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Abstract
Weapon target allocation (WTA) is an effective method to solve the battlefield fire optimisation problem, which
plays an important role in intelligent automated decision-making. We researched the multitarget allocation prob-
lem to maximise the attack effectiveness when multiple interceptors cooperatively attack multiple ground targets.
Firstly, an effective and reasonable fitness function is established, based on the situation between the interceptors and
targets, by comprehensively considering the relative range, relative angle, speed, capture probability and radiation
source matching performance and thoroughly evaluating them based on the advantage of the attack effectiveness.
Secondly, the optimisation performance of the particle swarm optimisation (PSO) algorithm is adaptively improved.
We propose an adaptive simulated annealing-particle swarm optimisation (SA-PSO) algorithm by introducing the
simulated annealing algorithm into the adaptive PSO algorithm. The proposed algorithm can enhance the conver-
gence speed and overcome the disadvantage of the PSO algorithm easily falling into a local extreme point. Finally,
a simulation example is performed in a scenario where ten interceptors cooperate to attack eight ground targets;
comparative experiments are conducted between the adaptive SA-PSO algorithm and PSO algorithm. The simula-
tion results indicate that the proposed adaptive SA-PSO algorithm demonstrates great performance in convergence
speed and global optimisation capabilities, and a maximised attack effectiveness can be guaranteed.

Nomenclature
Mi, i ∈N

+ the i-th interceptor
Tj, j ∈N

+ the j-th ground target
R the relative range between the interceptor and the target
λ the line-of-sight (LOS) angle between the interceptor and the target
VM the speed of the interceptor
VT the speed of the target
γ the path angle of the interceptor
η the speed deflection angle of the interceptor

1. Introduction
A cooperative attack can organise multiple interceptors in exchanging and sharing combat information,
leading to improvement in the attack effectiveness on enemy targets, which has attracted considerable
attention in modern warfare [1–4]. When multiple interceptors cooperatively attack multiple enemy
targets, the important problem of assigning interceptor attack targets must be addressed; this is referred
to as the weapon target allocation (WTA) problem. The goal of WTA is to optimise the advantages of the
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interceptors attacking the targets to maximise the combat effectiveness, which plays an important role
in intelligent automated decision-making. WTA has become a current study hotspot [5–9] and attracted
several scholars to conduct corresponding research, especially showing great significance and value in
military applications [10,11].

WTA has been proven to be a nondeterministic polynomial (NP)-complete [12] problem. Currently,
numerous traditional solving algorithms have been applied to solve the WTA problem, such as goal pro-
gramming [12], game-theoretic framework [13], and Lagrangian relaxation method [14]. However, there
are two main disadvantages in using these traditional algorithms: (1) They are only suitable for solving
WTA problems with smaller dimensions; optimisation performance is ineffective once the dimension
is increased, and (2) they have weak performance in global optimisation abilities even though they can
provide an allocation strategy to the WTA problem. The multitarget allocation problem is a WTA prob-
lem with a higher dimension, requiring solving algorithms with significant effects on the convergence
speed and global optimisation ability. Thus, the above traditional solving algorithms are not suitable for
solving the multitarget allocation problem with a higher dimension in cooperative attack scenarios.

Multitarget allocation can essentially be considered an optimisation problem aiming to provide an
optimal strategy for each interceptor to attack its assigned target. Currently, various intelligent algorithms
are widely being utilised in solving optimisation problems to effectively overcome the shortcomings of
the above traditional algorithms. The intelligent algorithm is considered a random search algorithm that
imitates the behaviour patterns of nature or living organisms; the algorithm does not rely on gradient
descent as the search direction and adopts a fitness function as a standard.

