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Valenciana 200, Fracc. Industrial Puerto Interior, Silao de la Victoria,
Guanajuato C. P. 36275, México (cdomingueza@ipn.mx)
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A bilinear map Φ : R
r × R

s → R
n is nonsingular if Φ(−→a ,

−→
b ) =

−→
0 implies −→a =

−→
0

or
−→
b =

−→
0 . These maps are of interest to topologists, and are instrumental for the

study of vector bundles over real projective spaces. The main purpose of this paper
is to produce examples of such maps in the range 24 � r � 32, 24 � s � 32, using
the arithmetic of octonions (otherwise known as Cayley numbers) as an effective
tool. While previous constructions in lower dimensional cases use ad hoc techniques,
our construction follows a systematic procedure and subsumes those techniques into
a uniform perspective.
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1. Introduction

In this paper bilinearity always means R-bilinearity. A bilinear map Φ : R
r × R

s →
R

n is nonsingular if Φ(−→a ,
−→
b ) =

−→
0 implies −→a =

−→
0 or

−→
b =

−→
0 . These maps gen-

eralize the multiplication of the classical division algebras R, C, H and K of real,
complex, quaternion or octonion numbers, which correspond to the cases r = s =
n = 1, 2, 4 and 8, respectively. The study of such maps by topological methods
began with Hopf [5] and Stiefel [15], leading eventually to their applications to
embedding and immersion of real projective spaces RP r−1 into Euclidean Space
[4,12,14]. Applications to homotopy groups of spheres can be found in [10].

The problem, for what triples (r, s, n) can there exist a nonsingular bilinear
map Φ, remains unsolved up to the present day. See [9,11] for an overall dis-
cussion. From past experience nonexistence results will have to involve increasingly
sophisticated tools in algebraic topology [6], while existence results can be obtained
through skillful constructions via algebra. In particular, use of the octonions K, with
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its ‘restricted associativity property’ listed in section 2, has led to constructions by
Lam [7] and Adem [1–3].

More than 47 years have passed since [3,7,8,12] without any new example of
nonsingular bilinear maps appearing in the literature. In particular, an open ques-
tion about commutators in K, posed in the introduction of [3], remains unanswered.
The purpose of this paper is to construct a new family of nonsingular bilinear maps,
in section 6 below, and to comment on their topological implications. In particular,
we answer Adem’s open question in the affirmative.

The second author would like to dedicate this work to the memory of professor
Elmer Rees (1941–2019), a highly esteemed colleague and long time friend. Elmer’s
paper [13], in particular, has been a source of inspiration for the present article.
Both authors are indebted to the late professor José Adem, whose papers [1–3] set
the stage for theorem 6.1 bellow.

2. Restricted associativity of the octonions K

For elements a, b, c, . . . in K we shall use R(a, b, c, . . .) to denote the subalgebra they
generate. The following properties are well known, and shall be frequently used in
the sequel.

1. R(a) always contains the conjugate a.

2. If ab = ba, then R(a, b) is commutative as well as associative. There exists
then d ∈ K such that R(a, b) = R(d) = a field, isomorphic either to R or to C.

3. (Restricted associativity). If ab = ba, then for any c ∈ K, R(a, b, c) = R(d, c)
is associative. Restricted associative laws hold:

a(bc) = (ab)c; (ca)b = c(ab).

4. In particular, since a always commutes with a, one has

a(ac) = (aa)c = |a|2c = (ca)a.

3. Twisted polynomial multiplication and bilinear maps

A primary source of nonsingular bilinear maps is polynomial multiplication. In this
paper we shall mainly deal with the polynomial ring Λ[X] with coefficient ring
Λ = K, de-emphasizing the cases Λ = H, C or R. If

p(X) = a0 + a1X + · · · + arX
r

q(X) = b0 + b1X + · · · + bsX
s,

then p(X)q(X) is traditionally defined to be

p(X)q(X) = c0 + c1X + c2X
2 + · · · + cr+sX

r+s

where ck = a0bk + a1bk−1 + · · · akb0 for 0 � k � r + s.
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This multiplication produces immediate examples of nonsingular bilinear maps

Φ0 : R
8r+8 × R

8s+8 → R
8r+8s+8

One simply identifies R
8r+8 first with K

r+1, and then visualizes a typical vector −→a =
(a0, a1, . . . , ar) of K

r+1 to be the polynomial p(X), similarly with R
8s+8 and q(X).

