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Abstract Let π : X → B be a family whose general fibre Xb is a (d1, . . . , da)-polarization on a general
abelian variety, where 1 ≤ di ≤ 2, i = 1, . . . , a and a ≥ 4. We show that the fibres are in the same
birational class if all the (m, 0)-forms on Xb are liftable to (m, 0)-forms on X , where m = 1 and m =
a − 1. Actually, we show a general criteria to establish whether the fibres of certain families belong to
the same birational class.
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1. Introduction

A family of n-dimensional complex varieties is a flat, smooth proper morphism π : X → B
such that the fibre Xb := π−1(b) over a point b on the base B has dimension n. In this
paper, we assume that B is a smooth connected open complex variety of dimension 1.
We will also assume that Xb is an irregular smooth variety of general type such that its
Albanese morphism alb(Xb) : Xb → Alb(Xb) is of degree 1. We want to study conditions
which ensure that the fibres of π : X → B are of the same birational type.

It is well known that, up to base change, we can associate with π : X → B the family
of corresponding Albanese varieties. In fact, we can work in the more general setup of
families of Albanese type (cf. [23, Definition 1.1.1]), for which we recall the basic definition.

Let p : A → B be a family of abelian varieties; that is, the fibre Ab := p−1(b) is an
abelian variety of dimension a > 0. We say that a morphism Φ : X→A is a family of
Albanese type over B if:
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1. Φ fits into the commutative diagram:

X
Φ

����
��

��
�� π

���
��

��
��

�

A p−→ B

2. the induced map φb : Xb → Ab of Φ on Xb is birational onto its image Zb for
general b;

3. the cycle Zb generates the fibre Ab as a group for general b.

A family of Albanese type comes equipped with a global object: its relative homologi-
cally trivial cycle. Indeed, let −IdA : A → A be the natural involution induced on p : A →
B by the multiplication by (−1) on the fibres. The composition (−IdA) ◦ Φ : X → A is
an Albanese type family. We set (−IdA) ◦ Φ := Φ−. Then, we can construct two cycles
[Φ : X → A] and [Φ− : X → A] in the relative group Za−n(A/B), which we denote, respec-
tively, by [X ]+ and [X ]−. The following cycle will be called the basic cycle of the Albanese
type family Φ : X→A:

[Z] = [X ]+ − [X ]−. (1.1)

It is well known that the cycle [Z] is relatively homologically trivial; that is [Z] ∈
Za−n

h (A/B). By the theory of normal functions and its infinitesimal invariant δZ , see
[13, 14, 31], we know that Albanese type families come into two types: those whose
infinitesimal invariant is non-zero and those which have δZ = 0. The latter are called
Nori trivial families.

Another piece of information carried by the morphism φb : Xb → Ab is a splitting of
Hn,0(Xb). Indeed let φ∗b : Hn,0(Ab) → Hn,0(Xb) and set Vb := Im(φ∗b). Inside the dual
H0,n(Xb) of Hn,0(Xb), we can define:

Ann(Vb) := {τ ∈ H0,n(Xb) |
∫

Xb

φ∗b(μ) ∧ τ = 0, ∀μ ∈ Hn,0(Ab)}

and we know that

H0,n(Xb) = Vb ⊕ Ann(Vb) (1.2)

where Vb ⊂ H0,n(X) is the conjugate space of Vb. It also holds:

Hn,0(Xb) = Vb ⊕ Ann(Vb) (1.3)

which in turns gives a decomposition of the symmetric product

Sym2Hn,0(Xb) = Vb 	Hn,0(Xb) ⊕ Sym2(Ann(Vb)). (1.4)

The standard multiplication map Hn,0(Xb) ⊗Hn,0(Xb) → H0(X, ω⊗2
Xb

) factors on the
symmetric product

μXb
: Sym2Hn,0(Xb) → H0(X,ω⊗2

Xb
) (1.5)
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and induces homomorphisms

νXb
: Sym2Ann(Vb) → H0(X,ω⊗2

Xb
) (1.6)

and
γXb

: Vb 	Hn,0(Xb) → H0(X,ω⊗2
Xb

). (1.7)

Finally, we say that a family of relative dimension n satisfies the extremal liftability
assumptions if the natural restriction homomorphisms H0(X , Ω1

X ) → H0(Xb, Ω
1
Xb

) and
H0(X , Ωn

X ) → H0(Xb, Ω
n
Xb

) are surjective for every b on B. The case where the map
H0(Xb, Ω

n
X|Xb

) → H0(Xb, Ω
n
Xb

) is surjective is deeply studied in [19, 24]. Hence, our
results must be read and applied jointly to the results in [19, 24]. We show:

Theorem [A]. Let Φ : X → A be a Nori family. If it satisfies extremal liftability
assumptions and for each non-zero element η in Ann(Vb) its square is not contained
in the image of γXb

, then its fibres belong to the same birational class.

The proof is a direct consequence of the new notion of adjoint quadric introduced in
[28]. By the extremal liftability assumptions, we are actually concerned with families
of varieties equipped with a morphism to a fixed abelian variety; see Proposition 3.4.
Nevertheless, our result should be considered in light of the theory of families of varieties
of general type as described in [15]; for this reason, we present the theorem in the above
general set up, which strongly relies on the theory exposed in [23]. In particular, we use
the Volumetric Theorem [23, Theorem 1.5.3] recalled in Theorem 3.7.

As an immediate consequence of Theorem [A] and of the well-known fact that, if C is
a hyperelliptic curve then the Ceresa’s cycle C − C− is trivial in its Jacobian, we have
the well-known Torelli Theorem for hyperelliptic deformations of hyperelliptic curves, see
[18]; this is a case where Ann(Vb) = 0.

More deeply, by a famous Theorem of Nori [17, pp. 372] (see also [8]), Theorem [A]
applies to the case where the family X is given by a family of cycles inside a general
abelian variety of dimension a ≥ 4 such that for each element η contained in Ann(Vb), its
square is not contained in the image of γXb

.
In the particular case of families of divisors, the above-mentioned theorem by Nori does

not apply. However, by using techniques which are analogous to those we use to prove
Theorem [A], we can show another result.

Let (A, L) be a (d1, d2, . . . , da) polarized abelian variety which is general inside its
moduli space and 1 ≤ di ≤ 2, i = 1, . . . , a. LetX ⊂ A be a smooth divisor in |L|. Consider
the incidence variety inside |L| ×A and B̂ a curve inside |L| passing and smooth through
X. Possibly after resolution of singularities, we obtain a fibration Y → B̂ with Y smooth.
We say that a (local) family π : X → B is induced by embedded deformations if it is
obtained by the restriction of Y → B̂ over an open contractible set B ⊂ B̂ contained in
the subset of smooth elements of |L|.

Theorem [B]. Let (A, L) be a (d1, d2, . . . , da) polarized abelian variety which is
general inside its moduli space and 1 ≤ di ≤ 2, i = 1, . . . , a. Let π : X → B be a fam-
ily induced by embedded deformations. If π : X → B satisfies the extremal liftability
conditions then the fibres belong to the same birational class.
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Theorem [B], see § (4.5), follows by a careful study of the map

μXb
: Sym2Hn,0(Xb) → H0(X,ω⊗2

Xb
) (1.8)

where Xb is an element of the linear system associated with a (d1, d2, . . . , da)-
polarization, and b ∈ B.

This problem has turned out to be quite involved. Actually, the well-known problem
to determine conditions for the surjectivity of μXb

, as well as of the maps

μn : H0(A,Ln) ⊗H0(A,L) → H0(A,Ln+1) (1.9)

are still of research interest. For instance, the surjectivity of μa−1 implies that the
Infinitesimal Torelli Theorem holds for the smooth hypersurfaces of A of the linear sys-
tem |L|, and it has been recently proved (see [4]) that μn is surjective, provided that
h0(A, L) > (n+1

n )a · a! and A is simple.
As a first step in this direction, in § 4, we study the loci in the moduli space of polarized

abelian varieties of type (1, . . . , 1, 2, . . . , 2) where

μb : Sym2H0(Ab,Lb) → H0(Ab,L2
b)

is not injective. Note that the injectivity of μb is equivalent to the injectivity of νXb
, since

there is the following commutative diagram:

Sym2H0(Ab,Lb)
μb ��

|Xb

��

H0(Ab,L2
b)

|Xb

��

Sym2Ann(Vb)
νXb �� H0(Xb, ω

2
Xb

).

(1.10)

We prove:

Theorem [C]. Let (A, L) be a general polarized abelian variety of type
(1, . . . , 1, 2, . . . , 2) and D a general element in |L|. For each element η contained in
Ann(V ), its square is not contained in the image of V 	H0(D, ωD) with respect to the
multiplication map

μD : Sym2(H0(D, ωD)) −→ H0(D, ω⊗2
D ). (1.11)

Moreover, the natural map

νD : Sym2Ann(V ) −→ H0(D, ω⊗2
D ) (1.12)

is injective.

