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Concurrent dual-band SiGe HBT power
amplifier for Wireless applications

VITTORIO CAMARCHIA', ROCCO GIOFRE’, IACOPO MAGRINI’, LUCA PIAZZON’,

ALESSANDRO CIDRONALI®, PAOLO COLANTONIO”
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This paper presents an investigation of a concurrent low-cost dual-band power amplifier (PA) fabricated in SiGe technology, able
to simultaneously operate at two frequencies of 2.45 and 3.5-GHz, including an evaluation of its system level performance poten-
tiality. Taking into account the technology novelty and the lack of device characterization and modeling, a hybrid (MIC) approach
has been adopted both for a fast prototyping of the PA and for the evaluation of the device potentiality based on an extensive linear
and nonlinear characterization. The comparison of PA performance in single-band or concurrent mode operation will be pre-
sented. In particular, the measured PA prototype shows an output power of 17.2 and 17-dBm at a 1-dB compression point, at
2.45 and 3.5-GHz, respectively, for CW single-mode operation, with a power added efficiency around 20%. System-level analysis
predicts that, when the PA is operated under the 20-MHz Orthogonal Frequency-Division Multiplexing (OFDM) concurrent
signals, the maximum output power levels to maintain the Error Vector Magnitude (EVM) within 5% are 11 and 3.5-dBm at
2.45 and 3.5-GHz, respectively. Moreover, new concepts and possible new system architectures for the development of the next
generation of the multi-band transceiver front-end will be provided with an extensive system-level evaluation of the amplifier.
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. INTRODUCTION

Wireless technology has been evolving from cellular to wireless
broadband and to personal area network applications. As can be
already seen in today’s 3G voice/data Systems, users may be
moving while simultaneously operating in multimedia stream-
ing sessions or in a broadband data access [1]. To interact
with a multi-services network, radio technology should change
between an operative band to another and adapting its features
according to the different available standards. To this aim,
multi-band radio technologies have been extensively addressed
by several research projects and covered by the scientific litera-
ture [2]. Despite these efforts, presently there is no optimum
multi-band radio topology. Basic system-level solutions are
referred to as a software-defined radio (SDR), a radio communi-
cation system that uses software for the reconfiguration of the
digital or analogue part of the sub-system for the modulation
and demodulation of the radio signals [3]. Most of the
systems in the market still support only a very limited number
of standards (e.g. Global System for Mobile Communications
(GSM), Universal Mobile Telecommunications System
(UMTS) and, when available, Bluetooth). Further communi-
cation standards are supposed to enter the market in the near
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future, and, if possible, they can be used without hardware modi-
fications. The RF transmitter power amplifier (PA) will be a key
point of this chain. Today, dedicated PAs achieve very good
power added efficiency (PAE) and, as a consequence, long
battery lifetime. Any reconfigurable PA, needed for the
support of different, not always predefined, communication
systems, must compete with these dedicated solutions. Flexible
receivers for either multi-band or SDR have been investigated
in this field and this paper deals with the evaluation of a
low-cost new PA design methodology to be considered as an
enabling sub-system for the above-described scenario.

The paper is organized as follows: An overview of the
state-of-the-art multi-band PA architectures will be given in
Section II, highlighting the advantages and weaknesses for
each topology. The PA prototype design methodology and
its experimental characterization are described in Section III,
while the PA system-level analysis is reported in Section IV.
Conclusions are finally drawn in Section V.

. MULTI-BAND PA
ARCHITECTURES

Multi-band PA strategies can be roughly divided into three
main approaches (see Figs 1-3). The most straightforward sol-
ution is to use two dedicated PAs coupled by a diplexer,
designed to separate the two spectra according to the required
communication standards (Fig. 1). The PAs operate at their
respective carrier frequencies. The isolation is assured by a
diplexer, which could represent a critical issue in case of
closer operative spectrum bands. The loss introduced by this
diplexer typically is in the range of a few dBs, thus
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Fig. 1. Schematic of combined PAs.

determining a reduction of the resulting overall system per-
formance, in particular at the output stage. For quick
product development this solution appears very interesting,
but it represents a not optimized solution in terms of costs
and performance. A second approach (see Fig. 2) consists in
employing tunable/switching components in the matching
networks, to enable the capability coping with more than
one standard. In this solution, usually referred to as adaptive
PA, the efficiency is also enhanced (see e.g. [4]), selecting
the proper termination for each power level. The main draw-
back of this solution, in principle very flexible and suitable for
the implementation of software-based controlled subsystems,
is related to the losses exhibited by tunable components such
as the needed variable capacitors or tunable inductors, affect-
ing the overall system features. Another critical point is rep-
resented by the solid-state devices normally included in the
matching networks to enable parameter tuning, which intro-
duce linearity constraints. The third approach consists in
the so-called concurrent PA, or, in other words, in a system
able to simultaneously operate in different bands (Fig. 3). In
this case the matching networks are designed to maximize
device performances, allowing simultaneous operability in
all bands, while avoiding the use of switches or reconfigurable
elements and pertinent control voltages (see e.g. [5]). In this
case, the most critical point is clearly represented by the
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Fig. 2. Schematic of adaptive PA.
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Fig. 3. Schematic of the dual-band PA.

matching networks constraints since they have to be able to
synthesize the device optimum loads at different frequencies.
The aim of this paper is to study, investigate, and evaluate the
feasibility of a dual-band power amplifier using low-cost HBT
SiGe technology. For this purpose, the concurrent approach
(Fig. 3) has been selected since it is the only one that allows
simultaneous interoperability in the selected working bands.

