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We study the behaviour of non-convex functionals singularly perturbed by a possibly
oscillating inhomogeneous gradient term, in the spirit of the gradient theory of phase
transitions. We show that a limit problem giving a sharp interface, as the
perturbation vanishes, always exists, but may be inhomogeneous or anisotropic. We
specialize this study when the perturbation oscillates periodically, highlighting three
types of regimes, depending on the frequency of the oscillations. In the two extreme
cases, a separation of scales effect is described.

1. Introduction

In the classical theory of phase transitions for mixtures of two immiscible fluids (or
for two phases of the same fluid). it is assumed that, at equilibrium, the two fluids
arrange themselves in such a way that the area of the interface that separates the
regions occupied by the two phases is minimal. This ‘minimal-interface criterion’
can be interpreted in mathematical terms as an energy-minimization process. We
can describe every configuration of the system by a function u defined on {2 (the
‘container’ of the fluids), taking the value 0 on the first phase and 1 on the second
one. In addition, u satisfies a ‘volume constraint’ fQudx =V, where V is the
assigned total volume of the second fluid. The set of discontinuity points of u
parametrizes the interface between the two fluids in the corresponding configuration
and is denoted by S(u). We then postulate that the energy of such a u is proportional
to the area of the interfaces, i.e. it is given by

F(u) = ooH*(S(u)),

where H? denotes the two-dimensional (Hausdorff) surface measure and oq (the
‘surface tension’) is a strictly positive constant, characteristic of the fluids. In such
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a way, the optimal configurations are obtained by minimizing this surface energy
among all admissible configurations.

The ‘gradient theory’ of phase transitions is an alternative way to study these
systems of fluids, by assuming that the transition between the phases is not con-
centrated on a interfacial surface, but takes place on a thin ‘transition layer’. In
this way, we allow fine mixtures of the two fluids, and an admissible configuration
u will be a function taking its values in [0, 1], so that u(z) will be interpreted as
a local average density or concentration of the second fluid. Following this model
proposed by Cahn and Hilliard [11], to such a u, we associate the energy

E.(u) = /Q(W(u) + &% Dul?) dz,

where W is a ‘double-well energy’ with wells at 0 and 1 (i.e. a non-negative function
vanishing only at 0 and 1), and ¢ is a small parameter linked to the width of the
transition layer. In addition, the admissible configurations will always satisfy the
same volume constraint as above. The competing effects of the two integrals in
E. are to favour the configurations that take values close to 0 and 1 by the first
term and at the same time to penalize spatial inhomogeneities of u (and hence the
introduction of too many transition regions) by the second term.

The connection between these two standpoints had been conjectured by Gurtin
[17], and was proved by Modica [18] (after an earlier work by Modica and Mor-
tola [19]) by showing that minimum problems for the functional E. tend to mini-
mum problems for F' if the constant o is chosen as o9 = Qfol VW (s)ds. In [20],
one can also find the proof of the I'-convergence of the scaled functionals

éEs(u)—/Q(@+sDu2> dz

to F. Loosely speaking, this convergence means that minimal configurations u,. for
E. will tend to have transition layers that ‘concentrate’ as ¢ — 0 on the interface
S(u) of a minimizer u of F. Moreover, the scaled minimal values (1/¢)E.(u.) will
converge to the value F'(u). It is interesting to note that the proof of the Modica—
Mortola result is essentially one dimensional. The key point is to show that, for
minimizers of E., the profile of the transition layer approximately depends only
on the direction orthogonal to S(u) and is a scaling of an ‘optimal profile’. After
noticing this, the convergence result can be proved first, with the due changes in
the statement, if {2 is one dimensional (in which case, interfaces are points), and
then the three-dimensional case can be recovered by a ‘slicing’ argument (see, for
example, [1,6]).

In this paper we investigate the effect of the presence of small-scale heterogeneities
on the passage to the limit described above. More precisely, we assume that the
gradient term in the definition of E. may depend on the space variable x, so that
we are led to the study of the asymptotic behaviour of functionals of the form

Fe(u)—/g(WE(“) +£f5(x,Du)> du,

where f. are Borel functions with quadratic growth in the second variable. In this
case, by a simple comparison argument with the case studied by Modica, we may
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see that the domain of the I'-limit will be the same as that of the energy F' above.
However, the determination of the actual form of the limit is much more complex.
By following the ‘direct methods of I'-convergence’ (see [10,13]), we have first
given a general compactness result for I'-limits of functionals F. as above, and
then explicitly characterized the limit functional when f. is rapidly oscillating in
the first variable. In our general framework (as it was already done by Modica and
Mortola), we do not restrict to the case of space dimension n = 3.

Our compactness result (theorems 3.3 and 3.5) shows that, from every sequence
(FEJ.) of functionals as above, it is possible to extract a subsequence that converges
to a functional Fj of the form

Fo(u) = /S( )U(ﬂv,z/u)dan1

defined on functions u : 2 — {0, 1} of bounded variation. In this case, v, represents
the measure-theoretical normal to S(u). Note that, in this case, the limit may be
anisotropic and inhomogeneous, but it is always in the same ‘class’ of the functional
I above, which we recover when o is a constant. To prove this result, we follow
a procedure that is by now customary in I'-convergence, consisting of combining
localization and integral representation arguments. First, we extend the definition
of F; to every open set of R"™ by

F(u, A) = /A (@ +efela, Du)> da.

We then prove the existence of converging subsequences to an (abstract) functional
Fy(u, A), which is, among other things, (the restriction of) a measure in the second
variable and, by comparison, we get Fy < cF for some ¢ > 0 We conclude then that

Fo(u, A) = / o(x,v,)dH" !
S(u)nA

for some Borel function o by suitable representation results (see [5,9]). This method
is well established in the case of functionals defined on Sobolev spaces (see [10,13])
and had been previously used within the framework of Caccioppoli partitions [2]
or, in a way similar to the present paper, to characterize limits of non-local func-
tionals [12].

It is interesting to note that the key point in the complex procedure above is
proving that the set function Fy(u,-) is subadditive, and this was the object of an
early lemma by Dal Maso and Modica [14]. Their result was inspired by De Giorgi,
clearly aiming to illustrate how the direct methods of I'-convergence could also
be applied outside the framework of Sobolev spaces. Only now do we have at our
disposal powerful integral representation techniques for functionals defined on func-
tions with bounded variation that allow us to conclude this argument.

The main part of paper is §4, where we specialize the convergence result in the
case of rapidly oscillating perturbations. We fix a function § = d(¢) such that § — 0
as € — 0, a function f periodic in the first variable and positively homogeneous of
degree two in the second variable, and take

fwn = 1(5.2)
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so that
F.(u) = /Q(WE(“) (%Du)) da.

We may interpret this situation as modelling the presence of heterogeneities at a
scale ¢, which locally favour or disfavour the onset of a transition layer. This may
be viewed as a dishomogeneity of the fluid, or interpreted, more appropriately, as a
microscopic property of a medium subject to solid—solid phase transitions. However,
in order to treat this second case in depth, we would need to extend the theory to u
vector valued and subject to differential constraints, which goes beyond the scope
of this paper.

We show that the behaviour of the whole family (F.) can be completely described
and depends on the mutual speed of convergence to 0 of § and . The limit functional
Fp is homogeneous, but may be anisotropic,

Fo(u) = /S( )a(z/u)dH"A.