Particle swarm optimisation (PSO) is a typical random optimisation algorithm based on swarms with
advantages of fast calculation speed and strong optimisation ability; it has a wide range of applications for
solving optimisation problems [15]. Based on an evaluation index system for the cooperative engagement
effectiveness of unmanned surface vehicles, Yuanming et al. [16] combined a fuzzy analysis method
and a back propagation (BP) neural network to establish an effectiveness evaluation model based on
a PSO-BP neural network. Cheng et al. [17] studied the structure and functions of the ballistic missile
defence system by using an agent-based modelling method and adopted the PSO algorithm to establish a
multiagent decision support system that included a missile agent, radar agent and command centre agent.
Based on the PSO algorithm, Zheng et al. [18] proposed a heuristic optimisation model for surface-to-
air missile path planning under a three-degree-of-freedom model to achieve the maximum range and
optimal height of a missile. By constructing a master–slave population coevolution model, Fu et al. [19]
proposed a multipopulation coevolution-based multiobjective particle swarm optimisation (MOPSO)
algorithm to solve WTA problems with multiple optimisation objectives. Liu et al. [20] proposed a
firepower unit correlation matrix and designed a hybrid-optimised algorithm based on the PSO and tabu
search algorithms, which demonstrated that the algorithm was more efficient than existing methods and
could output optimisation results at any time. However, in solving a complex and high-dimensional
optimisation problem, the PSO algorithm easily falls into a local extreme point, and the convergence
accuracy is weak.

The amount of calculation for solving WTA increases exponentially as the dimension gets higher
[12]. When multiple interceptors cooperatively attack multiple enemy targets, the process of multitarget
allocation is timely and effective to realise the real-time reconstruction and mission planning of the
battlefield situation. Therefore, to effectively solve the problem of multitarget allocation, we consider
the following two aspects: (1) establishing a fitness function to comprehensively describe the situation
between the interceptors and the targets so that each interceptor can optimally attack its assigned target
to achieve a maximised attack effectiveness, and (2) solving the multitarget allocation problem based
on the established fitness function to ensure that each target is effectively and quickly allocated to its
assigned interceptor.

Therefore, based on the issue of multitarget allocation, we propose an adaptive simulated annealing-
particle swarm optimisation (SA-PSO) algorithm to find an optimal method to allocate each target
to its specific interceptor to guarantee maximised attack effectiveness of each interceptor. The main
contributions are as follows:
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Figure 1. Relative motion between interceptor and target.

1. A fitness function is established based on the seeker’s characteristics of an interceptor and the
situation between the interceptor and its target by comprehensively considering the relative
range, relative angle, speed, capture probability, and radiation source matching performance.
As a result, it is necessary to provide the basis for solving the multitarget allocation problem.

2. Given the multitarget allocation problem with a large dimension, an adaptive SA-PSO algorithm
is proposed in combination with the PSO and SA algorithms to enhance the convergence speed
and overcome the disadvantage of the PSO algorithm and improve the global optimisation ability.

The remainder of this paper is organised as follows: Section 2 addresses the problem of multitarget
allocation and establishes a fitness function to evaluate the advantage for the allocation results. The
design of the adaptive SA-PSO algorithm is outlined in Section 3. Comparative simulation studies are
presented in Section 4. Conclusions are drawn in Section 5.

2. Problem formulation
In a scenario where multiple interceptors cooperatively attack multiple targets, it is essential to imple-
ment an optimal multitarget allocation strategy to maximise attack effectiveness by comprehensively
evaluating the characteristics of interceptors and targets. In this study, we consider the situation between
the interceptors and the targets from five aspects: relative range, relative angle, speed, capture probability
performance and radiation source matching performance. Then, we establish corresponding perfor-
mance functions to obtain a fitness function to evaluate the advantage of an i-th interceptor attacking a
j-th target; it is assumed that multiple interceptors cooperatively attack multiple ground targets. The rel-
ative motion relationship between the i-th interceptor and the j-th target in a longitude plane is presented
in Fig. 1; some assumptions are made in advance for the convenience of modelling and analysing.

Assumption 1. Since the encounter time between an interceptor and its target is extremely short (usually
only a few seconds), it is assumed that target allocation is completed only once, which means that the
target will not be changed after a missile is assigned a target.

Assumption 2. Interceptors and targets are treated as ideal particle models, ignoring their shape and
weight.

Assumption 3. Interceptors and the targets are moving at a constant speed, ignoring the external
disturbance on them.

2.1 Angle performance function
The angle in the speed direction of an interceptor plays an enormous role in evaluating the attack effec-
tiveness between the interceptor and its target. When the interceptor moves towards the target, if the
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speed direction of the interceptor is closer to the line of sight (LOS) direction, it can effectively attack
the target. In turn, when η = 0 holds, the angle advantage of the interceptor for attacking the target is
highly effective. Thus, the angle performance function is described as follows:

fη = e(− η
aπ )

2
(1)

where a is a variable parameter that needs to be designed and is related to the relative range R.