See Corollary 4.4 and Theorem 4.5. Theorem [B] is a direct consequence of Theorem [C].
Actually, Theorem [C] is interesting on its own because it proves a condition on the
kernel of μD which is strictly stronger that the simple injectivity of νD. As the proof of
Theorem 4.5 clearly shows the condition on the squares of the elements η is independent
from the injectivity of νD and in the explicit cases that one can consider they are indeed
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not true at the same time. They must both hold, however, on the general abelian variety
described in Theorem [C].

Finally, we have an application of the above circle of ideas to the case of fibrations with
maximal relative irregularity. Let S, B be, respectively, a smooth surface and a smooth
curve. A fibration f : S → B is said to be of maximal relative irregularity if q(S) − g(B) =
g(F ) − 1 where q(S) is the irregularity of S and g(B), g(F ) are, respectively, the genus
of B and of a general fibre F . There are many papers on this topic. Here, we can quote
[16, 20] and [2], which also contains basic references to this problem. In this particular
case, it occurs that Ann(Vb)  C. Indeed, if the natural morphism F → Alb(S) has degree
1, we can find a suitable open subset U ⊂ B contained in the locus where f : S → B is
smooth, and we can form a family of Albanese type ΦU : SU → AU where p : A → U is
such that its fibres are isomorphic to a fixed abelian variety A of dimension g(F ) − 1 and
SU := f−1(U). In Theorem 5.2, which does not depend on Theorem [A], we show that
the infinitesimal invariant associated with the basic cycle associated with f|SU

: SU → U
is not zero.

2. Adjoint quadrics

We recall some of the results of [23]. See also [26–28].

2.1. The Adjoint theorem

2.1.1. The Gauss-type homomorphism

Let X be a compact complex smooth variety of dimension m and let F be a locally
free sheaf of rank n. Fix an extension class ξ ∈ Ext1(F , OX) associated with the exact
sequence:

0 → OX
dε−→ E ρ1−→ F → 0. (2.1)

By the Koszul resolution associated with the section dε ∈ H0(X, E) and by the
isomorphisms

Ext1(F ,OX) ∼= Ext1
(

i∧
F ,

i−1∧
F
)

we see that the coboundary homomorphisms

∂i
ξ : H0

(
X,

i∧
F
)

→ H1

(
X,

i−1∧
F
)

are computed by cup product and interior product with ξ, i = 1, . . . , n.
Denote by Hn

dε : det E → detF the natural isomorphism and by Λn+1 the natural map

Λn+1 :
n+1∧

H0(X, E) → H0(X,det E). (2.2)

By composition, we define a Gauss-type homomorphism:

Λ := Hn
dε ◦ Λn+1 :

n+1∧
H0(X, E) → H0(X,detF). (2.3)
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2.1.2. Adjoint forms

Let W ⊂ Ker (∂1
ξ ) ⊂ H0(X, F) be a vector subspace of dimension n+ 1 and let

B := {η1, . . . , ηn+1} be a basis of W . By definition, we can take liftings s1, . . . , sn+1 ∈
H0(X, E) such that ρ1(si) = ηi, i = 1, . . . , n+ 1.

Definition 2.1. The section

ωξ,W,B := Λ(s1 ∧ . . . ∧ sn+1) ∈ H0(X,detF).

is called an adjoint form of ξ, W, B.

If we consider the natural map

λn :
n∧
H0(X,F) → H0(X,detF),

we can define the subspace λnW ⊂ H0(X, detF) generated by

ωi := λn(η1 ∧ . . . ∧ η̂i ∧ . . . ∧ ηn+1)

for i = 1, . . . , n+ 1.

Definition 2.2. The class

[ωξ,W,B] ∈ H0(X,detF)
λnW

is called the Massey product of W along ξ.

In the literature, [ωξ,W,B] is also called the adjoint image of W by ξ. For the main
properties of Massey products in our context see [7, 23, 26–28]. Here we only recall that
while the section ωξ,W,B depends on the choice of the liftings si, the class [ωξ,W,B] does
not. Furthermore, if we choose another basis B′ := {η′1, . . . , η′n+1} of W then [ωξ,W,B] =
k[ωξ,W,B′ ] where k is the determinant of the matrix of the change of basis. Since we will
be mostly concerned with the condition [ωξ,W,B] = 0, the choice of the basis of W is also
not essential and that is why in the above definition, we only highlight the dependence
on W and ξ.

Definition 2.3. If λnW is nontrivial we denote by |λnW | ⊂ P(H0(X, detF)) the
induced sublinear system. We call DW the fixed divisor of this linear system and ZW the
base locus of its moving part |MW | ⊂ P(H0(X, detF(−DW ))).

From the natural map εDW
: F(−DW ) → F , we have the induced homomorphism in

cohomology:

H1(X,F∨)
εDW−→ H1(X,F∨(DW )).

We set
ξDW

:= εDW
(ξ).
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Definition 2.4. We say that ξ ∈ H1(X, F∨) is supported on DW if ξDW
= 0

In [23, Theorem 1.5.1], see also [28], we have shown:

Theorem 2.5 (Adjoint Theorem). Let X be a compact m-dimensional complex
smooth variety. Let F be a rank n locally free sheaf on X and ξ ∈ H1(X, F∨) the
extension class of the exact sequence (2.1). Let W be a n+ 1-dimensional subspace of
Ker (∂1

ξ ) ⊂ H0(X, F) and ω one of its adjoint forms. If the Massey product [ω] = 0 then
ξ is supported on DW .

For interesting applications of this theory different from those presented in this paper,
we refer to [2, 9–12, 22, 25, 29, 30].

2.2. The notion of Adjoint quadric

We denote by λnH0(X, F) the image of

λn :
n∧
H0(X,F) → H0(X,detF)

and we consider the linear subsystem P(λnH0(X, F)) of |detF|. Denote by DF its fixed
component and by |MF | its associated mobile linear system. Moreover, we denote DdetF ,
MdetF , respectively, the fixed and the movable part of |detF|; that is, |detF| = DdetF +
|MdetF |.

Take W = 〈η1, . . . , ηn+1〉 and ωi, i = 1, . . . , n+ 1 as above and let ω ∈ H0(X, detF)
be a ξ-adjoint of W ⊂ H0(X, F). Let

μdetF : Sym2(H0(X,detF)) → H0(X,detF⊗2)

be the natural multiplication homomorphism. The basic definition of this paper is:

Definition 2.6. An ω-adjoint quadric is an element Q ∈ Sym2(H0(X, detF)) such
that

1. Q := ω 	 ω −
∑n+1

i=1 ωi 	 Li for some Li ∈ H0(X, detF), i = 1, . . . , n+ 1;

2. μdetF (Q) = 0.

The condition (2) of this Definition means that Q gives an element of
Sym2(H0(X, detF)) which vanishes on the schematic image φ|Mdet F |(X). The study
of ω-adjoint quadrics is useful to find extension classes supported on a divisor.

Theorem 2.7. Let X be a compact complex smooth variety. Let F be a locally
free sheaf of rank n such that h0(X, F) ≥ n+ 1. Let ξ ∈ H1(X, F∨) and W an n+ 1-
dimensional subspace W ⊂ Ker ∂ξ ⊂ H0(X, F). If ξ is such that ∂n

ξ (ω) = 0, where ω is an
adjoint form associated with W and ξ, then [ω] = 0, providing that there are no ω-adjoint
quadrics.
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Proof. Let B = {η1, . . . , ηn+1} be a basis of W . Set ωi for i = 1, . . . , n+ 1 as above
and denote by ω̃i ∈ H0(detF(−DW ) ⊗ IZW

) the corresponding sections via

0 → H0(X,detF(−DW ) ⊗ IZW
) → H0(X,detF).

Recall that λnW := 〈ω1, . . . , ωn+1〉 ⊂ H0(X, detF) is the vector space generated by the
sections ωi. Note also that the sheaf

∧n
W ⊗OX is trivial and choosing η1 ∧ . . . ∧ η̂i ∧

. . . ∧ ηn+1, i = 1, . . . , n+ 1, as a basis for
∧n

W we obtain an isomorphism to On+1
X .

The standard evaluation map
∧n

W ⊗OX → detF(−DW ) ⊗ IZW
given by ω̃1, . . . ,

ω̃n+1 gives the following exact sequence

0 �� K �� ∧n
W ⊗OX

�� detF(−DW ) ⊗ IZW
�� 0 (2.4)

which is associated with a class ξ′ ∈ Ext1(detF(−DW ) ⊗ IZW
, K). The sequence (2.4)

fits into the following commutative diagram

0 �� K �� ∧n
W ⊗OX

�� detF(−DW ) ⊗ IZW
�� 0

0 �� F∨ ��

��

E∨ ��

f

��

OX

g

��

�� 0,

(2.5)

where f is the map given by the contraction by the sections (−1)n+1−isi, for i =
1, . . . , n+ 1, and g is given by the global section σ ∈ H0(X, detF(−DW ) ⊗ IZW

)
corresponding to the adjoint form ω. We have the standard factorization

0 �� K �� ∧n
W ⊗OX

�� detF(−DW ) ⊗ IZW
�� 0

0 �� K �� L ��

��

OX

g

��

�� 0

0 �� F∨ ��

��

E∨ ��

��

OX
�� 0

(2.6)

where the sequence in the middle is associated with the class ξ′′ ∈ H1(X, K) which is
the image of ξ ∈ H1(X, F∨) through the map H1(X, F∨) → H1(X, K). In particular,
we obtain the commutative square:

H0(X,detF(−DW ) ⊗ IZW
) �� H1(X,K)

H0(X,OX)

��

�� H1(X,K).