In the first case, € < §, the final result is that we have a ‘separation of scales’ effect.
We may first regard ¢ as fixed and let ¢ — 0, and subsequently let § — 0. In this
way, we first obtain an inhomogeneous functional by applying the Modica—Mortola
procedure, which can be explicitly computed as

70.0/ dHn 1
S(u) V

(for this anisotropic version, see also [6, ch. 4.3]). The limit as § — 0 of these
types of functionals falls within the framework of I'-convergence of functionals
defined on Caccioppoli partitions [2] and can also be seen as a particular case of
homogenization on BV spaces [4]. By applying either of these two procedures, we
obtain a formula for o (see also [8]). A second case is when € and ¢ are comparable
(for simplicity, € = 0). In this case, the two effects cannot be separated, and o(v) is
described through an asymptotic formula that describes the optimal profile, which,
in this case, is not depending only on the direction v. Finally, when § < ¢, we again
find a separation of scales phenomenon. The total effect is as if first we freeze . In
this case, letting 6 — 0, we obtain a functional of the form

FE(U)_/Q(WE(U)

where fhom is the homogenized integrand of f (see, for example, [10]). We even-
tually let ¢ — 0, so that, by applying the Modica—Mortola procedure, we have
(V) = 007/ from (V). Note that, by the inequality w? + 2% > 2wz, we always have

the estimate
u) > / 24 /W(u)f(z,Du> dzx,
0 0

which turns out to be optimal if € < §, but is not sharp in all other cases.

(Du)) de,
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To briefly illustrate the difference in the separation of scales effect, as an example,
we may consider the case of a simple inhomogeneous isotropic fe,

F(u) = /Q(@ +sa(§>Du2> de,

where n = 2 and a, for example, is a ‘chessboard coefﬁcient’ (taking the values «
on ‘white squares’ and 8 > v/2« on ‘black squares’). If ¢ < §, then

= 00/ “ d?—(1
S(u)

o(v) = ooa((V2 = 1)|vi| A |ve| + |v1] V |v)

and

(see [8, example 5.3]). If § <« ¢, then we have, by the classical Dychne formula

(see [22]),
Fe(u) —/Q(@ +s@pu2> dz,

and, eventually,
o(v) = aolaf)/t.

We finally point out that throughout the paper we have chosen to make some
hypotheses on f in order to simplify formulae. First, we have made the technical
assumption that f is positively homogeneous of degree two in the second variable,
so that the Modica—Mortola procedure may be applied to the corresponding homo-
geneous case. In addition, we make some continuity hypothesis, without which,
formulae should take into account complex relaxation results in BV spaces. The
reader interested in the problems connected to general Borel integrands is referred

0 [5,8,9].

2. Notation and preliminary results

Let £2 be an open subset of R”. We denote by A and B the families of all bounded
open and Borel subsets of R™, respectively. We denote by x g the characteristic
function of E. We introduce the notation

Q(xap) =T+ p(7%7 %)717

in particular, @ = Q(0,1); @} (z) denotes an open cube of R" centred at x, having
side length p and one face orthogonal to v; Q) = Q}(0) and Q¥ = Q7(0). By [t] we
denote the integer part of ¢ € R.

Let U and U’ be open sets with U’ CC U. We say that gp R"” — R is a cut-off
function related to U and U’ if ¢ € C§°(U’) and 0 < ¢ < 1 with ¢ = 1 in a
neighbourhood of U.

Given a vector-valued measure p on {2, we adopt the notation |u| for its total
variation (see [15]) and M (£2) is the set of all signed measures on {2 with bounded
total variation. The Lebesgue measure of a set E is denoted by |E|. The Hausdorff
(n — 1)-dimensional measure in R™ is denoted by H"~!.
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We say that u € L'(£2) is a function of bounded variation, and we write
u € BV (£2), if its distributional first derivatives D;u belong to M({2). We denote
by Du the R™-valued measure whose components are Diu, ..., Dyu.

We will say that a set E is of finite perimeter in {2, or a Caccioppoli set, if
XE € BV(£2), and, for every open subset {2 of R, we let

Pa(E) = [Dxr|(£2),

the perimeter of E in (2. The family of Caccioppoli sets can be identified with
the functions u € BV(§2;{0,1}), the set of BV ({2) functions that take almost
everywhere the values 0 or 1.

In this case (if w € BV (£2;{0,1})), the vector-valued measure Du can be repre-
sented as

Du(B) = / vy dH" !
BNS(u)

for every Borel set B C {2, where S(u) denotes the complement of the Lebesgue set
of u and v, € R™ is a unit vector that is H" !-a.e. defined in S(u), interpreted as
the normal to S(u). Moreover, one can prove that, if £ = {z: u(z) = 1},

Po(FE) = |Du|(2) = H" 1 (S(u) N Q).

For the general exposition of the theory of functions of bounded variation, we refer
to [3,15,16,21,23)].

Since we will consider either functions in Sobolev spaces or characteristic func-
tions of sets of finite perimeter, with a slight abuse, we will use the notation
Du = (Djyu,...,Dyu) both for the gradient of a Sobolev function and for the
distributional derivative of u, as no confusion may arise.

We recall the definition of I'-convergence of a sequence of functionals Fj defined
on L'(£2) (with respect to the L!(§2)-convergence). We say that (F}) I'-converges
to Fo on LY(£2) if, for all u € L1(2),

(i) (I'-liminf inequality) for all (u;), sequences of functions in L!(§2) converging
to u in L'(£2), we have

Fo(u) < liminf F(u;);
J

(ii) (I'-limsup inequality) there exists a sequence (u;) of functions in L'(£2) con-
verging to v in L1(£2) such that

Fo(u) = limsup F}j(u;).
J

We will say that a family (F.) I'-converges to Fj if, for all sequences (g;) of positive
numbers converging to 0, conditions (i) and (ii) above are satisfied, with F., in
place of F;. For a comprehensive study of I'-convergence, we refer to [13] (for a
simplified introduction, see [7]), while a detailed analysis of some of its applications
to homogenization theory can be found in [10].

The model example of I'-convergence we have in mind is the following result
(see [1,6,18,19]).
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THEOREM 2.1. Let W : R — [0,+00) be a continuous function such that

{zeR:W(z)=0}={0,1}, (2.1)
c1(]z]7 = 1) < W(z) < ea(|2|” +1)  for every z € R,

with v > 2
Then the functionals

w
/ (ﬂ + 5Du2> dr ifu € W17 (A),
E.(u,A)=qJa €
400 otherwise
I'-converge as € — 0 to the functional
E(u, A) = coP(u, A)
for every Lipschitz set A € A and every function u € Li_(R"™), where

H" 1 (S(u) N A) = |Dul(A) = Pa({u=1})
D(u, A) = ifue BV(A;{0,1}),  (2.3)

+00 otherwise
and

1
co = 2/0 VW (z)dz. (2.4)

From this theorem and the properties of convergence of minima of I'-limits, the
following corollary, which describes the limit behaviour of the gradient theory of
phase transitions, holds (see [18, proposition 3]).

COROLLARY 2.2. Let 0 <V < |2|. Let v > 2 and let u. € WY (£2) be a solution

of problem
me = min{/ (W (u) + €?|Dul?) dx : / udr = V}.
o) o)

Then, upon extracting a subsequence, u. — u € BV (§2;{0,1}) in L'(£2), where u
is a solution of the problem

m = min{Du((Z) ru € BV (£2;{0, 1}),/Qudx = V} = min{Pq(E) : |E| =V}
and me /e — com.

