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QUANTUM LOGIC ASSOCIATED TO FINITE DIMENSIONAL
INTERVALS OF MODULAR ORTHOLATTICES

R. GIUNTINI, H. FREYTES, AND G. SERGIOLI

Abstract. In this work we study an abstract formulation of a problem posed by J.M. Dunn, T.J. Hagge
et al. about the inclusion of varieties generated by the modular ortholattice of subspaces of Cn . We shall
prove that, this abstract formulation is equivalent to the direct irreducibility for atomic complete modular
ortholattices.

§1. Introduction. In their 1936 seminal paper [1], Birkhoff and von Neumann
introduced a suitable model for the logic of quantummechanics based on the lattice
L(H) of all closed subspaces of a Hilbert spaceH. The lattice L(H), equipped with
the orthogonal complement, can be described as an ortholattice. In the case of a
finite-dimensional Hilbert space, the ortholattice of its closed subspaces is modular.
In this way, they provided the first notion of quantum logic.
However this notion can assume several meanings according to the different
authors. In this work we refer to the terminology used in [4] i.e., the quantum
logic associated to a Hilbert space H, denoted by QL(H), is identified with the
class of all models of the set of true equations in L(H) formulated in the language
of ortholattices. In terms of the universal algebra, QL(H) is the subvariety of
ortholattices generated by L(H).
In [4], J.M. Dunn, T.J. Hagge et al. show that, for any n ≥ 0,QL(Cn) is a proper
subvariety of QL(C2n+1) and they raise the question whether this result could be
extended to any finite-dimensional complex Hilbert space Cn . In other words:

is QL(Cn) a proper subvariety of QL(Cm) whenever n < m?
It should be noticed that, an explicit positive solution to this question was given
by T.J. Hagge in [5].
The aim of this paper is to study this problem in a general algebraic framework.
More precisely, taking into account that the modular ortholattice L(Cn) can be
thought as an interval of L(Cm) whenever n ≤ m, the problem posed in [4] can
be generalized by studying inclusion relations among varieties generated by finite-
dimensional intervals in modular ortholattices. We also see that, this abstract form
of the problem is closely related to the direct irreducibility of atomic complete
modular ortholattices.
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The paper is organized as follows. In Section 1, we summarize some basic notions
about universal algebra and modular ortholattices. In Section 2, we outline some
properties concerning the dimension on direct irreducibility atomic complete mod-
ular ortholattices. In Section 3, we introduce and study varieties generated by
finite-dimensional intervals inmodular ortholattices as a generalization ofQL(Cm).
In this framework we reformulate, in an abstract way, the problem posed in [4].
Finally, we prove that it turns out to be equivalent to the direct irreducibility of
atomic complete modular ortholattices.

§2. Basic notions. We first recall from [2, 6, 7] some notions about universal
algebra andortholattices that play an important role throughout the paper.A variety
is a class of algebras of the same type defined by a set of equations.
Let A be a variety of algebras of type �. If A ∈ A, VA(A) denotes the subvariety
of A generated by A i.e., the smallest subvariety of A containing A. We denote
by TermA the absolutely free algebra of type � built from the set of variables
V = {x1, x2, . . . }. Each element of TermA is referred to as a term. We denote by
Comp(t) the complexity of the term t.
Let A ∈ A. If t ∈ TermA and a1, . . . , an ∈ A, by tA(a1, . . . , an) we denote
the result of the application of the term operation tA to the elements a1, . . . , an.
A valuation in A is a map v : V → A. Of course, any valuation v in A can be
uniquely extended to anA-homomorphism v : TermA → A in the usual way, i.e., if
t1, . . . , tn ∈ TermA then v(t(t1, . . . , tn)) = tA(v(t1), . . . , v(tn)). Thus, valuations are
identifiedwithA-homomorphisms from the absolutely free algebra. If t, s ∈ TermA,
A |= t = s means that for each valuation v in A, v(t) = v(s) andA |= t = s means
that for each A ∈ A, A |= t = s . An algebra A ∈ A is directly irreducible iff A is not
isomorphic to a direct product of two nontrivial algebras in A.
An ortholattice [6] is an algebra 〈L,∧,∨,′ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 that satisfies

the following conditions:

1. 〈L,∧,∨, 0, 1〉 is a bounded lattice,
2. (x′)′ = x,
3. (x ∨ y)′ = x′ ∧ y′,
4. x ∧ x′ = 0.
It is not difficult to see that the equation (x∧y)′ = x′∨y′ holds in any ortholattice.
Boolean algebras are distributive ortholattices. More precisely, if B is the variety of
Boolean algebras andOL is the variety of ortholattices thenB = OL+{x∨(y∧z) =
(x ∨ y) ∧ (x ∨ z)}.
Let L be an ortholattice. If a, b ∈ L, we say that b covers a (and we write a ≺ b)
iff, a < b and does not exist x ∈ L such that a < x < b. An element p ∈ L is called
an atom of L iff 0 ≺ p. We denote by Ω(L) the set of all atoms of L. L is said to be
atomic iff for each x ∈ L − {0}, x = ∨{p ∈ L : p ≤ x, p ∈ Ω(L)}. Two atoms
p1, p2 in Ω(L) are said to be strongly perspective iff there exists x ∈ Ω(L) such that
0 < x < p1 ∨ p2 and p1 ∨ x = p2 ∨ x = p1 ∨ p2.
A modular ortholattice (or MOL, for short) is an ortholattice that satisfies the
modular law, i.e.,

x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z). (1)
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We denote byMOL the variety ofmodular ortholattices. Two examples of atomic
MOL are the following:

a. if H is a finite-dimensional Hilbert space then L(H) is an atomic complete
MOL. In particular if dim(H) > 1 then any two atoms in L(H) are strongly
perspectives;

b. the latticeMOα where α is an ordinal number. The Hasse diagram of MOα
can be represented as follows:
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0
For each ordinal number α,MOα is a complete lattice and if α > 1 then any
two atoms inMOα are strongly perspectives.