(2.7)

By commutativity, we immediately have that the image of σ ∈ H0(X, detF(−DW ) ⊗
IZW

) through the coboundary map H0(X, detF(−DW ) ⊗ IZW
) → H1(X, K) is ξ′′.
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Tensoring by detF , the map F∨ → K gives

F∨ ⊗ detF �� K ⊗ detF

∧n−1 F

Γ
�������������

(2.8)

and, since ξ · ω ∈ H1(X, F∨ ⊗ detF) is sent to ξ′′ · ω ∈ H1(X, K ⊗ detF), we have that

H1(Γ)(ξ · ω) = ξ′′ · ω, (2.9)

where ξ · ω is the cup product.
By hypothesis ∂n

ξ (ω) = ξ · ω = 0 ∈ H1(X,
∧n−1 F), so also ξ′′ · ω = 0 ∈ H1(X, K ⊗

detF), hence, the global section σ · ω ∈ H0(X, detF(−DW ) ⊗ IZW
⊗ detF) is in the

kernel of the coboundary mapH0(X, detF(−DW ) ⊗ IZW
⊗ detF) → H1(X, K ⊗ detF)

associated to the sequence

0 �� K ⊗ detF �� ∧n
W ⊗ detF �� detF(−DW ) ⊗ IZW

⊗ detF �� 0.

(2.10)
This occurs if there exist Lσ

i ∈ H0(X, detF), i = 1, . . . , n+ 1 such that

σ · ω =
n+1∑
i=1

ω̃i · Lσ
i . (2.11)

This relation gives the following relation in H0(X, detF⊗2):

ω · ω =
n+1∑
i=1

Lσ
i · ωi. (2.12)

Then, equation (2.12) gives an adjoint quadric. By contradiction, the claim follows. �

Corollary 2.8. In the hypothesis of Theorem 2.7 it holds that ξ is supported on DW ;
that is, ξDW

is trivial. Moreover, if we further assume that H0(X, F) = Ker ∂ξ and W is
generic inside H0(X, F) it follows that ξ is supported on DF .

Proof. The first claim follows by Theorem 2.7 and by Theorem 2.5. To show the
second claim, we recall that by [23, Proposition 3.1.6] DF = DW since W is a generic
n+ 1-dimensional subspace of H0(X, F). Then, the claim follows. �

Note that in the rest of the paper, F will be Ω1
X and therefore, the assumption

H0(X, F) = Ker ∂ξ of the Corollary comes from the extremal liftability assumptions.

3. Nori families

We apply the notion of adjoint quadrics to the case where F is the cotangent sheaf Ω1
X

of a smooth variety. We stress that we want to find conditions on a family π : X → B
which ensure that the fibres are in the same birational class.
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3.1. A notion of equivalence among families of Albanese type

The notion of Albanese type family behaves well under base change and we can intro-
duce a notion of equivalence for this kind of families. Consider a family of Albanese type
Φ : X→A as in § 1.

3.1.1. Translation equivalence

If s : B → A is a section of p : A → B, we define the translated family Φs : X → A of
Φ by the formula:

Φs(x) = Φ(x) + s(π(x)).

Notice that Φs : X → A is a family of Albanese type. Two families Φ and Ψ over B are
said to be translation equivalent if there exists a section σ of p : A → B such that the
images of Φσ and Ψ (fibrewise) coincide.

We recall also the following definition given in [23, definition 1.1.2]:

Definition 3.1. Two families of Albanese type Φ : X→A, Φ′ : X ′→A′
over, respec-

tively, B and B′ will be said locally translation equivalent, if there exist an open set
U ⊂ B an open set U ′ ⊂ B′ and a biregular map μ : U ′ → U := μ(U ′) ⊂ B such that the
pull-back families μ∗(ΦU ) and Φ

′

U ′ are translation equivalent where U , U ′ are dense with
respect to the classical topology on B, respectively, B′. We will say that Φ is trivial if
X = X ×B, A = A×B and πA(Φ(Xb)) = πA(Φ(Xb0)) for all b where πA : A×B → A is
the natural projection.

We will use the following:

Proposition 3.2. An Albanese type family Φ : X → A is locally translation equivalent
to a trivial family if and only if the fibres Xb are birationally equivalent.

Proof. See [23, Proposition 1.1.3]. �

3.2. Liftability assumptions

The following conditions are natural in order to find families locally translation
equivalent to trivial families.

Definition 3.3. We say that a family π : X→B of relative dimension n satisfies the
extremal liftability conditions over a one-dimensional variety B if

1. H0(X , Ω1
X ) � H0(Xb, Ω

1
Xb

);

2. H0(X , Ωn
X ) � H0(Xb, Ω

n
Xb

)

where the symbol � means that the homomorphism is surjective.

The above definition says that all the 1-forms and all the n-forms of the fibre Xb are
obtained by restriction of forms defined on the family X . Comparing the two conditions
with the hypotheses of Theorem 2.7, we see that they ensure that ∂1

ξb
= 0 and ∂n

ξb
= 0,
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where ξb ∈ H1(Xb, ΘXb
) is an infinitesimal deformation in the image of the Kodaira–

Spencer map associated with π : X→B.

Proposition 3.4. Let Φ : X → A be an Albanese type family such that for every
b ∈ B it holds that H0(X , Ω1

X ) � H0(Xb, Ω
1
Xb

). Then up to shrinking B, the fibres of
p : A → B are isomorphic.

Proof. Let μb ∈ Ext1(Ω1
Ab
, OAb

) be the class given by the family p : A → B, that is
the class of the following extension:

0 → OAb
→ Ω1

A|Ab
→ Ω1

Ab
→ 0.

Now φ∗bOAb
= OXb

and the map φ∗bOAb
→ φ∗bΩ

1
A|Ab

is generically injective; hence, it is
injective because otherwise the kernel would be a torsion subsheaf of OXb

. Thus, we have
the following exact sequence

0 → φ∗bOAb
→ φ∗bΩ

1
A|Ab

→ φ∗bΩ
1
Ab

→ 0

which fits into the following diagram

0 �� φ∗bOAb
�� φ∗bΩ

1
A|Ab

��

��

φ∗bΩ
1
Ab

��

�� 0

0 �� OXb
�� Ω1

X|Xb
�� Ω1

Xb
�� 0.

In cohomology, we have

H0(Xb, φ
∗
bΩ

1
Ab

)

��

�� H1(Xb,OXb
)

H0(Xb, Ω
1
Xb

) �� H1(Xb,OXb
)

so, by commutativity and by the hypothesis H0(X , Ω1
X ) � H0(Xb, Ω

1
Xb

), we
immediately obtain H0(Xb, φ

∗
bΩ

1
A|Ab

) � H0(Xb, φ
∗
bΩ

1
Ab

) and hence the coboundary
∂μb

: H0(Ab, Ω
1
Ab

) → H1(Ab, OAb
) is trivial. Then we can apply the argument in cf. [7,

Page 77, 78] on a conveniently small B. �

3.3. Nori families

Let Φ : X → A be an Albanese type family over the unitary disc Δ. From Φ(X ) ↪→
A, we obtain the basic cycle [Z] = [X ]+ − [X ]− as in § 1; see (1.1). Note that [Z] ∈
Za−n

h (A/B). To the normal function defined by Z, it is associated with its infinitesimal
invariant δZ ; see cf.[31].

Definition 3.5. An Albanese type family Φ is called Nori trivial if the infinitesimal
invariant δZ induced by the cycle [Z] is zero for the generic b ∈ B (hence for all b).
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Transversality. Fix s1, . . . , sn+1 ∈ H0(A, Ω1
A ) such that s1 ∧ · · · ∧ sn+1 induces, by

fibre restriction, a non-trivial form Ω ∈ H0(Ab, Ω
1+n
A|Ab

). Let ξb ∈ H1(Xb, TXb
) be an

infinitesimal deformation given by the Kodaira–Spencer map. We remind the reader that,
as in the previous Proposition 3.4, φb is the map φb : Xb → Ab and we have the diagram

X
Φ �� A

Xb

φb ��

jb

��
Φb

����������
Ab

ib

��
(3.1)

Let
r : Φ∗

bΩ
1
A → Ω1

Xb

be the restriction map and set ηi = r(Φ∗
b(si)), i = 1, . . . , n+ 1. In our case, the set B =

{ηi}n+1
i=1 is a basis of a vector space W ⊂ H0(Xb, Ω

1
Xb

). Suppose that W ⊂ Ker∂ξb
. Then

the element Φ∗
b(s1 ∧ · · · ∧ sn+1) gives precisely an adjoint form ω

ξb,W,B once it is restricted
to Xb. In [23, Theorem 5.2.5], it is proved:

Theorem 3.6 (Transversality Criteria.). If δZ(b) = 0 then for every σ ∈
H0(Ab, Ω

n
Ab

) it holds: ∫
X

ω
ξb,W,B ∧ φ∗bσ = 0.