3. A compactness result

For all e > 0, let f. : R™ x R™ — [0, 400) be a Borel function satisfying the growth
condition

c1l€]? —e3 < fo(y, &) <ea(1 +[€]7) forae. y € R™ for every € € R, (3.1

with 0 < ¢; < ¢g and ¢3 > 0, independent of e.
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Let W : R — [0,4+00) be a continuous function satisfying (2.1), (2.2). We will
consider the functionals G. : L .(R™) x A — [0, +oc] defined by

G.(u, A) = /A (WE(U)

+00 otherwise.

(z, Du)) dz ifu e WH(4), (3.2)

REMARK 3.1. By (3.1), it follows immediately that
w
/ (# + Echu2> dz — cze] Al < Ge(u, A)
A
w
< / (# +502Du2> dz + cee|A|
A

for each u € W17(A), and hence, if we set
G'(u,A) =T~ limiélf G:(u, A),
G"(u, A) = I'-limsup G.(u, A),

e—0
then, by theorem 2.1, G'(u, A) = G"(u, A) = +o0o whenever u ¢ BV (A;{0,1}).
Moreover, if A € A is a Lipschitz set, we have the estimate

cov/e1P(u, A) < G'(u, A) < G"(u, A) < coy/ca®P(u, A) (3.3)
where @ is defined in (2.3).

The following lemma is crucial in the description of the behaviour of the I'-limits
with respect to the set variable.

LEMMA 3.2 (the fundamental estimate). Let G. be defined by (3.2). Then, for
every € > 0, for every bounded open set U, U’', V, with U CcC U’, and for every
u,v € L _(R™), there exists a cut-off function ¢ related to U and U’, which may

loc

depend one, U, U', V, u, v, such that
Ge(pu+ (1 -, UUV) < Ge(u,U") + Ge(v,V) + 0 (u,v,U, U, V),

where 8. : L (R™)? x A3 — [0, +o0| are functions depending only on e and G.
such that

hl'r(l) 55(’11,5,’[}5, Ua U/7 V) = 0

whenever U,U'\V € A, U CC U' and uz,v. € Li.(R") have the same limit as
e—01in Ll((U’ \U)NV) and satisfy

sup(Ge (ue,U') + Ge(ve, V) < +00.
e>0

Proof. The proof follows the lines of that contained in the appendix of [14], with
slight modifications. However, we include it, since the changes in the notation are
heavy.
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We fix e, U,U’,V € A with U CC U’. Let k. denote the integer part of 1/¢, let
d = dist(U,R™ \ U’) and choose k. + 1 open sets Uy, ..., U 41 € A such that

UccU CcC-- CCUy 41 CcclU

and d
diSt(Ui,Rn\Ui+1) >m7 = 1727...,k5.
For each i =1,..., k., let ; be a cut-off function between U; and U,y such that
2(ks + 2
max [Dg;| < g (3.4)

d
We have, for every i = 1,..., k., that
Ge(piu+ (1 = @i)v,UUV)
=G (piu+ (1 =)o, UUV)NT;)
+ Ge(piu+ (1 — p)v, TUUV)N (R \ Uit1))
+ Ge(piu+ (1 —@)v, (UUV)N (U1 \U))
= Ge(u, UUV)NT;) + Ge(v,V N (R™\ Uis1))
+ Ge(piu+ (1 — @), (Uigr \U;) NV)
< Ge(u,U') 4+ Ge (v, V) + Ge(piu+ (1 — p;)v, (Uix1 \ Ui) N x(/). |
3.5

We now estimate the last term in (3.5). We write S; = (U1 \ U;) N V. By the
growth conditions (3.1) and (3.4), we have that

Ge(piu+ (1 = @i)v, S;)
1
:/ ;W(%uﬂl%)v)+€f(%D(%u+(1%)v)> dz
S
1
</ ;W(gpiu+(1f¢¢)v)dx+/ eca|D(piu+ (1 — @;)v)|* dz
Si Si
1
< [ 2Wlon+ (1= po)dot [ ecDuf + Do +DgiPlu - o) do
Si Si
</ lW(%U+(1*%)U)d$
s; €

2
+ 50(@) /S lu —v|?dz + ¢(Ge(u, S;) + Ge(v, S;)).

Summing on i, we get

ke
> Gelpiu+ (1= @i, S)
i=1

k
= 1
< Z/S ;W(%‘u+ (1—i)v)da
=175

2
+sc(w> /S lu —v[?dz + ¢(Ge(u, S) + Ge (v, S)),
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where S = (U’ \ U)NV. Then there exists j, among @1, ..., ¢k such that

Ge(ppu+ (1 — @h)v Sh)

<o ( /nglu+(1fgol) )dx>

+ = (M> / lu — v|? dz + i(Ge(U, S) +Ge(v,9)).
ke d s ke

If we define

8 (u,v, U, UV

(Z/ W (piu+ (1 — ¢;)v )dx)

2(ke +2)
o— 2k £ 2)Y / lu— o2 dz + —(Ge(u, S) + Go(v, S))
k. d s ke
(3.6)
and choose ¢ = ¢}, cut-off function between Uy, and U1, by (3.5), we have that
Gs(ﬂpu + (1 - @)’U» Uu V) < Gs(ua U/) + Gs(v» V) + 55(’“7 v, U, U/7 V)

Let u. and v, be two sequences in L{. (R™) with the same limit in L'(S) and with
SUP,~o(Ge(ue,U’) + Ge(ve, V) < M. Under these conditions, we can prove that
the sequences u. and v. converge to the same limit also in L7(.S). In fact, let w be
the common limit of u. and v. in L'(S) and let € R be such that

W(z) = scilz|" if [2] > 7.
We define
w'(x) =—rV(rAw(z)), =zeR",

and, analogously, u. and v.. It can be easily seen that u] and v. converge to w” in
L7(S). Moreover,

/ e (2) — ul(@)[ dz < / e (2)]" da
S {zeS:|uc|>r}

2
<= [ W(u(x))dz
C1 S

< EEGs(usy S)

C1

2M
< —¢.
C1

Hence we can conclude that u. and v, converge to w” in LY(S). As they converge
to w in L'(S), we have w" = w. To prove that

hl'r(l) 55 (u57 Ve, Ua U/7 V) = 07

it remains to study the convergence to zero of the first term in (3.6), since, for the
other ones, it is obvious.
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Note that 1/ek. is bounded. Hence it is sufficient to prove that

ke
lim Z/ W(psue + (1 — p;)ve)da = 0.
i=175i

We define, for z € R”,

wite + (1 — p))ve ifx €S; for some i =1,... ke,
w =
: w(x) otherwise,

which converges to w in L7(S). Since W is continuous and satisfies the growth
condition (2.2) of order v, by the dominated convergence theorem, we have that

2%2/ W ¢1u5+ @z)vs)d

= lim [ W(w(z))dz
e—0 S

= lim [ W(u.(x))dx
e—0 S

< lirr(l) eGe(ue, S)
= 07
which completes the proof. O

THEOREM 3.3 (compactness by I'-convergence). For every sequence (g;); converg-
ing to 0, there exists a subsequence (¢j,)r and a functional G : L, (R™) x A —
[0, 4+00] such that (G- k) I'-converges to G for every U bounded Lipschitz open
set and for every u € Ll (R™) such that u € BV (U;{0,1}), with respect to the
strong topology of L*(U). Moreover, for every u € BVio.(R™;{0,1}), G(u,-) is the
restriction to A of a regular Borel measure.

