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We study the behaviour of non-convex functionals singularly perturbed by a possibly
oscillating inhomogeneous gradient term, in the spirit of the gradient theory of phase
transitions. We show that a limit problem giving a sharp interface, as the
perturbation vanishes, always exists, but may be inhomogeneous or anisotropic. We
specialize this study when the perturbation oscillates periodically, highlighting three
types of regimes, depending on the frequency of the oscillations. In the two extreme
cases, a separation of scales e® ect is described.

1. Introduction

In the classical theory of phase transitions for mixtures of two immiscible ®uids (or
for two phases of the same ®uid). it is assumed that, at equilibrium, the two ®uids
arrange themselves in such a way that the area of the interface that separates the
regions occupied by the two phases is minimal. This `minimal-interface criterion’
can be interpreted in mathematical terms as an energy-minimization process. We
can describe every con­ guration of the system by a function u de­ ned on « (the
`container’ of the ®uids), taking the value 0 on the ­ rst phase and 1 on the second
one. In addition, u satis­ es a `volume constraint’

R
« u dx = V , where V is the

assigned total volume of the second ®uid. The set of discontinuity points of u
parametrizes the interface between the two ®uids in the corresponding con­ guration
and is denoted by S(u). We then postulate that the energy of such a u is proportional
to the area of the interfaces, i.e. it is given by

F (u) = ¼ 0H2(S(u));

where H2 denotes the two-dimensional (Hausdor¬) surface measure and ¼ 0 (the
`surface tension’) is a strictly positive constant, characteristic of the ®uids. In such

265

c® 2003 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210500002390 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002390


266 N. Ansini, A. Braides and V. Chiadµo Piat

a way, the optimal con­ gurations are obtained by minimizing this surface energy
among all admissible con­ gurations.

The `gradient theory’ of phase transitions is an alternative way to study these
systems of ®uids, by assuming that the transition between the phases is not con-
centrated on a interfacial surface, but takes place on a thin `transition layer’. In
this way, we allow ­ ne mixtures of the two ®uids, and an admissible con­ guration
u will be a function taking its values in [0; 1], so that u(x) will be interpreted as
a local average density or concentration of the second ®uid. Following this model
proposed by Cahn and Hilliard [11], to such a u, we associate the energy

E"(u) =

Z

«

(W (u) + "2jDuj2) dx;

where W is a `double-well energy’ with wells at 0 and 1 (i.e. a non-negative function
vanishing only at 0 and 1), and " is a small parameter linked to the width of the
transition layer. In addition, the admissible con­ gurations will always satisfy the
same volume constraint as above. The competing e¬ects of the two integrals in
E" are to favour the con­ gurations that take values close to 0 and 1 by the ­ rst
term and at the same time to penalize spatial inhomogeneities of u (and hence the
introduction of too many transition regions) by the second term.

The connection between these two standpoints had been conjectured by Gurtin
[17], and was proved by Modica [18] (after an earlier work by Modica and Mor-
tola [19]) by showing that minimum problems for the functional E" tend to mini-
mum problems for F if the constant ¼ 0 is chosen as ¼ 0 = 2

R 1

0

p
W (s) ds. In [20],

one can also ­ nd the proof of the ¡ -convergence of the scaled functionals

1

"
E"(u) =

Z

«

µ
W (u)

"
+ "jDuj2

¶
dx

to F . Loosely speaking, this convergence means that minimal con­ gurations u" for
E" will tend to have transition layers that `concentrate’ as " ! 0 on the interface
S(u) of a minimizer u of F . Moreover, the scaled minimal values (1=")E"(u") will
converge to the value F (u). It is interesting to note that the proof of the Modica{
Mortola result is essentially one dimensional. The key point is to show that, for
minimizers of E", the pro­ le of the transition layer approximately depends only
on the direction orthogonal to S(u) and is a scaling of an `optimal pro­ le’. After
noticing this, the convergence result can be proved ­ rst, with the due changes in
the statement, if « is one dimensional (in which case, interfaces are points), and
then the three-dimensional case can be recovered by a `slicing’ argument (see, for
example, [1,6]).

In this paper we investigate the e¬ect of the presence of small-scale heterogeneities
on the passage to the limit described above. More precisely, we assume that the
gradient term in the de­ nition of E" may depend on the space variable x, so that
we are led to the study of the asymptotic behaviour of functionals of the form

F"(u) =

Z

«

µ
W (u)

"
+ "f"(x; Du)

¶
dx;

where f" are Borel functions with quadratic growth in the second variable. In this
case, by a simple comparison argument with the case studied by Modica, we may
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see that the domain of the ¡ -limit will be the same as that of the energy F above.
However, the determination of the actual form of the limit is much more complex.
By following the `direct methods of ¡ -convergence’ (see [10, 13]), we have ­ rst
given a general compactness result for ¡ -limits of functionals F" as above, and
then explicitly characterized the limit functional when f" is rapidly oscillating in
the ­ rst variable. In our general framework (as it was already done by Modica and
Mortola), we do not restrict to the case of space dimension n = 3.

Our compactness result (theorems 3.3 and 3.5) shows that, from every sequence
(F"j

) of functionals as above, it is possible to extract a subsequence that converges
to a functional F0 of the form

F0(u) =

Z

S(u)

¼ (x; ¸ u) dHn¡1

de­ ned on functions u : « ! f0; 1g of bounded variation. In this case, ¸ u represents
the measure-theoretical normal to S(u). Note that, in this case, the limit may be
anisotropic and inhomogeneous, but it is always in the same `class’ of the functional
F above, which we recover when ¼ is a constant. To prove this result, we follow
a procedure that is by now customary in ¡ -convergence, consisting of combining
localization and integral representation arguments. First, we extend the de­ nition
of F" to every open set of Rn by

F"(u; A) =

Z

A

µ
W (u)

"
+ "f"(x; Du)

¶
dx:

We then prove the existence of converging subsequences to an (abstract) functional
F0(u; A), which is, among other things, (the restriction of) a measure in the second
variable and, by comparison, we get F0 6 cF for some c > 0 We conclude then that

F0(u; A) =

Z

S(u) \ A

¼ (x; ¸ u) dHn¡1

for some Borel function ¼ by suitable representation results (see [5,9]). This method
is well established in the case of functionals de­ ned on Sobolev spaces (see [10,13])
and had been previously used within the framework of Caccioppoli partitions [2]
or, in a way similar to the present paper, to characterize limits of non-local func-
tionals [12].

It is interesting to note that the key point in the complex procedure above is
proving that the set function F0(u; ¢) is subadditive, and this was the object of an
early lemma by Dal Maso and Modica [14]. Their result was inspired by De Giorgi,
clearly aiming to illustrate how the direct methods of ¡ -convergence could also
be applied outside the framework of Sobolev spaces. Only now do we have at our
disposal powerful integral representation techniques for functionals de­ ned on func-
tions with bounded variation that allow us to conclude this argument.

The main part of paper is x 4, where we specialize the convergence result in the
case of rapidly oscillating perturbations. We ­ x a function ¯ = ¯ (") such that ¯ ! 0
as " ! 0, a function f periodic in the ­ rst variable and positively homogeneous of
degree two in the second variable, and take

f"(x; z) = f

µ
x

¯
; z

¶
;
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so that

F"(u) =

Z

«

µ
W (u)

"
+ "f

µ
x

¯
; Du

¶¶
dx:

We may interpret this situation as modelling the presence of heterogeneities at a
scale ¯ , which locally favour or disfavour the onset of a transition layer. This may
be viewed as a dishomogeneity of the ®uid, or interpreted, more appropriately, as a
microscopic property of a medium subject to solid{solid phase transitions. However,
in order to treat this second case in depth, we would need to extend the theory to u
vector valued and subject to di¬erential constraints, which goes beyond the scope
of this paper.

We show that the behaviour of the whole family (F") can be completely described
and depends on the mutual speed of convergence to 0 of ¯ and ". The limit functional
F0 is homogeneous, but may be anisotropic,

F0(u) =

Z

S(u)

¼ ( ¸ u) dHn¡1:

In the ­ rst case, " ½ ¯ , the ­ nal result is that we have a `separation of scales’ e¬ect.
We may ­ rst regard ¯ as ­ xed and let " ! 0, and subsequently let ¯ ! 0. In this
way, we ­ rst obtain an inhomogeneous functional by applying the Modica{Mortola
procedure, which can be explicitly computed as

F ¯ (u) = ¼ 0

Z

S(u)

s

f

µ
x

¯
; ¸ u

¶
dHn¡1

(for this anisotropic version, see also [6, ch. 4.3]). The limit as ¯ ! 0 of these
types of functionals falls within the framework of ¡ -convergence of functionals
de­ ned on Caccioppoli partitions [2] and can also be seen as a particular case of
homogenization on BV spaces [4]. By applying either of these two procedures, we
obtain a formula for ¼ (see also [8]). A second case is when " and ¯ are comparable
(for simplicity, " = ¯ ). In this case, the two e¬ects cannot be separated, and ¼ ( ¸ ) is
described through an asymptotic formula that describes the optimal pro­ le, which,
in this case, is not depending only on the direction ¸ . Finally, when ¯ ½ ", we again
­ nd a separation of scales phenomenon. The total e¬ect is as if ­ rst we freeze ". In
this case, letting ¯ ! 0, we obtain a functional of the form

F "(u) =

Z

«

µ
W (u)

"
+ "f h om (Du)