3.4. Proof of Theorem [A]

The main tool for the proof is the Volumetric Theorem [23, Theorem 1.5.3] that we
recall here for convenience.

Theorem 3.7. Let Φ : X → A be an Albanese type family such that p : A → B has
fibres isomorphic to a fixed abelian variety A. Let W ⊂ H0(A, Ω1

A) be a generic (n+ 1)-
dimensional subspace and Wb ⊂ H0(Xb, Ω

1
Xb

) its pull-back over the fibre Xb. Assume
that for every point b ∈ B it holds that ω

ξb, Wb, Bb
∈ λnWb where ξb ∈ H1(Xb, ΘXb

) is the
class given on Xb by π : X → B, then the fibres of π : X → B are birational.

We now prove Theorem [A] of the introduction.

Proof. By Proposition, 3.4 we can assume that p : A → B is trivial, that is A 
A×B and p : A → B is the first projection. Up to base change, the Albanese family
alb(X ) : X → Alb(X ) exists and by Proposition 3.2, our claim is equivalent to show that
the Albanese family alb(X ) : X → Alb(X ) is locally translation equivalent to the trivial
family. Hence, it is not restrictive to assume that Alb(X ) = A×B too. In particular, we
can restrict to consider only the case where Alb(Xb) = A and the map φb : Xb → A is of
degree one for every b ∈ B.

Denote by ξb ∈ H1(Xb, ΘXb
) a class associated with an infinitesimal deformation of Xb

induced by the fibration π : X → B. We know that q ≥ n+ 1 where q = dimCA. Let B :=
{dz1, . . . , dzn+1} be a basis of an n+ 1-dimensional generic subspace W of H0(A, Ω1

A),
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(if q = n+ 1 we can take H0(A, Ω1
A) = W ). For every b ∈ B let ηi(b) := alb(Xb)∗dzi,

i = 1, . . . , n+ 1. By standard theory of the Albanese morphism, it holds that Bb :=
{η1(b), . . . , ηn+1(b)} is a basis of the pull-back Wb of W inside H0(Xb, Ω

1
Xb

). Let

ωi(b) := λn(η1(b) ∧ . . . ∧ ηi−1(b) ∧ η̂i(b) ∧ . . . ∧ ηn+1(b))

for i = 1, . . . , n+ 1. Note that if ω′
i := dz1 ∧ . . . ∧ dzi−1 ∧ d̂zi ∧ . . . ∧ dzn+1 then ωi(b) :=

φbω
′
i, i = 1, . . . , n. Since Φ : X → A is a family of Albanese type, dimλnWb ≥ 1, (actually

if q > n+ 1 by [23, Theorem 1.3.3] it follows that λnWb has dimension n+ 1), and we
can write: λnWb = 〈ω1(b), . . . , ωn+1(b)〉.

By extremal liftability assumptions, we can form the Massey class for every [W ] ∈
G(n+ 1, q) where we denote by G(n+ 1, q) the Grassmannian of n+ 1-dimensional
subspaces of H0(Xb, Ω

1
Xb

).
Consider the following diagram in Dolbeaut’s cohomology:

H0(Xb, φ
∗
bΩ

n
A ⊗ ωXb

)
μ◦j

��

j

��

H0(Xb, ωXb
⊗ ωXb

)

Hn,0(Xb) ⊗Hn,0(Xb)

μ

		���������������

(3.2)

By the identification H0(Xb, φ
∗
b(Ω

n
A) ⊗ ωXb

) = Hn,0(A) ⊗Hn,0(Xb), it follows that

j := φ∗b ⊗ id : Hn,0(A) ⊗Hn,0(Xb) → Hn,0(Xb) ⊗Hn,0(Xb).

Now, we can consider the induced diagram of the symmetric part:

Hn,0(A) 	Hn,0(Xb)
μ◦j

��

j

��

H0(Xb, ωXb
⊗ ωXb

)

Sym2Hn,0(Xb)

μ

		��������������

(3.3)

We set Vb := Imφ∗b ⊂ Hn,0(Xb). Recall the decomposition (1.4) in § 1

Sym2Hn,0(Xb) = Vb 	Hn,0(Xb) ⊕ Sym2(Ann(Vb))

and that this direct sum induces homomorphisms

νXb
: Sym2Ann(Vb) → H0(X,ω⊗2

Xb
) (3.4)

and
γXb

: Vb 	Hn,0(Xb) → H0(X,ω⊗2
Xb

). (3.5)

Now assume that for the generic Wb, the generic adjoint form ω has an adjoint quadric

Q := ω 	 ω −
n+1∑
i=1

ωi(b) 	 Li ∈ Sym2Hn,0(Xb). (3.6)

By Definition 2.6, Q is in Ker(μ).
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By the Transversality Theorem 3.6, ω vanishes on Vb, hence ω 	 ω is an element of
Sym2(Ann(Vb)). On the other hand, recall that by definition the forms ωi(b) are in V ,
hence

∑n+1
i=1 ωi(b) 	 Li is an element of Vb 	Hn,0(Xb). By the hypothesis that for each

element η contained in Ann(Vb), its square is not contained in the image of γXb
, we get

that ω 	 ω = 0. By the Volumetric Theorem 3.7, the claim follows easily. �

Remark 3.8. We stress that the argument above is a local argument applied to the
differential forms ωi(b).

Corollary 3.9. Let Φ : X → A be a family of Albanese type where the general fibre
Ab of p : A → B is a generic abelian variety of dimension a ≥ 4, the general fibre Xb of
π : X → B is such that a− dimXb > 1, and for each element η contained in Ann(Vb), its
square is not contained in the image of γXb

. If it satisfies the liftability conditions then
the fibres of π : X → B are in the same birational class. In particular, the fibres of a
family π : X → B of smooth varieties of general type all contained inside a fixed generic
abelian variety of dimension ≥ 4 as cycles of codimension ≥ 2 are in the same birational
class if π : X → B satisfies the liftability assumptions and for each element η contained
in Ann(Vb), its square is not contained in the image of γXb

.

Proof. By [23, Proposition 6.2.2], we know that Φ : X → A is equivalent to a Nori
trivial family. By Theorem [A], the claim follows. �

Remark 3.10. The necessary ‘genericity conditions’ on the abelian variety Ab of
Corollary 3.9 are those which make it possible to apply the fundamental theorem which
claims that the Abel–Jacobi map of a homologically trivial cycle of a generic abelian
variety of dimension ≥ 4 is torsion modulo the largest abelian subvariety of the interme-
diate Jacobian; see [17, section 7.5] or the very clear exposition [21]. Actually, we can
understand that genericity here means that Ab is outside a countable union of proper
Zariski’s closed sets.

Remark 3.11. We point out to the reader that since the Ceresa’s cycle of an hyper-
elliptic curve C is trivial, Theorem [A] implies that a family π : C → B of hyperelliptic
curves satisfying liftability assumptions is a locally trivial family.

4. Families of divisors of a polarized abelian variety

We cannot use Nori’s theorem in the case of Albanese type families of divisors. Neverthe-
less a statement as the one of Theorem [A] holds also in this case. First, we review some
facts on divisors of an abelian variety.

4.1. Theta functions

Let (A, L) be a (d1 · · · da)-polarized abelian variety, where A is a complex torus defined
as a quotient of a vector space V of rank a by a lattice Λ, and L an ample line bundle
on it. The algebraic equivalence class of line bundles of L is defined by a non-degenerate
hermitian bilinear form H on V , whose imaginary part E is a bilinear form integer-valued
on Λ. Since we are interested in the algebraic equivalence class of line bundles on A defined
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by L, we may assume the characteristic of L to be 0. We also recall that L determines
an isogeny

φL : A −→ Pic0(A)

which is defined as follows:

φL(z) := t∗z(L) ⊗ L−1

A decomposition of V for L is a decomposition of V = V1 ⊕ V2 into real vector spaces of
rank a which induces a decomposition for Λ = Λ1 ⊕ Λ2 into E-isotropic free Z-modules of
rank a. Such a decomposition of V for L induces moreover a decomposition of the lattice

Λ(L) := {v ∈ V : t∗zL ∼= L, [v] = z} (4.1)

into E-isotropic free Z-modules of rank a, which we, respectively, denote by Λ(L)1 and
Λ(L)2. The latter decomposition naturally induces a decomposition of the kernel of φL,
which we denote by K. It is known, see cf. [3, Theorem 2.7 p.55], that

{θLx : x ∈ K1} (4.2)

is a basis for H0(A, L), where

θL0 (z) :=
∑

λ∈Λ1

eπ(H−B)(z,λ)−π
2 (H−B)(λ,λ)