. PA DESIGN

In order to investigate the features of a concurrent topology, a
PA has been developed based on a new SiGe BiCMOS active
device, provided by the IHP foundry [6, 7], to operate at fre-
quencies of 2.45 and 3.5-GHz. Accounting for technology
novelty and the lack of device characterization and modeling,
a hybrid (MIC) approach was adopted for fast prototyping
and in order to evaluate device potentiality also. In particular,
the following steps were adopted:

- characterization of the active device under small and large
signal conditions;

— design of the matching network;

- integration of the PA prototype and tests.

The prototype developed was realized by designing match-
ing networks on a low-cost plastic substrate (TACONIC
CER-10) and connecting such nets to the active device
through wafer probes, as schematically depicted in Fig. 4.

A) Active device characterization

The active device was extensively characterized in both linear
and nonlinear regimes. Figure 5 shows an HBT cross section.
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Fig. 4. Hybrid (MIC) PA prototype.
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Since the DUT is an HBT device, for the static I-V output
characteristics the collector to emitter voltage Vg was
varied in the range from o to 8.5-V, while the base current
I was varied from 20-pA to 1.4-mA. The resulting measured
I-V characteristics are reported in Fig. 6. Following that, scat-
tering parameter measurements were performed for different
bias points, in the range 100-MHz-40-GHz. Accounting for
the DC curve for the design of the PA, the bias point
Vee=4.5-V and Iz=o0.4-mA was chosen. According to
this bias point, Figs 7 and 8 report the corresponding
S-parameter behavior in terms of input (S,,) and output
(S,,) reflection coefficient and small signal gain (S,,), referred
to the DUT reference planes highlighted in Fig. 4.
Successively, nonlinear characterization was performed for
the design frequencies of 2.45 and 3.5-GHz, with an active
harmonic load-pull test bench based on the active loop
approach [8]. The measured optimum fundamental termin-
ation from load-pull maps at 2.45-GHz, at 3-dB of gain com-
pression, was I'; ; = [0.4]¢"**, showing an output power,
and PAE of 19.6-dBm and 39%, respectively (see Fig. 9).
The megsucred DUT input reflection coefficient was T, o =
|0.83]e /*7® . For the same bias conditions and compression,
at 3.5-GHz the identified optimum load was I’y g =

lo.52]¢/***, while the DUT input reflection coefficient was
Linp=lo.91le — 777, showing an output power of
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Fig. 6. Static device DC characteristics.
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Fig. 7. Scattering parameter S,, and S,, for the DUT in the bias point Vg =
4.5-V and Iy = 0.4-mA selected for the PA design.
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Fig. 8. Small signal gain S,, for the DUT in the bias point Vg = 4.5-V and
Iy = 0.4-mA selected for the PA design.
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Fig. 10. Power sweep on optimum load (I', ;,) at the fundamental frequency
of 3.5-GHz.

19.5-dBm and a PAE of 40% (Fig. 10). As can be noted, the
two sets of curves, at 2.45 and 3.5-GHz respectively, exhibit
pretty similar figures in terms of output power, PAE, and

B) PA design

In order to realize the PA prototype, the idea was to design the
input and output matching networks to fulfill, across the DUT
reference sections (see Fig. 4), the optimum loading condition
previously reported. For this purpose, it was required to prop-
erly de-embed the contribution of SMAs and probes used
to connect the nets to the DUT and the rest of the set-up.
The matching networks were designed by using a lumped/
distributed approach and following the criteria reported in
[9, 10]. The impedance transformation required for the
output matching network (OMN) was realized by the
scheme shown in Fig. 11, where the impedance transform-
ations realized in each section are also represented.
Accounting for the measured S-parameter of the output
probing connections, the optimum loads I';, f and I';, £, to
be synthesized in Section A have been de-embedded to
obtain the load condition to be fulfilled in Section B. The
resulting network transformation from the external 50-{} ter-
mination up to Section B is reported in Fig. 11. A similar pro-
cedure was adopted for the design of the input matching
network (IMN) to fulfill the conjugate matching conditions
represented by the two source reflection coefficients I's , =

gain. |0.83] exp”® and Iy p=lo.91] exp’77 ) respectively. The
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Fig. 11. Output matching network.
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Fig. 12. Output matching network.

input network scheme is reported in Fig. 12, together with the
loading transformation performed in each section. The pic-
tures of the realized matching networks are reported in Figs
13 and 14, respectively.

C) PA characterization

In order to experimentally evaluate the performance of the
whole test system, the PA was measured both in small
signal (SS) scattering parameters and in large signal (CW)
power measurements at the two fundamental frequencies of
interest. Figure 15 shows the measured transmission S,, and
matching S,, scattering parameter of the amplifier. As
expected for this preliminary test structure, the hybrid setup
implemented (see Fig. 4) deeply affects the performance of
the amplifier, in terms of both absolute gain and actual
working frequencies.