2.2 Distance performance function
An interceptor with detection capability has the chance to complete an attack mission only when the
target is located within the interceptor detection bound zone. Once the target moves into the interceptor
detection blind zone, the interceptor cannot directly detect the target, thus resulting in a failed attack
mission. Let the lower and upper bounds of the interceptor’s detection capability be Rmin and Rmax,
respectively. It is assumed that when the relative range between an interceptor and a target is (Rmin +
Rmax)/2, the detection capability is the strongest, implying the interceptor distance performance is most
notable. Thus, the distance performance function is described as follows:

fR = e−
(

R−R0
σR

)2

(2)

where R0 = (Rmin + Rmax)/2, and σR is determined by the detection range, which is associated with a
seeker equipped with the interceptor.

2.3 Speed performance function
When attacking a target in a real scenario, an interceptor is generally required to move faster than the
target, which means that VT < VM holds. Thus, the speed performance function is described as follows:

fV = 1 − VT

VM

(3)

It can be seen from Equation (3) that when interceptor speed is the same as that of its target, the speed
performance function is 0; when the target is stationary, the speed performance function is equal to 1.

2.4 Capture probability performance function
During interceptor formation, each interceptor can exchange and share information with its neighbours
through a communication network. As a result, although each interceptor has a detection blind zone
restricted by its seeker, a larger range of situational awareness associated with its target can be obtained
through the information interaction from other interceptors. Therefore, the communication network
enlarges the capture probability of each interceptor. However, there are also inevitable communica-
tion delays and packet loss problems in the formation of a communication network, which decreases
the capture probability of each interceptor. Thus, it is necessary to comprehensively analyse the capture
probability performance of each interceptor, including its own capture probability and the communica-
tion network capture probability. The capture probability performance function is described as follows:

fc =
{

psc

pnc

(4)

where psc, (0 ≤ psc ≤ 1) denotes the probability that an interceptor captures its target by itself, and
pnc, (0 ≤ pnc ≤ 1) denotes the probability that it captures using the communication network.
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2.5 Radiation source matching performance function
Generally, typical targets can be classified into electromagnetic radiation, infrared radiation, and visible
light radiation sources according to radiation types. However, different types of detection equipment
are required to capture a target with different radiation sources. Similarly, seekers can be classified into
radars, infrared imaging and visible light. As a result, when multiple interceptors cooperate to attack
their targets, the combination format of the seekers needs to be considered to enhance the cooperative
detection and disturbance countermeasure capabilities. In this study, we appropriately simplify radiation
source matching performance and stipulate its corresponding performance function as follows:

fs =
{

1
0

(5)

where fs = 1 denotes that the target radiation source is matched with the seeker, and fs = 0 denotes that
it is unmatched with the seeker.

Therefore, based on the above-established five performance functions, the fitness function can be
described as Equation (6). Moreover, we can ensure the result of the multitarget allocation, optimise the
fitness function and realise maximised attack effectiveness.

F = fc

(
ρ1 fη fR + ρ2 fη fV + ρ3 fs

)
(6)

where ρ1 ρ2 and ρ3 are weight coefficients determined by the influence of each performance function on

the comprehensive fitness function. 0 ≤ ρi ≤ 1, (i = 1, 2, 3) and
3∑

i=1

ρi = 1.

Remark 1. For an interceptor, the established fitness function reveals the optimal probability of
implementing the attack on the target, which is fundamental to conducting the multitarget allocation.

Remark 2. When an interceptor has the advantage in distance and speed, the fitness function is not
notable once the speed deflection angle η deviates significantly. Therefore, Equation (6) shows that
both the distance and speed performance functions are multiplied by the angle performance function
to comprehensively reflect the coupling relationship between them, which is closer to real cooperative
combat scenarios.

In this study, it is assumed that the numbers of interceptors and targets are m, m ∈N
+ and n, n ∈N

+,
respectively (n < m). Based on Equation (6), we can obtain the value of the fitness function between
an i-th interceptor and a j-th target, thereby constructing the comprehensive matrix between the i-th
interceptor and the j-th target as follows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F11 · · · F1n

...
...