Then Φ0(p(X), q(X)) is none other than p(X)q(X). The nonsingularity of Φ0 is
tantamount to the claim that K[X], like K, has no zero divisors. This can be easily
proved by induction on the total degree r + s.

It would be convenient to encode polynomial multiplication using a matrix scheme
M0 as follows

(3.1)
Here we put ai−1bj−1 at the (i, j)th entry of the matrix M0. The segmented lines

L0, L1, L2, etc., are successive lines of slope 1, with unital decreases in y-intercept,
passing through various lattice points at which the ai−1bj−1 terms are situated.
For instance, L2 passes through a2b0, a1b1 and a0b2. We shall use

∑
L2 to mean

a2b0 + a1b1 + a0b2 for convenience. Indeed, the purpose of this encoding is to allow
one to use

∑
Lk to symbolically stand for the coefficient ck of Xk in the product

p(X)q(X) given above. When degree p(X) = r, degree q(X) = s, M0 is of size
(r + 1) × (s + 1), and can be used simultaneously to encode the bilinear map Φ0

above as

Φ0 = ΦM0 : K
r+1 × K

s+1 → K
r+s+1
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in the format

ΦM0((a0, a1, . . . , ar), (b0, b1, . . . , bs)) =
(∑

L0,
∑

L1, . . . ,
∑

Lr+s

)
.

Remark 3.1. As a matter of fact, given any matrix M of size (r + 1) × (s + 1),
possibly r = ∞ or s = ∞, of which each entry is an arbitrary bilinear form
in −→a ,

−→
b , a bilinear map ΦM will be automatically defined, with components∑

L0,
∑

L1,
∑

L2, . . ., etc. The main effort of this paper is to seek out some M ′s
for which ΦM would be nonsingular.

There is no short supply of such M ′s. We note that in the previous paragraph
the guts of the induction argument for Φ0’s nonsingularity is that, if p(X)q(X) had
vanishing leading coefficient arbs, then either ar = 0 or bs = 0. The same conclusion,
of course, also follows from arbs = 0, or from −bsar = 0, and so on. This motivates
us to bring in the following

Definition 3.2. By a modification of the scheme M0, we mean a matrix M of
the same size, obtained from M0 by replacing each aibj with any of the following
choices

± aibj ,±aibj ,±aibj ,±aibj ,

± bjai,±bjai,±bjai,±bjai.

There is a total of 16 possibilities at each entry. Any modification M of M0 leads
to a twisted polynomial multiplication �M for K[X] different from the traditional
one, namely

Definition 3.3. The M -twisted product, or simply M -product, of p(X) and q(X)
is defined to be

p(X) �M q(X) = ĉ0 + ĉ1X + ĉ2X
2 + · · ·

where ĉk =
∑

Lk is the sum of all entries of M falling on the line Lk depicted as
in the scheme (3.1).

The space of polynomials with coefficients in K under twisted product �M

becomes a ring KM [X] with not many nice properties. For example the constant
polynomial 1 may not be a two-sided multiplicative identity. However KM [X] is still
free of zero divisors, just like K[X](= KM0 [X]). An induction proof for the former
works, almost verbatim, as it does for the latter. Thus we have

Theorem 3.4. Let M be any (r + 1) × (s + 1) matrix obtained from the matrix M0

of equal size through modification. Then the bilinear map

ΦM : K
r+1 × K

s+1 → K
r+s+1

defined by ΦM (p(X), q(X)) = p(X) �M q(X), or equivalently by

ΦM (−→a ,
−→
b ) =

(∑
L0,

∑
L1, . . . ,

∑
Lr+s

)
is again nonsingular.
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Remark 3.5. At first sight this theorem is not useful, as ΦM is of real type (8r +
8, 8s + 8, 8r + 8s + 8), exactly the same as the type of Φ0 (or ΦM0). What, then, is
the point of modifying?