Proof. By a standard compactness argument (see, for example, [10, §7.3]), we can
assume that (G, (-, R)) I™-converges to a functional Go (-, ), with respect to the
L'(R) convergence, for all R belonging to the class R of all polyrectangles with
rational vertices. If u € BVjo.(R™; {0, 1}), we define G(u, A) on all open sets A € A
by setting

G(u, A) =sup{Gop(u,R): RCC A,R € R}.

For every A, A’ € A with A’ CC A, there exists R € R such that A’ CC R CC A.
Hence we get

G(u, A) = sup{G'(u, A’) : A cCc A, A" € A}
=sup{G"(u,A"): A cC A A" € A} (3.7)

for all A € A, that is, G is the inner regular envelope of G’ and of G”. Hence the
set function G(u, -) is inner regular (see [13, remark 16.3]), superadditive (see [13,
proposition 16.12]) and, by using the fundamental estimate above, we can prove
that G(u,-) is also subadditive (see [13, proposition 18.4]). Hence, by the measure

https://doi.org/10.1017/50308210500002390 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002390

276 N. Ansini, A. Braides and V. Chiadb Piat

property criterion of De Giorgi and Letta, G(u,-) is the restriction to A of a reg-
ular Borel measure (see [10, ch. 10]). Since, by the fundamental estimate, G'(u, -),
G"(u,-) are themselves inner regular on the class of bounded Lipschitz open sets U
(see [10, propositions 11.5 and 11.6]), then, by (3.7), we deduce that

G'(u,U) = sup{G'(u, A") : A’ cCc U, A" € A}

=G(u,U)

=sup{G"(u,A"): A’ cc U, A" € A}

=G"(u,U)
for all such sets U. Hence G is the I™-limit of (G.; )y for every U bounded Lipschitz
open set and for every u € LllOC (R™). Remark 3.1 completes the proof. O

In the sequel, we still denote by G the extension of G(u,-) to the family B of all
Borel subsets of R™.

REMARK 3.4. (G is a local functional on A, i.e.
G(u, A) =G(v, A)

for every set A € A and every u,v € BVioe(R";{0,1}) such that u = v a.e. in A.
This follows directly by applying the definition of I'-convergence, each G¢ being a
local functional too. Moreover, by remark 3.1, we can deduce the following estimate,

G(u,U) < co\/c2®P(u,U) = coy/ezH" 1 (S, N U), (3.8)
for every Lipschitz set U € A and every u € L. (R") such that u € BV (U;{0,1}).

loc

THEOREM 3.5 (integral representation). There exists a Borel function ¢ : R™ X
St — [0, +-00[ such that

cov/er < o(z,v) <coy/ea for ae.x €R", v e ST (3.9)
o(x,v,)dH"™ ' ifu e BV(U;{0,1}),
G(u,B) = /SuﬁB 0.1} (3.10)
400 otherwise

for every Lipschitz set U € A and every Borel set B C U. Moreover, ¢ satisfies the
derivation formula

¢(x,v) = limsup p' " inf{G(u, Qy(z)) tu=uy in R"\ Q) (x)}, (3.11)
p—0+

where ul is the characteristic function of the half-space {y € R™ : {y — z,v) > 0}.

Proof. Tt suffices to notice that GG, as defined in theorem 3.3, satisfies the hypotheses
of theorem 1.4 of [5] (a direct proof can be also obtained by following that of
lemma 3.5 in [9]). O

REMARK 3.6. If ¢ does not depend on z, then, from (3.11),

o(v) = inf{G(u, Q") : u =" in R™\ Q"}
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where u” = ug. Moreover, the one-homogeneous extension of ¢ to R™ is convex
(see [2]), and, in particular, it is continuous. We will use this fact to identify ¢ by
computing it on a dense set in S~ 1.

3.1. Boundary conditions

In this section we extend the preceding results to include the case of problems
with some types of boundary conditions.
Let w : R — [0,1] be such that

w(—00) ;= lim w(t) =0, w(+o0) == lim w(t) =1

t——o0 t——+o0
and

+o0
/ (W (w) + |w'|?)dt = ¢ < +oo. (3.12)
We define w,(t) = w(t/e) and v.(x) = w:((z,v)). We easily see that
ve — u, (3.13)

where u” = ug is defined in theorem 3.5.
With fixed x € R™ and p > 0, we define

Fo(u, Q4(2)) if u(y) = ve(y — ) on R™\ QY (x), u € Hj, (R™),
+00 otherwise.

Fe(u,QY(x)) = {

THEOREM 3.7. Let F. be defined by (3.2) and suppose that (F.) I'-converges to F
as in theorem 3.3 (upon passing to a subsequence). Let the function ¢ given by the
integral representation theorem 3.5 be independent of x. Then

F_shg(l) F.(u, Q, () = F(u, Q;(x)), (3.14)
where we extend u by setting u(y) = u”(y —z) on R™ \ Q) ().
Proof. 1t clearly suffices to prove the theorem with x = 0. We begin by proving the

I'-liminf inequality.
Let p1 > p. With fixed € > 0, for all v with v = v. on R" \ @ (), we have

FE(U»QZ):FE(U» ;1)7Fs(vs7 Zl \Q;) (3.15)
We define

pn—1 =17 €Qp :(z,v) =0},

b1 =12 € @, : (z,v) =0}
and

A =Qp, 1\ Qi X (=301, 5m),
Ay = QY 1 X (=5p1,—3P) U (50 51)
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We now compute

Fo(ve, Q) \ Q})
= Fs(v57 Al) + Fs(v57 A2)

+o0
el =) [ )+ ) ar

cor(f oo/ (Wiw)+ P e+ / :(W(w) Py,
(3.16)

where ¢ = max{1, co}. Hence, by (3.12) and (3.16), for every sequence u. converging
to u such that u. = v, on R" \ Q) and liminf. ¢ F.(u.,Q}) < +oo, we get that

limiélfﬁ's(ue,QZ) > liminf Fe(ue, Q) — O(pt™ Lo pnh
Fu,Q4) = 0@yt = p7H). (3.17)
Passing to the limit as p; tends to p, we have the liminf inequality
F(u,Qp) < liminf F(uc, Qp)- (3.18)

We now prove the [-limsup inequality. Let u € BV(Q};{0,1}) be such that
u=u"on R"\ Q.

(a) We first assume that u = u” on R™ \ @), with p1 < p. Let u. be a sequence
converging to u such that

F(u,Qp) = lim F.(ue, Q).

In particular, u. converges to u” on R™\ Q7 . Let . be a cut-off function
between U = Q(p+p1)/2 and U’ = @} and let V= Q“\Q . By the funda-
mental estimate,

Fo(uepe+(1—pc)ve, Q;) < Fo(ue, Q;)+Fs(v57 Q;\Q;1)+55(u57 ve, U, U, V).
(3.19)
By the assumptions on u. and (3.13), we also have

u, —»u’, ve—u’ onV.