Note that MO0 = 2 and MO1 = 2 × 2 where 2 is the boolean algebra of two
elements. Thus,

B = VMOL(MO0) = VMOL(MO1). (2)

An important characterization of the equations t = s that hold inMOL is given
by:

MOL |= t = s iff MOL |= (t ∧ s) ∨ (t′ ∧ s ′) = 1. (3)

Therefore, we can assume, without loss of generality, that allMOL-equations
are of the form t = 1, where t ∈ TermMOL. Let L be an atomic MOL. An
element a ∈ L is called finite iff, a = 0 or there existsp1, . . . , pn atoms inL such that
a = p1∨· · ·∨pn.Afinite set of atoms {p1, . . . , pn} is a base iff (p1∨· · ·∨pi−1)∧pi = 0
for i = 2, . . . , n; in this case, if a = p1 ∨ · · · ∨ pn then we say that {p1, . . . , pn} is
a base of a. It is well known that if a ∈ L − {0} is a finite element then a admits
a base (pi)1≤i≤n , where the number n is uniquely determinated by the element a
[7, Lemma 7.6 and Theorem 8.4]. The number n is called the dimension of a and
it is denoted by d (a). In particular, d (0) = 0. If 1 is finite then d (1) is called the
dimension of L.

Proposition 2.1. Let L be an atomic MOL and let a, b ∈ L be finite elements.
Then we have:

1. If a < b then d (a) < d (b).
2. d (a ∨ b) = d (a) + d (b)− d (a ∧ b).
3. Let S be a base. Then, for any pair of finite subsets F1, F2 of S we have that:
(
∨
x∈F1 x) ∧ (

∨
x∈F2 x) =

∨{x ∈ F1 ∩ F2}.
4. If 1 is finite then L is complete. Moreover d (x′) = d (1)− d (x).
Proof. 1) and 2) See [7, Lemma 8.8, Theorem 8.14]. 3) See [7, Lemma 3.3]. 4) By
[7, Lemma 8.10]L is a complete lattice. d (1) = d (x∨x′) = d (x)+d (x′)−d (x∧x′),
so that d (x′) = d (1)− d (x). �
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The following proposition is a lattice theoretical version of the Gram-Schmidt
procedure.

Proposition 2.2. Let L be an atomicMOL and let n, r be natural numbers such
that 0 < n < r ≤ d (1). If {e1, . . . , en} is a base, then there exists en+1, . . . , er atoms
in L such that {e1, . . . , en, en+1, . . . , er} is a base. Therefore, if a ∈ L and d (a) = n,
then there exists ar ∈ L such that an < ar and d (ar) = r.
Proof. If e is an atom such that e 
∈ {e1, . . . , en} and e ∧

∨
1≤i≤n ei 
= 0 then

e ≤ ∨
1≤i≤n ei , since 0 ≺ e. Consequently, there exists an atom en+1 such that

en+1 ∧
∨
1≤i≤n ei = 0 (otherwise d (1) = n and this is a contradiction). Thus, we

can extend {e1, . . . , en} to a base {e1, . . . , en, en+1}. Finally, in r − (n + 1)-steps we
obtain a base of r atoms {e1, . . . , en, en+1, . . . , er}. �
Let L be aMOL and let a ∈ L. The commutator of L is the map k : L× L→ L
such that for any x, y ∈ L:

k(x, y) = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′).
Since ′ is an involution inMOL, it is clear that k(x, y) = k(x′, y) = k(x, y′) =
k(x′, y′). It is not very hard to see that aMOL L is a Boolean algebra iff for any
x, y ∈ L, k(x, y) = 0.
Remark 2.3. For the sake of simplicity, the set TermMOL will be denoted by
Term, and k(x, y | z) will be used in place of k(k(x, y), z).

§3. Dimension on directly irreducible atomic completeMOLs. LetL be aMOL.A
reflexive and symmetric binary relation can be defined onL. This is the compatibility
relation referred as a is compatible with b in L iff a = (a ∧ b)∨ (a ∧ b′). An element
a ∈ L is called central iff it is compatible with any x ∈ L. The set of all central
elements ofL is said to be the center ofL and denoted byZ(L). In [7, Theorem 4.15]
it is proved that Z(L) is a Boolean sub algebra of L. Direct irreducibility inMOL
is closely related to Z(L). In fact, L is directly irreducibleMOL iff Z(L) = {0, 1}.
In [3] it is shown that the direct irreducibility of an atomic completeMOL can be
equivalently characterized as follows:

Proposition 3.1. Let L be an atomic, completeMOL such that L 
=MO1. Then
L is directly irreducible iff for each pair of distinct atoms p1, p2 ∈ L there exists an
atom e in L− {p1, p2} such that e ≤ p1 ∨ p2. �
The modular ortholattices L(H), with 1 < dim(H) < ∞ and MOα for α > 1,
are examples of directly irreducible atomic completeMOLs.

