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Abstract.—Multivariate methods such as cluster analysis and ordination are basic to paleoecology, but
the messy nature of fossil occurrence data often makes it difficult to recover clear patterns. A recently
described faunal similarity index based on the Forbes coefficient improves results when its complement
is employed as a distance metric. This index involves adding terms to the Forbes equation and ignoring
one of the counts it employs (that of species found in neither of the samples under consideration).
Analyses of simulated data matrices demonstrate its advantages. These matrices include large and small
samples from two partially overlapping species pools. In a cluster analysis, the widely used Dice coef-
ficient and the Euclidean distance metric both create groupings that reflect sample size, the Simpson
index suggests large differences that do not exist, and the corrected Forbes index creates groupings based
strictly on true faunal overlap. In a principal coordinates analysis (PCoA) the Forbes index almost
removes the sample-size signal but other approaches create a second axis strongly dominated by sample size.
Meanwhile, species lists of late Pleistocene mammals from the United States capture biogeographic signals
that standard ordination methods do recover, but the adjusted Forbes coefficient spaces the points out more
sensibly. Finally, when biome-scale lists for living mammals are added to the data set and extinct species are
removed, correspondence analysis misleadingly separates out the biome lists, and PCoA based on the Dice
coefficient places them to the edge of the cloud of fossil assemblage data points. PCoA based on the Forbes
index places them in more reasonable positions. Thus, only the adjusted Forbes index is able to recover true
biological patterns. These results suggest that the index may be useful in analyzing not only paleontological
data sets but any data set that includes species lists having highly variable lengths.
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Introduction

Multivariate ordination and cluster analysis
were introduced to paleoecology half a century
ago (Reyment 1963; Valentine and Peddicord
1967) and are nowemployed routinely.However,
problems with applying multivariate methods
to fossil data remain unresolved. For example,
Bush and Brame (2010) only recently used
simulation analyses to revisit the debate over
whether detrended correspondence analysis
(DCA; Hill and Gauch 1980) performs better or
worse than nonmetric multidimensional scaling
(NMDS; Shepard 1962), both methods having
gained traction in paleoecology (e.g., Holland
et al. 2001; Bonelli et al. 2006).
The very core of the matter is that paleonto-

logical data, and especially binary presence-
absence data, are almost invariably biased in
important ways. Samples are of different sizes,
preservation quality varies from place to place,
taxonomy is often problematic, specimens are

often unidentifiable, and so on. The unequal
sample-size problem is particularly obvious,
which may explain why it was addressed so
very early on by the development of a binary
faunal similarity coefficient intended for use
with fossil data (Simpson 1943). The main
purpose of the current paper is to address this
particular issue in the specific context of multi-
variate analysis.

It is well known that other, more popular
similarity measures such as the Dice coefficient
are downward-biased when sampling is par-
tial (Chao et al. 2005). This kind of bias could
distort an ordination by exaggerating apparent
differences between pairs of species lists,
which should amplify what is called the arch
effect (Hill 1973; Holland et al. 2001). An arch
is present when the second-axis scores in
an ordination are a quadratic function of the
first-axis scores. To put this another way, the
two ends of the primary gradient are pulled
together on the second axis because the
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dissimilarity between samples at the endpoints
has reached or at least approached themaximum
possible value.

In this paper I show how to ameliorate the
arch effect and disentangle preservational
biases from biological signals by using a better
distance measure. It is the additive comple-
ment of a newly described similarity metric
(Alroy 2015) that is an emendation of one going
back to Forbes (1907). Forbes’s measure F is:

F ¼ aN= ða + bÞ ða + cÞ½ � (1)

where a= the number found in both of the
samples being compared, b and c= the num-
bers found only in one sample or the other,
d= the number found in neither sample, and
N= a+ b+ c+ d.

Forbes’s index has two major problems that
are particularly serious in a paleoecological
context. First, d is a meaningless number unless
the data set captures effectively all of the
species that existed in the biological system
being studied. Such a thing is almost never true
of fossil data. Second, Forbes’s index is demon-
strably upward-biased when sampling is very
good. This bias is at its worst when true
similarity, meaning the value a’/(a’+ b’) or a’/
(a’+ c’) where the prime symbol indicates that
there is no sampling bias, is around 50%.