¶
dx;

where f h om is the homogenized integrand of f (see, for example, [10]). We even-
tually let " ! 0, so that, by applying the Modica{Mortola procedure, we have
¼ ( ¸ ) = ¼ 0

p
fh om ( ¸ ). Note that, by the inequality w2 + z2 > 2wz, we always have

the estimate

F"(u) >
Z

«

2

s

W (u)f

µ
x

¯
; Du

¶
dx;

which turns out to be optimal if " ½ ¯ , but is not sharp in all other cases.
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To brie®y illustrate the di¬erence in the separation of scales e¬ect, as an example,
we may consider the case of a simple inhomogeneous isotropic f",

F"(u) =

Z

«

µ
W (u)

"
+ "a

µ
x

¯

¶
jDuj2

¶
dx;

where n = 2 and a, for example, is a `chessboard coe¯ cient’ (taking the values ¬
on `white squares’ and ­ >

p
2¬ on `black squares’). If " ½ ¯ , then

F ¯ (u) = ¼ 0

Z

S(u)

s

a

µ
x

¯

¶
dH1;

and
¼ (̧ ) = ¼ 0 ¬ ((

p
2 ¡ 1)j̧ 1j ^ j ¸ 2j + j̧ 1j _ j ¸ 2j)

(see [8, example 5.3]). If ¯ ½ ", then we have, by the classical Dychne formula
(see [22]),

F "(u) =

Z

«

µ
W (u)

"
+ "

p
¬ ­ jDuj2

¶
dx;

and, eventually,
¼ ( ¸ ) = ¼ 0( ¬ ­ )1=4:

We ­ nally point out that throughout the paper we have chosen to make some
hypotheses on f in order to simplify formulae. First, we have made the technical
assumption that f is positively homogeneous of degree two in the second variable,
so that the Modica{Mortola procedure may be applied to the corresponding homo-
geneous case. In addition, we make some continuity hypothesis, without which,
formulae should take into account complex relaxation results in BV spaces. The
reader interested in the problems connected to general Borel integrands is referred
to [5,8, 9].

2. Notation and preliminary results

Let « be an open subset of Rn. We denote by A and B the families of all bounded
open and Borel subsets of Rn, respectively. We denote by À E the characteristic
function of E. We introduce the notation

Q(x; » ) = x + » (¡ 1
2 ; 1

2 )n;

in particular, Q = Q(0; 1); Q ¸
» (x) denotes an open cube of Rn centred at x, having

side length » and one face orthogonal to ¸ ; Q¸
» = Q ¸

» (0) and Q ¸ = Q ¸
1(0). By [t] we

denote the integer part of t 2 R.
Let U and U 0 be open sets with U 0 »» U . We say that ’ : Rn ! R is a cut-o®

function related to U and U 0 if ’ 2 C 1
0 (U 0) and 0 6 ’ 6 1 with ’ ² 1 in a

neighbourhood of ·U .
Given a vector-valued measure · on « , we adopt the notation j· j for its total

variation (see [15]) and M( « ) is the set of all signed measures on « with bounded
total variation. The Lebesgue measure of a set E is denoted by jE j. The Hausdor¬
(n ¡ 1)-dimensional measure in Rn is denoted by Hn¡1.
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We say that u 2 L1( « ) is a function of bounded variation, and we write
u 2 BV (« ), if its distributional ­ rst derivatives Diu belong to M( « ). We denote
by Du the Rn-valued measure whose components are D1u; : : : ; Dnu.

We will say that a set E is of ¯nite perimeter in « , or a Caccioppoli set, if
À E 2 BV ( « ), and, for every open subset « of Rn, we let

P « (E) = jDÀ E j( « );

the perimeter of E in « . The family of Caccioppoli sets can be identi­ ed with
the functions u 2 BV ( « ; f0; 1g), the set of BV (« ) functions that take almost
everywhere the values 0 or 1.

In this case (if u 2 BV ( « ; f0; 1g)), the vector-valued measure Du can be repre-
sented as

Du(B) =

Z

B \ S(u)

¸ u dHn¡1

for every Borel set B ³ « , where S(u) denotes the complement of the Lebesgue set
of u and ¸ u 2 Rn is a unit vector that is Hn¡1-a.e. de­ ned in S(u), interpreted as
the normal to S(u). Moreover, one can prove that, if E = fx : u(x) = 1g,

P « (E) = jDuj( « ) = Hn¡1(S(u) \ « ):

For the general exposition of the theory of functions of bounded variation, we refer
to [3,15,16, 21, 23].

Since we will consider either functions in Sobolev spaces or characteristic func-
tions of sets of ­ nite perimeter, with a slight abuse, we will use the notation
Du = (D1u; : : : ; Dnu) both for the gradient of a Sobolev function and for the
distributional derivative of u, as no confusion may arise.

We recall the de­ nition of ¡ -convergence of a sequence of functionals Fj de­ ned
on L1( « ) (with respect to the L1( « )-convergence). We say that (Fj) ¡ -converges
to F0 on L1( « ) if, for all u 2 L1( « ),

(i) ( ¡ -liminf inequality) for all (uj), sequences of functions in L1(« ) converging
to u in L1( « ), we have

F0(u) 6 lim inf
j

Fj(uj);

(ii) ( ¡ -limsup inequality) there exists a sequence (uj) of functions in L1( « ) con-
verging to u in L1(« ) such that

F0(u) > lim sup
j

Fj(uj):

We will say that a family (F") ¡ -converges to F0 if, for all sequences ("j) of positive
numbers converging to 0, conditions (i) and (ii) above are satis­ ed, with F"j in
place of Fj . For a comprehensive study of ¡ -convergence, we refer to [13] (for a
simpli­ ed introduction, see [7]), while a detailed analysis of some of its applications
to homogenization theory can be found in [10].

The model example of ¡ -convergence we have in mind is the following result
(see [1, 6,18,19]).
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Theorem 2.1. Let W : R ! [0; +1) be a continuous function such that

fz 2 R : W (z) = 0g = f0; 1g; (2.1)

c1(jzj ® ¡ 1) 6 W (z) 6 c2(jzj® + 1) for every z 2 R; (2.2)

with ® > 2.
Then the functionals

E"(u; A) =

8
><

>:

Z

A

µ
W (u)

"
+ "jDuj2

¶
dx if u 2 W 1;® (A);

+1 otherwise

¡ -converge as " ! 0 to the functional

E(u; A) = c0 © (u; A)

for every Lipschitz set A 2 A and every function u 2 L1
loc(Rn), where

© (u; A) =

8
><

>:

Hn¡1(S(u) \ A) = jDuj(A) = PA(fu = 1g)

if u 2 BV (A; f0; 1g);

+1 otherwise

(2.3)

and

c0 = 2

Z 1

0

p
W (z) dz: (2.4)

From this theorem and the properties of convergence of minima of ¡ -limits, the
following corollary, which describes the limit behaviour of the gradient theory of
phase transitions, holds (see [18, proposition 3]).

Corollary 2.2. Let 0 6 V 6 j« j. Let ® > 2 and let u" 2 W 1;® ( « ) be a solution
of problem

m" = min

½Z

«

(W (u) + "2jDuj2) dx :

Z

«

u dx = V

¾
:

Then, upon extracting a subsequence, u" ! u 2 BV ( « ; f0; 1g) in L1(« ), where u
is a solution of the problem

m = min

½
jDuj( « ) : u 2 BV (« ; f0; 1g);

Z

«

u dx = V

¾
= minfP « (E) : jEj = V g

and m"=" ! c0m.

3. A compactness result

For all " > 0, let f" : Rn £ Rn ! [0; +1) be a Borel function satisfying the growth
condition

c1j¹ j2 ¡ c3 6 f"(y; ¹ ) 6 c2(1 + j¹ j2) for a.e. y 2 Rn for every ¹ 2 Rn; (3.1)

with 0 < c1 6 c2 and c3 > 0, independent of ".
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Let W : R ! [0; +1) be a continuous function satisfying (2.1), (2.2). We will
consider the functionals G" : L1

loc(Rn) £ A ! [0; +1] de­ ned by

G"(u; A) =

8
><

>:

Z

A

µ
W (u)

"
+ "f"(x; Du)

¶
dx if u 2 W 1;® (A);

+1 otherwise:

(3.2)

Remark 3.1. By (3.1), it follows immediately that

Z

A

µ
W (u)

"
+ "c1jDuj2

¶
dx ¡ c3"jAj 6 G"(u; A)

6
Z

A

µ
W (u)

"
+ "c2jDuj2

¶
dx + c2"jAj

for each u 2 W 1;® (A), and hence, if we set

G0(u; A) = ¡ - lim inf
"! 0

G"(u; A);

G00(u; A) = ¡ - lim sup
"! 0

G"(u; A);

then, by theorem 2.1, G0(u; A) = G00(u; A) = +1 whenever u 62 BV (A; f0; 1g).
Moreover, if A 2 A is a Lipschitz set, we have the estimate

c0
p

c1 © (u; A) 6 G0(u; A) 6 G00(u; A) 6 c0
p

c2 © (u; A) (3.3)

where © is de­ ned in (2.3).

The following lemma is crucial in the description of the behaviour of the ¡ -limits
with respect to the set variable.