Proposition 3.2. LetL be an atomicMOL. The following conditions are satisfied :

1. If p1, p2, e ∈ Ω(L) and e ≤ p1 ∨ p2 then e ∨ p1 = e ∨ p2 = p1 ∨ p2.
2. If L has dimension 2 then L =MOα for some ordinal α.

Proof. 1)Letp1, p2, e ∈ Ω(L) and e ≤ p1∨p2. Suppose that z = e∨p1 < p1∨p2.
We first note that p2 ∧ z = 0. In fact: if p2 ∧ z 
= 0, p2 ∧ z = p2 and then p2 ≤ z,
since p2 is an atom. Hence, p1∨p2 ≤ p1∨ z = p1∨ e = z, which is a contradiction.
Then p1 ∨ (p2 ∧ (p1 ∨ z)) = p1 ∨ (p2 ∧ z) = p1 and (p1 ∨ p2)∧ (p1 ∨ z) = z which
is again a contradiction since z 
= p1 and L is modular. By the same argument we
can prove that e ∨ p2 = p1 ∨ p2.
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2) Since L has dimension 2, there exist p1, p2 ∈ Ω(L) such that p1 ∨ p2 = 1.
Suppose that there exists a chain 0 ≺ e ≺ z < 1 in L. We can assume that e 
= p2.
We first note that p2 ∨ e = 1; otherwise, if e ∨ p2 < 1, by Proposition 2.1-1, we
would have 2 = d (p2 ∨ e) < d (1) = 2, which is a contradiction. We can also see
that p2 ∧ z = 0. In fact, if p2 ∧ z 
= 0, then p2 ≤ z, since p2 is an atom. Therefore,
1 = p2 ∨ e ≤ z ∨ e = z, which is a contradiction. Thus, e ∨ (p2 ∧ (e ∨ z)) = e
and (e ∨ p2)∧ (e ∨ z) = z, which is a contradiction since L is modular. Hence, L is
formed by 0, 1 and a string of atoms p1, p′1, p2, p

′
2, . . . , whence L =MOα for some

ordinal α. �
Proposition 3.3. Let L be an atomic directly irreducible MOL having finite
dimension. Then, all pairs of atoms in L are strongly perspective and 2d (1) ≤
Card (Ω(L)).

Proof. By Proposition 2.1-4, L is a complete lattice. Therefore, by Proposition
3.1 and Proposition 3.2-1, every pair of atoms is strongly perspective. We now prove
(by induction on the dimension of L) that 2d (1) ≤ Card(Ω(L)). By Proposition
3.2-2, if L has dimension 2 then L = MOα for some ordinal α > 1. Hence,
Card(Ω(L)) ≥ 4 = 2d (1). Assume that the proposition holds for eachMOLL such
that d (L) < n. Suppose that d (L) = n and let e ∈ Ω(L). Then d (e′) = d (1)− 1 =
n − 1 and e 
∈ Le′ . By inductive hypothesis 2d (e′) = 2d (1) − 2 ≤ Card(Ω(Le′)).
Let q1 ∈ Ω(Le′). Since every pair of atoms in L are strongly perspective, then there
exists q2 ∈ Ω(L) − {e, q1} such that q2 ≤ e ∨ q1 and e ∨ q1 = e ∨ q2 = q1 ∨ q2.
We now prove that q2 
∈ Ω(Le′ ). If q2 ∈ Ω(Le′) then e ≤ q1 ∨ q2 ≤ e′ which is a
contradiction. Thus, 2d (1) ≤ Card(Ω(Le′ ) ∪ {e, q2}) ≤ Card(Ω(L)). �
Proposition 3.4. Let L be an atomicMOL such that d (1) = n. If x, y ∈ L then
we have:

1. d (k(x, y)) = 2(d (x)−d (x∧y)−d (x∧y′)) = 2(d (y)−d (x∧y)−d (x′∧y)).
2. If d (k(x, y)) = n, then n is even and d (x) = d (y) = n/2.

Proof. 1) Since L is modular, (x ∧ y) ∨ (x ∧ y′) = x ∧ (y ∨ (x ∧ y′)) and
(x′ ∧ y) ∨ (x′ ∧ y′) = x′ ∧ (y ∨ (x′ ∧ y′)). Therefore,

((x ∧ y) ∨ (x ∧ y′)) ∧ ((x′ ∧ y) ∨ (x′ ∧ y′)) = 0.
We first note that:

d (k(x, y)) = n − d (x ∧ y)− d (x ∧ y′)− d (x′ ∧ y)− d (x′ ∧ y′). (4)