Hence we get

lirr(1)55(u5,v5, Uu,v)=0
and, by (3.15), (3.16) and (3.19),

I-limsup F.(u, Q) < F(u, Q).

e—0
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(b) In the general case, we consider p; < p and we define u,, () = u((p/p1)x).
By the previous case (a) and (3.10),

F—limSUpFE(UPI,QZ) < F(uanZ)

e—0
= / gp(l/upl ) dH 1
QyNS(up, )
<[ a0l
Q;’ﬁs(u)

=F(u,Qp) +0(p" " = pi ™). (3.20)
Since u,, converges to u as p; tends to p, if we denote

F”(upl,QZ) = I'-limsup Fs(upl,QZ),

e—0
then, by the lower semicontinuity of the I'-upper limit (see, for example, [10,
remark 7.8]) and (3.20),

I-limsup F.(u, Q%) < liminf F”(u,,, Q%) < F(u, Q). (3.21)
£—0 P1—pP

Hence, by (3.21) and (3.18), we get the required equality (3.14).
O

COROLLARY 3.8. Let the function ¢ given by the integral representation theorem 3.5
be independent of x. Then

o(v) = min{F(u, Q")u = u” on R™\ Q"}
= lim min{st (u, Q")u = ve; on 0Q"}. (3.22)
Jj—+oo
Proof. The first equality follows from remark 3.6, while the convergence of minima
comes from the I'-convergence of F, and the fact that we may find a sequence
of minimizers that is compact in L'(Q"). This can be proved by following [18,
proposition 3] on noticing that we may assume that minimizers take values in [0, 1]
by a truncation argument. O

REMARK 3.9. If the function w in theorem 3.7 satisfies u(y) = u” (y — ) on a neigh-
bourhood of 9Q} (z) (i.e. the support of y — u(y) —u”(y—) is compactly contained
in Q}(2)), then the hypothesis that ¢ be independent of x may be removed. In fact,
that hypothesis is used in step (b) of the I'-limsup inequality only.

REMARK 3.10. We want to show by a simple example that if ¢ explicitly depends
on x, then theorem 3.7 is not true. Consider

F.(u, U)—/U(éW(u)+sa(x)Du2> de,

where

a(z) = {1 ifz € Q,

otherwise.

=
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It can be easily checked that

F(u,U) = I'-lim Fz(u,U) = co Va(z)dH" (3.23)
e S(u)nU

Now we want to show that there exists u such that

I- limi(r)lfﬁ's(u, Q) > F(u,Q). (3.24)

Such a u can be chosen as

0 otherwise.

{1 if 2, > 1,
u =

In fact, let u, be a sequence converging to u such that u. = v, on Q. Then

Fs(us,Q)—/Q(éW(usHEDusz’) dz

:/ (lW(u5)+£Du52> dz
(1+mQ \ &

1
f/ (—W(v5)+st52> dz
(1+m@Q\Q \ €

ligiiélf F.(ue,Q) = coH" 1 (S(u) N1+ 1)Q) — (1 + 1)t —1).

and

Passing to the limit as n tends to 0, we get
lim inf Fo(us,Q) = coH" 1 (S(u) N Q)
> coH" M (S(u) N Q) + 2coH" ' (S(u) N OQ).

By (3.23), we get the required inequality (3.24).

4. Homogenization

In this section we treat the case of highly oscillating coefficients. Comparing with
the compactness result in the previous sections, we make an additional hypothe-
sis of positive homogeneity of the integrands in order to simplify the notation of
the results, while keeping the main phenomenon of the different behaviours in the
presence of different regimes of oscillations.

Let f : R"xR™ — [0, 4+00) be a Borel function satisfying the following conditions.
There exist 0 < ¢; < ¢g such that

c1lél* < f(y, €) < ezlé; (4.1)
for all y € R™, f(y, ) is positively homogeneous of degree two; (4.2)
for all £ € R"™, f(-,€) is 1-periodic,

ie. f(x+e;,8) = f(x,§) forallz e R", and i =1,...,n.
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Let 0 : (0,+00) — (0,+00) and let W be as in §2. For all ¢ > 0, we consider the
functional F, : LL (R™) x A — [0, +oc] defined by

loc

F.(u, A) = /A(@ el (% Du)) do ifucWin(a) (4.4)

+00 otherwise.

With a fixed sequence (g;) of positive numbers converging to 0, by applying

theorem 3.3 with
1.9 = 1(55:€)

we conclude that, upon extracting a subsequence (not relabelled), the functionals
F¢,; I'-converge on all Lipschitz bounded open subsets of R™. Their limit F' can be
represented as an integral by theorem 3.5, with an energy density ¢ given by (3.11).
In this section we will characterize this function ¢ and hence also F. We begin by
remarking that ¢ is independent of z.

PROPOSITION 4.1. Let
lim §(e) = 0.

e—0

Then the function ¢ is independent of x.

Proof. To prove that ¢ is independent of x, we show that ¢(z,v) = ¢(y,v) for all
z,y € R™.
We first remark that, besides (3.11), p(z, v) is equivalently described as

1

¢(z,v) = limsup — inf{F(v, @, (z)) : v = uy in a neighbourhood of IQ} ()}
p—0t P

(4.5)

In order to prove this representation, with fixed x € R™ and p > 0, we consider the
minimum problems

m(p) = inf{F(u, Qp(2)) : u = uy in R* \ @ (x)},

and we denote by u”* one of its minimizers.
Let (p;) be a sequence converging to 0 such that

Lomlp) L mlp)
1]m —1 = limsup ——= = ¢(x,v),
p]' p—0t P

by (3.11). Let p}; = (1 — 1/j)p;. By using the function u® " (a fixed minimizer of
m(p})) as a test function in the minimum problem defining m(p;) and remarking
that P(u™, Qu(e)) = P(u™, Q4(x)), we get

m(p) 1 z,p; v 1 n— n—1
) <« L p(u s, Q@) < () + o) 7)),

Pj Py~ 1

N

and, taking the limit as j — +o0,

, 1 , m(p/;
m(p;) < lim pnq F(uw7pj7Qz(x)) < ]imsup % < p(z,v).

n—1

p(z,v) = lim
TP J i P
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Hence all inequalities in this last formula are equalities. This shows that we may
replace m(p;) by

inf{F(u, Qyp, () :u=ufin R™\ Q;; ()}

in the computation of ¢(x, p) and, in particular, we obtain the representation (4.5).

We now fix 2 € R™ and p > 0 and a function v = «™” with v = u’ on a
neighbourhood of 3@; (). By remark 3.9 and theorem 3.7, there exists a sequence
uj? converging to u™?, with uj"”(z) = ve, (2 — ) on R™ \ Q% (), such that

lim FL, (uf, Q) (@) = F(u™*. Q).

We define 7; € Z™ by

(15)i = [w%}

€j

z,p
J

Y,p

and ué”p(z) J

= converges to u¥’
given by u¥?(z

(z — g;7j). Note that limje;7, =y —z, u

u
) =u*P(z —y+ x) and

u?’p(z) =w;(z) onR"\ (g;7; + Q;(x))7

where
wj(z) = ve; (2 — & —€;7;).

By plugging !’ into F,, we get
st (u?p? €jTj + Q;(x)) = FE;‘ (uf7p7 Q;(x))7

so that, for fixed r > 1, we get

F(u??,Qy(y))
< F(u”?,Q7,(y)) < liminf Fe, (u5”, Q7 (y))
J

— tim inf(F, (u) ", 2575 + Q@) + B, (u) ", Q4 () \ (o575 + Q)
— tim inf(F, (u] ", Q5(2)) + ., (07, Q% (1) \ (5575 + Q(2)
= tim P, (], @4 (@) + lim . (15, Q% (1) \ (575 + Q4 (2)
< P Q@) + o™ (1 - ),
with

+o0
c= [ (W (w) + |w'|?) dt.