Lemma 3.2 (the fundamental estimate). Let G" be de¯ned by (3.2). Then, for
every " > 0, for every bounded open set U , U 0, V , with U »» U 0, and for every
u; v 2 L1

loc(Rn), there exists a cut-o® function ’ related to U and U 0, which may
depend on ", U , U 0, V , u, v, such that

G"(’u + (1 ¡ ’)v; U [ V ) 6 G"(u; U 0) + G"(v; V ) + ¯ "(u; v; U; U 0; V );

where ¯ " : L1
loc(Rn)2 £ A3 ! [0; +1[ are functions depending only on " and G"

such that

lim
"! 0

¯ "(u"; v"; U; U 0; V ) = 0

whenever U; U 0; V 2 A, U »» U 0 and u"; v" 2 L1
loc(Rn) have the same limit as

" ! 0 in L1((U 0 n ·U ) \ V ) and satisfy

sup
">0

(G"(u"; U 0) + G"(v"; V )) < +1:

Proof. The proof follows the lines of that contained in the appendix of [14], with
slight modi­ cations. However, we include it, since the changes in the notation are
heavy.

https://doi.org/10.1017/S0308210500002390 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002390


Gradient theory of phase transitions in composite media 273

We ­ x ", U; U 0; V 2 A with U »» U 0. Let k" denote the integer part of 1=", let
d = dist(U; Rn n U 0) and choose k" + 1 open sets U1; : : : ; Uk" + 1 2 A such that

U »» U1 »» ¢ ¢ ¢ »» Uk" + 1 »» U 0

and

dist(Ui; Rn n Ui + 1) >
d

k" + 2
; i = 1; 2; : : : ; k":

For each i = 1; : : : ; k", let ’i be a cut-o¬ function between Ui and Ui+ 1 such that

max jD’ij 6 2(k" + 2)

d
: (3.4)

We have, for every i = 1; : : : ; k", that

G"(’iu + (1 ¡ ’i)v; U [ V )

= G"(’iu + (1 ¡ ’i)v; (U [ V ) \ ·Ui)

+ G"(’iu + (1 ¡ ’i)v; (U [ V ) \ (Rn n Ui+ 1))

+ G"(’iu + (1 ¡ ’i)v; (U [ V ) \ (Ui+ 1 n ·Ui))

= G"(u; (U [ V ) \ ·Ui) + G"(v; V \ (Rn n Ui+ 1))

+ G"(’iu + (1 ¡ ’i)v; (Ui + 1 n ·Ui) \ V )

6 G"(u; U 0) + G"(v; V ) + G"(’iu + (1 ¡ ’i)v; (Ui + 1 n ·Ui) \ V ):
(3.5)

We now estimate the last term in (3.5). We write Si = (Ui + 1 n ·Ui) \ V . By the
growth conditions (3.1) and (3.4), we have that

G"(’iu + (1 ¡ ’i)v; Si)

=

Z

Si

1

"
W (’iu + (1 ¡ ’i)v) + "f

µ
x

¯
; D(’iu + (1 ¡ ’i)v)

¶
dx

6
Z

Si

1

"
W (’iu + (1 ¡ ’i)v) dx +

Z

Si

"c2jD(’iu + (1 ¡ ’i)v)j2 dx

6
Z

Si

1

"
W (’iu + (1 ¡ ’i)v) dx +

Z

Si

"c(jDuj2 + jDvj2 + jD’ij2ju ¡ vj2) dx

6
Z

Si

1

"
W (’iu + (1 ¡ ’i)v) dx

+ "c

µ
2(k" + 2)

d

¶2 Z

Si

ju ¡ vj2 dx + c(G"(u; Si) + G"(v; Si)):

Summing on i, we get

k"X

i= 1

G"(’iu + (1 ¡ ’i)v; Si)

6
k"X

i= 1

Z

Si

1

"
W (’iu + (1 ¡ ’i)v) dx

+ "c

µ
2(k" + 2)

d

¶2 Z

S

ju ¡ vj2 dx + c(G"(u; S) + G"(v; S));
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where S = (U 0 n ·U ) \ V . Then there exists ’h among ’1; : : : ; ’k"
such that

G"(’hu + (1 ¡ ’h)v; Sh)

6 1

"k"

µ k"X

i= 1

Z

Si

W (’iu + (1 ¡ ’i)v) dx

¶

+ c
"

k"

µ
2(k" + 2)

d

¶2 Z

S

ju ¡ vj2 dx +
c

k"
(G"(u; S) + G"(v; S)):

If we de­ ne

¯ "(u; v; U; U 0; V ) =
1

"k"

µ k"X

i = 1

Z

Si

W (’iu + (1 ¡ ’i)v) dx

¶

+ c
"

k"

µ
2(k" + 2)

d

¶2 Z

S

ju ¡ vj2 dx +
c

k"
(G"(u; S) + G"(v; S))

(3.6)

and choose ’ = ’h cut-o¬ function between Uh and Uh + 1, by (3.5), we have that

G"(’u + (1 ¡ ’)v; U [ V ) 6 G"(u; U 0) + G"(v; V ) + ¯ "(u; v; U; U 0; V ):

Let u" and v" be two sequences in L1
loc(Rn) with the same limit in L1(S) and with

sup">0(G"(u"; U 0) + G"(v"; V )) 6 M . Under these conditions, we can prove that
the sequences u" and v" converge to the same limit also in L ® (S). In fact, let w be
the common limit of u" and v" in L1(S) and let r 2 R be such that

W (z) > 1
2 c1jzj® if jzj > r:

We de­ ne
wr(x) = ¡ r _ (r ^ w(x)); x 2 Rn;

and, analogously, ur
" and vr

" . It can be easily seen that ur
" and vr

" converge to wr in
L® (S). Moreover,

Z

S

ju"(x) ¡ ur
"(x)j® dx 6

Z

fx2 S:ju"j>rg
ju"(x)j® dx

6 2

c1

Z

S

W (u"(x)) dx

6 2

c1
"G"(u"; S)

6 2M

c1
":

Hence we can conclude that u" and v" converge to wr in L ® (S). As they converge
to w in L1(S), we have wr ² w. To prove that

lim
" ! 0

¯ "(u"; v"; U; U 0; V ) = 0;

it remains to study the convergence to zero of the ­ rst term in (3.6), since, for the
other ones, it is obvious.
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Note that 1="k" is bounded. Hence it is su¯ cient to prove that

lim
"! 0

k"X

i = 1

Z

Si

W (’iu" + (1 ¡ ’i)v") dx = 0:

We de­ ne, for x 2 Rn,

w" =

(
’iu" + (1 ¡ ’i)v" if x 2 Si for some i = 1; : : : ; k";

w(x) otherwise;

which converges to w in L® (S). Since W is continuous and satis­ es the growth
condition (2.2) of order ® , by the dominated convergence theorem, we have that

0 6 lim
"! 0

k"X

i= 1

Z

Si

W (’iu" + (1 ¡ ’i)v") dx

= lim
"! 0

Z

S

W (w"(x)) dx

= lim
"! 0

Z

S

W (u"(x)) dx

6 lim
"! 0

"G"(u"; S)

= 0;

which completes the proof.

Theorem 3.3 (compactness by ¡ -convergence). For every sequence ("j)j converg-
ing to 0, there exists a subsequence ("jk )k and a functional G : L1

loc(Rn) £ A !
[0; +1] such that (G"jk

)k ¡ -converges to G for every U bounded Lipschitz open
set and for every u 2 L1

loc(Rn) such that u 2 BV (U ; f0; 1g), with respect to the
strong topology of L1(U ). Moreover, for every u 2 BVloc(Rn; f0; 1g), G(u; ¢) is the
restriction to A of a regular Borel measure.

Proof. By a standard compactness argument (see, for example, [10, x 7.3]), we can
assume that (G"jk

(¢; R))k ¡ -converges to a functional G0(¢; R), with respect to the
L1(R) convergence, for all R belonging to the class R of all polyrectangles with
rational vertices. If u 2 BVloc(Rn; f0; 1g), we de­ ne G(u; A) on all open sets A 2 A
by setting

G(u; A) = supfG0(u; R) : R »» A; R 2 Rg:

For every A; A0 2 A with A0 »» A, there exists R 2 R such that A0 »» R »» A.
Hence we get

G(u; A) = supfG0(u; A0) : A0 »» A; A0 2 Ag
= supfG00(u; A0) : A0 »» A; A0 2 Ag (3.7)

for all A 2 A, that is, G is the inner regular envelope of G0 and of G00. Hence the
set function G(u; ¢) is inner regular (see [13, remark 16.3]), superadditive (see [13,
proposition 16.12]) and, by using the fundamental estimate above, we can prove
that G(u; ¢) is also subadditive (see [13, proposition 18.4]). Hence, by the measure
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property criterion of De Giorgi and Letta, G(u; ¢) is the restriction to A of a reg-
ular Borel measure (see [10, ch. 10]). Since, by the fundamental estimate, G0(u; ¢),
G00(u; ¢) are themselves inner regular on the class of bounded Lipschitz open sets U
(see [10, propositions 11.5 and 11.6]), then, by (3.7), we deduce that

G0(u; U ) = supfG0(u; A0) : A0 »» U; A0 2 Ag
= G(u; U )

= supfG00(u; A0) : A0 »» U; A0 2 Ag
= G00(u; U )

for all such sets U . Hence G is the ¡ -limit of (G"jk
)k for every U bounded Lipschitz

open set and for every u 2 L1
loc(Rn). Remark 3.1 completes the proof.

In the sequel, we still denote by G the extension of G(u; ¢) to the family B of all
Borel subsets of Rn.

Remark 3.4. G is a local functional on A, i.e.

G(u; A) = G(v; A)

for every set A 2 A and every u; v 2 BVloc(Rn; f0; 1g) such that u = v a.e. in A.
This follows directly by applying the de­ nition of ¡ -convergence, each G" being a
local functional too. Moreover, by remark 3.1, we can deduce the following estimate,

G(u; U ) 6 c0
p

c2 © (u; U ) = c0
p

c2Hn¡1(Su \ U ); (3.8)

for every Lipschitz set U 2 A and every u 2 L1
loc(Rn) such that u 2 BV (U ; f0; 1g).