In fact, by Proposition 2.1, d (k(x, y)) = n − d (k(x, y)′) = n − d (((x ∧ y) ∨ (x ∧
y′))∨ ((x′ ∧y)∨ (x′ ∧y′))) = n− d ((x ∧y)∨ (x ∧y′))− d ((x′ ∧y)∨ (x′ ∧y′)) =
d (x ∧ y) − d (x ∧ y′)− d (x′ ∧ y)− d (x′ ∧ y′). Moreover:
i. d (x′ ∧ y′) = d (x′) + d (y′)− d (x′ ∨ y′) = (n − d (x)) + (n − d (y)) − (n −
d (x ∧ y)) = n − d (x)− d (y) + d (x ∧ y),

ii. d (x′∧y) = d (x′)+d (y)−d (x′∨y) = (n−d (x))+d (y)−(n−d (x∧y′)) =
−d (x) + d (y) + d (x ∧ y′),

iii. d (x ∧ y′) = d (x)− d (y) + d (x′ ∧ y).
By Eq. 4 and items i, iii, we obtain d (k(x, y)) = 2(d (y)− d (x ∧ y)− d (x′ ∧ y)).
2) By Eq. 4, if d (k(x, y)) = n then d (x ∧ y) = d (x ∧ y′) = d (x′ ∧ y) =
d (x′ ∧ y′) = 0. Hence, n = d (k(x, y)) = 2d (x) = 2d (y). �
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Proposition 3.5. Let L be a directly irreducible atomicMOL of dimension n. If
x ∈ L− {0}, then there exists an element y ∈ L satisfying the following conditions:
1. d (k(x, y)) = 2d (y),

2. d (y) =

{
d (x), ifd (x) ≤ Int(n/2),
d (x′), ifd (x) > Int(n/2),

where Int(n/2) is the integer part of (n/2).
Proof. Suppose that m = d (x) ≤ Int(n/2). Let {e1, . . . , em} be a base of x.
By Proposition 2.1-4 we can consider a base {em+1, . . . , en} of x′. It is clear that
{e1, . . . , em, em+1, . . . , e2m} is a base. By Proposition 3.3, every pair of atoms ei , em+i
is strongly perspective for i ∈ {1, . . . , m}. Thus, there exists a1, . . . , am ∈ Ω(L) such
that 0 < ai < ei ∨ em+i and ai ∨ ei = ai ∨ em+i = ei ∨ em+i . We now prove
that ai 
= aj for i 
= j in {1, . . . , m}. In fact: if ai = aj for some i 
= j, then
ai ≤ (ei ∨ em+i ) ∧ (ej ∨ em+j ), which is a contradiction since, by Proposition 2.1-3,
{ei , ej , em+i , em+j} is a base. Now we prove that {e1, . . . , em, a1, . . . , am} is a base.
Suppose that (e1 ∨· · ·∨ em ∨a1∨· · ·∨ai−1)∧ai 
= 0 for some i ∈ {1, . . . , m}. Then
ai ≤ e1∨· · ·∨em ∨a1∨· · ·∨ai−1 since ai is an atom. Therefore we have that ei+m =
(ai ∨ei )∧ei+m ≤ ((e1∨a1)∨· · ·∨(ei−1∨ai−1)∨ei ∨· · ·∨em)∧ei+m = ((e1∨em+1)∨
· · ·∨(ei−1∨em+i−1)∨ei∨· · ·∨em)∧ei+m . Thus, ei+m ≤ e1∨· · ·∨em∨em+1∨· · ·∨em+i−1
which is a contradiction since {e1, . . . , em, em+1, . . . , ei+m} is a base. In a similar
way we can prove that {em+1, . . . , e2m, a1, . . . , am} is a base. Let y = a1 ∨ · · · ∨ am.
Consequently, by Proposition 2.1-3, we have that x ∧ y = 0 and x′ ∧ y = 0.
By Proposition 3.4 we obtain d (k(x, y)) = 2(d (x) − d (x ∧ y) − d (x ∧ y′)) =
2d (x) = 2d (y).
Suppose that d (x) > Int(n/2). Clearly, d (x′) ≤ Int(n/2). Similarly to the pre-
vious case, we can show that d (k(x, y)) = 2d (y). Since k(x′, y) = k(x, y), we can
conclude that d (k(x, y)) = 2d (x′) = 2d (y). �
Corollary 3.6. Let L be a directly irreducible atomicMOL of dimension n > 0.
Then, n is odd iff d (k(x, y)) 
= n for any x, y ∈ L.
Proof. ⇒) It directly follows from Proposition 3.4.
⇐) Assume that n is even. Then, by Proposition 2.2, there exists an element x ∈ L
such that d (x) = n/2. By Proposition 3.5, there exists an element y ∈ L such that
d (y) = n/2. Hence, d (k(x, y)) = 2d (y) = n. �
Corollary 3.7. Let L be a directly irreducible atomicMOL of dimension n > 0.
If n is odd then the following conditions are satisfied :
1. there exists x, y ∈ L such that d (k(x, y)) = n − 1,
2. there exists x, y, z ∈ L such that d (k(x, y | z)) = n − 1.
Proof. 1) Let x ∈ L such that d (x) = (n− 1)/2. By Proposition 3.5, there exists
y ∈ L such that d (k(x, y)) = n − 1.
2) We consider two cases:
Case i: n = 3 + 4i (i ∈ {0, 1, 2, . . . }). Let x ∈ L such that d (x) = 1 + i .
Since 1 + i ≤ Int((3 + 4i)/2), by Proposition 3.5, there exists y ∈ L satisfying
d (k(x, y)) = 2d (y), where d (y) = d (x) = 1 + i . Thus, d (k(x, y)) = 2 + 2i . Since
2 + 2i > Int((3 + 4i)/2), there exists an element z ∈ L such that d (k(x, y | z)) =
d (k(k(x, y), z)) = 2d (z)whered (z) = d ((k(x, y))′) = 3+4i−d (k(x, y)) = 1+2i .
Therefore, d (k(x, y | z)) = 2(1 + 2i) = (3 + 4i)− 1 = n − 1.
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Case ii: n = 5+4i (i ∈ {0, 1, 2, . . . }). Let x ∈ L such that d (x) = (n−1)/4. Since
(n − 1)/4 ≤ Int(n/2), by Proposition 3.5, there exists an element y ∈ L such that
d (k(x, y)) = 2d (y), where d (y) = d (x) = (n−1)/4. Thus d (k(x, y)) = (n−1)/2.
Since (n − 1)/2 ≤ Int(n/2), by Proposition 3.5, there exists an element z ∈ L
satisfying d (k(x, y | z)) = d (k(k(x, y), z)) = 2d (z), where d (z) = d (k(x, y)) =
(n − 1)/2. Therefore, d (k(x, y | z)) = n − 1. �
Corollary 3.8. Let L be a directly irreducible atomicMOL of dimension n > 0.
Let x, z ∈ L such that d (x) = n − 1 and 0 < z ≤ x. Then, there exists an element
y ∈ L such that:

0 < z ∧ k(x, y).
Proof. Let {e1, . . . , en−1} be a base of x. By Proposition 2.1, x′ = en where en
is an atom. Let z = e1 ∨ · · · ∨ ek with k ≤ n − 1. By Proposition 3.3, there exists
an atom y ∈ L − {ek, x′} such that y ≤ ek ∨ x′ and ek ∨ y = ek ∨ x′ = y ∨ x′.
We claim that x ∧ y = 0. In fact, if x ∧ y 
= 0 then y ≤ x since y is an atom.
Thus x′ ≤ ek ∨ y ≤ x, which is a contradiction. Then we have that z ∧ k(x, y) =
z∧(x∨y)∧(x∨y′)∧(x′∨y)∧(x′∨y′) = z∧(x′∨y)∧(x∧y)′ = z∧(x′∨y)∧1 =
z ∧ (x′ ∨ ek) ≥ ek > 0. �

§4. Interval quantum logics. Let L be aMOL and let a ∈ L. Let us consider the
interval [0, a] = {x ∈ L : 0 ≤ x ≤ a} and the unary operation on [0, a] defined as
¬ax = x′ ∧ a. One can easily see that the structure

La = 〈[0, a],∧,∨,¬a , 0, a〉
is aMOL. In particular, if L is atomic then La is atomic too and the dimension of
the elements of La is preserved.
Whenever n ≤ m, Cn is a Hilbert subspace of Cm. It allows us to interpret L(Cn)
as an interval of L(Cm). In fact, by considering the top element 1Cn = Cn in L(Cn),
we have that

L(Cn) = [0,Cn] = LCn . (5)

It suggests that the problem posed by J.M. Dunn, T.J. Hagge et al. in [4] can be
generalized by studying proper inclusions of subvarieties of modular ortholattices
generated by intervals. More precicely, let L be aMOL, x ∈ L and let us consider

QL(Lx) = VMOL(Lx)

i.e., the subvariety ofMOL generated by Lx . Then,
Give conditions under which QL(La) ⊂ QL(Lb) whenever a < b in L.

In this section we establish some conditions that guarantee the proper inclusion of
the mentioned varieties. As consequence of this, there will follow a positive solution
to the question posed in [4].

Proposition 4.1. Let L be a MOL and let a, b ∈ L such that a < b. Let va :
Term → La be a valuation. Then, there exists a valuation vb : Term → Lb such that
va(t) = a ∧ vb(t).
Proof. We define vb : Term → Lb as follows: vb(0) = 0, vb(1) = b, and
vb(x) = va(x) for each variable x. By induction on the complexity of terms, we
prove that va(t) = a ∧ vb(t). Suppose that Comp(t) = n > 0. If t has the form u′
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then va(t) = va(u′) = ¬ava(u) = ¬avb(u). By induction hypothesis, ¬avb(u) =
a ∧ ¬bvb(u) = a ∧ vb(u′) = a ∧ vb(t). Thus va(u′) = a ∧ vb(t). If t has the form
u1 ∧ u2 then va(t) = va(u1 ∧ u2) = va(u1) ∧ va(u2). Again, by induction hypothesis
va(u1) ∧ va(u2) = (a ∧ vb(u1)) ∧ (a ∧ vb(u2)) = a ∧ vb(u1 ∧ u2) = a ∧ vb(t). Thus
va(t) = a ∧ vb(t). �
Theorem 4.2. Let L be aMOL and let a, b ∈ L such that a < b. Then, we have
that:

QL(La) ⊆ QL(Lb).
Proof. By Eq.3, we study equations of the form t = 1. By using induction on
the complexity of terms, we prove that if Lb |= t = 1 then La |= t = 1. Suppose
that Lb |= t = 1. Let va be a La-valuation. By Proposition 4.1 there exists an
Lb-valuation vb such that va(·) = a ∧ vb(·). Thus va(t) = a ∧ vb(t) = a ∧ 1Lb =
a ∧ b = a = 1La . Hence La |= t = 1. Consequently QL(La) ⊆ QL(Lb). �
Basically, Theorem 4.2 is an expected result. In the rest of the section we study
the proper inclusion QL(La) ⊂ QL(Lb) when L is an atomic completeMOL.
Let s ∈ Term. Let us define the map �s : Term → Term in the following way:

�s (t) =

⎧⎪⎨
⎪⎩
x ∧ s, if t is the variable x,
(�s (u))′ ∧ s, if t = u′,
�s (u1) ∧ �s (u2), if t = u1 ∧ u2.

