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1. Introduction

Recall that the classical (one-variable) Lagrange–Bürmann inversion formula, a landmark
discovery in the history of analysis with regard to the expansion of functions into series,
often reads as follows.

Theorem 1.1 (the Lagrange–Bürmann inversion formula; see Whittaker and
Watson [28, §7.32]). Assume that F (x) and φ(x) are analytic around x = 0, φ(0) �= 0.
Then

(1)

F (x) = F (0) +
∞∑

n=1

an

(
x

φ(x)

)n

, (1.1)

where

an =
1
n!

dn−1

dxn−1 [F ′(x)φn(x)]|x=0 ;

(2)
F (x)

1 − xφ′(x)/φ(x)
=

∞∑
n=0

bn

(
x

φ(x)

)n

(1.2)

where
bn =

1
n!

dn

dxn
[F (x)φn(x)]|x=0 .

Hereafter, d/dx denotes the usual derivative operator.
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The problem of finding ‘good’ (q)-extensions of the Lagrange–Bürmann inversion for-
mula, including generalizing it to multivariate cases, has received a lot of attention from
many mathematicians. For the former, we refer the reader to [2,10,11,15,17,18], and
in particular to the good survey of Stanton [26] for a more comprehensive treatment.
Regarding the problem of multivariate generalizations, early contributions in this direc-
tion can be found in [3,4,8,10,12,14,22,29], but the discovery of the general multivariate
formula is certainly attributed to Good [12, Theorem 8].

In this paper we concern ourselves with Tutte’s generalization in the context of the
theory of formal power series, which can be found in [27] or the book by Goulden and
Jackson [13].

Theorem 1.2 (the multivariate Lagrange–Good inversion formula). Let
x1, x2, . . . , xm be indeterminate, let x = (x1, x2, . . . , xm), and let φi(x) (1 � i � m)
be m formal power series over C such that φi(0) �= 0. Suppose that

zi = xi/φi(x), i = 1, 2, . . . , m,

and write for short

zn =
m∏

i=1

zni
i , φn(x) =

m∏
i=1

φni
i (x).

Then, for an arbitrary formal power series H(x) there holds

(1)
H(x) =

∑
∀n∈Nm

cnzn, (1.3 a)

where
cn = [xn]H(x)φn(x) det

1�i,j�m
(δi,j − zi[∂φ]i,j); (1.3 b)

(2)
H(x)

det1�i,j�m(δi,j − zi[∂φ]i,j)
=

∑
∀n∈Nm

dnzn, (1.4 a)

where
dn = [xn]H(x)φn(x). (1.4 b)

Hereafter, det1�i,j�m(ai,j) denotes the usual m × m determinant with the (i, j)-
entry ai,j .

In what follows, since we are interested only in presenting a simple proof of Theo-
rem 1.2, we will not bother with applications of these two formulae in various mathemat-
ical contexts. For more details, we refer the reader to the books by Henrici [15], Goulden
and Jackson [13, Chapter 5] and Flajolet and Sedgewick [7], as well as the expository
papers [17,23].

Up to now, there have been many different proofs of Theorem 1.2. We refer the reader
to [1, 12, 16] for analytic approaches and to [8–10, 13, 27, 29] for some combinatorial
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proofs. However, to the best of our knowledge, the appearance of determinants in these
results lacks natural and transparent interpretations, except for the Jacobian of the
transformation in the theory of differential calculus in several variables. In this paper we
will show that the core of Theorem 1.2 lies in the following theorem.

Theorem 1.3. Assume the same conditions as in Theorem 1.2. Then, for n � 0 ∈ N
m,

[xn]φn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j) = δn,0, (1.5)

where δn,k denotes the usual Kronecker symbol. In general, for m,n > 0 ∈ N
m,

n[xm]φn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

=
∑

∀k(i)=(ki,1,ki,2,...,ki,m)�0,∑m
i=1 k(i)=m

det
1�i,j�m

(niδi,j − ki,j)
m∏

i=1

A(i; k(i)), (1.6)

where the coefficients A(i; k) are given by (2.1) below.