The first problem is easily solved by ignoring
the term d in computing N. Call this smaller
sum n= a+ b+ c. Although this simple modifi-
cation helps, it does not fully compensate for
the upward bias. As has been shown (Alroy
2015), adding some mild, heuristic correction
terms to the equation does:

F ¼ aðn + sqrt nÞ�= aðn + sqrt nÞ + 3=2 b cÞ½ � (2)

This new index ranges strictly between
0 and 1, unlike equation (1) (which can exceed
1 when the number of species shared is greater
than expected by chance). Specifically, it is
equal to 0 whenever the two samples share no
species and equal to 1 whenever they are
identical or one is a subset of the other.

Meanwhile, Simpson’s solution to the
unequal sample-size problem (Simpson 1943)
is to use the ratio S= a/(a+ b) if b< c and
otherwise a/(a+ c). In other words, his index is
the number of shared species divided by the
richness of the poorer sample. Simpson’s index

is still sometimes used in paleontology (e.g.,
Tsubamoto et al. 2004).

Finally, another metric worthy of attention is
the Dice (also known as Sorenson) coefficient
D= 2a/(2a+ b+ c). Many others exist (Choi
et al. 2010), but the Dice coefficient has robust
theoretical properties (Hubálek 1982) and is
very widely used in ecology, so it is the focus
of much discussion in this paper. All of the
criticisms leveled against it apply equally well
to other widely known metrics such as the
Jaccard index (which is even more downward-
biased), the Ochiai index, the Kulczynski
index, and so on.

After showing by simulation that the
adjusted Forbes index works well even when
sample sizes are uneven, I then present two
simple empirical cases in which a conventional
ordination either collapses biogeographic signals
or produces an arch, but an ordination employ-
ing F′ removes both problems. No claim is
made that this approach is a panacea, but the
results suggest that use of F′ by paleoecologists
and others should be considered a serious
option.

Simulation Analysis

Analyses of simulated data matrices are
used here to illustrate the different properties
of the indices, and in particular to demonstrate
that the Forbes index solves the crucial paleoeco-
logical problem of uneven sampling. The
matrices were created using a Monte Carlo
procedure. Species richness in each of two
partially overlapping species pools was set
to 100. The pools had 50% overlap, meaning
that 50 species were found in both, 50 were
found only in the first, and 50 were found
only in the second. To construct the sampling
pool, relative species abundances were gener-
ated by drawing numbers at random from
a normal distribution with a mean of zero
and a standard deviation of 2.5, exponentiating
them, and dividing them through by their
sum. Two sampling levels were assumed:
either 100 or 1000 specimens. Specimens
were drawn randomly to create 40 samples
representing the four possible combinations
of sample sizes and pool identities and
the similarity measures were then computed.
The similarities were converted to distances
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by subtracting them from 1, which is neces-
sary to make cluster analysis and ordination
possible.
An unweighted pair-group (UPGMA) clus-

ter analysis shows that the corrected Forbes
index is almost completely unaffected by
sample size (Fig. 1A). It breaks the samples
down by species pool (“a” plus “A” or “b” plus
“B” in the figure) and fully intermixes the large
and small samples. Indeed, it resolves the
hierarchy down into pairs that consistently

include one large sample and one small
sample. The apparent reason is that each small
sample is usually more similar to some of
the large ones than to most or any of the
small ones, thanks to high random error in
its presence-absence pattern. The cluster den-
drogram also puts almost all the tips at a
roughly equal distance from the root (i.e., it is
nearly ultrametric) and correctly shows that
differences between samples in the same class
are small.
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FIGURE 1. UPGMA (unweighted pair group with arithmetic mean) cluster dendrograms based on analyses of a
simulated 40-sample data set using four different distance metrics. Computations were carried out using the R function
hclust. “A” and “B” indicate 1000-specimen samples and “a” and “b” indicate 100-specimen samples. “A” and “a”
samples are drawn from one pool and “B” and “b” samples from another. A, Distances are based on the Forbes index.
B, Simpson index. C, Dice index. D, Euclidean distances.
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By contrast, Simpson dissimilarities suggest
that there are fairly substantial differences
within the a + A and b + B clusters (Fig. 1B).
The dendrogram is also not nearly as ultra-
metric.Worst, Dice dissimilarities and Euclidean
distances are completely fooled by sampling
bias: each of these metrics creates four clusters
that correspond to combinations of species pools
and sample sizes (Figs. 1C,D). The dendrograms
are again not nearly as close to being ultrametric,
and they suggest even larger differences
between samples that are illusory. In a word,
these methods reflect sampling just as strongly
as they do the underlying biological pattern.

