dependent and two fundamentally different
control gain matrices are designed. To ensure limiting the entries of the tracking error in addition to
guaranteeing asymptotic convergence to the origin, two BLFs are introduced. To our best knowledge, the
proposed method is the first controller approach that fuses the use of BLF design with the desired model-
based compensation procedure. Due to the use of the desired trajectory signal, the proposed controller
enables a smoother output compared to its counterparts and is less exposed to sensory noise. Numerical
simulation results are shown to be commensurate with the analysis and experimental verifications are
presented in order to illustrate the feasibility of the proposed method.

2. Robot model

The mathematical model of an n degree of freedom (dof) revolute joint robot manipulator is presented
as [25]

M(q) q̈ + C(q, q̇) q̇ + G(q) + Fdq̇ = τ (1)

in which q (t), q̇ (t), q̈ (t) ∈R
n are the vectors for joint positions, velocities and accelerations, respec-

tively, M (q) ∈R
n×n is the inertia matrix, C (q, q̇) ∈R

n×n is the centripetal Coriolis matrix, G (q) ∈R
n

represents the gravitational effects, Fd ∈R
n×n is a positive definite diagonal matrix denoting the constant

viscous frictional effects and τ (t) ∈R
n is the control input torque.

The mathematical model of the robot dynamics given in (1) can be reconfigured as

Y(q, q̇, q̈) θ = M (q) q̈ + C (q, q̇) q̇ + G (q) + Fdq̇ (2)

in which Y (q, q̇, q̈) ∈R
n×p is the regression matrix that is a function of the joint position, velocity

and acceleration vectors, and θ ∈R
p contains constant robot model parameters. The regression matrix

formulation of (2) is also written in terms of desired trajectory and its time derivatives in the following
manner:

Yd (qd , q̇d , q̈d) θ = M (qd) q̈d + C (qd , q̇d) q̇d + G (qd) + Fdq̇d (3)
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where the desired version of the regression matrix Yd (qd , q̇d , q̈d) ∈R
n×p is a function of the desired

joint position, velocity and acceleration vectors denoted, respectively, by qd (t), q̇d (t), q̈d (t) ∈R
n.

3. Control problem and error system development

The primary control objective is to design the control input torque τ (t) such that the joint position
vector q (t) approaches to the desired joint position vector qd (t) as time increases (i.e., the tracking
control objective). In addition to the joint tracking control objective, a secondary control objective is to
ensure that the entries of the position tracking error, shown with e (t) ∈R

n, remains inside a predefined
bound, denoted with �i > 0 for each joint i, in the sense that1

|ei (t) | < �i ∀t > 0. (4)

Providing the stability of the closed-loop system by keeping all system trajectories bounded is also
essential. In the subsequent development, joint position and joint velocity measurements are considered
to be available. The control problem is complicated due to parametric uncertainties in the robot dynamic
model (i.e., θ vector in (2) or (3) is uncertain). The desired joint position trajectory is considered to be
chosen as sufficiently smooth in the sense that itself along with its first two derivatives are bounded
functions of time.

In order to quantify the main control objective, the joint position tracking error e (t) ∈R
n is

defined as

e� qd − q (5)

and to present the subsequent design and the associated synthesis and analysis with only first time
derivatives, a filtered error, shown with r (t) ∈R

n, is introduced

r � ė + αe (6)

where α ∈R
n×n is a constant, positive definite, diagonal control gain matrix. To obtain the open-loop

error system dynamics, the time derivative of r (t) is pre-multiplied with the inertia matrix to reach

M (q) ṙ = M (q) (q̈d + αė) + C (q, q̇) (q̇d + αe) − C (q, q̇) r + G (q) + Fdq̇ − τ (7)

where (1) was substituted into and (6) was made use of along with the time derivative of (5). Adding
and subtracting the desired robot dynamics in (3) to the right hand side of (7) deduces to

M (q) ṙ = −C (q, q̇) r + χ + Ydθ − τ (8)

with χ (q, q̇, qd , q̇d , q̈d) ∈R
n being an uncertain vector defined in the following form:

χ � M (q) (q̈d + αė) + C (q, q̇) (q̇d + αe) + G (q) + Fdq̇ − Ydθ . (9)

Using the boundedness properties of the the matrices forming the robot dynamics of (1), χ can be proven
to be upper bounded as [25]

‖χ‖ ≤ ρ1‖e‖ + ρ2‖r‖. (10)

In the above equation, the variables ρ1 (‖e‖) and ρ2 (‖e‖) are known, non-negative, non-decreasing
functions (see Appendix A for details).