...

Fij

...
...

...

Fm1 · · · Fmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Therefore, the objective of the multitarget allocation can be described as follows:

Fmax =
m∑

i=1

n∑
j=1

FijXij (8)

s.t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
j=1

Xij = 1 , (i = 1, 2, · · · , m)

m∑
i=1

Xij ≤ Tj , (j = 1, 2, · · · , n)

Xij = {0, 1}

(9)
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Figure 2. Diagram of particle motion.

It can be seen from Equation (9) that there are three restrictions in the objective of the multitarget
allocation. The first constraint denotes that each interceptor can only attack a single target. The second
constraint denotes that a j-th target can be attacked by Tj at most, which implies that its ammunition
need is Tj in turn. Xij denotes the probability that the i-th interceptor will be allocated to the j-th target,
which can either be 0 or 1.

3 Multitarget allocation strategy
In this section, based on the fitness function established in Equation (6), we propose an adaptive SA-
PSO algorithm to allocate a target to a specific interceptor to realise the maximised attack effectiveness.
Firstly, we briefly introduce the PSO algorithm and adaptively improve it to promote its performance in
practical applications. Secondly, based on the disadvantage of the PSO algorithm, which easily falls into
a local extreme point, and problems of low search accuracy and slow convergence speed, we combine
the SA and adaptive PSO algorithms to propose a novel swarm intelligence algorithm. Finally, a detailed
solution process of the adaptive SA-PSO algorithm is introduced.

3.1 PSO algorithm
The PSO algorithm, derived from the laws of the movement of birds, is a swarm intelligence algorithm.
First proposed by James Kennedy and Russell Eherhart [21,22], it is assumed that each bird is a single
particle. Then, the process of a particle searching for the global optimal space is analogous to a bird
looking for its favourite food. Firstly, it is necessary to initialise a certain number of randomly mov-
ing populations, in which the position of each particle is a feasible solution in a search space. Then,
the fitness value of an i-th particle is recorded in the process of iterating, and its optimal value dur-
ing all iterations before the current position is memorised, called the individual extreme value (pbest).
Simultaneously, other particles exchange information with each other so that an optimal value occurs
among all particles in the current iteration process, called the global extreme value (gbest). Finally, each
particle adopts these two extreme values to update the speed of the next iteration, thereby adjusting the
position of the particle’s movement to move closer to the optimal point.

Figure 2 illustrates the position change of an i-th particle in the iteration process. xi and vi denote its
position and speed, respectively. For any particle, their speed is composed of three components: v1i, v2i

and v3i. v1i represents the particle speed components, v2i represents the self-recognition learning com-
ponent of the individual extreme value obtained by the particle in its iterative process and v3i represents
the social experience component in the populations.

Assuming that in a D-dimensional space, the total number of particles is n. The next iteration of each
particle is determined by its experience and the best experience of other particles. Each iteration uses
Equations (10)–(11) to update its speed and position.
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Figure 3. PSO algorithm diagram.

vid(t + 1) = ωvid(t) + c1r1 (pi(t) − xid(t)) + c2r2 (gi(t) − xid(t))

vid(t + 1) = vmax, vid(t + 1) > vmax

vid(t + 1) = vmin, vid(t + 1) < vmin

(10)

xid(t + 1) = xid(t) + vid(t)

xid(t + 1) = xmax, xid(t + 1) > xmax

xid(t + 1) = xmin, xid(t + 1) < xmin

(11)

where the subscript i denotes the i-th particle. t denotes the number of particle iterations. ω denotes
an inertia weight factor. c1, c2 ∈R

+ denotes the acceleration factor. r1, r2 ∈R
+ denote two random uni-

formly disturbed in the interval (0,1). [xmin, xmax] and [vmin, vmax] denote the upper and lower bounds of
the particle search range, respectively. The speed of the i-th particle is denoted by vi = (vi1, vi2, · · · , viD),
and the position of the i-th particle is denoted by xi = (xi1, xi2, · · · , xiD). The calculation process of the
PSO algorithm is presented in Fig. 3.