Multivariate ordination shows exactly the
same thing. Principal coordinates analysis
(PCoA; Gower 1966) is the parametric equiva-
lent of NMDS and is therefore appropriate for
showing how distance measures performwith-
out obscuring their scaling properties relative
to one another. A standard correspondence
analysis (CA; Hill 1973) is also illustrated
because this method has a strong reputation
in ecology (Gauch 1982; Digby and Kempton
1987; Legendre and Gallagher 2001). All of the
treatments recover the difference between the
two species pools on the first axis. However,
the PCoA plot for the corrected Forbes index
(Fig. 2A) shows that it minimizes the sampling
signal on the second axis. By contrast, the other
methods pull apart the small and large samples
and only the Simpson index comes close to
removing the bias (Fig. 2B–D). These results
suggest that any analysis of paleoecological
data could be distorted simply because studies
presenting order-of-magnitude variation in
sample size are routine. Bonelli et al. (2006)
and Bush and Brame 2010) are just two
examples out of many.

Pleistocene Faunal Analysis

The Pleistocene record of North American
mammals is a good test case for methods
because there are strong biogeographic signals
(Graham et al. 1996) in addition to an over-
riding taphonomic bias: most assemblages are
dominated either by extinct megafaunal species
or by extant small mammals. Thus, patterns in
ordination plots are easily interpretable and a
best-case scenario is easy to define: the first two

axes should capture geography and the samples
should not segregate strongly on the basis of
body mass.

Forty seven late Pleistocene species lists
were downloaded from the Fossilworks data
portal (http://fossilworks.org) on 10 March
2014. Almost all of the lists were compiled
by myself and Mark Uhen; many derive from
the North American Mammalian Paleofaunal
Database (Alroy 1999) and others from the
Paleobiology Database. The data were spa-
tially restricted to the United States because the
fossil record ofMexico and Canada is relatively
poor in this interval. Specifically indeterminate
records and records of marine mammals and
bats were excluded, and collections with fewer
than ten species were discarded in order to
make sure that similarity indices could be
computed with a fair degree of precision. This
treatment also minimizes the effect of sample-
size variation, making the analysis more con-
servative. Average log body-mass values were
computed for each collection by matching the
species lists to the comprehensive global data
set of Smith et al. (2003), which includes
estimates for extinct megafauna in addition to
Recent species.

Similarities were computed using the
adjusted Forbes F′, Simpson S, and Dice D
coefficients and subtracted from 1 to produce
distances. The distance matrices were then
ordinated using PCoA, which again is the
metric equivalent of NMDS. Because correct
scaling is an apparent characteristic of F′ (Fig. 1)
(Alroy 2015), use of PCoAwas considered to be
a more relevant test of its properties than use of
NMDS. As with the simulation, the data were
subjected to a correspondence analysis (CA).
CAwas used instead of DCA because removing
the arch effect in these data with such a brute-
force method would make it harder to test the
hypothesis that the F′ does minimize sampling
biases.

All of the PCoA ordinations clearly suggest
that there are three large and well-spaced
groupings of assemblages, each of which
corresponds to a geographic region (Fig. 3A–C).
These clusters are of samples from the south-
eastern United States (most of which are
from Florida), the northeastern United States,
and the western United States. This pattern
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is unsurprising. For example, Graham et al.
(1996) performed a TWINSPAN cluster
analysis of similar FAUNMAP data and found
an almost identical three-way primary split
in the data. Simpson (1964) showed that the
east-west biogeographic split corresponds to a
sharp drop in species richness at the boundary
between the Rocky Mountains and the Great
Plains. Finally, Hagmeier and Stults (1964)
proposed a North American mammalian

biogeographic classification that would place
most of the Florida and northeastern U.S. fossil
samples within just two provinces (respectively,
the Austroriparian and Illinoian). Thus, the
current results and those of Graham et al. (1996)
may simply reflect the coincidence between
sampling gaps and provincial boundaries.

Nonetheless, the ability of the methods to
recover these partially artifactual patterns is of
keen methodological interest. Only F′ (Fig. 3A)
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FIGURE 2. Multivariate ordinations of the same simulated data set that was subjected to cluster analysis (Fig. 1). Letters
correspond to groups of samples also illustrated in Fig. 1. A, Principal coordinates analysis (PCoA) with distances
based on the adjusted Forbes index. B, PCoA based on the Simpson index. C, PCoA based on the Dice index.
D, Correspondence analysis.
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and the Simpson index (Fig. 3B) generate an
entirely clean separation on axis 1 between
samples from the east and west. By contrast,
the CA ordination (Fig. 3D) tightly clusters all
of the eastern U.S. samples into one end of the
first axis; it also suggests relatively much
greater variation amongst the western samples
and obscures the gaps between the three
groupings. Meanwhile, the Dice coefficient

(Fig. 3C) causes samples from the northeast
and west to overlap on axis 1.