4. Control design

Based on the subsequent stability analysis, the control input torque τ (t) is designed as

τ = Yd θ̂ + Krr + Kee + vR (11)
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Figure 1. Details of the controller implementation.

where Kr ∈R
n×n is a constant, positive definite, diagonal control gain matrix, Ke (e) ∈R

n×n is yet to be
designed tracking error dependent, positive definite, diagonal control gain matrix and vR (e, r) ∈R

n is
introduced to compensate for the negative effects of χ and is designed as

vR = (
knρ

2
1 + ρ2

)
r (12)

with kn ∈R being a constant, positive damping gain, and θ̂ (t) ∈R
p is the parameter estimation vector

that is adaptively updated according to

˙̂
θ = �YT

d r (13)

in which � ∈R
p×p is a constant, positive definite, diagonal adaptation gain matrix. A schematic

representation of the controller implementation is presented at Fig. 1
Substituting the designed control input torque in (11) and (12) into the open-loop error system in (8)

deduces the below closed-loop error system

M (q) ṙ = −C (q, q̇) r − Krr − Kee + χ − (
knρ

2
1 + ρ2

)
r + Yd θ̃ (14)

with θ̃ (t) ∈R
p denoting the parameter estimation error defined as

θ̃ � θ − θ̂ . (15)

Introduction of the tracking error dependent control gain matrix Ke is the main difference of this
work from similar past research in the literature in the sense that the design of Ke will enable us to
continue with a novel stability analysis to ensure a priori boundedness of the entries of the tracking
error with ‘user imposed’ upper bounds. For this aim, two different Ke designs are proposed. The first
one is designed as2

Ke = diag
{

ki

�2
i − e2

i

}
(16)

with ki i ∈ {1, · · · , n} being constant gains, while the second one is designed as

Ke = diag
{

1 + tan2
(

π

2
e2

i

�2
i

)}
(17)

with �i being previously introduced in (4).
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5. Stability analysis

Despite the two tracking error dependent control gain matrix designs being fundamentally different,
only the initial parts of the stability analysis differ. For both designs, the stability analysis is framed by
the following theorem.

Theorem 1. For the robot manipulator mathematical model in (1), the controller in (11) and (12) along
with the adaptive update law in (13) and the tracking error dependent control gain matrix design in either
(16) or (17) ensures global asymptotic convergence of the tracking error and the filtered error to the
origin and guarantees that the entries of the joint tracking error remain within a predefined bound while
also proving closed-loop stability by ensuring boundedness of all the system trajectories provided that
the damping gain kn introduced in (12) is chosen sufficiently high.

Proof. For the tracking error dependent diagonal controller gain matrix design in (16), the analysis is
initiated by defining the barrier Lyapunov function Vl

(
r, e, θ̃

)
∈R as

Vl �
1
2

rT M (q) r +
n∑

i=1

ki

2
ln

(
�2

i

�2
i − e2

i

)
+ 1

2
θ̃T�−1θ̃ (18)

which is positive definite and radially unbounded provided that the initial values of the entries of the
joint tracking error satisfies |ei (0) | < �i for all i ∈ {1, · · · , n}.

Taking the time derivative of (18) yields

V̇l = rT M (q) ṙ + 1
2

rT Ṁ (q) r +
n∑

i=1

ki
eiėi

�2
i − e2

i
+ θ̃T�−1 ˙̃

θ (19)

in which
n∑

i=1

ki
eiėi

�2
i − e2

i
= eT Keė (20)

in view of the diagonal structure of Ke in (16). Substituting the closed-loop error system in (14) for r
dynamics, (20) and (6) for e dynamics, the time derivative of (15) along with (13) for θ̃ dynamics into
(19) deduces

V̇l = rT
[
−C (q, q̇) r − Krr − Kee + χ − (

knρ
2
1 + ρ2

)
r + Yd θ̃

]
+1

2
rT Ṁ (q) r + eT Ke (−αe + r) − θ̃T YT

d r. (21)