By the arbitrariness of > 1, we get

Fu??, Qp(y)) < F(u™’, Qp(x))

and, by symmetry, the equality, so that ¢(x,v) = ¢(y,v) by letting p — 0, by
formula (4.5) and the arbitrariness of w. O
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REMARK 4.2. The formula

j

)= lim min{e? ! u ——z, Du T
o(v) jim {a] /(UEMV (W( )”(5(@) ,D ))d 1
u=1v" on 3(6—62”)} (4.6)

holds, where v (x) = w({z,v)). To check this, it suffices to use the previous propo-
sition and corollary 3.8.

4.1. Oscillations on the scale of the transition layer

In this section we treat the case when the scale of oscillation d and the scale of
the transition layer € are comparable.

THEOREM 4.3. Let F. be defined by (4.4). Let f(x, &) be a Borel function, 1-periodic
in x, positively homogeneous of degree two in & and satisfying the growth con-

ditions (4.1), and let W (z) be a continuous function satisfying conditions (2.1)
and (2.2). Let § : (0,4+00) — (0,+00) be such that

IS =@

where ¢ is a positive constant. Then there exists the I'-limit
I-lim F.(u,U) = / o(vy) dH™ !
e=0 S(u)nU

for every u € BV (U;{0,1}), where

T—+o0

i L tu=v" on v
e()= lim Wlnf{/TQu(W(u)+f(cx,Du)) dz : o(TQ )} (4.7)

Proof. First, we prove the theorem when §(¢) = e.

STEP 1. It is sufficient to prove the formula for a dense set = of v. In fact, since ¢ is
convex, it is also continuous. Hence, if the formula is true for every v € =, then ¢ is
independent from ¢; for every v € 5. By the continuity of ¢, it is also independent
from ¢; for every v. Hence we can conclude that there exists the I'-limit of F, 5,
and, by the convergence of minima, the formula is true for every v.

STEP 2. Let = be the set of unit rational vectors, i.e.
E={ves"':3eR, WweQ"}.

In can be easily seen that = is dense in S”~!. Now, for simplicity of notation, we
develop the proof only in the case v = e,,, but the same arguments clearly work for
any v € =, up to a change of variables and of the periodicity cell. We define, for
T>0TQ= (f%T7 %T)" and

g(T) = inf{% /TQ(W(u) + f(z,Du))dz : u = w(z,) on 8TQ}.
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We have to prove that the limit exists as T tends to +oco. Let ur be such that

/ (W (ur) + f(x, Dup))de < T 1g(T) + 1.
TQ

Let S > T. We define
Qr. = 2([T]+ 1) +TQ for z € Z"' x {0}
and
Is ={2€ 2" " x{0}:Qr. C SQ}.
We can construct

(z) = ur(x —2([T]+1)) ifz € Qrs z€ g,
we = w(zy,) otherwise.

We can proceed as in the proof of [10, proposition 14.4]. Plugging ugs into the
definition of ¢(.S), we obtain the inequality

9(S) < g(T) +r(S,T),

with
lim sup limsup r(S,T) = 0,
T—+oco S—+oo
so that
limsup g(5) < liminf g(7).
S—+o0 T—+o0
Hence we conclude the proof of the case d(¢) = e.
If € = §ec, by a change of variables, we can apply the previous case.
Finally, if lim. ,o(¢/d(¢)) = ¢, then, by the change of variables (¢/d(¢))x = cy, it
can be easily checked that

en—1 /(UEW (W(u) n f(%x,Du)) dz
=t Lo (Vo () + g (2 (52)) e 0

where T' = 1/dc and lim. o 1/eT = 1. Hence, for every n > 0, there exists g9 > 0
such that, for every € < g,

(1-mn) inf{% /TQV(W(u) + (1 =n)?f(cy, Du))dy : u = v” on 3TQ“}

. 1 1 1 v v
< mf{s_TW /TQV (W(u) + (ET)2f(cy, Du)) dy : u = v" on 97TQ }

< (1+ n)inf{% /TQV(W(u) + (1 +n)*f(ey, Du))dy : u = v” on 8TQV}.
(4.9)
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By the previous case € = dc, we can conclude that, for every sequence €; converging

to 0, there exists the limit
lim inf{s”1 / (W(u) + f( Iy Du>> dz :u=v" on 3(iQ”> }
Jj—+oo J (1/£;)Q 5(8]') ’ ' €j

L 1 v v
= TETOO 1nf{ﬁ /TQV(W(u) + f(ey, Du))dy : u = v" on 0TQ }
(4.10)

Hence, by remark 4.2, ¢ is independent from ¢, for every v and satisfies (4.7). O

4.2. Oscillations on a larger scale than the transition layer

In this section we treat the case when the scale of oscillation § is much larger
that the scale of the transition layer ¢.

THEOREM 4.4. Let F. be defined by (4.4). Let f(x,£) be a continuous function,
1-periodic in x, positively homogeneous of degree two and locally Lipschitz in &, sat-
isfying the growth conditions (4.1), and let W (z) be a continuous function satisfying
conditions (2.1) and (2.2). Let 6 : (0,+00) — (0, +00) be such that

. . £

Then there exists the I'-limit

I-lim F.(u,U) = / o(vy) dH™ !
£—0 S(uw)nU

for every Lipschitz set U € A and every u € BV (U;{0,1}), where

1
o(v) = cg inf inf{—/ fz,vy) dH" 1
T>0 T Jrgvns )
uw € BV (2;{0,1})u =u" on R" \TQ”}.
Proof. We recall that

1
co = 2/0 VW(z)dz

= min{/f(W(v) + [v']?) dt : v(—00) = 0,v(400) = 1} (4.11)

(see, for example, [1,6]) and we denote

Yhom(¥) = inf inf{ Tnlfl /Wns(u)z/)(x,z/u)dHnl :
we BV(2:{0,1})u = u” on R \TQ“},
(4.12)
where ¥(z,§) =/ f(,§).
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STEP 1 (I-liminf inequality). Let u € BV (£2;{0,1}) and let u. be a sequence con-
verging to u in L'(£2). We can always assume that u. € H'(§2,[0,1]). With fixed
N € N, we divide [0, 1] in intervals of length 1/N. If we define

k— k & k—1 k
= < < — = —_— —_
I {xGQ ~ \UE\N} and wu; (ue\/ ~ >/\N
for k=1,..., N, then ulg converges to
k

L AU S
“\"Y™N N N N

Fy 500y (ue, 12 / \/W (ue)f ,Du5> dx

and

= 2;1/9 \/W(ulg)f (%,Du’g) dz

NI R ES 419

By [8, theorem 5.1], we have that the I'-limit as n — 0 of the functionals

uH/Q,/f(%,Du> dz

/ Yhom (ut — w7 )y, ) dH" 1
S(u)n2

if w = u®. Then, since ¥nom is a positively one-homogeneous function, we get that

hmlnf/ Duk dz > / Yhom (uFT — w0 ) dH 1
S(uk)ﬁQ

Yhom (V) dH" L, (4.14)
N S(u)N e

takes the value

so that

N
li fF, e 1% om (V4 d n—1
i Pl (e > 30 VT [ () aH

and, passing to the limit as IV tends to 400, we get

hmlan5 o) (ue, 22 / Va4 dz/ Yhom (V) dH"