Theorem 3.5 (integral representation). There exists a Borel function ’ : Rn £
Sn¡1 ! [0; +1[ such that

c0
p

c1 6 ’(x; ¸ ) 6 c0
p

c2 for a.e. x 2 Rn; ¸ 2 Sn¡1; (3.9)

G(u; B) =

8
><

>:

Z

Su \ B

’(x; ¸ u) dHn¡1 if u 2 BV (U ; f0; 1g);

+1 otherwise

(3.10)

for every Lipschitz set U 2 A and every Borel set B ³ U . Moreover, ’ satis¯es the
derivation formula

’(x; ¸ ) = lim sup
» ! 0+

» 1¡n inffG(u; Q ¸
» (x)) : u = u ¸

x in Rn n Q¸
» (x)g; (3.11)

where u ¸
x is the characteristic function of the half-space fy 2 Rn : hy ¡ x; ¸ i > 0g.

Proof. It su¯ ces to notice that G, as de­ ned in theorem 3.3, satis­ es the hypotheses
of theorem 1.4 of [5] (a direct proof can be also obtained by following that of
lemma 3.5 in [9]).

Remark 3.6. If ’ does not depend on x, then, from (3.11),

’( ¸ ) = inffG(u; Q ¸ ) : u = u ¸ in Rn n Q ¸ g
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where u ¸ = u ¸
0 . Moreover, the one-homogeneous extension of ’ to Rn is convex

(see [2]), and, in particular, it is continuous. We will use this fact to identify ’ by
computing it on a dense set in Sn¡1.

3.1. Boundary conditions

In this section we extend the preceding results to include the case of problems
with some types of boundary conditions.

Let w : R ! [0; 1] be such that

w(¡ 1) := lim
t! ¡1

w(t) = 0; w(+1) := lim
t! + 1

w(t) = 1

and Z + 1

¡1
(W (w) + jw0j2) dt = c < +1: (3.12)

We de­ ne w"(t) = w(t=") and v"(x) = w"(hx; ¸ i). We easily see that

v" ! u ¸ ; (3.13)

where u ¸ = u ¸
0 is de­ ned in theorem 3.5.

With ­ xed x 2 Rn and » > 0, we de­ ne

~F"(u; Q ¸
» (x)) =

(
F"(u; Q ¸

» (x)) if u(y) = v"(y ¡ x) on Rn n Q ¸
» (x), u 2 H1

loc(Rn);

+1 otherwise:

Theorem 3.7. Let F" be de¯ned by (3.2) and suppose that (F") ¡ -converges to F
as in theorem 3.3 (upon passing to a subsequence). Let the function ’ given by the
integral representation theorem 3.5 be independent of x. Then

¡ - lim
" ! 0

~F"(u; Q ¸
» (x)) = F (u; ·Q ¸

» (x)); (3.14)

where we extend u by setting u(y) = u ¸ (y ¡ x) on Rn n Q ¸
» (x).

Proof. It clearly su¯ ces to prove the theorem with x = 0. We begin by proving the
¡ -liminf inequality.

Let » 1 > » . With ­ xed " > 0, for all v with v = v" on Rn n Q ¸
» (x), we have

~F"(v; Q ¸
» ) = F"(v; Q ¸

» 1
) ¡ F"(v"; Q ¸

» 1
n Q ¸

» ): (3.15)

We de­ ne

Q ¸
» 1;n¡1 = fx 2 Q ¸

» 1
: hx; ¸ i = 0g;

Q ¸
» ;n¡1 = fx 2 Q ¸

» : hx; ¸ i = 0g

and

A1 = Q ¸
» 1;n¡1 n Q ¸

» ;n¡1 £ (¡ 1
2 » 1; 1

2 » 1);

A2 = Q ¸
» ;n¡1 £ ( ¡ 1

2 » 1; ¡ 1
2 » ) [ (1

2 » ; 1
2 » 1):
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We now compute

F"(v"; Q ¸
» 1

n Q ¸
» )

= F"(v"; A1) + F"(v"; A2)

6 ·c( » n¡1
1 ¡ » n¡1)

Z + 1

¡1
(W (w) + jw0j2) dt

+ ·c» n¡1

µZ ¡» =2"

¡1

µ
W (w) + jw0j2

¶
dt +

Z + 1

» =2"

(W (w) + jw0j2) dt

¶
;

(3.16)

where ·c = maxf1; c2g. Hence, by (3.12) and (3.16), for every sequence u" converging
to u such that u" = v" on Rn n Q ¸

» and lim inf"! 0
~F"(u"; Q ¸

» ) < +1, we get that

lim inf
"! 0

~F"(u"; Q ¸
» ) > lim inf

"! 0
F"(u"; Q ¸

» 1
) ¡ O( » n¡1

1 ¡ » n¡1)

> F (u; Q ¸
» 1

) ¡ O(» n¡1
1 ¡ » n¡1): (3.17)

Passing to the limit as » 1 tends to » , we have the liminf inequality

F (u; ·Q ¸
» ) 6 lim inf

"! 0
~F"(u"; Q ¸

» ): (3.18)

We now prove the ¡ -limsup inequality. Let u 2 BV (Q ¸
» ; f0; 1g) be such that

u = u ¸ on Rn n Q ¸
» .

(a) We ­ rst assume that u = u ¸ on Rn n Q ¸
» 1

with » 1 < » . Let u" be a sequence
converging to u such that

F (u; Q ¸
» ) = lim

"! 0
F"(u"; Q ¸

» ):

In particular, u" converges to u ¸ on Rn n Q ¸
» 1

. Let ’" be a cut-o¬ function
between U = Q ¸

(» + » 1)=2 and U 0 = Q¸
» and let V = Q ¸

» n ·Q ¸
» 1

. By the funda-
mental estimate,

F"(u"’" +(1 ¡ ’")v"; Q ¸
» ) 6 F"(u"; Q ¸

» )+F"(v"; Q¸
» n ·Q ¸

» 1
)+ ¯ "(u"; v"; U; U 0; V ):

(3.19)
By the assumptions on u" and (3.13), we also have

u" ! u ¸ ; v" ! u ¸ on V:

Hence we get

lim
" ! 0

¯ "(u"; v"; U; U 0; V ) = 0

and, by (3.15), (3.16) and (3.19),

¡ - lim sup
"! 0

~F"(u; Q ¸
» ) 6 F (u; Q ¸

» ):
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(b) In the general case, we consider » 1 < » and we de­ ne u » 1
(x) = u(( » =» 1)x).

By the previous case (a) and (3.10),

¡ - lim sup
"! 0

~F"(u » 1
; Q ¸

» ) 6 F (u » 1
; Q ¸

» )

=

Z

Q̧» \ S(u»1
)

’( ¸ u»1
) dHn¡1

6
Z

·Q̧» \ S(u)

’(̧ u) dHn¡1 + O( » n¡1 ¡ » n¡1
1 )

= F (u; ·Q ¸
» ) + O(» n¡1 ¡ » n¡1

1 ): (3.20)

Since u » 1 converges to u as » 1 tends to » , if we denote

~F 00(u » 1 ; Q ¸
» ) = ¡ - lim sup

"! 0

~F"(u » 1 ; Q¸
» );

then, by the lower semicontinuity of the ¡ -upper limit (see, for example, [10,
remark 7.8]) and (3.20),

¡ - lim sup
" ! 0

~F"(u; Q¸
» ) 6 lim inf

» 1 ! »
~F 00(u » 1 ; Q ¸

» ) 6 F (u; ·Q ¸
» ): (3.21)

Hence, by (3.21) and (3.18), we get the required equality (3.14).

Corollary 3.8. Let the function ’ given by the integral representation theorem 3.5
be independent of x. Then

’( ¸ ) = minfF (u; ·Q ¸ )u = u ¸ on Rn n Q ¸ g
= lim

j ! + 1
minf ~F"j

(u; Q ¸ )u = v"j
on @Q¸ g: (3.22)

Proof. The ­ rst equality follows from remark 3.6, while the convergence of minima
comes from the ¡ -convergence of ~F"j and the fact that we may ­ nd a sequence
of minimizers that is compact in L1(Q ¸ ). This can be proved by following [18,
proposition 3] on noticing that we may assume that minimizers take values in [0; 1]
by a truncation argument.

Remark 3.9. If the function u in theorem 3.7 satis­ es u(y) = u ¸ (y ¡ x) on a neigh-
bourhood of @Q ¸

» (x) (i.e. the support of y 7! u(y) ¡ u ¸ (y ¡ x) is compactly contained
in Q ¸

» (x)), then the hypothesis that ’ be independent of x may be removed. In fact,
that hypothesis is used in step (b) of the ¡ -limsup inequality only.

Remark 3.10. We want to show by a simple example that if ’ explicitly depends
on x, then theorem 3.7 is not true. Consider

F"(u; U ) =

Z

U

µ
1

"
W (u) + "a(x)jDuj2

¶
dx;

where

a(x) =

(
1 if x 2 Q;
1
4 otherwise:

https://doi.org/10.1017/S0308210500002390 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002390


280 N. Ansini, A. Braides and V. Chiadµo Piat

It can be easily checked that

F (u; U ) = ¡ - lim
"! 0

F"(u; U ) = c0

Z

S(u) \ U

p
a(x) dHn¡1: (3.23)

Now we want to show that there exists u such that

¡ - lim inf
" ! 0

~F"(u; Q) > F (u; ·Q): (3.24)

Such a u can be chosen as

u =

(
1 if xn > 1

2
;

0 otherwise:

In fact, let u" be a sequence converging to u such that u" = v" on @Q. Then

~F"(u"; Q) =

Z

Q

µ
1

"
W (u") + "jDu"j2

¶
dx

=

Z

(1+ ² )Q

µ
1

"
W (u") + "jDu"j2

¶
dx

¡
Z

(1+ ² )QnQ

µ
1

"
W (v") + "jDv"j2

¶
dx

and

lim inf
"! 0

~F"(u"; Q) > c0Hn¡1(S(u) \ (1 + ² )Q) ¡ c((1 + ² )n¡1 ¡ 1):

Passing to the limit as ² tends to 0, we get

lim inf
"! 0

~F"(u"; Q) > c0Hn¡1(S(u) \ ·Q)

> c0Hn¡1(S(u) \ Q) + 1
2
c0Hn¡1(S(u) \ @Q):

By (3.23), we get the required inequality (3.24).