At the right-hand side of (21), making use of the skew–symmetry relationship (i.e., ξT (
Ṁ − 2C

)
ξ =

0 ∀ξ ∈R
n), upper bounding χ with (10) and then cancelling common terms give

V̇l ≤ −rT Krr − eT Keαe + [
ρ1‖e‖‖r‖ − knρ

2
1‖r‖2] (22)

in which for the square bracketed term [26]

ρ1‖e‖‖r‖ − knρ
2
1‖r‖2 ≤ 1

4kn
‖e‖2 (23)

can be used to further obtain an upper bound as

V̇l ≤ −λmin{Kr}‖r‖2 −
(

λmin{Keα} − 1
4kn

)
‖e‖2. (24)
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Figure 2. The “logarithmic” component of Vl(t).

After defining the combined error vector x �
[
rT eT ]T ∈R

2n and positive constant β ∈R as

β � min
{
λmin{Kr}, λmin{Keα} − 1

4kn

}
(25)

following upper bound can be obtained for the right-hand side of (24)

V̇l ≤ −β‖x‖2 (26)

provided that kn is chosen sufficiently high.
From the structures of (18) and (26), Vl is proven to be bounded and decreasing. Thus r (t), e (t),

θ̃ (t) ∈L∞ and are also decreasing. By utilising the boundedness of the above terms along with the
boundedness of the desired trajectory and its time derivatives, ė (t), ṙ (t) ∈L∞ can be proven from
(6) and (14), respectively. It can straightforwardly be shown that the remaining terms can be ensured
to be bounded as well. After integrating (26) on time from initial time to infinity, x (t) is proven to
be square integrable and thus r (t), e (t) ∈L2. Since x (t) ∈L2 ∩L∞ and x (t) ∈L∞, from Barbalat’s
Lemma [27, 28] x (t) → 0 as t → ∞ is proven.

We would like to note that due to the structure of Vl(t) given in (18) and the negativeness of V̇l(t) of
(26), the positive function Vl is decreasing with respect to time. And since the first and third terms of
Vl(t) are quadratic with respect to r(t) and θ̃ , respectively, the term in the middle, as can be seen from
Fig. 2, should be also decreasing with time . When the initial error signal ei(0) is selected inside the
region (−�i, +�i), the tracking error signal will always stay inside this region and converge to zero
asymptotically. Therefore the singularities in (16) are always avoided.
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For the tracking error dependent diagonal controller gain matrix design in (17), the analysis is initiated
by defining a similar barrier Lyapunov function, denoted by Vt

(
r, e, θ̃

)
∈R, as

Vt �
1
2

rT M (q) r +
n∑

i=1

�2
i

π
tan

(
π

2
e2

i

�2
i

)
+ 1

2
θ̃T�−1θ̃ (27)

where only the second term is different than the corresponding term in (18). It is noted that Vt

(
r, e, θ̃

)
is positive definite and radially unbounded provided that the initial values of the entries of the joint
tracking error satisfy |ei (0) | < �i for all i ∈ {1, · · · , n}.

The time derivative of (27) is obtained as

V̇t = rT M (q) ṙ + 1
2

rT Ṁ (q) r +
n∑

i=1

eiėi

(
1 + tan2

(
π

2
e2

i

�2
i

))
+ θ̃T�−1 ˙̃

θ (28)

where, in view of the diagonal structure of Ke design in (17), the third term can be reformulated as
n∑

i=1

eiėi

(
1 + tan2

(
π

2
e2

i

�2
i

))
= eT Keė. (29)

A closer look at the structure of (28) in view of (29) reveals the fact that it is the same as (19) used with
(20), thus the rest of the analysis is same as the previous part.

Despite obtaining the same result for both choices of tracking error dependent control gain matri-
ces, due to the differences in their designs in (16) and (17), the resulting β values may be different.
For the design in (16), λmin{Keα} is equal to min{ kiαi

�2
i −e2

i
} over i ∈ {1, · · · , n}, which can conser-

vatively be obtained as min{kiαi}
max{�2

i } . On the other hand, for the design in (17), λmin{Keα} is equal

to min{αi

(
1 + tan2

(
π
2

e2
i

�2
i

))
} over i ∈ {1, · · · , n} which, after noting that the tan2 ( · ) term being

non-negative, can be conservatively obtained as min{αi}.