S(u)n2

(we have used the Riemann integrability of v ).
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STEP 2 (I-limsup inequality). We can consider the case v = e,. By (4.12), if we
fix n > 0, there exist k£ > 0 and @ € BV (kQ;{0,1}) such that & = u*» on R™ \ kQ

and )
F/ _ (@, va) dH" T < Ynom(en) + 1. (4.15)
S(@)NkQ
We extend by periodicity @ so that it is k-periodic in (z1,...,2,_1) and @ = u®"

when |z,| > k.
Let v be such that

+oo Foo
[ (W (v) + [v']?)dt = min{/ (W (v) + [v'[?) dt : v(—o0) = 0,v(400) = 1}.
If we define

=0V ((1+2n)v—n) A1),

then there exists R such that v"(¢t) € {0, 1} if [t > R, and
+oo
/ (W (") 4 |Dv"?)dt — ¢ asn — 0. (4.16)

We can always assume that 4 is such that S(@) is of class C2. Hence, for a > 0
small enough, there exists a unique projection of class C?,

p:{z € 2:dist(z, S(u)) < a} — S(a).

We set
N v(p(z)) if dist(z, S(1)) < a,
“(z) e otherwise
and
d(z) = dist(z, {u = 0}) if u(z) =1,
—dist(z, {u =1}) if u(z)=0.
We define
_ dd(x)
weate) = 57
and
us(x) - 77/575 (%) = v”(ds(x)),
where o 5d(w/3)
T ey(a/o,w(x)d))
Hence

o (_0Dd/8)  Sdlw/8) Dy /6 #(w/5)
Due(w) =D ”(szp(x/a,u(x/a)) =0 (@/0, 0@ /0) >
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but Dv" # 0on D = {z € £ : |d(z/d)| < R(¢/d)/c1} and D(dd(x/d)) = v(x/9),
o that

Fy 5(e) (e, Q)

-/, ( A Er
- SalODUe/i o) o,

ey (x/0,v(x/0))*

1 ) Dv 5d(x/3) D (25, 7(x/))
- e/D Q(W( o)+ (w<x/5,u<x/5>> 702 /0)0 (a5 7(/3))2 >

()
(v (o Sbeiss )

If we set x = y + tv(y) with t = dd(z/d) and y € S(u), then v(z/d) = v(y/d)
and, by (4.17) and the co-area formula, using the fact that |D(dd(z/0))| = 1, we
get

Fe 5oy (e, Q)

/I:;/ﬂ . Q( ( (ew (y+ tv <t>>/57u<y/6>>>>

)
))/6,v(y/0))

tDY((y +tv(y)) /9, v(y/d))
v(y/6)v((y +tv(y)/d,v(y/9))

- /ii /gwm (W ( (zz)((y Y v (y/9)) >>

+

+ |Dv"

(6¢((y+ tv(y

2
> dH™(y)dt

b ”"(w<<y+ssu<y>>/5m<y/5>>>

s Dy((y+esv()/o,v(y/o)
v(y/8) ((y + () /8, v(y/5))

> dH™(y) ds.
(4.18)

Since % is a Lipschitz function, by (4.18), we get
Fe 5y (e, Q)

L ) ) ey
+ eco
< [ Ij; /S o (W(v”(%)) + Dv”(%) 2) dH" M (y)ds +ec. (4.19)
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By the change of variable

S

L= S e ()8, 5)8)

we obtain
F575(5) (u57 Q)

+o0
</ . / (W (0"(t)) + | D" (¢)|*) dt
S(@)NQ v —co

. Yy/o, v(y/9)) + O(¢/9)

T+ 0(=/0) AH" " (y) + e

= /+M(W(v”(t)) + [Do"(t)[?) dt

— 00 ) ( 57171 / '(Z)(x 1/(33)) dH7171(x)
1+0(e/9) Js@naroe

()
(4.20)
By (4.20), (4.15) and (4.16), we get
lirsnj(l)lp F. 5(e)(ue, Q) < co¥nom(en),
as desired. O

REMARK 4.5. Note that the I'-liminf inequality does not depend on the behaviour
of § with respect to € and we do not use the assumption of f being locally Lipschitz.

4.3. Oscillations on a finer scale than the transition layer

Finally, in this section we treat the case when the scale of oscillation § is much
smaller that the scale of the transition layer €.

In order to prove the liminf inequality, we make the following two additional
technical hypotheses:

(H1) (Lipschitz continuity of W)
(W (u) = W(v)| < Clu—v|
ifo<u, vl

(H2) we have
§ < ev/e.

These hypotheses will be used in the proof of proposition 4.10 only, and will not be
needed for the limsup inequality.
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THEOREM 4.6. Let F. be defined by (4.4). Let f(x,€) be a Borel function, 1-periodic
in x, positively homogeneous of degree two in & and satisfying the growth condi-
tions (4.1), and let W be a continuous function satisfying conditions (H1), (2.1)
and (2.2). Let § : (0,4+00) — (0,+00) be such that

.ms\/E:

1 :
5 - T

Then there exists the I'-limit

I-lim F.(u,U) = / o(vy) dH™ !
e=0 S(u)nU

for every Lipschitz set U € A and every u € BV (U;{0,1}), where

@) = coV from(¥)

and from 15 the homogenized integrand of f defined by
o = int{ [ Dut 9y u e Hb (R 1operiodic]
(0,

for all £ € R™.

The proof of the theorem will be obtained from the results in the rest of the
section.

The liminf inequality will be proved if we show that, for every sequence (u.) such
that

sup Fe(ue) < 400,  ue — u,
€

and for every n > 0, there exists a sequence (u!) converging to u such that

n
limiélf F.(ue) > liminf (@ + thom(DuZ)> dz —nC. (4.21)
£— O

e—0

The conclusion will then follow, since we already know the I'-limit of the functionals
on the right-hand side of (4.21) (see proposition 4.11 below). Such (u2) will be
obtained from (u.) by averaging on a intermediate scale between ¢ and e. Before
defining such functions, we prove a preliminary proposition.

PrOPOSITION 4.7. Let U be a connected bounded open set. For every n > 0, there
emists K € N such that, for allu € H'(U) and for all h > K, h € N, we have

]{]f(hx,Du) dz = fhom (]{] Dudx) fn]{]Dudx

Proof. Suppose, by contradiction, that n > 0, (hg) an increasing sequence of inte-
gers and functions uy, € H'(U) exist such that

][ Duy, dx
U
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][ f(hgx, Dug) dz < from (][ Duk> -7
U U

(we use a scaling argument by positive homogeneity). Upon a translation argu-
ment and a passage to a subsequence, we may assume that u; — @ in H*(U). In

particular, we have
][ Duy dzx H][ Dudz,
U U

][ Dudx
U

from which we obtain, by the classical homogenization theorem (see, for exam-
ple, [10, §14]) and Jensen’s inequality,

and

and hence
=1,

lim inf][ f(hgx, Duy) da 2][ Sfhom(Dw) dx > from (][ Du dx)
k U U U

and a contradiction easily follows. O

Note preliminarily that, by the compactness and representation theorem, we may

limit our analysis in (4.21) to the case u = u” with v = e,, 2=0Q = (f%, %)".