Here B denotes the C-linear extension of H|V2×V2 , and for every x in K1

θLx (z) := ψL
x (z)−1θL0 (z + x)

where {ψλ}λ is the cocycle in Z1(Λ, OV ) such that, for every λ in the lattice Λ and z in
V , we have

θL0 (z + λ) = ψλ(z)θL0 (z)

Proposition 4.1. Let (A, L) be an abelian variety, and D be a divisor in the linear
system |L|. Then there is a commutative diagram

H0(A,ΘA)

∼=
��

d0φL �� H1(A,OA)

H0(A,Ωa−1
A )

|D
�� H0(D, ωD)

f

��
(4.3)

where the arrow on the right side of diagram 4.3 is the connecting homomorphism in the
long exact cohomology sequence of the fundamental sequence of D

0 −→ OA −→ OA(D) −→ ωD −→ 0 (4.4)
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Proof. We assume that D is the zero locus of a holomorphic section s of L. The
complex space V can be naturally identified with the space of holomorphic vector fields
ΘA on A. Fixed ω a non-zero (a, 0)-form on A, recall that the map

V ∼= H0(A,ΘA) −→ H0(A,Ωa−1
A ) (4.5)

sends under this identification a vector v of V to the holomorphic (a− 1)-form w obtained
by contracting the (a, 0)-form ω with the vector field ∂

∂v .
The holomorphic function ∂s

∂v can be seen by adjunction as a holomorphic section of
the canonical bundle of D, which coincides with the restriction to D of the (a− 1)-form
w defined above. On the other side, the connecting homomorphism can be computed by
using the fact that there is a canonical isomorphism of cohomology groups sequences

Hp(Λ,H0(V, π∗(·)) ∼= Hp(A, ·)

where π denotes the projection of V onto A, and it holds (see also: [6] Proposition 1.1,
p. 4):

f

(
∂s

∂v

)
= [πH(v, λ)λ∈Λ] (4.6)

It remains to compute d0φL( ∂
∂v ). Let us consider S := Spec(C[ε]/ε2) the scheme of dual

numbers over C and AS the base change. We have the exact sequence of sheaves

0 −→ OA −→ O∗
AS

−→ O∗
A −→ 0

Its long cohomology sequence identifies H1(A, OA) with the kernel of the map
Pic(AS) −→ Pic(A), which to a line bundle on AS whose transition functions gαβ =
g′αβ + εg′′αβ associates the line bundle on A with transition functions g′αβ . Moreover, under
the identification H1(A, O∗

A) ∼= H1(Λ, H0(V, O∗
V ))

Pic(AS) = H1(Λ,H0(V,O∗
V ) ⊗C C[ε]) (4.7)

since AS is defined through a flat base change. Now, for every z on A, φL(z) is the line
bundle of degree 0 with cocycles [{e2πiE(z,λ)}λ]. Hence, d0φL( ∂

∂v ) is the line bundle on
AS whose cocycles, according to identification 4.7, are precisely

[{e2πiεE(v,λ)}λ] = [{1 + 2πiE(v, λ)ε}λ] ∈ H1(Λ,H0(V,O∗
V ) ⊗C C[ε])

In conclusion, we have

d0φL

(
∂

∂v

)
= [{2πiE(v, λ)}λ] (4.8)

It is now easy to see that the two elements in the cohomology group H1(Λ, H0(V, O∗
V ))

are the same. Indeed, it is enough to show, by the definitions of group cohomology, that
there exists a holomorphic function F on V such that, for every z on V and every λ on
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Λ, it holds that

πH(v, λ) = 2πiE(v, λ) + F (z + λ) − F (z) (4.9)

But E is defined as the imaginary part of H, which is an alternating R-bilinear form on
V , and H can be recovered by E. Indeed, for every z and w on V it holds:

H(z, w) = iE(z, w) + E(iz, w)

In conclusion, with F (z) := −π(iE(v, z) − E(iv, z)), it is easily seen that F is C-linear
on V and that 4.9 holds true. �

4.2. The multiplication map

From diagram (4.3) and the long cohomology sequence of (4.4), it follows easily that

Im(|D : H0(A,Ωa−1
A ) −→ H0(D, ωD)) ∼= H1(A,OA) ∼= V

Ann(V ) ∼= Im(|D : H0(A,L) −→ H0(D, ωD)).
(4.10)

Moreover, we have clearly a commutative diagram

Sym2H0(A,L)
μ

��

|D
��

H0(A,L2)

|D
��

Sym2Ann(V )
ν �� H0(D, ω2

D).

(4.11)

Note that Sym2H0(A, L) ∼= s⊗2C ⊕ s⊗ Ann(V ) ⊕ Sym2Ann(V ). In particular, when the
divisor D = (s = 0) is reduced and irreducible, the map ν is injective if and only if the
multiplication map μ is injective. Indeed if μ is not injective, then there exists a non-zero
element w = s⊗ t+

∑
j uj ⊗ vj in Sym2H0(A, L) in the kernel of the multiplication map

μ, and by the above decomposition, we can assume (
∑

j uj ⊗ vj)|D �= 0 in Sym2Ann(V ).
Since the diagram (4.11) is commutative, this implies ν(

∑
j uj ⊗ vj)|D = 0, and thus, ν is

not injective. On the other side, let us assume that
∑

j uj |D ⊗ vj |D is non-zero and belong
to the kernel of ν, where uj and vj are non-zero holomorphic sections of L. Then we have
that μ(

∑
j uj ⊗ vj) =

∑
j ujvj vanishes along D. Hence, there exists t ∈ H0(A, L) such

that st =
∑

j ujvj . It follows that μ is not injective.

4.3. On the injectivity of the multiplication map

Given now an abelian variety (A, L), we want to give conditions which ensure the
injectivity of the multiplication map μ. We begin by fixing a decomposition of V for L2

which, according to our previous discussion, induces a decomposition K1 ⊕K2 of K :=
Ker(φL2). In particular, the same decomposition induces a decomposition 2K1 ⊕ 2K2 for
the kernel of φL.

Let us assume that H is the non-degenerate hermitian form which corresponds to
L according to Appell–Humbert theorem. We recall that, by [3, Lemma 1.2 p. 48],
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K(L) = Λ(L)/Λ and K(L2) = Λ(L2)/Λ, where

Λ(L) = {v ∈ V : �m H(v, Λ) ⊆ Z}

Λ(L2) = {v ∈ V : 2�m H(v, Λ) ⊆ Z}

are lattices in V , and K(L)i
∼= Zd1 ⊕ · · · · · ·Zda

(i = 1, 2), where (d1 · · · da) is the
polarization type of L; see [3, Lemma 1.4 p. 50].

Moreover, Λ(L2) contains the sublattice Λ(L), and the quotient is isomorphic to Z2a
2 ,

with 2Λ(L2) = Λ(L). On the other side, K(L2)i
∼= Z2d1 ⊕ · · · · · ·Z2da

it contains K(L)i,
and the quotient is isomorphic to Za

2 .
Hence, the following is a basis for H0(A, L):

{θLx : x ∈ 2K1} (4.12)

Let us denote by Z2 := A[2] ∩K1
∼= Za

2 . For every (x1, x2) ∈ 2K1 ⊕ 2K1, and (y1, y2) ∈
K1 ⊕K1 such that y1 + y2 = x1 and y1 − y2 = x2, it holds the following multiplication
formula cf. [3, 1.3 Multiplication Formula, p. 182]:

μ(θLx1
⊗ θLx2

) =
∑
z∈Z2

θL
2

y2+z(0)θL
2

y1+z

Let us denote Z ′
2 := Z2 ∩ 2K1

∼= Za−s
2 , where s is the number of odd indexes among

(d1 · · · da). For a character ρ : Z ′
2 → C∗ of Z ′

2 we can define:

θ(x1,x2),ρ :=
∑
z∈Z′

2

ρ(z)θLx1+z ⊗ θLx2+z (4.13)

This is an element of H0(A, L) ⊗H0(A, L). We point out to the reader that the diagonal
action of Z ′

2 on 2K2 × 2K2 leaves every holomorphic section in 4.13 invariant up to the
multiplication by a non-zero constant, since

θ(x1+z,x2+z),ρ = ρ(z)θ(x1,x2),ρ

Hence, we have the following basis for the vector space H0(A, L) ⊗H0(A, L):{
θ(x1,x2),ρ : [(x1, x2)] ∈ 2K1 ⊕ 2K1

/
ΔZ′

2
ρ ∈ Ẑ ′

2

}
(4.14)

where ΔZ′
2

denotes the diagonal subgroup of Z ′
2 × Z ′

2 ⊆ 2K1 ⊕ 2K1.
We can now choose a complement W of Z ′

2 in Z2; that is Z2 = Z ′
2 ⊕W as Z2-vector

spaces. Now choose U a transversal subset for Z2 in K1, that is U is a subset of K1 such
that every (right or left) coset of Z2 contains precisely one element of U . Thus, the set
U contains

∏a
i=j dj elements and the quotient 2K1/Z

′
2 contains

∏a
i=j dj/2a−s elements.
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By means of this choice, we can fix the following basis for H0(A, L2):{
θL