6. Numerical studies

Numerical simulations on the model of a two-link planar robot manipulator were performed to demon-
strate the viability of the proposed adaptive control strategy. The model of the robot manipulator has the
following form: [

τ1
τ2

]
=

[
θ1 + 2θ3 cos (q2) θ2 + θ3 cos (q2)

θ2 + θ3 cos (q2) θ2

] [
q̈1
q̈2

]

+
[−θ3q̇2 sin (q2) −θ3 (q̇1 + q̇2) sin (q2)

θ3q̇1 sin (q2) 0

] [
q̇1

q̇2

]

+
[

θ4 0
0 θ5

] [
q̇1
q̇2

]
. (30)

In the above model, θ1, θ2, θ3 are model parameters that depend on masses and lengths of the links of the
robot manipulator, while θ4 and θ5 are viscous friction parameters. In commensurate with the analysis
above, these model parameters are considered to be uncertain and thus are not available for the control
design. For the numerical simulations to be realistic, the control input torque values were saturated at
±10 [Nm]. The robot model and the dynamical parameters are obtained from the IMI robot [29], where
a picture and a schematic representation of the robot is given in Fig. 3.
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Figure 3. Two-link planar IMI robot.

In the numerical simulations, the following desired joint trajectory was used:

qd (t) =
⎡
⎣ 0.7 sin (t)

(
1 − e−0.3t3

)
1.2 sin (t)

(
1 − e−0.3t3

)
⎤
⎦ [rad] . (31)

The joints of the robot manipulator were initially positioned such as the initial value of the tracking
error for both joints were 2.9◦. The initial values of the parameter estimation vector, θ̂ (0), were set to
zero and the actuators are assumed to be driven in torque mode.

The results of three sets of numerical simulations are presented with �i chosen as 3◦, 5◦ and 10◦,
respectively, for each joint of the robot manipulator. The control and adaptation gain matrices were
tuned via trial and error in the sense that initially, higher gains were chosen and they are decreased until
a satisfactory joint position tracking performance was obtained. The controller and adaptation gains, for
all three numerical simulations, were selected as

α = 2I2 , Kr = 50I2 , k1 = k2 = 2 (32)
� = diag{ 50, 0.8, 1.255, 100.6, 40.2 }. (33)

The results of the simulation studies for different values of position constraints are presented in
Figs., 4, 5 and 7, respectively. For each simulation the joint tracking errors, the parameter estimate
updates and the control input torque are plotted with respect to time. For the comparison of the initial
controller effort, Table 1 presents the L2 norms of the controller efforts for each simulation where we
can observe that the overall control effort decreases as the position constraint on the joints are changed
from 3◦ to 10◦. The L2 norm of the controller efforts at steady state are presented at Table 2 from which
it can be observed that there is no significant change on the amount of controller efforts when the sys-
tem reaches steady state. Finally from the dynamical parameter estimate plots given Figs. 4, 5 and 7, we
can conclude that increasing the position constraint on the joint trajectories increases the time for the
convergence of the parameter estimates (i.e., delays the parameter convergence process).

7. Experimental validations

In order to illustrate the feasibility and performance of the proposed position constrained adaptive
controller, experimental studies are performed on a two-link direct-drive planar robot manipulator
assembled in Gebze Technical University, Control Applications and Robotics Laboratory. The dynami-
cal model of the robot is similar to (30) with the values of θi, i = 1...5 being uncertain. The links of the
manipulator are constructed from aluminium with link lengths of 16 cm for the first link and 6.5 cm for
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Figure 4. Simulation results when the position constraint on joint angles is 3◦.
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Figure 5. Simulation results when the position constraint on joint angles is 5◦.
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Figure 6. Simulation results when the position constraint on joint angles is 10◦.
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Figure 7. Experimental results when the position constraint on joint angles is 10◦.
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Table 1. L2 norm of the torque inputs for 0 ≤ t ≤ 20[s].