As we will see later, the argument of Theorem 1.3 uses nothing more than row and
column operations of determinants in conjunction with the algebra of formal power series.
Nevertheless, it sheds light on the core of the Lagrange–Good inversion formula.

Our paper is organized as follows. The full and elementary proofs of Theorems 1.2 and
1.3 are given in the next section. In § 3 we show a multidimensional matrix inversion
due to Krattenthaler and Schlosser in exactly the same way. In this sense, we claim
that Krattenthaler and Schlosser’s result may to some extent be regarded as a discrete
analogue of the Lagrange–Good inversion formula.

Throughout our discussions we will use the standard multi-index notation. More pre-
cisely, we abbreviate vectors from N

m (N is the set of non-negative integers) by boldface
symbols. For any n = (n1, n2, . . . , nm), k = (k1, k2, . . . , km) ∈ N

m, we employ the fol-
lowing compact notation:

n! = n1!n2! · · ·nm!,

n > k ⇐⇒ ni > ki (i = 1, 2, . . . , m),

n � k ⇐⇒ ni � ki (i = 1, 2, . . . , m),

n − k = (n1 − k1, n2 − k2, . . . , nm − km),

|n| = n1 + n2 + · · · + nm,

xn = xn1
1 xn2

2 · · ·xnm
m

for x = (x1, x2 . . . , xm), n = n1n2 · · ·nm if n appears in the context as coefficients. Also,
we will use C[[x]] to denote the algebra of a formal power series in m indeterminates xi

over C and, for all f(x) =
∑

n�0 anxn ∈ C[[x]], the coefficient functional (extraction of
the coefficient)

[xn]f(x) = an, a0 = f(0).
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In the case in which f(x) is analytic at x = 0, it is understood that

[xn]f(x) =
1
n!

∂|n|f(x)
∂n1

x1 ∂n2
x2 · · · ∂nm

xm

∣∣∣∣
x=0

.

In particular, we will employ the notation

[∂f ]i,j =
∂fi(x)
∂xj

when a system of formal power series f1(x), f2(x), . . . , fm(x) is concerned.

2. The proofs

Let us start with the proof of Theorem 1.3.

Proof of Theorem 1.3. To show (1.5), without loss of generality we assume that
n = (n1, n2, . . . , nm) > 0, namely, each ni � 1 for i ∈ {1, 2, . . . , m}. Because if there
are some ni = 0, then all terms in the expansion of the determinant (namely, (2.3))
corresponding to zi[∂φ]i,j will be divisible by xi, and hence will not contribute to the
coefficient of xn. Now, let us consider

φni
i (x) =

∑
∀k∈Nm

A(i; k)xk. (2.1)

Taking the formal derivative of (2.1) with respect to xj and multiplying by xi on both
sides yields

xiniφ
ni−1
i (x)[∂φ]i,j = xi

∑
∀k=(k1,k2,...,km)�0

A(i; k)xk1
1 xk2

2 · · · (kjx
kj−1
j ) · · ·xkm

m

=
xi

xj

∑
∀k=(k1,k2,...,km)�0

kjA(i; k)xk1
1 xk2

2 · · ·xkj

j · · ·xkm
m . (2.2)

Start with (2.1) and simplify

nφn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j) (2.3)

by writing for clarity

nφn(x) =
m∏

i=1

niφ
ni
i (x).