2

(y,w,ρ) : y ∈ U, w ∈W, ρ ∈ Ẑ ′
2

}
(4.15)

where

θL
2

(y,w,ρ) :=
∑
z∈Z′

2

ρ(z)θL
2

y+w+z

We aim to express the multiplication map μ with respect to the basis (4.14) and (4.15).
We have:

μ(θ(x1,x2),ρ) =
∑
z∈Z′

2

ρ(z)μ(θLx1+z ⊗ θLx2+z)

=
∑
z∈Z′

2

∑
t∈Z2

ρ(z)θL
2

y2+t(0) · θL2

y1+t+z

=
∑

z,z′∈Z′
2

∑
w∈W

ρ(z)θL
2

y2+w+z′(0) · θL2

y1+w+z+z′

where, in the third equality, we decompose the summation variable by using the comple-
ment W . If in the last summation above, we replace z by z′ + z, we get an expression
of the multiplication map in terms of the elements of the canonical basis for the vector
space H0(A, L2):

μ(θ(x1,x2),ρ) =
∑

z,z′∈Z′
2

∑
w∈W

ρ(z)ρ(z′)θL
2

y2+w+z′(0) · θL2

y1+w+z

=
∑

w∈W

⎡⎣ ∑
z′∈Z′

2

ρ(z′)θL
2

y2+w+z′(0)

⎤⎦⎡⎣∑
z∈Z′

2

ρ(z)θL
2

y1+w+z

⎤⎦
=
∑

w∈W

C(y2,w,ρ) · θL
2

(y1,w,ρ)

where we set:

C(t,w,ρ) :=
∑
z∈Z′

2

ρ(z)θL
2

t+w+z(0)

where w ∈W and t ∈ K1. We consider moreover the following set:

Ω =
{

(y, t) ∈ U × (K1

/
Z ′

2
) : y + t ∈ 2K1

}
Let us consider the function ψ : Ω −→ 2K1 × 2K1

/
ΔZ′

2
, which sends (y, t) to (y +

t, y − t). We now show that ψ is a bijection.
Indeed let (u, v) be a pair in the quotient 2K1 × 2K1/ΔZ′

2
. We show that there exists

a unique element y of the transversal U and a unique class t in the quotient group K1/Z
′
2

such that (y + t, y − t) = (u, v).
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The sum u+ v belongs to 2K1. Thus, u+ v = 2r for a certain r of K1. However, r
belongs to a unique coset of the form y + Z2 with y in U . Thus, y is uniquely determined,
and it holds that u+ v = 2y. By the same procedure, we determine a t of K1 such that
u− v = 2t. Note that t is unique up to a 2-torsion in 2K1, since both u and v belong to
2K1. Hence, we have: {

2(y + t) = 2u
2(y − t) = 2v

(4.16)

In particular there exist two 2-torsion elements of Z ′
2, p and q, in such that:{

y + t = u+ p

y − t = v + q
(4.17)

Since u+ v = 2y, we conclude that p = q and our claim that the elements (y + t, y − t)
and (u, v) coincide is proved. We conclude that:

μ(θ(y+t,y−t),ρ) =
∑

w∈W

C(t,w,ρ) · θL
2

(y,w,ρ)

It can be easily seen that the matrix of multiplication map μ with respect to the basis
(4.14) and (4.15) splits into blocks, each for every character ρ inside the group of charac-
ters Ẑ ′

2. Moreover, the multiplication map is injective if and only if the restriction to the
subspaces associated with the characters ρ of Z ′

2 is injective. We can denote the latter
subspaces as follows:

Vy,ρ :=
〈
θ(y+t,y−t),ρ : t ∈ 2K1/Z

′
2

〉
Wy,ρ := ⊕w∈W

〈
θL

2

(y,w,ρ)

〉
and the restrictions, respectively, by

μ|Vy,ρ
: Vy,ρ −→ Wy,ρ

We point out to the reader that even if we exchange x1 and x2 in definition (4.13),
we get the same element inside the image of the projection H0(A, L) ⊗H0(A, L) →
Sym2(H0(A, L)) and this exchange is induced by the change t �→ −t. Hence, the restric-
tion of the multiplication map on the symmetric part Sym(H0(A, L)) can be described
on the different blocks, each corresponding to y and ρ, with the matrix:

Mρ := (Ct,w,ρ)t∈±2K1/Z′
2,w∈W (4.18)

where the sign can be arbitrarily chosen, since the obtained element of Sym2(H0(A, L))
obtained is independent from this choice.

Remark 4.2. The theorem below describes the loci in the moduli space of polar-
ized abelian varieties where the multiplication map is not injective. Indeed μ is injective
precisely when for every y and for every character ρ the matrix Mρ has maximal rank.
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Theorem 4.3. Let (A, L) be a general (1, 1, · · · , 2, · · · 2)-polarized abelian variety
of dimension a. Then the multiplication map μ is injective.

Proof. Let us begin by the case in which the polarization type is (2, · · · 2). For such
a polarization, the matrix Mρ in 4.18 with ρ ∈ Hom(Zg

2, C∗) is just the scalar:

Cρ =
∑

z∈A[2]

ρ(z)θL
2

z (0)

Now inside the moduli space of (2, 2, · · · 2)-polarized abelian variety it is easy to con-
clude that Cρ �= 0 holds for the general abelian variety since it holds for the product of
2-polarized elliptic curves. If we now take a general (1, 1, · · · 1, 2, · · · 2)-polarization we
can consider (A′, L′) a (2, · · · , 2)-polarized abelian variety with an isogeny h : A′ −→ A
such that h∗L = L′. Then the multiplication map μ on the sections of L is just the
restriction of the multiplication map

μA′ : Sym2H0(A′,L′) −→ H0(A′,L′2) (4.19)

to the symmetric product of the subvector space of the Ker(h)-invariant sections
of L′. �

Corollary 4.4. Let (A, L) be as above and D a general element in |L|. The natural
map

ν : Sym2Ann(V ) −→ H0(D, ω⊗2
D ) (4.20)

is injective.

Proof. This follows immediately by the above theorem and Diagram (4.11). �

4.4. The divisorial case

The following theorem, together with Corollary 4.4, is Theorem [C] from § 1.

Theorem 4.5. Let D be a general divisor on a general (1, 1, · · · , 1, 2, · · · , 2)-
polarized abelian variety of dimension a. Then for each element η contained in Ann(V ), its
square is not contained in the image of V 	H0(D, ωD) with respect to the multiplication
map

μD : Sym2(H0(D, ωD)) −→ H0(D, ω⊗2
D ) (4.21)

Proof. As in the proof of Theorem 4.3, it is enough to work on (2, . . . , 2)-polarizations.
First, we prove that the locus in the moduli space of polarized abelian varieties (A, D)
such that there is no element η in Ann(V ) ∼= H0(A, D) whose square is contained in the
image of V 	H0(D, ωD) is open.

Indeed, the moduli space U of smooth divisors in the polarization of an a-dimensional
(2, · · · , 2)-polarized abelian variety is an open subset of a Pd−1-bundle on the moduli
space Aa of (2, · · · , 2)-polarized abelian varieties of dimension a, where d = 2a. Note
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that U is a smooth Kuranishi family, in fact

dimU = dim(Aa) + d− 1

and for every element [A, D] of U , it is known that

h1(D, TD) = dimExt1OD(Ω1
D,OD)

= dim(Aa) + d− 1

= dimU.

(4.22)

Now for every element [A, D] of U , the canonical bundle of D is very ample
and we can choose uniformizing coordinates [X1, · · · , Xa, Y0, Y1, · · · , Yd−1] on PN ∼=
P(H0(D, ωD)), where N = d+ a. Let H be the Hilbert scheme of closed subvarieties of
PN with Hilbert polynomial p(n) = (2n)a − (2n− 1)a. The natural morphism of schemes
φ : U → H is smooth and finite onto a locally closed subscheme Z ⊂ H by (4.22).

The decomposition of H0(D, ωD) for every divisor D into the direct sum V ⊕ Ann(V )
induces a decomposition PN = P(V ′ ⊕W ′), where V is generated by the forms X1 · · ·Xa,
and W by the remaining forms Y0 · · ·Yd−1.

The set Q of points of Z which are contained in a quadric of the form w2 −
∑

i vizi in
H0(PN , OP(2)), where w ∈W ′ and the elements vi are forms of V ′ not all equal to 0, is
a proper locally closed subset of Z. Since φ is flat, the scheme theoretic counterimage of
Q is also a proper locally closed subset of U .

We have shown that the locus in the moduli space of polarized abelian varieties (A, D)
such that there is no element η in Ann(V ) ∼= H0(A, D) whose square is contained in the
image of V 	H0(D, ωD) is open. Therefore, it suffices to prove that the claim of the
Theorem holds true in the case of a smooth divisor D in a product of a (2)-polarized
elliptic curves.