3.2 Adaptive improvement of PSO algorithm
Considering the PSO algorithm disadvantage, which converges slowly in optimisation performance, an
adaptive improvement is made in this study. The adjustable parameter C(k) is added to the PSO algorithm
to adaptively adjust the inertia weight factor ω and the acceleration factors c1 and c2. The principle is
described as Equation (12). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(k) =
∑N

i=1

√∑D
j−1

[
xi(j) − Pi

b(j)
]2

N

C(k) = D(k)

max (D)
ω = C(k)

c1 = 2 × C(k)

c2 = 2 − c1

(12)
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Figure 4. Diagram of multitarget allocation based on adaptive SA-PSO algorithm.

Remark 3. As shown in Equation (12), the inertia weight factor ω and the acceleration factors c1 and
c2 are simultaneously influenced by C(k) to adaptively vary in the optimisation process and improve the
convergence speed.

3.3 Multitarget allocation strategy based on adaptive SA-PSO algorithm
To further improve the performance of the PSO algorithm, a simulated annealing (SA) algorithm is
introduced. The SA algorithm is a heuristic algorithm that allows the particle to accept a solution worse
than the current solution with a certain probability. Thus, it is possible to break away from a local
optimal solution and obtain a global optimal solution, effectively overcoming the disadvantage of the
PSO algorithm easily falling into a local extreme point [23,24]. In addition, the roulette rules are applied
to improve selection of optimal particles. While obtaining a better particle, inferior particles can also
be obtained with a certain probability. Then, the particle speed can be adapted to appear from the local
extremum and quickly converge to the global optimal point. The calculation process of the adaptive
SA-PSO algorithm is presented in Fig. 4. The optimisation strategy for multitarget allocation based on
the proposed adaptive SA-PSO algorithm is as follows:

a. Initialising the position and speed of each particle in the population
b. Calculating the fitness value of each particle, storing the current particle position and particle

fitness value in pi, and storing the optimal individual position and fitness value of all pb in Pb

c. Determining the initial temperature t0:

t0 = f (pb)

ln 5
(13)

d. Determining the adaptation value of each pi at the current temperature:

TF (pi) = e−(f (pi)−f (pb))/t∑N
i=1 e−(f (pi)−f (pb))/t

(14)

e. Applying the roulette rules to determine the global optimal substitute value p′
b from all pi and

then updating the speed and position of each particle according to Equations (10)–(11)
f. Applying an attenuation coefficient method for the temperature-reducing process:

tk+1 = 0.6tk (15)
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Table 1. Initial conditions of the interceptors

Location Speed Path angle Rmax Rmin

Number (km) (m/s) (◦) (km) (km) Seeker
M1 (3,2,3.5) 300 0 40 0.5 Radar
M2 (3.5,2,3) 280 0 50 0.5 Radar
M3 (2.5,2,2.5) 260 0 35 0.2 Radar
M4 (2.5,2,2) 240 0 60 0.2 Infrared imaging
M5 (1.5,2,0.3) 220 0 60 0.2 Radar
M6 (1.5,2,0) 300 0 40 0.5 Infrared imaging
M7 (0,2,-1) 280 0 50 0.5 Infrared imaging
M8 (0,2,-1.5) 260 0 35 0.2 Radar
M9 (2,2,-2) 240 0 60 0.2 Radar
M10 (2,2,-2.5) 220 0 60 0.2 Infrared imaging

Figure 5. Simulation block diagram.

g. Halting the optimization process and outputting the results if the termination conditions are met;
else, returning to step d to continue the optimization search

4 Simulation analysis
In this section, we assume ten interceptors are attempting to attack eight ground targets in a three-
dimensional plane. The proposed adaptive SA-PSO algorithm is applied to assign appropriate targets to
each interceptor to achieve maximised attack effectiveness. The simulation block diagram is presented
in Fig. 5; comparative experiments are conducted with the PSO algorithm to verify the feasibility and
superiority of the proposed adaptive SA-PSO algorithm. The initial conditions of the interceptors and
targets are presented in Tables 1–2. The parameters of the fitness function in Equation (6) is presented
in Table 3. a and σR are defined as follows:

a = 0.003R (16)
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Table 2. Initial conditions of the targets