To this end, on multiplying all elements in the ith row in the determinant by niφ
ni
i (x),

we arrive at

nφn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j) = det
1�i,j�m

(niφ
ni
i (x)δi,j − xiniφ

ni−1
i (x)[∂φ]i,j).
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Inserting (2.1) and (2.2) into the last identity and then performing further simplification
on the resulting equality by removing the factors xi and xj from each row and column,
we thereby have

nφn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j) = det
1�i,j�m

(χ(i, j)), (2.4)

where the (i, j)-entry

χ(i, j) =
∑

∀k=(k1,k2,...,km)

(niδi,j − kj)A(i; k)xk. (2.5)

Next, expand the right-hand side of (2.4) using the definition of the determinant and
with a bit of rearranging of terms. We can easily find that

nφn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

=
∑

∀k(1),k(2),...,k(m)�0

det
1�i,j�m

(niδi,j − ki,j)
m∏

i=1

A(i; k(i))x
∑m

i=1 k(i), (2.6)

where k(i) = (ki,1, ki,2, . . . , ki,m). Recalling that

x
∑m

i=1 k(i) = x
∑m

i=1 ki,1
1 x

∑m
i=1 ki,2

2 · · ·x
∑m

i=1 ki,m
m

and then applying [xn] to both sides of (2.6), we thereby obtain

[xn]nφn(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

=
∑

∀k(i)=(ki,1,ki,2,...,ki,m)�0,∑m
i=1 ki,j=nj

det
1�i,j�m

(niδi,j − ki,j)
m∏

i=1

A(i; k(i)).

It is certainly clear now that the determinant on the right-hand side

det
1�i,j�m

(niδi,j − ki,j) ≡ 0 for
m∑

i=1

ki,j = nj (1 � j � m),

giving rise to identity (1.5) immediately.
From the above derivation, it is easy to see that (1.6) follows immediately upon apply-

ing [xm], instead of [xn], to both sides of (2.6). The theorem is thus proved. �

With Theorem 1.3 on hand, we are now able to show the Lagrange–Good inversion
formula in a few lines.

Proof of Theorem 1.2. Since the set
{

zn =
m∏

i=1

(xi/φi(x))ni

∣∣∣∣ ∀n = (n1, n2, . . . , nm) � 0
}
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consists of a base of C[[x]], given H(x) there exist some proper coefficients cn such that
(1.3 a) holds. All that remains is to show that these cn satisfy (1.3 b). For this, by mul-
tiplying both sides of (1.3 a) with

φk(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

we immediately get that for k ∈ N
m,

H(x)φk(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j) =
∑

∀n∈Nm

cn det
1�i,j�m

(δi,j − zi[∂φ]i,j)xnφk−n(x).

Comparing the coefficients of xk =
∏m

i=1 xki
i on both sides, we arrive at

[xk]H(x)φk(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

=
∑

∀n∈Nm

cn[xk−n]φk−n(x) det
1�i,j�m

(δi,j − zi[∂φ]i,j)

=
∑

∀n∈Nm

cnδk−n,0

= ck.

Note that the penultimate equality is built on Theorem 1.3. Hence, (1.3 b) is confirmed.
The equalities (1.4 a) and (1.4 b) in Theorem 1.2 follow immediately from (1.3 a) and
(1.3 b), respectively, by replacing H(x) with

H(x)
det1�i,j�m(δi,j − zi[∂φ]i,j)

.

Thus, the theorem is proved. �

3. Discrete Lagrange–Good inversion formula

Before proceeding further, we would like to address here that it was Henrici who first
pointed out [15, Chapter 1] that the Lagrange–Bürmann inversion formula is essentially
equivalent to matrix inversions in the context of combinatorial analysis. Recall that a
matrix inversion, sometimes called an inversion formula or an inverse (reciprocal) relation
in the literature (see [24, Chapters 2 and 3] or [6, Definition 3.1.1]), is commonly defined
as a pair of multidimensional infinite lower-triangular (ILT) matrices over the complex
field C, say, F = (fn,k)n�k�0 and G = (gn,k)n�k�0 satisfying

∑
n�i�k

fn,igi,k =
∑

n�i�k

gn,ifi,k = δn,k for all n,k ∈ N
m. (3.1)