But some modifications do indeed lead to novelty. The bilinearity of ΦM0 induces,
in the most obvious way, an adjoint map

adjM0 : K
r+1 − {−→0 } → MonoR(Ks+1, Kr+s+1),

where MonoR means the space of monomorphisms from one real vector space to
another. When M0 is modified into M, there is no reason why adjM should be
homotopic to adjM0. It is this potentially new homotopy feature of ΦM that could
be perhaps exploited to produce new families of nonsingular bilinear maps. This
strategy will be carried out in a case of 4 × 4 matrices in section 6.

4. Neat factorization of polynomials and quasi irreducibility

Let M0 be the (r + 1) × (s + 1) matrix of § 3 that encodes standard multiplication
in K[X] of one polynomial p(X) of degree � r with another polynomial q(X) of
degree � s. Let M be a modification of M0 encoding a twisted multiplication �M

of the same two polynomials.

Definition 4.1. A polynomial g(X) of degree � r + s is said to be neatly factorized
into an M -product of p(X) and q(X) if

1. g(X) = p(X) �M q(X),

2. p(X) and q(X) are of positive degree and

3. The constant terms of p(X) and q(X) commute, i.e., p(0)q(0) equals q(0)p(0)
as octonions.

Definition 4.2. A polynomial g(X) is said to be quasi M -irreducible, if it does
not admit any neat factorization in KM [X].

As a matter of generality, this definition could be understood in the following
way. One allows the M0 in § 3 to have countable number of rows and columns,
so that M is also allowed to be such; but one imposes the requirement that all
modification of entries occur within the upper (r + 1) × (s + 1) block of M0, for
some finite r and finite s. Throughout this paper, whether such generality ought to
be in effect shall be clear from the context.

Two mini examples will serve to illustrate definitions 4.1 and 4.2.

Example 4.3. In R[X] usual multiplication of two linear polynomials into a
quadratic is encoded by

M0 =
[
a0b0 a0b1

a1b0 a1b1

]
With respect to M0, 1 + X2 is irreducible. If M0 is modified into

M− =
[
a0b0 a0b1

a1b0 −a1b1

]
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then 1 + X2, as a quadratic in RM− [X], is factorizable, and of course any
M− factorization is neat.

Example 4.4. Replace R by K in example 4.3, so that now all matrix entries are
octonions. Let the M0 in 4.3 be modified into M where

M =

[
a0b0 a0b1

b0a1 a1b1

]

Let i, j, k ∈ H ⊂ K be the usual imaginary quaternion units, considered here as
octonions. Then one has an �M factorization of i + iX2 into two linear factors,
namely

i + iX2 = (j + iX) �M (k + X).

Here a0 = j, a1 = i, b0 = k, b1 = 1;
∑

L0 = i,
∑

L1 = 0 and
∑

L2 = i. Accordingly
i + iX2 is M -reducible.

But the above is not a neat factorization at all because the constant terms of
the two factors do not commute: jk �= kj. In fact it is not hard to check here that
i + iX2 admits no neat factorization and is M -quasi irreducible. In hindsight, such
quasi-irreducibility is the key feature that facilitates the construction of nonsingular
bilinear maps in [7]. As we shall see, it also facilitates the new construction in
theorem 6.1 below.

5. Twisted multiplication of two cubics

Traditional multiplication of two polynomials of at most cubic degree is encoded,
as in § 3, by the 4 × 4 matrix M0 = [aibj ], 0 � i, j � 3, with octonion entries. In this
section we consider a twisted multiplication �M given by a specific modification M
of M0, where

M =

⎡⎢⎢⎢⎣
a0b0 a0b1 a0b2 a0b3

b0a1 a1b1 −b2a1 −b3a1

b0a2 a2b1 a2b2 a2b3

b0a3 a3b1 a3b2 a3b3

⎤⎥⎥⎥⎦
Theorem 5.1. For any nonzero c ∈ K and any strictly positive real number λ, the
polynomial g(X) = c + λcX4 in KM [X] is quasi-irreducible. In other words g(X)
does not admit any neat �M factorization.