To this purpose, we denote by A the product of E1, · · · , Ea elliptic curves, each of them
considered as the quotient of the complex plane by the lattice τiZ ⊕ 2Z, where τi denotes
a certain element in the Siegel upper half-space, and equipped with the polarization Li of
type (2) induced by the divisor 2 · 0. For each i, we denote moreover by θ(i)0 and θ(i)1 the
canonical theta functions which span the vector space of the global holomorphic sections
of the polarization Li on Ei.

Considering L to be the induced product polarization on A, we first fix a basis for the
vector space of the global holomorphic sections of L and a convenient notation for its
elements. Since L is the product of all the polarizations on the factors Ei, a basis for
the global sections of L can be easily defined by considering all the possible products of
sections on each factor Ei, arising by selecting θ(i)0 or θ(i)1 for each index i. Every global
section of this basis corresponds to a unique subset of {1, · · · , a} containing the indices
i of the factors on which θ(i)1 has been selected. Hence, if we consider P to be the power
set of {1, · · · , a}, we can denote for every S ∈ P the following global section of L:

θS(z) :=
a∏

i=1

θ
(i)
χS(i)(zi)

where χS(i) is the characteristic function of S. It can be now easily seen that {θS}S∈P
is a basis for H0(A, L). For the reader’s convenience, we remark that θ∅ is the element
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of the latter basis obtained by multiplying on every factor Ei the section θ(i)0 :

θ∅(z) =
a∏

i=1

θ
(i)
0 (zi)

Let us consider now a general non-zero section

s :=
∑
S∈P

aSθS ∈ H0(A,L) (4.23)

for some complex coefficients aS such that its zero locus D is smooth.
We prove that the kernel of the multiplication map (4.21) is generated by elements of

Sym2Ann(V ) of the form:

θS ⊗ θT − θA ⊗ θB (4.24)

with S ∪ T = A ∪B and S ∩ T = A ∩B. This will immediately imply our thesis that
for each element η contained in Ann(V ), its square is not contained in the image of
V 	H0(D, ωD), since we recall that the intersection of this space with Sym2Ann(V ) is
trivial.

This statement can be proven on a suitable affine open subset of D.
On each factor, the canonical theta functions θ(i)0 and θ(i)1 induce a covering xi : Ei −→

P1, where:

xi(zi) =
θ
(i)
0 (0)

θ
(i)
1 (0)

θ
(i)
1 (zi)

θ
(i)
0 (zi)

(4.25)

This covering is of degree 2, branched over four distinct points 1, −1, δi, −δi, which are,
respectively, the images of the points 0, 1, τi

2 , 1 + τi

2 .
Hence, the elliptic curve Ei is the Riemann surface which on an affine neighbourhood

Ui with local coordinates (xi,yi) is defined by the equation:

hi(xi, yi) := y2
i − (x2

i − 1)(x2
i − δ2i ) (4.26)

The affine model in (4.26) is called the Legendre normal form of Ei (see also [5]).
Let us consider the affine neighbourhood of U of D defined as:

U := D − div(θ∅)

Then U can be described as the Zariski closed subsed of the affine space A2a with
coordinates x1 · · · , xa, y1, · · · , ya with defining equations (4.26) together with the local
equation of D, which can we obtain from (4.23) by dividing by θ(0)i for each i (according to
the definition of xi in (4.25)). Hence, the local equation of D on U is f(x1, · · · , xa) = 0,
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where
f(x1, · · · , xa) :=

s

θ∅
=
∑
S∈P

bSXS

XS :=
∏
j∈S

xj

(4.27)

for some complex coefficients bS . For every j in {1, · · · , a}, the tangent vector ∂
∂zj

is
naturally identified with the holomorphic a− 1-form

ωj :=
dx1

y1
∧ · · · ∧ d̂xj

yj
∧ · · · ∧ dxa

ya

(see (4.4) in the proof of Proposition 4.1).
Hence, on the affine subset V of U where fa := ∂f

∂xa
does not vanish, we obtain, up to

a sign:

ωj =
fj

fa · y1 · y2 · · · ŷj · · · ya
dx1 ∧ · · · ∧ dxa−1 (4.28)

where fj denotes the derivative of f with respect to xj .
The global holomorphic differentials on D obtained by restricting the global sections of

the polarization of A to D can be computed by applying the residue mapH0(A, OA(D)) =
H0(A, ωA(D)) −→ H0(D, ωD). When restricted to V this gives, for each element S of P,

ψS := (θS · dz1 ∧ · · · ∧ dza)¬
(

1
θ∅fa

∂

∂xa

)
(4.29)

where ¬ is the contraction operator. We have in conclusion

ψS := (θS · dz1 ∧ · · · ∧ dza)¬
(

1
θ∅fa

∂

∂xa

)
=
(
θS · dx1

y1
∧ · · · ∧ dxa

ya

)
¬
(

1
θ∅fa

∂

∂xa

)
=
θS

θ∅

1
fay1 . . . ya

dx1 ∧ · · · ∧ dxa−1

(4.30)

and since XS as in (4.27) is equal to θS

θ∅
(up to a non-zero constant):

ψS =
XS

fay1 · · · ya
dx1 ∧ · · · ∧ dxa−1. (4.31)

Hence, if we multiply the expressions (4.28) and (4.31) by fay1 · · · ya, we see that the
elements in (4.24) become, up to a constant

XS ⊗XT −XA ⊗XB (4.32)

which are mapped by the multiplication map to

XS ·XT −XA ·XB = XS∩TXS∪T −XA∩BXA∪B = 0

by the assumptions that S ∪ T = A ∪B and S ∩ T = A ∩B.
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On the other side, if a linear combination of tensor elements XS ⊗XT , say

K =
∑
S,T

aSTXS ⊗XT

is mapped to zero by the multiplication map, then we have

0 =
∑
S,T

aSTXSXT

=
∑
U⊆V

( ∑
S,T

S∩T=U
S∪T=V

aST

)
XU ·XV

This implies that for every couple of subsets U and V of {1, · · · , a} with U ⊆ V , we
have: ∑

S,T
S∩T=U
S∪T=V

aST = 0

since xj appears in every term XU ·XV with degree 0, 1 or 2, according to whether j /∈ V ,
j ∈ V − U or j ∈ U , which implies that the tensor element

KUV :=
∑
S,T

S∩T=U
S∪T=V

aSTXS ⊗XT

is linear combination of elements of the form (4.32) with S ∩ T = U = A ∩B and S ∪ T =
V = A ∪B. Finally, also K must be linear combination of such elements, since clearly
K =

∑
U⊆V KUV .

Hence, our claim that the kernel of the multiplication map is generated by elements
of the form as in (4.24) holds true once we prove that there are no other quadratic
relations between the polynomials XS for all S ∈ P and Qj := fjyj for j ∈ {1, · · · , a} in
the quotient ring:

R := C[x1, · · · , xa, y1, · · · , ya]
/

(h1, · · · , ha, f)

We stress here that V corresponds to the vector space spanned by all polynomials Qj ,
while the polynomials XS span a vector subspace which, according to (4.10), corresponds
precisely to the subspace Ann(V ). In particular, V is generated by elements which involve
the letters yj .

Since X∅ = 1, we can define also the vector space W inside R generated as C-vector
space by all monomials in the letters xj of degree at most 2 in each letter xj .
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A quadratic relation among the polynomials XS and Qj would give in R the following
relation:

β +
a∑

j=1

γjyj +
a∑

i,j=1

ηijyiyj = 0 (4.33)

where β, γj , ηij ∈W since for ηij we have the form

ηij = cijfifj

where cij are constants depending on the definition of the polynomials Qj .
If we rearrange the terms of the equation (4.33) and we express it in the form of an

algebraic relation between ya and the remaining generators of R, we obtain:⎡⎣β +
a−1∑
j=1

γjyj +
a−1∑
i,j=1

ηijyiyj

⎤⎦+

[
a−1∑
i=1

ηiayi + γa

]
ya + ηaay

2
a = 0 (4.34)

However, since by (4.26), the equality y2
a = (x2

a − 1)(x2
a − δ2a) holds in R, we obtain:⎡⎣β − ηaa(x2

a − 1)(x2
a − δ2a) +

a−1∑
j=1

γjyj +
a−1∑
i,j=1

ηijyiyj

⎤⎦+

[
a−1∑
i=1

ηiayi + γa

]
ya = 0 (4.35)

Since this holds in R and the polynomial which in the latter equation (4.35) multiplies
ya is of degree at most 1 in xa, it must be 0 in R, since the only relation involving ya is
ha, which is of degree 2 in ya and 4 in xa. Hence, ηia = 0 for every i �= a and γa = 0. By
applying the same procedure to each index, it follows that ηij = 0 for every i and j with
i �= j, and γi = 0 for every i.

It follows that the quadratic relation (4.33) can be written in the following form:

β +
a∑

j=1

ηjjy
2
j = 0.

Using again the relations h1, · · · , ha, we can write:

β +
a∑

j=1

cjjf
2
j (x2

j − 1)(x2
j − δ2j ) = 0.