Location Speed
Number (km) (m/s) Ammunition need Type
T1 (32,0,3.3) 30 1 Lectromagnetic radiation
T2 (34.5,0,2.9) 20 2 Lectromagnetic radiation
T3 (35,0,2) 10 1 Infrared radiation
T4 (33,0,0) 30 1 Lectromagnetic radiation
T5 (33,0,-1) 20 2 Infrared radiation
T6 (30,0,-2) 10 1 Lectromagnetic radiation
T7 (31,0,-2.5) 30 1 Lectromagnetic radiation
T8 (32,0,-3) 20 1 Infrared radiation

Table 3. Parameters of fitness function

ρ1 ρ2 ρ3 psc pnc

0.35 0.35 0.3 0.95 0.7

σR = Rmin + Rmax

2
(17)

Thus, the comprehensive matrix F between the i-th interceptor and the j-th target can be obtained as
follows:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8593 0.8386 0.5575 0.8445 0.5689 0.8976 0.8636 0.5767

0.9068 0.9061 0.6297 0.9018 0.6281 0.9354 0.9086 0.6312

0.7884 0.7611 0.4811 0.7707 0.4969 0.8402 0.7976 0.5081

0.6233 0.6359 0.9339 0.6233 0.9222 0.6493 0.6229 0.9223

0.9045 0.9163 0.6454 0.9039 0.6340 0.9341 0.9046 0.6346

0.5535 0.5314 0.8214 0.5426 0.8385 0.6015 0.5670 0.8499

0.6041 0.5971 0.8904 0.5989 0.8959 0.6412 0.6120 0.9025

0.7428 0.7193 0.3254 0.7323 0.4606 0.8060 0.7641 0.4756

0.9084 0.9194 0.6474 0.9080 0.6369 0.9346 0.9081 0.6373

0.6196 0.6317 0.9310 0.6192 0.9194 0.6484 0.6193 0.9198

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

In the simulations, we choose 30 particles to implement 500 iterations. The parameters of the PSO
algorithm are selected as ω = 1, c1 = 1.5, and c2 = 1.5. The simulation results are presented in Figs 6–8.
In Fig. 6, it can be seen that the fitness function F calculated by the PSO algorithm converges to an
optimal value of 17.5725 after 328 iterations. However, based on the adaptive SA-PSO algorithm, the
fitness function F can be iterated to approximately 16 iterations, causing a sudden change in which the
solution quickly converges to an optimal value of 18.6923. This shows that the convergence speed is
promoted by over 20-fold compared with the PSO algorithm, and the fitness function is improved by
1.1198. Thus, the proposed adaptive SA-PSO algorithm can effectively emerge from the local extreme
point and converge to the optimal point with better global search capabilities and faster convergence
speed, achieving maximum interceptor attack effectiveness. As is shown in Figs 7–8, the multitarget
allocation results are described in the three-dimensional plane based on the adaptive SA-PSO and the
PSO algorithms. Each target is allocated to at least one interceptor, guaranteeing the ammunition need
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Figure 6. Optimisation results.

Figure 7. Multitarget allocation based on adaptive SA-PSO algorithm.

Figure 8. Multitarget allocation based on PSO algorithm.

as shown in Table 2. Nevertheless, only targets (3, 4 and 8) are assigned the same interceptors missiles
(6, 9 and 7, respectively), which indicates that, under the premise that the ammunition need of the targets
can be achieved, the proposed adaptive SA-PSO algorithm can both promote the convergence speed and
improve the allocated results of the missiles.
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5 Conclusion
Cooperative engagement is an effective approach for improving combat effectiveness using information
development conditions. An adaptive SA-PSO algorithm was proposed in this study to address the
multitarget allocation problem in a cooperative attack for multiple interceptors. We comprehensively
considered the situation between the interceptors and the targets and chose the relative range, relative
angle, speed, capture probability and radiation source matching performance to establish a compre-
hensive fitness function. Additionally, an adaptive SA-PSO algorithm was proposed, in which we made
adaptive improvements in the PSO algorithm and combined the SA algorithm with the adaptive PSO
algorithm. The proposed adaptive SA-PSO algorithm can obtain the optimal solution for the fitness
function quickly and effectively. The simulation results demonstrated that the proposed adaptive PSO
algorithm convergence speed was improved by over 20-fold compared with the PSO algorithm; an
improvement in the order of 1.1198 is obtained in the fitness function, realising the maximised attack
effectiveness.
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