Proof. Since g(X) has degree 4, its possible factorization must occur as either
Case 1: a linear times a cubic, or
Case 2: a cubic times a linear, or
Case 3: a quadratic times another quadratic.
Corresponding to these cases are the submatrices M1,M2 and M3 of M, of sizes

2 × 4, 4 × 2 and 3 × 3 respectively. M1 is formed by M ′s first two rows, M2 by its
first two columns, and M3 is M ′s principal 3 × 3 sub-block. We display each one
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explicitly below, for easy tracking later.

M1 =

[
a0b0 a0b1 a0b2 a0b3

b0a1 a1b1 −b2a1 −b3a1

]

M2 =

⎡⎢⎢⎢⎣
a0b0 a0b1

b0a1 a1b1

b0a2 a2b1

b0a3 a3b1

⎤⎥⎥⎥⎦ M3 =

⎡⎢⎣a0b0 a0b1 a0b2

b0a1 a1b1 −b2a1

b0a2 a2b1 a2b2

⎤⎥⎦
It suffices to establish that g(X) is quasi Mi-irreducible for i = 1, 2 and 3. All
cases are done by reduction to absurdity; that is, supposing g(X) = p(X) �Mi

q(X)
neatly and deriving therefrom a contradiction, i = 1, 2, 3.

Case 1. Suppose that, neatly,

c + λcX4 = (a0 + a1X) �M1 (b0 + b1X + b2X
2 + b3X

3)

The neatness requirement is

a0b0(= c) = b0a0 (neatness) (5.1)

Quick comparison of coefficients, using the scheme of L-lines of § 3 for the
displayed M1, gives

b0a1 + a0b1 = 0 (5.2)

a1b1 + a0b2 = 0 (5.3)

−b2a1 + a0b3 = 0 (5.4)

−b3a1 = λc = λa0b0, λ > 0 (5.5)

where c �= 0 entails a0 �= 0 �= b0. It further entails b3 �= 0 �= a1 via (5.5) and also
b2 �= 0 via (5.4). That, in turn, forces b1 �= 0 �= a1 via (5.3). With obvious meaning
for the notation evaluate [b0(5.2)]b1 to obtain

[b0(b0a1)]b1 + [b0(a0b1)]b1 = 0 (5.6)

Because a0 and b0 commute, restricted associativity shows that the second term on
left equals [(b0a0)b1]b1 which in turn equals (b0a0)|b1|2, because b1 and b1 commute.
Applying similar arguments to the first term we reduce (5.6) to

|b0|2a1b1 + |b1|2a0b0 = 0 (5.7)

Substituting (5.3) into (5.7) gives

− |b0|2a0b2 + |b1|2a0b0 = 0 (5.8)

which confirms b1 �= 0 again.
Left cancelling the nonzero a0 factor from (5.8) one confirms b2 to be a real

multiple of b0, and obtains the crucial fact that b2 commutes with a0 since b0 does.
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Next, evaluate [a0(5.4)]a1 and simplify the result using restricted associativity to
obtain

− |a1|2a0b2 + |a0|2b3a1 = 0 (5.9)

Equations (5.5), (5.8) and (5.9) can be reorganized into three homogeneous linear
relationships, with real coefficients, amongst the three octonions a0b0, a0b2 and b3a1.
Since a0b0(= c) �= 0, the 3 × 3 matrix that collectively summarizes all such relation
must have zero determinant. This matrix is⎡⎢⎣ −λ 0 −1

|b1|2 −|b0|2 0
0 −|a1|2 |a0|2

⎤⎥⎦
Its determinant is λ|a0|2|b0|2 + |b1|2|a1|2, which is strictly positive. We have thus
arrived at a contradiction.

Case 2: This is very similar to case 1 and we can afford to be brief. Suppose that,
neatly,

c + λcX4 = (a0 + a1X + a2X
2 + a3X

3) �M2 (b0 + b1X).