4. Homogenization

In this section we treat the case of highly oscillating coe¯ cients. Comparing with
the compactness result in the previous sections, we make an additional hypothe-
sis of positive homogeneity of the integrands in order to simplify the notation of
the results, while keeping the main phenomenon of the di¬erent behaviours in the
presence of di¬erent regimes of oscillations.

Let f : Rn£Rn ! [0; +1) be a Borel function satisfying the following conditions.
There exist 0 < c1 6 c2 such that

c1j¹ j2 6 f(y; ¹ ) 6 c2j¹ j2; (4.1)

for all y 2 Rn, f(y; ¢) is positively homogeneous of degree two; (4.2)

for all ¹ 2 Rn, f (¢; ¹ ) is 1-periodic; (4.3)

i.e. f(x + ei; ¹ ) = f(x; ¹ ) for all x 2 Rn, and i = 1; : : : ; n.
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Let ¯ : (0; +1) ! (0; +1) and let W be as in x 2. For all " > 0, we consider the
functional F" : L1

loc(Rn) £ A ! [0; +1] de­ ned by

F"(u; A) =

8
><

>:

Z

A

µ
W (u)

"
+ "f

µ
x

¯ (")
; Du

¶¶
dx if u 2 W 1;® (A);

+1 otherwise:

(4.4)

With a ­ xed sequence ("j) of positive numbers converging to 0, by applying
theorem 3.3 with

f"(x; ¹ ) = f

µ
x

¯ (")
; ¹

¶
;

we conclude that, upon extracting a subsequence (not relabelled), the functionals
F"j

¡ -converge on all Lipschitz bounded open subsets of Rn. Their limit F can be
represented as an integral by theorem 3.5, with an energy density ’ given by (3.11).
In this section we will characterize this function ’ and hence also F . We begin by
remarking that ’ is independent of x.

Proposition 4.1. Let
lim
"! 0

¯ (") = 0:

Then the function ’ is independent of x.

Proof. To prove that ’ is independent of x, we show that ’(x; ¸ ) = ’(y; ¸ ) for all
x; y 2 Rn.

We ­ rst remark that, besides (3.11), ’(x; ¸ ) is equivalently described as

’(x; ¸ ) = lim sup
» ! 0+

1

» n¡1
inffF (v; Q ¸

» (x)) : v = u ¸
x in a neighbourhood of @Q ¸

» (x)g:

(4.5)
In order to prove this representation, with ­ xed x 2 Rn and » > 0, we consider the
minimum problems

m( » ) = inffF (u; Q ¸
» (x)) : u = u ¸

x in Rn n Q ¸
» (x)g;

and we denote by ux;» one of its minimizers.
Let (» j) be a sequence converging to 0 such that

lim
j

m( » j)

» n¡1
j

= lim sup
» ! 0+

m( » )

» n¡1
= ’(x; ¸ );

by (3.11). Let » 0
j = (1 ¡ 1=j) » j . By using the function ux;» 0

j (a ­ xed minimizer of
m( » 0

j)) as a test function in the minimum problem de­ ning m( » j) and remarking
that F (ux;» 0

j ; Q ¸
» (x)) = F (ux;» 0

j ; Q ¸
» (x)), we get

m(» j)

» n¡1
j

6 1

» n¡1
j

F (ux;» 0
j ; Q ¸

» (x)) 6 1

» n¡1
j

(m( » 0
j) + c( » n¡1

j ¡ » 0
j

n¡1
));

and, taking the limit as j ! +1,

’(x; ¸ ) = lim
j

m(» j)

» n¡1
j

6 lim
j

1

» n¡1
j

F (ux;» 0
j ; Q ¸

» (x)) 6 lim sup
j

m(» 0
j)

» 0
j

n¡1 6 ’(x; ¸ ):
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Hence all inequalities in this last formula are equalities. This shows that we may
replace m( » j) by

inffF (u; Q ¸
» j

(x)) : u = u ¸
x in Rn n Q ¸

» 0
j
(x)g

in the computation of ’(x; » ) and, in particular, we obtain the representation (4.5).
We now ­ x x 2 Rn and » > 0 and a function u = ux;» with u = u ¸

x on a
neighbourhood of @Q ¸

» (x). By remark 3.9 and theorem 3.7, there exists a sequence
ux;»

j converging to ux;» , with ux;»
j (z) = v"j (z ¡ x) on Rn n Q ¸

» (x), such that

lim
j

F"j (ux;»
j ; Q¸

» (x)) = F (ux;» ; Q ¸
» (x)):

We de­ ne ½ j 2 Zn by

( ½ j)i =

·
yi ¡ xi

"j

¸
;

and u
y;»
j (z) = u

x;»
j (z ¡ "j ½ j). Note that limj "j ½ j = y ¡ x, u

y;»
j converges to uy;»

given by uy;» (z) = ux;» (z ¡ y + x) and

uy;»
j (z) = wj(z) on Rn n ("j ½ j + Q ¸

» (x));

where

wj(z) = v"j
(z ¡ x ¡ "j ½ j):

By plugging uy;»
j into F"j , we get

F"j (uy;»
j ; "j ½ j + Q ¸

» (x)) = F"j (ux;»
j ; Q ¸

» (x));

so that, for ­ xed r > 1, we get

F (uy;» ; Q ¸
» (y))

6 F (uy;» ; Q ¸
r» (y)) 6 lim inf

j
F"j (u

y;»
j ; Q ¸

r» (y))

= lim inf
j

(F"j
(uy;»

j ; "j ½ j + Q ¸
» (x)) + F"j

(uy;»
j ; Q ¸

r» (y) n ("j ½ j + Q ¸
» (x))))

= lim inf
j

(F"j (ux;»
j ; Q ¸

» (x)) + F"j (wj ; Q ¸
r» (y) n ("j ½ j + Q ¸

» (x))))

= lim
j

F"j (u
x;»
j ; Q ¸

» (x)) + lim
j

F"j (wj ; Q ¸
r» (y) n ("j ½ j + Q ¸

» (x)))

6 F (ux;» ; Q ¸
» (x)) + c» n¡1(rn¡1 ¡ 1);

with

c =

Z + 1

¡1
(W (w) + jw0j2) dt:

By the arbitrariness of r > 1, we get

F (uy;» ; Q ¸
» (y)) 6 F (ux;» ; Q ¸

» (x))

and, by symmetry, the equality, so that ’(x; ¸ ) = ’(y; ¸ ) by letting » ! 0, by
formula (4.5) and the arbitrariness of u.
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Remark 4.2. The formula

’( ¸ ) = lim
j ! + 1

min

½
"n¡1

j

Z

(1="j)Q̧

µ
W (u) + f

µ
"j

¯ ("j)
x; Du

¶¶
dx :

u = v ¸ on @

µ
1

"j
Q¸

¶¾
(4.6)

holds, where v ¸ (x) = w(hx; ¸ i). To check this, it su¯ ces to use the previous propo-
sition and corollary 3.8.

4.1. Oscillations on the scale of the transition layer

In this section we treat the case when the scale of oscillation ¯ and the scale of
the transition layer " are comparable.

Theorem 4.3. Let F" be de¯ned by (4.4). Let f(x; ¹ ) be a Borel function, 1-periodic
in x, positively homogeneous of degree two in ¹ and satisfying the growth con-
ditions (4.1), and let W (z) be a continuous function satisfying conditions (2.1)
and (2.2). Let ¯ : (0; +1) ! (0; +1) be such that

lim
" ! 0

"

¯ (")
= c;

where c is a positive constant. Then there exists the ¡ -limit

¡ - lim
"! 0

F"(u; U ) =

Z

S(u)\ U

’( ¸ u) dHn¡1

for every u 2 BV (U ; f0; 1g), where

’(̧ ) = lim
T ! + 1

1

T n¡1
inf

½Z

T Q̧

(W (u)+ f(cx; Du)) dx : u = v ¸ on @(T Q¸ )

¾
: (4.7)

Proof. First, we prove the theorem when ¯ (") = ".

Step 1. It is su¯ cient to prove the formula for a dense set ¥ of ¸ . In fact, since ’ is
convex, it is also continuous. Hence, if the formula is true for every ¸ 2 ¥ , then ’ is
independent from "j for every ¸ 2 ¥ . By the continuity of ’, it is also independent
from "j for every ¸ . Hence we can conclude that there exists the ¡ -limit of F";¯ (")

and, by the convergence of minima, the formula is true for every ¸ .

Step 2. Let ¥ be the set of unit rational vectors, i.e.