Here, the adjective ILT means that each entry fn,k = 0 unless n � k.
Matrix inversions, found by a process now known as the inverse technique [5], have

proved very fruitful in the study of summations and transformations of hypergeomet-
ric series. Once viewed from Henrici’s viewpoint in reverse, it is easy to see that the
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study of matrix inversions amounts theoretically to the study of discrete analogues of
the Lagrange–Good inversion formula. As cogent evidence in support of such a view, we
would like to reconsider the following multidimensional matrix inversion found by Krat-
tenthaler and Schlosser [21]. It contains the famous Krattenthaler inversion formula [20]
as the special case in which m = 1.

Theorem 3.1 (discrete Lagrange–Good inversion formula; see Krattenthaler
and Schlosser [21, Theorem 3.3]). Let {ai(t)}t∈N, {bij(t)}t∈N, {ci(t)}t∈N, 1 � i, j �
m, be arbitrary sequences such that ci(tr) �= ci(ts) for r �= s. Then two multidimensional
ILT matrices (fn,k)n,k∈Nm and (gn,k)n,k∈Nm with entries given by

fn,k = C(n,k)
m∏

i=1

∏ni−1
ti=ki

Γi(ti; k)∏ni

ti=ki+1{ci(ti) − ci(ki)}
, (3.2 a)

gn,k =
m∏

i=1

∏ni

ti=ki+1 Γi(ti; n)∏ni−1
ti=ki

{ci(ti) − ci(ni)}
(3.2 b)

for arbitrary n = (n1, n2, . . . , nm) � k = (k1, k2, . . . , km) ∈ N
m are inverse to each other,

where

C(n,k) =
det1�i,j�m(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})∏m

i=1 Γi(ki; k)

and, hereafter,

Γi(t; k) := ai(t) +
m∑

j=1

bij(t)cj(kj). (3.3)

One of the main reasons we call Theorem 3.1 the discrete Lagrange–Good inversion
formula is because this result can also be proved using exactly the same argument as
described in the foregoing section. As we will see later, such a proof seems more ele-
mentary than the original proof of Krattenthaler and Schlosser [21] via Krattenthaler’s
operator method [19].

Our argument for Theorem 3.1 depends on a key fact from the theory of finite differ-
ences.

Lemma 3.2 (cf. Stanley [25, 1.9.2 Proposition]). Let H(x) be a polynomial in
x of degree no more than n and let x1, x2, . . . , xn+1 be n + 1 distinct complex numbers.
Then

n+1∑
i=1

H(xi)∏n+1
j=1,j �=i(xi − xj)

= 0. (3.4)

As one may expect, the validity of Theorem 3.1 is closely related to the following
property of the determinant.

Lemma 3.3. With the same notation as in Theorem 3.1, for any n � 0 define

G(y1, y2, . . . , ym) := det
1�i,j�m

({
Γi(ni; n) −

m∑
s=1

bis(ni)ys

}
δi,j + bij(ni)yj

)
.
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Then there exist some coefficients ηp and λp that are polynomial in ai(ni), bij(ni) and
ci(ni) such that

(1)

G(y1, y2, . . . , ym) =
∑

∀pi�0,
|p=(p1,p2,...,pm)|�m−1

ηpyp1
1 yp2

2 · · · ypm
m ; (3.5)

(2) for any n,k � 0,

det
1�i,j�m

(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})

=
∑

∀pi�0,
|p=(p1,p2,...,pm)|�m−1

λpcp1
1 (k1)c

p2
2 (k2) · · · cpm

m (km). (3.6)

Proof of Lemma 3.3. To achieve (3.5), by the definition of a determinant,
G(y1, y2, . . . , ym) is exactly polynomial in y1, y2, . . . , ym with degree no more than m.
Thus, we only need to show that all terms yl1

1 yl2
2 · · · ylm

m with l1 + l2 + · · · + lm = m

do not appear in G(y1, y2, . . . , ym). Considering that all Γi(ni; n) are independent of yj ,
it is quite clear that all such terms yl1