Then

a0b0(= c) = b0a0 (neatness) (5.10)

b0a1 + a0b1 = 0 (5.11)

b0a2 + a1b1 = 0 (5.12)

b0a3 + a2b1 = 0 (5.13)

a3b1(= λc) = λa0b0, λ > 0 (5.14)

We now get, using [b0(5.11)]b1 followed by substitution

|b0|2a1b1 + |b1|2a0b0 = 0 (5.15)

−|b0|2b0a2 + |b1|2a0b0 = 0 (5.16)

Use b0(5.16) to recognize a2 as a real multiple of b0(a0b0), commuting, therefore,
with a0b0 and b0. This crucial commutativity helps produce, via [b0(5.13)]b1, the
linear relationship

|b0|2a3b1 + |b1|2b0a2 = 0 (5.17)

Together with (5.14) and (5.16) there are three such relationships amongst
a0b0, b0a2 and a3b1. Again a0b0 �= 0 forces the coefficient matrix to have zero
determinant. This matrix is ⎡⎢⎣ −λ 0 1

|b1|2 −|b0|2 0
0 |b1|2 |b0|2

⎤⎥⎦
with determinant λ|b0|4 + |b1|4 strictly positive. Contradiction !
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Case 3. With the 3 × 3 matrix M3 defining a twisted multiplication of two
quadratics, the argument proceeds similarly, only that the route towards contra-
diction is a bit more devious. Supposing a neat factorization

c + λcX4 = (a0 + a1X + a2X
2) �M3 (b0 + b1X + b2X

2)

leads to

a0b0(= c) = b0a0 (neatness) (5.18)

b0a1 + a0b1 = 0 (5.19)

b0a2 + a1b1 + a0b2 = 0 (5.20)

a2b1 − b2a1 = 0 (5.21)

a2b2(= λc) = λa0b0, λ > 0 (5.22)

where c �= 0 by hypothesis, thereby entailing a2 �= 0 �= b2.
Exactly as before one can get

|b0|2a1b1 + |b1|2a0b0 = 0 (5.23)

which shows a1b1 to be a real multiple of a0b0, commuting, therefore, with a0 and
with b0. Now evaluate [b0(5.20)]b2 to get

|b0|2a2b2 + [b0(a1b1)]b2 + |b2|2a0b0 = 0 (5.24)

In (5.24) the middle term equals [(a1b1)b0]b2 which in turn equals [a1b1]b0b2 by
restricted associativity.

Using (5.23) this term becomes

−[|b0|−2|b1|2a0b0](b0b2)

which has a0b0 as a left factor. Observe that the first term of (5.24) has a0b0 as
left factor too, on account of (5.22). Left cancelling this common factor reduces
(5.24) to

λ|b0|2 − |b0|−2|b1|2b0b2 + |b2|2 = 0 (5.25)

Since b0 �= 0 and λ > 0 by hypothesis, (5.25) forces b1 �= 0 and shows b0b2 to be
a positive real number. Thus b2 is just b0 up to a real multiple, in resemblance with
the conclusion from the earlier (5.8). By properties of K listed in § 2, b2 ∈ R(b0) ⊂
R(a0, b0). Equation (5.22) then implies a2 ∈ R(a0, b0) so that a2 and b2 commute.
This crucial commutativity allows one to simplify [b2(5.21)]b1 into

|b1|2a2b2 − |b2|2a1b1 = 0 (5.26)

The octonions a0b0, a1b1 and a2b2, with a0b0 �= 0, are now subject to homo-
geneous linear relations (5.22),(5.23) and (5.26) with real coefficients. Again the
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relevant coefficient matrix must have zero determinant. When that matrix is written
down, like what was done in cases 1 and 2, its determinant is evaluated to be

|b1|2(λ|b0|2 + |b2|2).
Recalling b1 �= 0 from (5.25), we have reached our final contradiction. This
completely establishes theorem 5.1 �

Remark 5.2. The polynomial g(X) = c + λcX4 may or may not have an M -
factorization that is not neat. When c = i, λ = 1, one has

i + iX4 = (j + iX2) �M (k + X2),

an analogue of mini example 4.4 in § 4.
When c = 1, λ = 1, 1 + X4 has no factorization in the twisted polynomial ring

KM [X] whatsoever, because any M -factorization has to be neat, and thus contrary
to theorem 5.1.

Remark 5.3. The effect of ‘twisting’, i.e., conjugating, negating and factor trans-
posing, becomes apparent if we recall that in the untwisted K[X] the following
factorization is well known:

1 + X4 = (1 +
√

2X + X2)(1 −
√

2X + X2).

Theorem 5.1 thus brings out the subtlety of octonionic arithmetic.