All three PCoA plots pull out the north-
eastern U.S. samples on axis 2 (Figs. 3A–C).
These assemblages happen to be dominated
by small mammals, and other northeastern
samples dominated by large mammals fall
closer to the centers of the plots. The likely
reason is not that the large mammal samples
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FIGURE 3. Multivariate ordinations of Pleistocene mammal data based on four different methodologies.
NE = northeastern U.S. (open triangles); SE = southeastern U.S. (open circles); west = western U.S. (solid squares).
Point sizes are directly proportional to the log mean body mass of the species in a given sample. A, Principal
coordinates analysis (PCoA) with distances based on the adjusted Forbes index. B, PCoA based on the Simpson index.
C, PCoA based on the Dice index. D, Correspondence analysis.
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are either particularly rich or poor, but rather
that large mammals tend to have large geo-
graphic ranges in the Recent and this pattern
also held during the Pleistocene. Thus, large
mammal-dominated assemblages are unlikely
to capture regional differences. Axis 2 therefore
seems to present a mixture of geographic and
taphonomic signals.
Of more interest, the axis 2 pattern suggests

that CA in fact does suffer from an arch effect,
with the western and southeastern points
making up the ends of the arch and the
northeastern points forming the midpoint
(Fig. 3D). Thus, it appears that using any
similarity index combined with PCoA does
ameliorate the arch effect in this data set.
The final difference between the methods is

that D and to some extent S compress the
points within each grouping. One way to
quantify this difference is use the axis 1 and 2
scores to compute nearest neighbor differences
for the samples. The median values are
respectively 0.0510, 0.0470, and 0.0406 in
the F′, S, and D plots. The F′-based values are
significantly higher than the S- and D-based
values according to a paired two-sample
Wilcoxon test (P= 0.0534, 0.0036).
This compression within the PCoA space

cannot be attributed in a simple way to
compression of similarity values that is
demonstrated by simulations (Alroy 2015).
The reason is that D should overestimate
the dissimilarity of neighboring points in the
ordinations, which should spread them out.
A better explanation is that D is more badly
fooled by uneven sample sizes (Figs. 1, 2) and
therefore pushes the northeastern small mam-
mal assemblages farther out, which in turn
compresses the rest of the ordination space
(given the way PCoA works). If correct, this
explanation again suggests that D has bigger
problems than simple compression.

Combined Pleistocene and Recent Faunal
Analysis

Given that unequal sample size is the main
topic of concern here, a very strong test of the
Forbes coefficient would be to add large
samples to the analysis. If the method is robust
in the way that is suggested by the simulations

(Figs. 1, 2), then large samples should fall in
biologically reasonable locations. If not, then
they should cluster together. Just such an
analysis is made possible by the fact that
virtually complete mammalian species lists
for North American biomes have been pre-
sented by Brown and Nicoletto (1991).

Adding the biome lists and subtracting the
extinct species from the fossil lists shows that
as with the simulated data (Fig. 2) the Dice
coefficient and CA are entirely misled by this
newly synthesized data set’s huge variation in
sample size (Fig. 4). D segregates the biome
lists into an arc at one edge of the plot (near the
western U.S. samples: compare Figs. 3C and 4C)
whereas CA produces a straightforward arch
that pushes most of the fossil data points onto
one arm (Fig. 4D). Note that the biome lists
have a median length of 68 species whereas the
fossil lists have a median of 16. Thus, the poor
performance of D and CA is indeed easily
explained as an artifact of sampling.

In principle, the Pleistocene samples and
the biome lists might not mix together
cleanly because some fossil assemblages bring
together species not found today in the same
places (i.e., are “disharmonious”). However,
these species form a small minority and most
Pleistocene assemblages are thought to repre-
sent current biomes (Graham et al. 1996).
Indeed, the positions of the biome lists in the
F′ plot (Fig. 4A) do make biogeographic sense:
the grasslands biome falls squarely in the
middle of the plot, the eastern forest biome is
next to the northeastern samples, the western
biome and fossil sample points are mixed
together, the taiga and tundra samples fall
between the western and northeastern U.S.
samples, and the Mexican biomes fall in
between the western and southeastern samples
at the bottom of the plot.