¥ = f¸ 2 Sn¡1 : 9¶ 2 R; ¶ ¸ 2 Qng:

In can be easily seen that ¥ is dense in Sn¡1. Now, for simplicity of notation, we
develop the proof only in the case ¸ = en, but the same arguments clearly work for
any ¸ 2 ¥ , up to a change of variables and of the periodicity cell. We de­ ne, for
T > 0, T Q = (¡ 1

2 T; 1
2 T )n and

g(T ) = inf

½
1

T n¡1

Z

T Q

(W (u) + f(x; Du)) dx : u = w(xn) on @T Q

¾
:
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We have to prove that the limit exists as T tends to +1. Let uT be such that
Z

T Q

(W (uT ) + f (x; DuT )) dx 6 T n¡1g(T ) + 1:

Let S > T . We de­ ne

QT z = z([T ] + 1) + T Q for z 2 Zn¡1 £ f0g

and

IS = fz 2 Zn¡1 £ f0g : QT z ³ SQg:

We can construct

uS(x) =

(
uT (x ¡ z([T ] + 1)) if x 2 QT z; z 2 IS ;

w(xn) otherwise:

We can proceed as in the proof of [10, proposition 14.4]. Plugging uS into the
de­ nition of g(S), we obtain the inequality

g(S) 6 g(T ) + r(S; T );

with
lim sup
T ! + 1

lim sup
S ! + 1

r(S; T ) = 0;

so that
lim sup
S ! + 1

g(S) 6 lim inf
T ! + 1

g(T ):

Hence we conclude the proof of the case ¯ (") = ".
If " = ¯ c, by a change of variables, we can apply the previous case.
Finally, if lim"! 0("=¯ (")) = c, then, by the change of variables ("=¯ ("))x = cy, it

can be easily checked that

"n¡1

Z

(1=")Q ¸

µ
W (u) + f

µ
"

¯
x; Du

¶¶
dx

=
1

"T

1

T n¡1

Z

T Q̧

µ
W

µ
u

µ
c¯ (")

"
y

¶¶
+

1

("T )2
f

µ
cy; Du

µ
c¯ (")

"
y

¶¶¶
dy; (4.8)

where T = 1=¯ c and lim" ! 0 1="T = 1. Hence, for every ² > 0, there exists "0 > 0
such that, for every " < "0,

(1 ¡ ² ) inf

½
1

T n¡1

Z

T Q̧

(W (u) + (1 ¡ ² )2f (cy; Du)) dy : u = v ¸ on @T Q ¸

¾

6 inf

½
1

"T

1

T n¡1

Z

T Q̧

µ
W (u) +

1

("T )2
f (cy; Du)

¶
dy : u = v ¸ on @T Q ¸

¾

6 (1 + ² ) inf

½
1

T n¡1

Z

T Q ¸

(W (u) + (1 + ² )2f(cy; Du)) dy : u = v ¸ on @T Q ¸

¾
:

(4.9)
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By the previous case " = ¯ c, we can conclude that, for every sequence "j converging
to 0, there exists the limit

lim
j ! + 1

inf

½
"n¡1

j

Z

(1="j)Q ¸

µ
W (u) + f

µ
"j

¯ ("j)
x; Du

¶¶
dx : u = v ¸ on @

µ
1

"j
Q ¸

¶¾

= lim
T ! + 1

inf

½
1

T n¡1

Z

T Q̧

(W (u) + f(cy; Du)) dy : u = v ¸ on @TQ ¸

¾
:

(4.10)

Hence, by remark 4.2, ’ is independent from "j for every ¸ and satis­ es (4.7).

4.2. Oscillations on a larger scale than the transition layer

In this section we treat the case when the scale of oscillation ¯ is much larger
that the scale of the transition layer ".

Theorem 4.4. Let F" be de¯ned by (4.4). Let f(x; ¹ ) be a continuous function,
1-periodic in x, positively homogeneous of degree two and locally Lipschitz in ¹ , sat-
isfying the growth conditions (4.1), and let W (z) be a continuous function satisfying
conditions (2.1) and (2.2). Let ¯ : (0; +1) ! (0; +1) be such that

lim
"! 0

¯ (") = 0; lim
"! 0

"

¯ (")
= 0:

Then there exists the ¡ -limit

¡ - lim
"! 0

F"(u; U ) =

Z

S(u)\ U

’( ¸ u) dHn¡1

for every Lipschitz set U 2 A and every u 2 BV (U ; f0; 1g), where

’( ¸ ) = c0 inf
T >0

inf

½
1

T n¡1

Z

T Q̧ \ S(u)

p
f(x; ¸ u) dHn¡1 :

u 2 BV ( « ; f0; 1g)u = u ¸ on Rn n T Q ¸

¾
:

Proof. We recall that

c0 = 2

Z 1

0

p
W (z) dz

= min

½Z + 1

¡1
(W (v) + jv0j2) dt : v( ¡ 1) = 0; v(+1) = 1

¾
(4.11)

(see, for example, [1,6]) and we denote

Á h om (̧ ) = inf
T >0

inf

½
1

T n¡1

Z

T Q̧ \ S(u)

Á(x; ¸ u) dHn¡1 :

u 2 BV ( « ; f0; 1g)u = u ¸ on Rn n T Q ¸

¾
;

(4.12)

where Á(x; ¹ ) =
p

f (x; ¹ ).
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Step 1 ( ¡ -liminf inequality). Let u 2 BV (« ; f0; 1g) and let u" be a sequence con-
verging to u in L1( « ). We can always assume that u" 2 H1(« ; [0; 1]). With ­ xed
N 2 N, we divide [0; 1] in intervals of length 1=N . If we de­ ne

Ik =

½
x 2 « :

k ¡ 1

N
6 u" 6 k

N

¾
and uk

" =

µ
u" _ k ¡ 1

N

¶
^ k

N

for k = 1; : : : ; N , then uk
" converges to

uk =

µ
u _ k ¡ 1

N

¶
^ k

N
=

k ¡ 1

N
+

u

N

and

F";¯ (")(u"; « ) > 2

Z

«

s

W (u")f

µ
x

¯ (")
; Du"

¶
dx

= 2
NX

k = 1

Z

Ik

s

W (u")f

µ
x

¯ (")
; Du"

¶
dx

= 2
NX

k = 1

Z

«

s

W (uk
" )f

µ
x

¯ (")
; Duk

"

¶
dx

> 2

NX

k = 1

min
z 2 [(k¡1)=N;k=N]

p
W (z)

Z

«

s

f

µ
x

¯ (")
; Duk

"

¶
dx: (4.13)

By [8, theorem 5.1], we have that the ¡ -limit as ² ! 0 of the functionals

u 7!
Z

«

s

f

µ
x

²
; Du

¶
dx

takes the value Z

S(u) \ «

Á h om ((u + ¡ u¡) ¸ u) dHn¡1

if u = uk. Then, since Á h om is a positively one-homogeneous function, we get that

lim inf
"! 0

Z

«

s

f

µ
x

¯ (")
; Duk

"

¶
dx >

Z

S(uk) \ «

Á h om ((uk + ¡ uk¡) ¸ uk ) dHn¡1

=
1

N

Z

S(u) \ «

Á h om ( ¸ u) dHn¡1; (4.14)

so that

lim inf
"! 0

F";¯ (")(u"; « ) >
NX

k = 1

2

N
min

z 2 [(k¡1)=N;k=N]

p
W (z)

Z

S(u) \ «

Á h om ( ¸ u) dHn¡1

and, passing to the limit as N tends to +1, we get

lim inf
"! 0

F";¯ (")(u"; « ) > 2

Z 1

0

p
W (z) dz

Z

S(u)\ «

Á h om ( ¸ u) dHn¡1

(we have used the Riemann integrability of
p

W ).
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Step 2 ( ¡ -limsup inequality). We can consider the case ¸ = en. By (4.12), if we
­ x ² > 0, there exist k > 0 and ·u 2 BV (kQ; f0; 1g) such that ·u = uen on Rn n kQ
and

1

kn¡1

Z

S(·u)\ kQ

Á(x; ¸ ·u) dHn¡1 6 Á h om (en) + ² : (4.15)

We extend by periodicity ·u so that it is k-periodic in (x1; : : : ; xn¡1) and ·u = uen

when jxnj > 1
2 k.

Let v be such that
Z + 1

¡1
(W (v) + jv0j2) dt = min

½Z + 1

¡1
(W (v) + jv0j2) dt : v(¡ 1) = 0; v(+1) = 1

¾
:

If we de­ ne

v ² = 0 _ (((1 + 2² )v ¡ ² ) ^ 1);

then there exists R such that v ² (t) 2 f0; 1g if jtj > R, and

Z + 1

¡1
(W (v ² ) + jDv ² j2) dt ! c0 as ² ! 0: (4.16)

We can always assume that ·u is such that S(·u) is of class C2. Hence, for ¬ > 0
small enough, there exists a unique projection of class C2,

p : fx 2 « : dist(x; S(·u)) < ¬ g ! S(·u):

We set

·¸ (x) =

(
¸ (p(x)) if dist(x; S(·u)) < ¬ ;

en otherwise

and

d(x) =

(
dist(x; fu = 0g) if u(x) = 1;

¡ dist(x; fu = 1g) if u(x) = 0:

We de­ ne

·u";¯ (x) = v ²

µ
¯ d(x)

"Á(x; ·¸ (x))

¶

and

u"(x) = ·u";¯

µ
x

¯

¶
= v ² (d"(x));

where

d"(x) =
¯ d(x=¯ )

"Á(x=¯ ; ·¸ (x=¯ ))
:

Hence

Du"(x) = Dv ²

µ
¯ Dd(x=¯ )

"Á(x=¯ ; ·¸ (x=¯ ))
¡

¯ d(x=¯ )DÁ(x=¯ ; ·¸ (x=¯ ))