6. The nonsingular bilinear map ΦM̃ : K
4 × K

4 → K
7 and octonion

commutators

We continue to study the 4 × 4 matrix M of § 5. By theorem 3.4 it already defines
a nonsingular map

ΦM : R
32 × R

32 → R
56.

As it turns out M can actually be adjusted slightly to become an M̃ that defines
better maps. To do so introduce the 4 × 4 matrix,

N =

⎡⎢⎢⎣
b0a0 0 0 0

0 0 0 b0a0

0 0 b0a0 0
0 b0a0 0 0

⎤⎥⎥⎦
We take the liberty to think of N as encoding a very esoteric multiplication �N of
cubic polynomials, namely

(a0 + a1X + a2X
2 + a3X

3) �N (b0 + b1X + b2X
2 + b3X

3) = b0a0 + 3b0a0X
4.

Alter M to M̃ = M − N. Each entry of M̃ is bilinear in −→a ,
−→
b , so by remark 3.1

it defines a bilinear

Φ
M̃

: K
4 × K

4 → K
7

where the first component of Φ
M̃

(−→a ,
−→
b ) ∈ K

7 is an octonion commutator a0b0 −
b0a0. This is the map of the section title.
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Theorem 6.1. The bilinear map Φ
M̃

is nonsingular. Also, because an octonion
commutator has no real part, the type of Φ

M̃
should be more accurately exhibited as

Φ
M̃

: R
32 × R

32 → R
55.

lowering the range of Φ
M̃

from R
56 to R

55.

Proof. The proof of nonsingularity is not hard thanks to the preparation in § 5. The
strategy is to suppose

Φ
M̃

(−→a ,
−→
b ) =

−→
0 (6.1)

and deduce that

either −→a =
−→
0 or

−→
b =

−→
0 (6.2)

As is easily seen via the scheme of L-lines in § 3, Φ
M̃

= ΦM − ΦN , so that (6.1)
means

ΦM (−→a ,
−→
b ) = ΦN (−→a ,

−→
b ) (6.3)

In terms of twisted polynomial product this is

(a0 + a1X + a2X
2 + a3X

3) �M (b0 + b1X + b2X
2 + b3X

3) = b0a0 + 3b0a0X
4

(6.4)
Comparing constant terms yields a0b0 = b0a0. We denote this common value by

c so that the right-hand side of (6.4) reads c + 3cX4.
Comparing coefficients in degrees 6 and 5 yields

a3b3 = 0, a3b2 + a2b3 = 0.

This can happen only in one of the three circumstances below (cf. § 5).
Case (1)∼ a2 = 0 = a3 so that the left factor in (6.4) is at most linear, or
Case (2)∼ b2 = b3 = 0 so that the right factor in (6.4) is at most linear, or
Case (3)∼ a3 = 0, b3 = 0 so that both factors are at most quadratic.
We first show how to reach the desired conclusion (6.2) for case (3)∼. If both �M

factors in (6.4) have positive degree, then (6.4) shows c + 3cX4 to be neatly �M

factorizable into two quadratics, contrary to case 3 of theorem 5.1. Therefore either
left or right factor must be a constant polynomial. Say left factor= a0, with a1 =
a2 = 0 (in addition to the case specification a3 = 0). Directly from the encoding
scheme of § 3, the left-hand side of (6.4) now reduces to

a0b0 + a0b1X + a0b2X
2 + a0b3X

3.

Coefficient comparison with right-hand side gives

a0b0 = b0a0, a0b1 = 0, a0b2 = 0, a0b3 = 0, 0 = 3b0a0

This implies either
−→
b =

−→
0 or a0 = 0 (and thus −→a =

−→
0 ), which is the desired (6.2).

For the possibility that right factor = b0, with b1 = b2 = 0 (in addition to the
case specification b3 = 0), the argument to reach (6.2) is entirely parallel.
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Finally, handling cases (1)∼ and (2)∼ through appeals to cases 1 and 2 of
theorem 5.1 proceeds in exact analogy with the (3)∼ case, and needs no further
comment. The nonsingularity of Φ

M̃
is now fully established. �

It may be relevant to point out that the proof of theorem 6.1 does follow the
strategy suggested in remark 3.5. The 1-parameter family of matrices M − tN,
0 � t � 1, reveals that, once M0 is modified into M, adjM would acquire the note-
worthy property of homotopically factoring through a subspace MonoR(K4, R55) of
MonoR(K4, K7), whereas it is by no means clear that the original adjM0 had any
analogous property as such. In this sense, M is a preferred choice for construction
purposes.