Patterns in the S-based ordination (Fig. 4B)
are highly similar to those in the F′ plot
(Fig. 4A), raising the question of whether S is
just as good as F′. This question is easily
dismissed by noting five things. First, the
simulated cluster analyses show that S exagge-
rates differences between nearly identical
samples (Fig. 2). Second, two-sample simula-
tions (Alroy 2015) suggest that S is categori-
cally downward-biased, so regardless of its
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performance in a cluster analysis or ordination
the actual raw values are suspect. Third, F′
includes terms explicitly intended to account
for sample size (eq. 2) and S does not. Fourth, S
ignores the richness of the larger sample, and it
seems counterintuitive to assume that this
value includes no biologically useful informa-
tion at all. Finally and most importantly, S is a
ratio of just two numbers and is therefore
subject to high binomial error.

Discussion

The choice of analytical methods in paleoeco-
logy is extremely complex, and no single
recommendation could or should be taken
to heart by all practitioners. Nonetheless,
the difference in performance between the
adjusted Forbes index and its rivals is rather
pronounced in the current analysis (Figs. 1–4).
For example, although the Simpson index is
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FIGURE 4. Multivariate ordinations of combined data for Recent mammals found in Pleistocene fossil assemblages
(open circles) and for mammals living today in North American biomes (closed triangles). Point sizes are proportional
to body mass, as in Figure 3. A, PCoA with distances based on the adjusted Forbes index. B, PCoA based on the
Simpson index. C, PCoA based on the Dice index. D, Correspondence analysis.
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clearly adequate for recovering patterns in the
Pleistocene data set (Figs. 3, 4) it is clearly
inadequate when patterns are more challen-
ging (Figs. 1, 2). The Forbes index’s theoretical
properties also seem to be very robust (Alroy
2015), whereas the Simpson index rather
uncomfortably throws out one of the three
underlying counts used by all other metrics.
In sum, it is not really clear how the

ordination and cluster analysis results could
be more intuitive or seem to be less biased:
use of the modified Forbes index really does
seem to solve major problems with sampling.
Nonetheless, some options need to be
mentioned. One of them is DCA. There is good
agreement among ecologists (Legendre and
Gallagher 2001) that sample data should not be
subjected to principal components analysis
(PCA), that the family of correspondence
analysis methods is more appropriate, and
that DCA is an improvement on basic CA
(Gauch 1982; Holland et al. 2001). Indeed,
regardless of how the underlying data are
transformed PCA in particular will routinely
produce a strong arch, and it often produces an
arch so severe that the endpoints fold back into
the middle of the first axis (i.e., a horseshoe
effect [see Legendre and Gallagher 2001]). The
arch effect is certainly the main concern of
theorists working in this area, and DCA does
remove it.
There are, however, reasons to believe that

metric multidimensional scaling (i.e., PCoA)
and NMDS are even better than DCA (Bush
and Brame 2010). PCoA certainly does seem to
work when it is applied to the simulated data
and based on Forbes distances (Fig. 2A).
However, it must be emphasized that scaling
methods are only as good as the underlying
similarity metrics they use. To be specific,
PCoA based on the Euclidean distance repli-
cates PCA whereas PCoA based on the chi-
square distance replicates CA (Digby and
Kempton 1987). These two metrics and all of
the older binary similarity coefficients fail
exactly because they compress similarity
values and therefore distance values (Alroy
2015). Far from being ad hoc or heuristic, using
F′ in combination with PCoA (Fig. 2A) is
therefore entirely reasonable on theoretical
grounds and preferable on practical grounds.

The arch effect does have more to do with
the presence of zero similarities than with the
compression of non-zero similarities by biased
metrics (Gauch 1982). The test data sets used in
this paper do produce an arch effect when a
conventional method is used (Figs. 3D, 4D) and
do include a good number of zero similarities,
so there are reasons to believe that combining
F′ with PCoA will in general often eliminate
the need to take drastic measures to remove the
arch effect. However, if there are still concerns
about zero similarities then a reasonable option
would be to alter the data by using either of the
related step-across and extended similarity
methods (Williamson 1978; De’ath 1999). I have
not done so here strictly in order to keep the
analyses simple and thereby guarantee that any
differences in performance among the methods
really do stem from their intrinsic properties.
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