1 yl2
2 · · · ylm

m with degree exactly m are uniquely
determined by

det
1�i,j�m

(
−

{ m∑
s=1

bis(ni)ys

}
δi,j + bij(ni)yj

)
,

which turns out to be zero since the sum of the elements in each row is zero, namely,

m∑
j=1

{
−

m∑
s=1

bis(ni)ysδi,j + bij(ni)yj

}
= −

m∑
s=1

bis(ni)ys

m∑
j=1

δi,j +
m∑

j=1

bij(ni)yj = 0.

Thus, (3.5) is proved.
We now proceed to show (3.6). To do this, we remove the factor ci(ni) − ci(ki) from

the ith row, then multiply by it all elements in the ith column of the determinants in
(3.6), and subsequently deduce

det
1�i,j�m

(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})

= det
1�i,j�m

(
Γi(ni; k)

ci(ni) − ci(ki)
δi,j + bij(ni)

)
×

m∏
i=1

{ci(ni) − ci(ki)}

= det
1�i,j�m

(
Γi(ni; k)

cj(nj) − cj(kj)
ci(ni) − ci(ki)

δi,j + bij(ni){cj(nj) − cj(kj)}
)

= det
1�i,j�m

(Γi(ni; k)δi,j + bij(ni){cj(nj) − cj(kj)}). (3.7)

https://doi.org/10.1017/S0013091516000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000031


A determinant identity implying the Lagrange–Good inversion formula 173

A comparison of the rightmost summation of (3.7) with (3.5) leads us to

det
1�i,j�m

(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})

= G(y1, y2, . . . , ym)|yj=cj(nj)−cj(kj)

=
∑

∀pi�0,
|p=(p1,p2,...,pm)|�m−1

ηp

m∏
j=1

(cj(nj) − cj(kj))pj ,

being further reformulated in the form

∑
∀pi�0,

|p=(p1,p2,...,pm)|�m−1

λpcp1
1 (k1)c

p2
2 (k2) · · · cpm

m (km).

This completes the proof of (3.6). �

With the aforementioned lemmas on hand, we are now in a good position to give a full
proof of the so-called discrete (multivariate) Lagrange–Good inversion formula.

Proof of Theorem 3.1. Obviously, it suffices to verify that

n∑
k=l

fn,kgk,l = δn,l, (3.8)

which is valid for n = (n1, n2, . . . , nm) = (l1, l2, . . . , lm) = l ∈ N
m. Next, we only consider

the case in which n > l ∈ N
m, since if there are r pairs of integers ni = li, then (3.8) will

reduce, after some simplification, to such a case for N
m−r. To confirm (3.8), we compute

in a straightforward way

n∑
k=l

fn,kgk,l =
n∑

k=l

det1�i,j�m(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})∏m
i=1 Γi(ki; k)

×
m∏

i=1

∏ni−1
ti=ki

Γi(ti; k)∏ni

ti=ki+1(ci(ti) − ci(ki))

m∏
i=1

∏ki

ti=li+1 Γi(ti; k)∏ki−1
ti=li

(ci(ti) − ci(ki))

=
n∑

k=l

det
1�i,j�m

(Γi(ni; k)δi,j + bij(ni){ci(ni) − ci(ki)})

×
m∏

i=1

∏ni−1
ti=li+1 Γi(ti; k)∏ni

ti=li,ti �=ki
(ci(ti) − ci(ki))

.
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Now, by using of Lemma 3.3, we replace the determinant with the expression on the
right-hand side of (3.6) and then change the order of summation, finally arriving at

n∑
k=l

fn,kgk,l

=
∑

∀pi�0,
|p|�m−1

λp

n∑
k=l

cp1
1 (k1)c

p2
2 (k2) · · · cpm

m (km)
F (k; n, l)∏m

i=1
∏ni

ti=li, ti �=ki
(ci(ti) − ci(ki))

,

(3.9)

where

F (k; n, l) :=
m∏

i=1

ni−1∏
ti=li+1

Γi(ti; k).