�i = 3 [deg] �i = 5 [deg] �i = 10 [deg]{∫ 20
0 τ1(t)dt

}1/2
540.7435 523.7784 514.0927{∫ 20

0 τ2(t)dt
}1/2

150.1854 143.568 141.5573

Table 2. L2 norm of the torque inputs for 70 ≤ t ≤ 80[s].

�i = 3 [deg] �i = 5 [deg] �i = 10 [deg]{∫ 80
70 τ1(t)dt

}1/2
338.3291 338.3548 338.3563{∫ 80

70 τ2(t)dt
}1/2

95.3373 95.3455 95.3514

the second link. Link 1 is actuated via a SanyoDenko dc motor equipped with a 4096 counts/revolution
encoder and second link is actuated via a Escap dc motor with an encoder having 2048 counts/revolution.
Each motor is actuated via an in-house build linear amplifier having unity gain.

For the experimental studies, the position tracking error constraint was set to 10[deg] the same desired
trajectory used in the simulation studies were applied (i.e., Eq. (31)), the initial values of the parameter
estimates were set to zero and the controller,and adaptation gains were tuned until the best error tracking
and parameter adaptations were obtained. The selected control and adaptation gains were as follows:

α = diag{ 10, 20 }, ke = diag{ 12, 24 },
Kr = diag{ 180, 50 }

and
� = diag{ 6, 0.5, 0.4, 24, 4.5 }

The results of the experiments are presented in Fig. 7, where the top two sub-figures are the tracking
error performances, the sub-figure in the middle is the parameter estimations and the bottom two sub-
figures are the corresponding voltage outputs of the current amplifiers (representing the control torque
inputs). As can be seen from Fig. 7, after around 20 s, the parameter estimates converge to some values
and the tracking error performances for link 1 and 2 converge to values below ±0.5[deg].

8. Conclusion

In this work, we have presented the design and the corresponding analysis of two different types of full-
state feedback, desired model-based, joint position constrained, robot controllers using barrier Lyapunov
functions. The proposed controllers ensure that the position tracking error of the robot joints remain
inside a predefined value and eventually converge to zero when the initial tracking error starts inside
this predefined region, despite the presence of uncertainties in the parameters of robot dynamics. To
our best knowledge, the proposed controller methodology is the first approach that fuses the use of BLF
design with the desired model-based compensation procedure. The use of the desired trajectory sig-
nal as opposed to the actual state variables enables a smoother controller output and is less exposed
to sensory noise. Extensive numerical simulations are performed to illustrate the performance of the
proposed methods for three different values of constraints on joint positions. Experimental studies per-
formed on a two-link direct-drive robot arm is also presented in order to illustrate the feasibility of the
proposed controller. Future work will concentrate on output feedback version of the proposed method
and extending this result to task space control of robotic manipulators.
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Notes
1 In this paper, subscript i of a diagonal matrix or a column vector denote the ith diagonal entry of the matrix or the ith entry of
the vector, respectively.
2 The notation diag{·} denotes a diagonal matrix with its diagonal entries being the ones in the braces.
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Appendix A

The auxiliary term χ given in (10) can be explicitly written as

χ �M (q) (q̈d + αė) + C (q, q̇) (q̇d + αe) + G (q) + Fdq̇
− M (qd) q̈d − C (qd , q̇d) q̇d − G (qd) − Fdq̇d (34)

where (3) has been applied. Similar to [25] (Chapter 6, Eq. 6.2-9) this term can be upper bounded as

‖χ‖ ≤ ζ1 ‖e‖ + ζ2 ‖e‖2 + ζ3 ‖r‖ + ζ4 ‖r‖ ‖e‖ (35)

where ζi, i = 1, 2, 3, 4 are positive bounding constants that depend on the desired trajectory and phys-
ical parameters (i.e., link mass, link length, friction coefficients, etc.). After some mathematical
manipulations (35), the upper bound can be reformulated as follows:

‖χ‖ ≤ (ζ1 + ζ2 ‖e‖) ‖e‖ + (ζ3 + ζ4 ‖e‖) ‖r‖ . (36)

It is straightforward when the bounding functions ρ1 (e) , and ρ2 (e) are selected as

ρ1 (e) = ζ1 + ζ2 ‖e‖ (37)
ρ2 (e) = ζ3 + ζ4 ‖e‖

bound given in (10) is satisfied.
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