If at least one of the coefficients cjj is non-zero, say caa, then there exists a polynomial u =
u(x1 · · ·xa) such that, the following relation holds in the polynomial ring C[x1, · · · , xa]:

β +
a∑

j=1

cjjf
2
j (x2

j − 1)(x2
j − δ2j ) = uf. (4.36)

We recall that the variable xa occurs in β with an exponent at most 2, hence it occurs
in degree 4 in the left side of (4.36). Clearly, if u is equal to zero, then caa = 0 is a
contradiction. Hence, assume u �= 0. By definition, we can write f = p+ qxa, where xa

does not occur neither in p nor in q. This forces that u must have degree 3 in xa.
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On the other hand, the left side of (4.36) does not contain monomials of degree 3 in
xa. This implies p = 0. Hence, xa divides f and D is reducible, which contradicts our
hypothesis. �

4.5. The proof of Theorem [B]

We can show Theorem [B] by a direct argument not relying on Theorem 3.6, which we
used in the case of Nori’s families.

We consider, as in § 1, a family induced by embedded deformations π : X → B.
By construction, it is obtained by shrinking to B a fibration Π: Y → B̂ where Y is
smooth and B̂ is a curve. If X ⊂ X is a fibre and U := Y \X, by the composition of
the residue homomorphism H2n+1(U, Z) → H2n(X, Z) with the Gysin homomorphism
l∗ : H2n(X, Z) → H2n+2(Y, Z), we obtain the exact sequence

H2n+1(U,Z) Res−→ H2n(X,Z) l∗−→ H2n+2(Y,Z) (4.37)

We also recall the compatible identifications
∫

X
: H2n(X, C) → C,

∫
Y : H2n+2

(Y, C) → C.

4.5.1. The proof

By the assumptions of Theorem [B], π : X→B satisfies extremal liftability conditions.
Call Φ : X → A the morphism induced by the projection from the incidence variety. We
stress that Φ induces the natural inclusionXb ↪→ A. LetW := 〈Φ∗σ1, . . . , Φ

∗σn+1〉, where
σ1, . . . , σn+1 are independent 1-forms on A. Set si := Φ∗σn+1, i = 1, . . . , n+ 1. Let Ω ∈
H0(X , Ωn+1

X ) be the form induced by s1 ∧ s2 ∧ · · · ∧ sn+1 and ξb ∈ H1(Xb, TXb
) be an

infinitesimal deformation given by the Kodaira–Spencer map. Let

r : Ω1
X → Ω1

Xb

be the restriction map and set ηi = r(si), i = 1, . . . , n+ 1. In this case, the set B =
{ηi}n+1

i=1 is a basis of H0(Xb, Ω
1
Xb

). Now we work on the fibre X and we denote φ : X → A
the morphism induced by Φ. Let t be a local parameter on B such that (π∗(t) = 0) is
the equation of X. We know that by the sheaf-homomorphism Ωn+1

X (log(X)) → ωX ,
the residue of the form locally given by Ω

π∗(t) is the adjoint form ω
ξb,W,B , see Definition

2.1. We consider H0(X , Ωn
X ) � Ωi the forms induced by s1 ∧ s2 ∧ · · · ∧ ŝi ∧ · · · ∧ sn+1,

i = 1, . . . , n+ 1. For every i = 1, . . . , n+ 1 the form locally given by Ω
π∗(t) ∧Ωi, gives an

element of H2n+1(U, C) whose residue in H2n(X, C) is ω
ξb,W,B ∧ φ∗ωi. By the compatibil-

ity of the sequence (4.37) with both
∫
Y and

∫
X

it follows that for every σ ∈ H0(Ab, Ω
n
Ab

)
it holds: ∫

X

ω
ξb,W,B ∧ φ∗σ = 0;

(in other words, the Transversality criteria applies also under the hypothesis of
Theorem [B]). Finally, by Theorem 4.5, we have that for each element η contained in
Ann(V ), its square is not contained in the image of V 	H0(D, ωD). Hence, we can
conclude as in the proof of Theorem [A].
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Remark 4.6. We stress that the above proof of the Transversality claim in the case
of divisors of an abelian variety does not make any generality assumption on the abelian
variety.

5. The case of maximal relative irregularity for a fibred surface

We can use the strategy behind the proof of Theorem [A] to study a class of surfaces
too. Let S be a smooth surface and let f : S → B be a fibration to a smooth curve
B with general fibre F . Let g(F ) be the genus of F . In [32, Corollary 3 and 4], it is
shown that a non-isotrivial fibration satisfies q(S) − g(B) ≤ 5g(F )+1

6 . A very interesting
class of fibrations is the one where q(S) − g(B) = g(F ) − 1. These fibrations are called
fibrations with maximal relative irregularity. In the same paper, Xiao showed that they
can exist only for g(F ) ≤ 7. These fibrations have received a lot of attention in recent years
thanks to the beauty of the interplay between surface theory and the theory of abelian
varieties which they help to see [16, 30] and the bibliography there quoted. In order to
understand the geometry of any fibration, it is natural to try to obtain information by
relating the invariants of B and of (the general fibre) F to those of S. By definition, if
q(S) − g(B) = g(F ) − 1, there exists a hyperplane V ofH0(F, ωF ) such that the standard
restriction homomorphisms H0(S, Ω1

S) → H0(F, ωF ) has V as its own image. We need
the following:

Lemma 5.1. Let f : S → B be a non-isotrivial fibration with a general fibre of genus
≥ 3 and such that q(S) − g(B) = g(F ) − 1. Then, the sublinear system induced by V is
base point free.

Proof. Take an infinitesimal deformation ξ ∈ H1(F, TF ) of F given by the Kodaira–
Spencer map. Assume that for the general fibre F the image V of H0(S, Ω1

S) →
H0(F, ωF ) has base points. Since V is a hyperplane then Riemann–Roch theorem on
curves implies that there exists a unique point pF ∈ F which is the base point of the
linear system |V |. By the viceversa of the Adjoint theorem in the case of one-dimensional
varieties, see [7], it follows that ξ is the Shiffer variation supported on pF . This is a
contradiction to [1, Corollary 6.11]; see also [9, Prop. 6.3.9] �

Our basic reference for this last part [23, Section V]. Since q(S) − g(B) = g(F ) − 1 the
Jacobians of the fibres have an abelian variety A′ of dimension g − 1 in common. Let
B0 the open subscheme of B where f : S → B is smooth. By shrinking to open subsets
U ⊂ B0, the family Alb(S) ×Alb(B) B → B obtained by standard universal properties
restricts to a family p : AU → U whose fibres are all isomorphic to the dual A of A′.
Note that p : AU → U is a family of polarized abelian varieties where the fibre is always
isomorphic to A but the polarization on A× {b} is given by:

Θb(η1, η2) =
∫

Fb

φ∗b(η1) ∧ φ∗b(η2)

where φb : Fb → Ab is given by the composition alb(S) ◦ jb : Fb → Alb(S), and jb : Fb → S
is the natural inclusion and Ab is a translate of A inside Alb(S).
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Theorem 5.2. Let f : S → B be a non-isotrivial fibration of maximal relative irregu-
larity > 2 with fixed abelian variety A and let B0 the open subscheme where it is smooth.
If φb : Fb → A has degree 1 then the infinitesimal invariant associated with the basic cycle
of the Albanese type family obtained by restricting over open subschemes, U ⊂ B0 is not
zero.

Proof. The problem is local over B. We can write H0(Fb, Ω
1
Fb

) = V ⊕⊥ s · C where
V = φ∗bH

0(A, Ω1
A) and s is a nontrivial section. The decomposition is an orthogonal one

with respect to the standard pairing on Fb. In particular Ann(V ) = s · C. By contradiction
assume that the infinitesimal invariant associated with an Albanese type family over a
neighbourhood U of b is zero. Let ξ ∈ H1(F, TF ) be an infinitesimal deformation of F
given by the Kodaira–Spencer map of f|f−1(U) : f−1(U) → U . By Theorem 3.6, this means
that all the adjoints obtained by ξ and by two-dimensional subspaces W ⊂ V belongs to
V ⊥ = s · C. This means that if W = 〈η1, η2〉 then there exists a constant c ∈ C such
that c · s is an adjoint form associated with W , in other words [c · s] ∈ H0(F, ωF )/W is
the Massey product of η1 and η2. This implies that if we take a general η ∈ V and a
general two-dimensional subspace 〈η1, η2〉 = W ⊂ V (in particular η �∈W , here we need
q(S) − g(B) > 2, that is g(F ) ≥ 4), we can find a σ ∈W such that the Massey product of
the two-dimensional subspace 〈η, σ〉 along ξ is zero. Indeed if [ci · s] ∈ H0(F, ωF )/Wi is
the Massey product of Wi = 〈η, ηi〉, i = 1, 2 then σ = c1η2 − c2η1 ∈W . By the Adjoint
theorem, it follows that ξ = 0 if the linear system 〈η, σ〉 has no base points or that ξ is
supported on the base points of 〈η, σ〉. By the genericity of η and W it follows that ξ is
supported on the base points of the linear subsystem V ⊂ H0(F, ωF ). By Lemma 5.1, we
conclude that ξ = 0. This means that f : S → B has constant moduli; a contradiction. �
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