Recalling the definition of Γi(ti; k), we may furthermore assume that

F (k; n, l) =
∑

q=(q1,q2,...,qm)�0

μqcq1
1 (k1)c

q2
2 (k2) · · · cqm

m (km). (3.10)

In such a case, all coefficients μq, just like λp in Lemma 3.3, are merely polynomials in
ai(ni), bij(ni) and ci(ni), being independent of ci(ki) and ki. Meanwhile, it is easily seen
that the right-hand sum of (3.10) is just polynomial of degree no more than |n|− |l|−m,
that is, |q| � |n| − |l| − m. Thus, substituting expression (3.10) for F (k; n, l) in (3.9)
and changing the order of summation immediately yields

n∑
k=l

fn,kgk,l =
∑

∀pi,qi�0,
|p|�m−1,

|q|�|n|−|l|−m

λpμq

n∑
k=l

cp1+q1
1 (k1)c

p2+q2
2 (k2) · · · cpm+qm

m (km)∏m
i=1

∏ni

ti=li,ti �=ki
(ci(ti) − ci(ki))

.

It is crucial to realise that, under the restrictions

∀pi, qi � 0, |p| � m − 1 and |q| � |n| − |l| − m,

we must have

|p| + |q| � |n| − |l| − 1.

From this relation, we conclude that there exists at least one i = ι ∈ {1, 2, . . . , m} such
that pι + qι � nι − lι − 1. Keeping this in mind, we now reformulate

n∑
k=l

fn,kgk,l =
∑

∀pi,qi�0,
|p|�m−1,

|q|�|n|−|l|−m

λpμq

m∏
i=1

Δ(i)(n, l),
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where, for brevity, we write for each integer i that

Δ(i)(n, l) :=
ni∑

ki=li

cpi+qi

i (ki)∏ni

ti=li,ti �=ki
(ci(ti) − ci(ki))

,

Δ(i)(n, l)Δ(j)(n, l) :=
ni∑

ki=li

cpi+qi

1 (ki)∏ni

ti=li,ti �=ki
(ci(ti) − ci(ki))

×
nj∑

kj=lj

c
pj+qj

j (kj)∏nj

tj=lj ,tj �=kj
(cj(tj) − cj(kj))

and so on. Consequently, we can easily find that the summation corresponding to i = ι,

Δ(ι)(n, l) =
nι∑

kι=lι

cpι+qι
ι (kι)∏nι

tι=lι,tι �=kι
(cι(tι) − cι(kι))

,

is nothing but the (nι − lι)th difference with respect to cι(kι). By a direct application
of Lemma 3.2, we obtain Δ(ι)(n, l) = 0, i.e. the left-hand side of (3.8) is zero, which in
turn confirms that

n∑
k=l

fn,kgk,l = 0 for n > l.

Hence, the theorem is confirmed. �

We end this paper by remarking that in [3,4] Chu found some multidimensional ana-
logues of the Gould–Hsu inverse relations. His results may also be considered as special
cases of the discrete Lagrange–Good inversion formula, Theorem 3.1.

Acknowledgements. This work was supported by NSFC Grants 11071183 and
11471237.

References

1. A. Abdesselam, A physicist’s proof of the Lagrange–Good multivariable inversion for-
mula, J. Phys. A36 (2003), 9471–9478.

2. G. E. Andrews, Identities in combinatorics, II: a q-analogue of the Lagrange inversion
theorem, Proc. Am. Math. Soc. 53 (1975), 240–245.

3. W. Chu, Multifold forms of Gould–Hsu inversions, Acta Math. Sinica 31(6) (1988), 837–
844.

4. W. Chu, Multifold analogues of Gould–Hsu inversions and their applications, Acta Math.
Appl. Sinica 5 (1989), 262–268.