Let L be aMOL and let v : Term → L be a valuation. Given a term s , we denote
by vs the valuation vs : Term → Lv(s) such that, for any variable x:

vs(x) = v(x) ∧ v(s).

Proposition 4.3. Let L be a MOL. Let v : Term → L be a valuation and
s ∈ Term. Then, vs(t) = v(�s(t)) for any t ∈ Term.
Proof. Since vs is a valuation in Lv(s), it is clear that vs(t′) = ¬v(s)vs(t) =
(vs (t))′ ∧ v(s). We prove the proposition by induction on the complexity of term t.
If t is a variable then the proof is trivial. If t has the form u′ then vs (t) = vs(u′) =
(vs (u))′∧v(s) = (v(�s (u)))′∧v(s) = v((�s(u))′∧s) = v(�s(t)). Finally, if t has the
form u1 ∧ u2 then vs(t) = vs(u1 ∧ u2) = vs(u1) ∧ vs(u2) = v(�s(u1)) ∧ v(�s(u2)) =
v(�s (u1) ∧ �s (u2)) = v(�s(t)). �
Proposition 4.4. Let L be an atomic MOL and a, b be two elements of L such
that a < b, d (a) = n and d (b) = n + 1. Let s ∈ Term and v : Term → Lb be a
valuation such that v(s) 
= 1Lb . If La |= t1 = t2, then v(�s(t1)) = v(�s(t2)).
Proof. By Proposition 4.3, v(�s(−)) is the valuation vs : Term → Lv(s). Since
v(s) 
= 1Lb we have that d (v(s)) < n + 1. Taking into account that La ⊂ Lb , each
t ∈ Term is interpreted as an element of La . Since La |= t1 = t2 we have that
vs(t1) = vs(t2) i.e., v(�s (t1)) = v(�s (t2)). �
Definition 4.5. Let (xi)i∈N , (yi)i∈N , (zi )i∈N be three disjoint sequences of
variables such that xi 
= xj , yi 
= yj and zi 
= zj if i 
= j. Let us define the sequence
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of terms (αi)i∈N as follows:

αi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k(xi , yi ), if i = 1,
�k(xi ,yi )(αi−1), if i > 1 and i is odd,
�k(xi ,yi |zi )(αi−1), if i is even and i/2 is odd,
�k(xi ,yi )(αi−1) ∧ k(xi , yi | zi), if i is even and i/2 is even

where each term αi is called the i-dimensional discriminator.

The reason for this namewill appearmore clear inProposition 4.7 andProposition
4.8.

Lemma 4.6. Let L be aMOL and v : Term → L be a valuation. Then we have:
v(�k(xi ,yi )(αi−1)) ≤ v(k(xi , yi)).

Proof. By Proposition 4.3, v(�k(xi ,yi )(αi−1)) = v(k(xi , yi )) ∧ v(αi−1) ≤
v(k(xi , yi )). �
Proposition 4.7. Let L be an atomicMOL. If a ∈ L and 0 < d (a) = n, then:

QL(La) |= αn = 0.
Proof. Let a ∈ L such that 0 < d (a) = n. We prove that αn = 0 in La for each
positive natural number n ≤ d (1) ≤ ∞. The proof is by induction on n.
Suppose n = 1. Then a is an atom and thereforeLa is the Boolean algebra of two
elements {0, a}. Hence α1 = k(x1, y1). Thus, we can conclude that La |= α1 = 0.
Suppose that the Theorem holds for n < i . We want to show that the Theorem
holds for n = i , also. Three cases are possible:

1. i is odd. In this case the i-dimensional discriminator is given by αi =
�k(xi ,yi )(αi−1). By Proposition 2.2, there exists b < a such that d (b) = i − 1.
By inductive hypothesis Lb |= αi−1 = 0. By Corollary 3.6, for each valuation
v : Term → La we have that d (v(k(xi , yi ))) < i , i.e. v(k(xi , yi)) 
= 1La = a.
Thus, by Proposition 4.4 it follows that v(αi) = v(�k(xi ,yi )(αi−1)) = 0.

2. i is even and i/2 is even. In this case, the i-dimensional discriminator
is given by αi = �k(xi ,yi )(αi−1) ∧ k(xi , yi | zi). Let v : Term → La
be a valuation. If v(k(xi , yi )) = 1La = a then v((k(xi , yi | zi )) = 0.
Hence, our claim. Otherwise, suppose that v(k(xi , yi )) < 1La = a. Then
v(αi) = v(�k(xi ,yi )(αi−1) ∧ k(xi , yi | zi)) = v((�k(xi ,yi )(αi−1)) ∧ v(k(xi , yi |
zi)) = vk(xi ,yi )(αi−1) ∧ v(k(xi , yi | zi)). Since v(k(xi , yi)) < 1a = a then
vk(xi ,yi )(αi−1) is a valuation of αi−1 in Lc for some c < a. By inductive
hypothesis vk(xi ,yi )(αi−1) = 0; therefore v(αi) = 0.