The question of existence of a bilinear map having the same type as Φ
M̃

, with an
octonion commutator in one component, was posed by Adem in [3]. Theorem 6.1
answers this question in the affirmative.

A good number of nonsingular bilinear maps now follow, some new, some pre-
viously recorded. All are obtained from Φ

M̃
by restrictions of domain and range.

The choice of domain/range to restrict to is guided by the properties of octonionic
commutators a0b0 − b0a0. We refer to [1] or [2] for a full account of possible choices.
Just for example, one can restrict Φ

M̃
to

(C ⊕ K
3) × (C ⊕ K

3) → {−→0 } ⊕ K
6,

to obtain a type R
26 × R

26 → R
48 originally envisaged by the first author as an

extension of Adem’s R
18 × R

18 → R
32 in [1].

For yet another example, take V ⊂ K to be the 3-dimensional real subspace
spanned by the imaginary quaternionic units i.j, k, with 5-dimensional orthogonal
complement V ⊥ ⊂ K. Then because the commutator map for K restricts to V ⊥ ×
V ⊥ [,]→ V, one obtains

(V ⊥ ⊕ K
3) × (V ⊥ ⊕ K

3) → V ⊕ K
6

to be another legitimate restriction of Φ
M̃

, leading to a new type R
29 × R

29 → R
51

which is the most interesting among all possible restrictions. It generalizes the map
R

13 × R
13 → R

19 in the second author’s Ph.D. thesis. It also gives an immersion of
RP 28 into R

50 without any need to use Postnikov obstruction theory.
We use the following table and propositions to summarize the many nonsingu-

lar bilinear maps Φ that can result from restricting Φ
M̃

. Many of these are new,
superseding, for example, the maps constructed by Adem in [3, proposition 4.3].

h 32 32 31 29 27 26 26 25
k 32 26 27 29 27 30 26 32
m 55 54 53 51 49 52 48 48

(6.5)

Proposition 6.2. For each triple (h, k,m) tabulated, there exits a nonsingular
bilinear Φ : R

h × R
k → R

m obtained through restricting the domain and range of
Φ

M̃
in a suitable way.
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Proposition 6.3. Additionally, by further restricting Φ’s domain and range, one
can obtain a second level of nonsingular bilinear maps Φ−, of types R

h−8 × R
k →

R
m−8 as well as R

h × R
k−8 → R

m−8. These types either match, or supersede, all
nearby types documented so far in the literature.

Of the above, the maps Φ and Φ− corresponding to columns 3, 4 and 5 in the
table are new. The Φ− maps of type (26, 24, 46), (26, 22, 44) and (26, 18, 40) are
also new.

Proposition 6.4. Further restriction of domain and range of Φ− yields a third
level of nonsingular bilinear maps

Φ−− : R
h−8 × R

k−8 → R
m−16

We again leave out the details for selecting such restrictions, but point out
that these Φ−− coincide precisely with Adem’s eight maps constructed in
[1, Theorem 3.6].

In this sense propositions 6.2 and 6.3 become direct expansion of Adem’s
Theorem. Ultimately, to return the subject to its debut, one could further restrict
the domain and range of Φ−−, to produce a lowest level of nonsingular bilinear
maps. These are essentially the ones in [7].

Even though quite a number of maps constructed in this paper are new, in the
range h � 32, k � 32 there are maps in existing literature which supersede ours.
One notable example is Milgram’s R

32 × R
32 → R

54 in [12], reformulated by Adem
in [3]. Milgram [12] has no explicit use of octonion commutators.

One naturally wonders whether theorem 6.1 can have higher dimensional
analogue. For example, is there a nonsingular bilinear

K
8 × K

8 → K
15

with a commutator component? An examination of the pattern of proof in § 6 and 5
shows that, to get an answer one needs to struggle through a jungle of octonion
arithmetic, or to have new ideas. We leave this as an invitation to interested readers.
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