5. W. Chu, Inversion techniques and combinatorial identities: a quick introduction to hyper-
geometric evaluations, Math. Appl. 283 (1994), 31–57.

6. G. P. Egorychev, Integral representation and the computation of combinatorial sums,
Translations of Mathematical Monologues, Volume 59 (American Mathematical Society,
Providence, RI, 1984).

7. P. Flajolet and R. Sedgewick, Analytic combinatorics (Cambridge University Press,
2009).

https://doi.org/10.1017/S0013091516000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000031


176 J. Huang and X. Ma

8. I. M. Gessel, A combinatorial proof of the multivariable Lagrange inversion formula, J.
Combin. Theory A45(2) (1987), 178–195.

9. I. M. Gessel and D. M. Kulkarni, Multivariable Lagrange inversion, Gessel–Viennot
cancellation, and the matrix tree theorem, J. Combin. Theory A80 (1997), 295–308.

10. I. M. Gessel and G. Labelle, Lagrange inversion for species, J. Combin. Theory A72
(1995), 95–117.

11. I. Gessel and D. Stanton, Applications of q-Lagrange inversion to basic hypergeometric
series, Trans. Am. Math. Soc. 277 (1983), 173–203.

12. I. J. Good, Generalization to several variables of Lagrange’s expansion, with applications
to stochastic processes, Proc. Camb. Phil. Soc. 56 (1960), 367–380.

13. I. P. Goulden and D. M. Jackson, Combinatorial enumeration (Wiley Interscience,
1983).

14. M. Haiman and W. Schmitt, Incidence algebra antipodes and Lagrange inversion in
one and several variables, J. Combin. Theory A50(2) (1989), 172–185.

15. P. Henrici, Applied and computational complex analysis, Volume 1 (Wiley Interscience,
1977).

16. J. Hofbauer, A short proof of the Lagrange–Good formula, Discr. Math. 25 (1979),
135–139.

17. J. Hofbauer, Lagrange inversion, Sém. Lothar. Combin. 6 (1982) (available at http://
eudml.org/doc/119996).

18. Ch. Krattenthaler, A new q-Lagrange formula and some applications, Proc. Am.
Math. Soc. 90 (1984), 338–344.

19. Ch. Krattenthaler, Operator methods and Lagrange inversion: a unified approach to
Lagrange formulas, Trans. Am. Math. Soc. 305 (1988), 431–465.

20. Ch. Krattenthaler, A new matrix inverse, Proc. Am. Math. Soc. 124 (1996), 47–59.
21. Ch. Krattenthaler and M. Schlosser, A new multidimensional matrix inverse with

applications to multiple q-series, Discr. Math. 204 (1999), 249–279.
22. X. R. Ma, Notice on added-factor of multivariate Gould–Hsu inversion, J. Combin. Inf.

Syst. Sci. 13(4) (2000), 391–396.
23. D. Merlini, R. Sprugnoli and M. C. Verri, Lagrange inversion: when and how, Acta

Appl. Math. 94(3) (2006), 233–249.
24. J. Riordan, Combinatorial identities (Wiley, 1968).
25. R. P. Stanley, Enumerative combinatorics, 2nd edn, Volume 1 (Cambridge University

Press, 2012).
26. D. Stanton, Recent results for the q-Lagrange inversion formula, in Ramanujan revisited

(ed. G. E. Andrews), pp. 525–536 (Academic Press, 1988).
27. W. T. Tutte, On elementary calculus and the Good formula, J. Combin. Theory B18

(1975), 97–137.
28. E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th edn (reprint)

(Cambridge University Press, 1996).
29. J. Zeng, The β-extension of the multivariable Lagrange inversion formula, Stud. Appl.

Math. 84(2) (1991), 167–182.

https://doi.org/10.1017/S0013091516000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000031