Moreover, by applying, if necessary, a truncation argument, we may suppose that
ue € L®(R™) N HL (R™), 0 < ue < 1, and that

loc
ue (z) = w(x, /¢)

on R™\ @ by theorem 3.7.
With fixed n > 0, let K be given by proposition 4.7. We define

() = ][ ue (y) dy.
Q(w7K6)

Note that u? € C>*°(R™) and that
Dua)={  Duy)dy
Q(z,K6)

For each > 0, we then have u? — u in H! (R").

PROPOSITION 4.8. Let ¢ € C°(R™) and let n, K and u? be as above. Then there
exists y € Q(0, K9) such that, if we set

K =y +iKs,  QF =QK, K9)

and
Ip={iez":Qf NQ #10},
we have

/Q p(Dul)dz < 3 (KoY p(Dul (z5)).

ield,
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Proof. The thesis follows immediately from the mean-value theorem, upon remark-
ing that

DuMdz < Dul(z+iK¢))dz
/Qw ") / S p(Dul(z + iK3))

Q(O K‘s) EIK

PROPOSITION 4.9. Let (u:) and (ul) be as above. Then we have

limiéle/ f(é,Du5> dz > hmlnfE/ fhom (Dul)dx — en.

E—

Proof. Let y be given by proposition 4.8, with ¢ (&) = fhom (&) — 7/€/>. Then we
have, using both propositions above (in addition to proposition 4.7, we have to use
a change of variable and the positive homogeneity of f),

s/f(5,Du5>dx+O( )EZ/K (5,Du5>dx

>e ) (K6 (faom(Dul(2f)) = n|Dul (xf)]?)

zEIK
e / (fuom(Du?) — 0| Du??) da
Q

The thesis follows by remarking that, by the growth conditions on W and the
definition of u7, we have

sups/ |Dul|? dz < ¢ < 400,
€ Q

with ¢ independent of 1 € (0, 1). a

Note that we have not yet used hypotheses (H1) and (H2).

PROPOSITION 4.10. Let (u.) and (ul) be as above. Then we have

liminf/ W {u dx >hm1nf/ @d

e—0 e—0

Proof. By Poincaré’s inequality applied in each Q(x, K6) and the Lipschitz continu-
ity of translations in Sobolev spaces (see, for example, [23, theorem 2.1.6]), setting

— Kdi,
Q:=Q(x;,Ké) and I={ie€Z":Q:NQ #0},
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we have
/\u5 ) —ul(x \dx<2/ ue(x ][ E(y)dy‘dx
el
f X [ e @) - ) v
el

1/2
< cK5(/ Du52dx> .
Q
Hence, by (H1), we get

/W(us)de/W(ug)dxfC/ lue —ul|dx
Q Q Q
1/
Z/W(ug)dch(s(/ Du52dx>
Q Q
5 1/2
= W(u?)dxscK—(s/ Du52dx> ,
/ (e 1o

and the thesis follows by (H2). O

2

The I'-liminf inequality reads as follows.

PROPOSITION 4.11. For all u € BV (U;{0,1}), we have
I'-liminf F, (u,U) > / Fhom (Vo) dH™ L.
£—0 S(uw)nU

Proof. Tt suffices to use the two previous propositions and recall that the I'-limit

of the functionals
U — / ( + thom(Du)> dx

/ fhom(l/u)d’}-[ni1
S(u)ng2

on BV (£2;{0,1}) (see [6, §4.2]). O

is given by

It remains to prove the I'-limsup inequality, which completes the proof of theo-
rem 4.6.

PROPOSITION 4.12. For all u € BV (U;{0,1}), we have

I'-limsup Fi(u,U) < / fhom(Vu)dHnil’
S(u)nU

e—0

Proof. We want to prove that there exists a sequence u. converging to u” such that

lim sup F(ue, QY) < cov/ from(V)-

e—0
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By (4.11),

+oo
co0V fhom (V) = min{/ (W (v) + from (V) [V'[?)dt : v(—00) = 0,v(+00) = 1}

T
= inf in v v)|v'|? :
— inf f{/T(W( ) + from () [V|7) dt

T=0

v(t)=0ift < —T,ov(t) =1 iftZT}.

(4.22)
Hence, for fixed a > 0, there exist T' > 0 and v such that
T
/ (W (vr) + from(@)|[05?) dt < cov/ from (V) + . (4.23)
T

We define

T
er — / W)+ faon e ) di

and u”(z) = vp({z,v)). Then there exists a sequence u,,, converging to u”, such
that u, = u’ on 9(Q%_, x (-7, T)) and

cr = / (W(uT) + fhom(DuT)) dz
v _ xX(=T,T)

n—1

= lim (W(un) + f(z,Dun>> dz. (4.24)
1=0JQy _ x(~T,T) n

Let n = 6(e)/e. We define a sequence u. on ([¢/d] + 1)0Q¥ _; x R as follows,

up(x/e) ifxeeQl_ x (=T, eT),

ue(z) = ul(x/e) if z € (([e/0] +1)0Q) 1 \eQl_y) x (—&T,eT), (4.25)
c 1 if 2, > €T, '
0 if z,, < —£T,

and we extend it by periodicity so that u. is ([e/d] + 1)d-periodic in the variables
(z1,...,2,_1). We define

IE = {Z S Z7171 : EQanl X (7ET7 ET‘) N QU 7é 0}7

where

v : < g v
in—1 — 7’( |:g:| + 1> ; + anl

J. = {z ez Z(E} + 1) 6QY_\ Q¥ 1 X (—eT,eT) N Q" £ 0}.

and
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We get
5 6(5) Q

( (ue) +sf( = Du5>>dx
FA AR

s Z~/EQV x(— 5T6T)(1W(us)+£f( i(e)’ Du5>>dx

icl. i,n—1

1
+Z/ ( W(u5)+£f( Du5>>dx
it Jile/81+1)5QY _\(eQY., _, x(—eT.eT)) i(e)’
(4.26)

and, in particular, by (4.25),

1
Z / (—W(u5)+sf(i,Du5>> dz
(/8] +1)8Q%_\e QY ,_, x(—eT,eT) \ € 5(¢)

ieJ. Ut
_ Z 87171/ (W(UT) +f(£7DuT>> dx
ied. i([e/8]41)(8/2)Q% _\QY, X (=T.,T) !
. c16 s n—1 T
<X ((F242) 1) [ ovien +elgpa
i€Je
n—1 T
n—1 € 5 5 2
s ((FEe2) (e fmra). e

Hence, by (4.27), we obtain

1
s | (2w er (500 ) =0
e=0 o7 Ji([e/8]+1)6QY_\QY,, 4 x(—<T\eT) 5(e)’
(4.28)

We now estimate the first term in (4.26) as

Z/EQ.V x(— 5T6T)(1W(us)+£f( d(e)’ Du5>>dx

icl. i,n—1

[ A A CeR C Yo
RS - Q;ilx(iT’T) m ,’77 n . .

Hence, by (4.26), (4.28), (4.29), (4.24) and (4.23), we get

lim sup F 5 (ue, @) < lim (W(un) + f(£7 Dun>> dz
Q1 x(=T,T) Ui

£— n—0
=Cr < Co fhom(l/) + (430)
and, by the arbitrariness of «, we obtain the I'-limsup inequality. O
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