"Á(x=¯ ; ·¸ (x=¯ ))2

¶
;
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but Dv ² 6= 0 on D = fx 2 « : jd(x=¯ )j 6 R("=¯ )
p

c1g and D( ¯ d(x=¯ )) = ·¸ (x=¯ ),
so that

F";¯ (")(u"; Q)

=

Z

D \ Q

µ
1

"
W (u") + "f

µ
x

¯
; Dv ²

µ
·¸ (x=¯ )

"Á(x=¯ ; ·¸ (x=¯ ))

¡ ¯ d(x=¯ )DÁ(x=¯ ; ·¸ (x=¯ ))

"Á(x=¯ ; ·¸ (x=¯ ))2

¶¶
dx

=
1

"

Z

D \ Q

µ
W (u") +

µ
Dv ²

Á(x=¯ ; ·¸ (x=¯ ))
¡ ¯ d(x=¯ )DÁ(x=¯ ; ·¸ (x=¯ ))

·¸ (x=¯ )Á(x=¯ ; ·¸ (x=¯ ))2

¶2

£ f

µ
x

¯
; ·¸

µ
x

¯

¶¶¶
dx

=
1

"

Z

D \ Q

µ
W (u") +

µ
Dv ² ¡ ¯ d(x=¯ )DÁ(x=¯ ; ·¸ (x=¯ ))

·¸ (x=¯ )Á(x=¯ ; ·¸ (x=¯ ))

¶2¶
dx: (4.17)

If we set x = y + t¸ (y) with t = ¯ d(x=¯ ) and y 2 S(·u), then ·¸ (x=¯ ) = ¸ (y=¯ )
and, by (4.17) and the co-area formula, using the fact that jD( ¯ d(x=¯ ))j = 1, we
get

F";¯ (")(u"; Q)

6 1

"

Z "R
p

c1

¡"R
p

c1

Z

S(·u)\ Q

µ
W

µ
v ²

µ
t

"Á((y + t¸ (y))=¯ ; ¸ (y=¯ ))

¶¶

+

¯̄
¯̄Dv ²

µ
t

"Á((y + t¸ (y))=¯ ; ¸ (y=¯ ))

¶

¡ tDÁ((y + t¸ (y))=¯ ; ¸ (y=¯ ))

¸ (y=¯ )Á((y + t¸ (y))=¯ ; ¸ (y=¯ ))

¯̄
¯̄
2¶

dHn¡1(y) dt

=

Z R
p

c1

¡R
p

c1

Z

S(·u)\ Q

µ
W

µ
v ²

µ
s

Á((y + "s¸ (y))=¯ ; ¸ (y=¯ ))

¶¶

+

¯̄
¯̄Dv ²

µ
s

Á((y + "s¸ (y))=¯ ; ¸ (y=¯ ))

¶

¡
"s

¸ (y=¯ )

DÁ((y + "s¸ (y))=¯ ; ¸ (y=¯ ))

Á((y + t¸ (y))=¯ ; ¸ (y=¯ ))

¯̄
¯̄
2¶

dHn¡1(y) ds:

(4.18)

Since Á is a Lipschitz function, by (4.18), we get

F";¯ (")(u"; Q)

6
Z R

p
c1

¡R
p

c1

Z

S(·u)\ Q

µ
W

µ
v ²

µ
s

Á

¶¶
+

¯̄
¯̄Dv ²

µ
s

Á

¶¯̄
¯̄
2

+ ("R)2c1

¯̄
¯̄ DÁ

Á

¯̄
¯̄
2¶

dHn¡1(y) ds

+ "c2

6
Z R

p
c1

¡R
p

c1

Z

S(·u)\ Q

µ
W

µ
v ²

µ
s

Á

¶¶
+

¯̄
¯̄Dv ²

µ
s

Á

¶¯̄
¯̄
2¶

dHn¡1(y) ds + "~c: (4.19)
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By the change of variable

t =
s

Á((y + "s¸ (y))=¯ ; ¸ (y=¯ ))
;

we obtain

F";¯ (")(u"; Q)

6
Z

S(·u)\ Q

Z + 1

¡1
(W (v ² (t)) + jDv ² (t)j2) dt

£ Á(y=¯ ; ¸ (y=¯ )) + O("=¯ )

1 + O("=¯ )
dHn¡1(y) + "~c

=

Z + 1

¡1
(W (v ² (t)) + jDv ² (t)j2) dt

£
µ

¯ n¡1

1 + O("=¯ )

Z

S(·u) \ (1=¯ )Q

Á(x; ¸ (x)) dHn¡1(x)

+
O("=¯ )

1 + O("=¯ )
¯ n¡1Hn¡1

µ
S(·u) \ 1

¯
Q

¶¶
+ "~c:

(4.20)

By (4.20), (4.15) and (4.16), we get

lim sup
" ! 0

F";¯ (")(u"; Q) 6 c0Á h om (en);

as desired.

Remark 4.5. Note that the ¡ -liminf inequality does not depend on the behaviour
of ¯ with respect to " and we do not use the assumption of f being locally Lipschitz.

4.3. Oscillations on a ¯ner scale than the transition layer

Finally, in this section we treat the case when the scale of oscillation ¯ is much
smaller that the scale of the transition layer ".

In order to prove the liminf inequality, we make the following two additional
technical hypotheses:

(H1) (Lipschitz continuity of W )

jW (u) ¡ W (v)j 6 C ju ¡ vj

if 0 6 u, v 6 1;

(H2) we have

¯ ½ "
p

":

These hypotheses will be used in the proof of proposition 4.10 only, and will not be
needed for the limsup inequality.
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Theorem 4.6. Let F" be de¯ned by (4.4). Let f(x; ¹ ) be a Borel function, 1-periodic
in x, positively homogeneous of degree two in ¹ and satisfying the growth condi-
tions (4.1), and let W be a continuous function satisfying conditions (H1), (2.1)
and (2.2). Let ¯ : (0; +1) ! (0; +1) be such that

lim
" ! 0

"
p

"

¯ (")
= +1:

Then there exists the ¡ -limit

¡ - lim
"! 0

F"(u; U ) =

Z

S(u)\ U

’( ¸ u) dHn¡1

for every Lipschitz set U 2 A and every u 2 BV (U ; f0; 1g), where

’(̧ ) = c0

p
f h om (̧ )

and f h om is the homogenized integrand of f de¯ned by

fh om ( ¹ ) = inf

½Z

(0;1)n

f(y; Du + ¹ ) dy : u 2 H1
loc(Rn); u 1-periodic

¾

for all ¹ 2 Rn.

The proof of the theorem will be obtained from the results in the rest of the
section.

The liminf inequality will be proved if we show that, for every sequence (u") such
that

sup
"

F"(u") < +1; u" ! u;

and for every ² > 0, there exists a sequence (u ²
" ) converging to u such that

lim inf
"! 0

F"(u") > lim inf
"! 0

Z

«

µ
W (u ²

" )

"
+ "fh om (Du²

" )

¶
dx ¡ ² C: (4.21)

The conclusion will then follow, since we already know the ¡ -limit of the functionals
on the right-hand side of (4.21) (see proposition 4.11 below). Such (u ²

") will be
obtained from (u") by averaging on a intermediate scale between ¯ and ". Before
de­ ning such functions, we prove a preliminary proposition.

Proposition 4.7. Let U be a connected bounded open set. For every ² > 0, there
exists K 2 N such that, for all u 2 H1(U ) and for all h > K, h 2 N, we have

¡
Z

U

f(hx; Du) dx > f h om

µ
¡
Z

U

Du dx

¶
¡ ²

¯̄
¯̄¡
Z

U

Du dx

¯̄
¯̄
2

:

Proof. Suppose, by contradiction, that ² > 0, (hk) an increasing sequence of inte-
gers and functions uk 2 H1(U ) exist such that

¯̄
¯̄¡
Z

U

Duk dx

¯̄
¯̄ = 1
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and

¡
Z

U

f(hkx; Duk) dx < f h om

µ
¡
Z

U

Duk

¶
¡ ²

(we use a scaling argument by positive homogeneity). Upon a translation argu-
ment and a passage to a subsequence, we may assume that uk * ·u in H1(U ). In
particular, we have

¡
Z

U

Duk dx ! ¡
Z

U

D·u dx;

and hence ¯̄
¯̄¡
Z

U

D·u dx

¯̄
¯̄ = 1;

from which we obtain, by the classical homogenization theorem (see, for exam-
ple, [10, x 14]) and Jensen’s inequality,

lim inf
k

¡
Z

U

f(hkx; Duk) dx > ¡
Z

U

f h om (D·u) dx > fh om

µ
¡
Z

U

D·u dx

¶

and a contradiction easily follows.

Note preliminarily that, by the compactness and representation theorem, we may
limit our analysis in (4.21) to the case u = u ¸ with ¸ = en, « = Q = ( ¡ 1

2
; 1

2
)n.

Moreover, by applying, if necessary, a truncation argument, we may suppose that
u" 2 L1 (Rn) \ H1

loc(Rn), 0 6 u" 6 1, and that

u"(x) = w(xn=")

on Rn n Q by theorem 3.7.
With ­ xed ² > 0, let K be given by proposition 4.7. We de­ ne

u ²
" (x) = ¡

Z

Q(x;K¯ )

u"(y) dy:

Note that u ²
" 2 C 1 (Rn) and that

Du²
" (x) = ¡

Z

Q(x;K¯ )

Du"(y) dy:

For each ² > 0, we then have u ²
" ! u in H1

loc(Rn).