3. i is even and i/2 is odd. In this case, the i-dimensional discriminator is given
by αi = �k(xi ,yi |zi )(αi−1). Let v : Term → La be a valuation. If v(k(xi , yi ))
= 1La then v((k(xi , yi | zi )) = 0. Therefore, by Lemma 4.6, v(αi) =
v(�k(xi ,yi |zi )(αi−1)) = vk(xi ,yi |zi )(αi−1) ≤ v(k(xi , yi | zi)) = 0. Assume that
v(k(xi , yi)) < 1La . We first note that v(k(xi , yi | zi )) 
= 1La . In fact: suppose,
by contradiction, that v(k(xi , yi | zi)) = 1La . By Proposition 3.4,
d (v(k(xi , yi )) = d (v(zi)) = i/2 is even, which contradicts the hypothesis that
i/2 is odd. By Lemma 4.6 and Proposition 4.3, we have that v�k(xi ,yi |zi ) (αi−1) =
v(�k(xi ,yi |zi )(αi−1)) ≤ v(k(xi , yi | zi )) < 1La = a. Therefore v�k(xi ,yi |zi ) (αi−1) is
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a valuation of αi−1 in Lc for some c < a. Then, by inductive hypothesis,
we have that vk(xi ,yi)(αi−1) = 0, resulting v(αi) = v�k(xi ,yi |zi ) (αi−1) =
v(�k(xi ,yi |zi )(αi−1)) ≤ v(k(xi , yi | zi )) < 1La = a. Since v�k(xi ,yi |zi ) (αi−1) is a
valuation of αi−1 in Lc for some c < a, by inductive hypothesis, vk(xi ,yi )
(αi−1) = 0 and v(αi) = 0. �

Proposition 4.8. Let L be a directly irreducible atomic completeMOL. Then, for
each a ∈ L such that 0 < d (a) = n + 1 ≤ d (1) ≤ ∞, we have that:

QL(La) 
|= αn = 0.
Proof. We prove the proposition by induction on n. Suppose that n = 1. Then,
α1 = k(x1, y1) and d (a) = 2. By Proposition 3.3, there exist three distinct atoms
e1, e2, e3 ∈ Ω(L) such that ei ∨ ej = a if i 
= j. It is not very hard to see that
k(e1, e2) = a. If we consider a valuation v : Term → La satisfying v(x1) = e1 and
v(y1) = e2 then, v(k(x1, y1)) 
= 0.
Suppose that the proposition holds for n < i . We want to show that the
proposition holds for n = i , also. Three cases are possible:

1. i is odd. In this case the i-dimensional discriminator is given as αi =
�k(xi ,yi )(αi−1). By Proposition 2.2, there are two elements a, b such that b < a
and d (b) = i < d (a) = i + 1. By induction, Lb 
|= αi−1 = 0. We show that
La 
|= αi−1 = 0. Suppose that La |= αi−1 = 0. Let vb : Term → Lb be a
valuation satisfying vb(αi−1) 
= 0. By Proposition 4.1 there exists a valuation
v : Term → La such that vb(t) = b∧v(t) so that vb(αi−1) = b∧v(αi−1) = 0,
which is a contradiction.
Thus, there exists a valuation v : Term → La that satisfies v(αi−1) 
= 0.
Note that i + 1 is even. Then, by Corollary 3.6, there are ai , bi ∈ La such
that k(ai , bi) = 1La . Since xi , yi are not variables of αi−1, we can assume
that v(xi) = ai and v(yi) = bi . Then v(k(xi , yi )) = 1La . Consequently, by
Proposition 4.3, v(αi) = v(�k(xi ,yi )(αi−1)) = vk(xi ,yi )(αi−1) = v(αi−1) 
= 0.

2. i is even and i/2 is even. In this case, the i-dimensional discriminator is
given by αi = �k(xi ,yi )(αi−1) ∧ k(xi , yi | zi). We first show that there exists a
valuation v : Term → La such that

v(�k(xi ,yi )(αi−1)) 
= 0.
Indeed: since i + 1 is odd then, by Corollary 3.7, there are ai , bi ∈ La such
that k(ai , bi) = b where b < a and d (b) = i < d (a) = i + 1. By induction
hypothesis and by using the same argument as in the previous item, we obtain
Lb 
|= αi−1 = 0 and then La 
|= αi−1 = 0. Consequently, there exists a
valuation vi : Term → Lb such that vi(αi−1) 
= 0.
Let us consider a valuation v : Term → La such that:
• for all j such that 1 ≤ j ≤ i − 1, v(xj) = vi(xj); v(yj) = vi(yj);
v(zj) = vi(zj),

• v(xi) = ai ; v(yi) = bi .
For any j such that 1 ≤ j ≤ i − 1, vk(xi ,yi )(xj) = v(k(xi , yi)) ∧ v(xj) =
b ∧ v(xj) = b ∧ vi(xj) = vi(xj), since vi is a valuation in Lb (b = 1Lb ).
Similarly, we can prove that vk(xi ,yi )(yj) = v

i(yj ) and vk(xi ,yi )(zj) = v
i(zj).