Proposition 4.8. Let ’ 2 C0(Rn) and let ² , K and u ²
" be as above. Then there

exists y 2 Q(0; K¯ ) such that, if we set

xK
i = y + iK¯ ; QK

i = Q(xK
i ; K¯ )

and
I ¯

K = fi 2 Zn : QK
i \ Q 6= ;g;

we have Z

Q

’(Du²
" ) dx 6

X

i 2 I ¯
K

(K¯ )n’(Du²
" (xK

i )):
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Proof. The thesis follows immediately from the mean-value theorem, upon remark-
ing that

Z

Q

’(Du²
" ) dx 6

Z

Q(0;K¯ )

X

i 2 IK
¯

’(Du ²
"(z + iK¯ )) dz:

Proposition 4.9. Let (u") and (u ²
") be as above. Then we have

lim inf
"! 0

"

Z

Q

f

µ
x

¯
; Du"

¶
dx > lim inf

"! 0
"

Z

Q

f h om (Du²
" ) dx ¡ c² :

Proof. Let y be given by proposition 4.8, with ’( ¹ ) = fh om (¹ ) ¡ ² j ¹ j2. Then we
have, using both propositions above (in addition to proposition 4.7, we have to use
a change of variable and the positive homogeneity of f),

"

Z

Q

f

µ
x

¯
; Du"

¶
dx + O

µ
K¯

"

¶
= "

X

i 2 IK
¯

Z

QK
i

f

µ
x

¯
; Du"

¶
dx

> "
X

i 2 IK
¯

(K¯ )n(f h om (Du²
" (xK

i )) ¡ ² jDu²
" (xK

i )j2)

> "

Z

Q

(f h om (Du²
" ) ¡ ² jDu²

" j2) dx:

The thesis follows by remarking that, by the growth conditions on W and the
de­ nition of u ²

" , we have

sup
"

"

Z

Q

jDu²
" j2 dx 6 c < +1;

with c independent of ² 2 (0; 1).

Note that we have not yet used hypotheses (H1) and (H2).

Proposition 4.10. Let (u") and (u ²
") be as above. Then we have

lim inf
"! 0

Z

Q

W (u")

"
dx > lim inf

" ! 0

Z

Q

W (u ²
")

"
dx

Proof. By Poincaŕe’s inequality applied in each Q(x; K¯ ) and the Lipschitz continu-
ity of translations in Sobolev spaces (see, for example, [23, theorem 2.1.6]), setting
xi = K¯ i,

Qi = Q(xi; K¯ ) and I = fi 2 Zn : Qi \ Q 6= ;g;
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we have
Z

Q

ju"(x) ¡ u ²
" (x)j dx 6

X

i2 I

Z

Qi

¯̄
¯̄u"(x) ¡ ¡

Z

Qi

u"(y) dy

¯̄
¯̄ dx

+
X

i 2 I

Z

Qi

¡
Z

Qi

ju"(y + (x ¡ xi)) ¡ u"(y)j dydx

6 cK¯

µZ

Q

jDu"j2 dx

¶1=2

:

Hence, by (H1), we get
Z

Q

W (u") dx >
Z

Q

W (u ²
") dx ¡ C

Z

Q

ju" ¡ u ²
" j dx

>
Z

Q

W (u ²
") dx ¡ cK¯

µZ

Q

jDu"j2 dx

¶1=2

=

Z

Q

W (u ²
") dx ¡ "cK

¯

"
p

"

µ
"

Z

Q

jDu"j2 dx

¶1=2

;

and the thesis follows by (H2).

The ¡ -liminf inequality reads as follows.

Proposition 4.11. For all u 2 BV (U ; f0; 1g), we have

¡ - lim inf
"! 0

F"(u; U ) >
Z

S(u) \ U

p
f h om ( ¸ u) dHn¡1:

Proof. It su¯ ces to use the two previous propositions and recall that the ¡ -limit
of the functionals

u 7!
Z

«

µ
W (u)

"
+ "f h om (Du)

¶
dx

is given by Z

S(u)\ «

p
f h om ( ¸ u) dHn¡1

on BV ( « ; f0; 1g) (see [6, x 4.2]).

It remains to prove the ¡ -limsup inequality, which completes the proof of theo-
rem 4.6.

Proposition 4.12. For all u 2 BV (U ; f0; 1g), we have

¡ - lim sup
"! 0

F"(u; U ) 6
Z

S(u) \ U

p
fh om ( ¸ u) dHn¡1:

Proof. We want to prove that there exists a sequence u" converging to u ¸ such that

lim sup
" ! 0

F"(u"; Q ¸ ) 6 c0

p
f h om ( ¸ ):
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By (4.11),

c0

p
f h om ( ¸ ) = min

½Z + 1

¡1
(W (v) + fh om ( ¸ )jv0j2) dt : v(¡ 1) = 0; v(+1) = 1

¾

= inf
T >0

inf

½Z T

¡T

(W (v) + f h om ( ¸ )jv0j2) dt :

v(t) = 0 if t 6 ¡ T; v(t) = 1 if t > T

¾
:

(4.22)

Hence, for ­ xed ¬ > 0, there exist T > 0 and vT such that

Z T

¡T

(W (vT ) + f h om ( ¸ )jv0
T j2) dt 6 c0

p
fh om (̧ ) + ¬ : (4.23)

We de­ ne

cT =

Z T

¡T

(W (vT ) + f h om (̧ )jv0
T j2) dt

and uT (x) = vT (hx; ¸ i). Then there exists a sequence u ² , converging to uT , such
that u ² = uT on @(Q ¸

n¡1 £ ( ¡ T; T )) and

cT =

Z

Q ¸
n¡ 1£(¡T;T )

(W (uT ) + f h om (DuT )) dx

= lim
² ! 0

Z

Q¸
n ¡ 1£(¡T;T)

µ
W (u ² ) + f

µ
x

²
; Du²

¶¶
dx: (4.24)

Let ² = ¯ (")=". We de­ ne a sequence u" on (["=¯ ] + 1) ¯ Q ¸
n¡1 £ R as follows,

u"(x) =

8
>>><

>>>:

u ² (x=") if x 2 "Q ¸
n¡1 £ ( ¡ "T; "T );

uT (x=") if x 2 ((["=¯ ] + 1)̄ Q ¸
n¡1 n "Q ¸

n¡1) £ ( ¡ "T; "T );

1 if xn > "T;

0 if xn 6 ¡ "T;

(4.25)

and we extend it by periodicity so that u" is (["=¯ ] + 1) ¯ -periodic in the variables
(x1; : : : ; xn¡1). We de­ ne

I" = fi 2 Zn¡1 : "Q ¸
i;n¡1 £ ( ¡ "T; "T ) \ Q¸ 6= ;g;

where

Q¸
i;n¡1 = i

µ·
"

¯

¸
+ 1

¶
¯

"
+ Q¸

n¡1

and

J" =

½
i 2 Zn¡1 : i

µ·
"

¯

¸
+ 1

¶
¯ Q ¸

n¡1 n "Q ¸
i;n¡1 £ ( ¡ "T; "T ) \ Q ¸ 6= ;

¾
:
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We get

F";¯ (")(u"; Q ¸ )

=

Z

Q̧

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

=

Z

Q¸
n ¡ 1£(¡"T;"T )

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

6
X

i 2 I"

Z

"Q̧i;n ¡ 1£(¡"T;"T)

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

+
X

i2 J"

Z

i(["=¯ ]+ 1) ¯ Q ¸
n ¡ 1n("Q̧i;n ¡ 1£(¡"T;"T ))

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

(4.26)

and, in particular, by (4.25),

X

i 2 J"

Z

i(["=¯ ]+ 1)̄ Q ¸
n¡ 1n"Q̧i;n ¡ 1£(¡"T;"T )

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

=
X

i 2 J"

"n¡1

Z

i(["=¯ ]+ 1)( ¯ =")Q̧n ¡ 1nQ ¸
i;n¡ 1£(¡T;T )

µ
W (uT ) + f

µ
x

²
; DuT

¶¶
dx

6
X

i 2 J"

"n¡1

µµ·
"

¯

¸
¯

"
+

¯

"

¶n¡1

¡ 1

¶ Z T

¡T

(W (vT ) + c2jv0
T j2) dt

6
X

i 2 J"

"n¡1

µµ·
"

¯

¸
¯

"
+

¯

"

¶n¡1

¡ 1

¶µ
cT + c2

Z T

¡T

jv0
T j2 dt

¶
: (4.27)

Hence, by (4.27), we obtain

lim sup
" ! 0

X

i2 J"

Z

i(["=¯ ]+ 1) ¯ Q ¸
n ¡ 1nQ̧i;n ¡ 1£(¡"T;"T )

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx = 0:

(4.28)
We now estimate the ­ rst term in (4.26) as

X

i2 I"

Z

"Q ¸
i;n¡ 1£(¡"T;"T)

µ
1

"
W (u") + "f

µ
x

¯ (")
; Du"

¶¶
dx

6
µ·

1

"

¸
+ 1

¶n¡1

"n¡1

Z

Q¸
n ¡ 1£(¡T;T)

µ
W (u ² ) + f

µ
x

²
; Du²

¶¶
dx: (4.29)

Hence, by (4.26), (4.28), (4.29), (4.24) and (4.23), we get

lim sup
"! 0

F";¯ (")(u"; Q ¸ ) 6 lim
² ! 0

Z

Q̧n ¡ 1£(¡T;T)

µ
W (u ² ) + f

µ
x

²
; Du²

¶¶
dx

= cT 6 c0

p
f h om ( ¸ ) + ¬ (4.30)

and, by the arbitrariness of ¬ , we obtain the ¡ -limsup inequality.
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