Consequently v(�k(xi ,yi )(αi−1)) = v
i(αi−1) 
= 0.
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By Lemma 4.6, we have that v(�k(xi ,yi )(αi−1)) ≤ v(k(xi , yi)) = k(ai , bi) where
d (k(ai , bi)) = d (b) = i < i+1.Thus, byCorollary 3.8, there exists an element
c ∈ La such that v(�k(xi ,yi )(αi−1)) ∧ k(ai , bi | c) 
= 0. Taking v(zi) = c, we
have that

v(αi) = v((�k(xi ,yi )(αi−1)) ∧ (k(xi , yi | zi))) 
= 0.
3. i is even and i/2 is odd. In this case, the i-dimensional discriminator is given
by αi = �k(xi ,yi |zi )(αi−1). Note that i + 1 is odd. Then, by Corollary 3.7, there
are three elements ai , bi , ci ∈ La such that k(ai , bi | ci) = b where, b < a and
d (b) = i < d (a) = i + 1. By induction hypothesis Lb 
|= αi−1 = 0. Thus,
there exists a valuation vi : Term → Lb such that vi(αi−1) 
= 0. Now let us
define a valuation v : Term → La satisfying the following conditions:
• v(xj) = vi(xj), v(yj) = vi(yj) and v(zj) = vi(zj) for all j such that
1 ≤ j ≤ i − 1,

• v(xi) = ai ; v(yi) = bi ; v(zi) = ci .
For any j such that 1 ≤ j ≤ i − 1, vk(xi ,yi |zi )(xj) = v(xj)∧ v(k(xi , yi | zi)) =
vi(xj) ∧ b = vi(xj). Similarly vk(xi ,yi |zi )(yj) = vi(yj) and vk(xi ,yi |zi )(zj) =
vi(zj). Accordingly, vk(xi ,yi |zi )(αi−1) = v

i(αi−1). Therefore, we have that
v(αi) = v(�k(xi ,yi |zi )(αi−1)) = vk(xi ,yi |zi )(αi−1) = v

i(αi−1) 
= 0. �
Theorem 4.9. Let L be an atomic completeMOL such that L 
=MO1. Then the
following statements are equivalent:
1. L is a directly irreducibleMOL,
2. for each a < b ∈ L where b is a finite element, QL(La) ⊂ QL(Lb).
Proof. 1 =⇒ 2) Let us assume that L is a directly irreducible MOL. Suppose
that d (a) = n < n + 1 ≤ d (b). By Proposition 4.7, we haveQL(La) |= αn = 0. By
Proposition 2.2, there exists c ∈ Lb such that d (c) = n + 1. Then, by Proposition
4.8, QL(Lc) 
|= αn = 0. Since QL(Lc) ⊆ QL(Lb), QL(Lb) 
|= αn = 0. Hence,
QL(La) ⊂ QL(Lb).
2 =⇒ 1) Suppose that L is not directly irreducibleMOL. Then, by Proposition
3.1, there exists u1, u2 ∈ Ω(L) such that

[0, u1 ∨ u2] = {0, u1, u2, u1 ∨ u2}.
Let s = u1 ∨ u2. We will see that Ls = 〈[0, s],∨,∧,¬s , 0, s〉 is the four elements
boolean algebra i.e. Ls =MO1. For this, we have to prove that ¬sui = u′i ∧ s = uj
where i, j ∈ {1, 2} and i 
= j. Clearly 0 ≤ ¬su1,¬su2 ≤ s.
Suppose that¬sui = s or equivalently u′i∧s = s . Then, s ≤ u′i and ui ≤ s ≤ u′i .
Consequently ui = ui ∧ u′i = 0 which is a contradiction because ui ∈ Ω(L).
Suppose that ¬sui = 0. Therefore u′i ∧ s = 0 and ui ∨ s ′ = 1. By Eq. 1 we have
s = 1∧ s = (ui ∨ s ′)∧ (ui ∨ s) = ui ∨ (s ′ ∧ (ui ∨ s)) = ui ∨ (s ′ ∧ s) = ui which
is a contradiction because ui < s .
Consequently the only possibility is ¬sui = uj for i, j ∈ {1, 2} and i 
= j. Hence,
Ls =MO1. Since Lui =MO0, by Eq 2, QL(Ls ) = QL(Lui ). �
Theorem 4.10. Let L be an atomic complete directly irreducible MOL. Then
d (L) = n iff, L |= αn = 0 and L 
|= αn+1 = 0.
Proof. Suppose that L |= αn = 0 and L 
|= αn+1 = 0. By Proposition 4.8 and
Theorem 4.2, it is clear that d (L) < n + 1. By the same argument, if d (L) < n
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then L 
|= αn = 0 which is a contradiction. Thus, d (L) = n. The other direction is
trivial. �
For each n ∈ N,L(Cn) is an atomic complete directly irreducibleMOL. Then, by
Theorem 4.10, the equation αn = 0 together with αn+1 
= 0 in L(Cn), characterize
the usual dimension ofCn. Thus, we can establish the following corollary providing
a positive answer to the question posed by J.M. Dunn, T.J. Hagge et al. in [4].

Corollary 4.11. QL(Cn) ⊂ QL(Cm) whenever n < m. �
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