For the former, the losses introduced by the matching nets
have been estimated to be of the order of 1 and 0.6-dB for
IMN and OMN, respectively. For the absolute gain, an
actual frequency shift was observed, which was partially com-
pensated through additional delay elements properly tuned
during measuremens. Nevertheless, a non-negligible mis-
match at the prototype input was experimentally verified,
which implies a power gain reduction of the realized PA  Fig. 14. Picture of PA output matching network.

Fig. 13. Picture of PA input matching network.
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Fig. 15. Measured transmission S,, and matching S,, scattering parameters of
the amplifier.
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Fig. 16. Output power, power gain, and PAE vs. input power (P;,) at the
fundamental frequency of 2.575-GHz.

with respect to the load-pull measurements on the DUT. As a
result, the SS gains in the two bands are roughly 12-dB at
2.575-GHz and 9-dB at 3.4-GHz. Figures 16 and 17 show
output power, power gain, and power added efficiency
(PAE) vs. input power (Py,) at 2.575 and 3.4-GHz
(maximum of the SS gain), respectively. As can be clearly
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Fig. 17. Output power, power gain, and PAE vs. input power (P;,) at the
fundamental frequency of 3.4-GHz.
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seen, output power is around 17.5-dBm, gain is near 10-dB,
and PAE is close to 20% for both the frequencies. The effect
of the setup is also evident from power performance, resulting
in roughly 2-dB of output power losses with respect to the
stand-alone DUT performance, which could be alleviated in
an MMIC realization.

V. SYSTEM-LEVEL ANALYSIS

While the above discussion highlighted the design method-
ology for dual-band concurrent PA, this section describes its
potentiality when implemented in SiGe-MMIC technology
and involved in a possible scenario for the next generation
of wireless communication. For this purpose, a complete sche-
matic of such a PA was designed following the design rule and
completed with all the parts required for its full functioning,
which are biasing networks input/output matching networks,
stabilizing network, and ballast network. In addition, a CAD
platform was adopted to simulate PA behavior when dealing
with concurrent dual-band modulated signals. The system
was implemented in the Agilent-ADS suite by using beha-
vioral models for the mixers and signal sources, while the
two base-band signals were implemented by using the physical
layer defined for the OFDM-IEEE 802.16¢ signal and specifi-
cally the 20-MHz bandwidth, 64 QAM mode. A dual-band
concurrent transmitter architecture based on the double-
image rejection scheme was implemented. This solution, in
addition to effective image suppression, enables the capability
to simultaneously up-convert two baseband signals around
the desired carrier frequencies. The system was co-simulated
using the data-flow and envelope engines. The complete
design in IC technology has led to a dual-band PA frequency
behavior with power gains at two frequency bands of 2.45 and
3.4-GHz which differ from those reported in Figs 9 and 10.
This is mainly due to the additional element considered in
the circuit, which determines increased losses, and overall a
low-pass behavior, which makes the higher operative fre-
quency much more affected than the lower. As a consequence,
a larger difference is observed between the two operative fre-
quencies than in the previous discussed experimental results.
The system-level analysis firstly considers the effects of the
in-band and the out-of-band distortion of a two-tone exci-
tation. An envelope analysis is required to investigate spectral
re-growth and modulation integrity, although a significant
effect is due to cross-modulation between the two envelopes.
To take into account this higher order of complexity, the
numerical resources required increase considerably when
compared to single carrier-single enveloped analysis.
Figure 18 provides a comparison between the response at fun-
damental for the concurrent dual-band PA when driven by a
single-tone and by a two-tone signal. Three simulations have
been carried out, the first considering the single-tone exci-
tation at 2.45-GHz, the second considering the single-tone
excitation at 3.5-GHz, and, finally, the third considering
the simultaneously two-tone excitation; the power level
ranges have been kept constant through the simulations.
From Fig. 18 it is possible to observe that for the low-level
injection the two sets of curves converge to the small signal,
while on increasing the power of the single-tone excitation,
the corresponding responses exhibit an input referred to
1-dB compression of —35 and o-dBm at 2.45 and 3.5-GHz,
respectively. The higher value of compression for the higher
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Fig. 18. Gain comparison of the large-signal single-tone and two-tone
analyses of the concurrent dual-band PA.

band is mainly due to the reduced gain exhibited by the PA at
this frequency. When considering the concurrent excitation,
the input power level at which the gain decreases by 1-dB
reduces sensibly with respect to the single-mode operation.
In particular, we observed a reduction of approximately
3-dB for the lower band and 7-dB for the higher band, due

Table 1. EVM calculation for the dual-band PA.

CONCURRENT DUAL-BAND SIGE HBT POWER AMPLIFIER

to the different gain figures exhibited by the PA, causing a
change in the dynamic load lines, in a way very similar to
typical mixer operation. The power levels for the two digitally
modulated signals were fixed in order to hold, in the concur-
rent dual-band operative conditions, the maximum EVM
within 5%. These values result in output power levels of 11
and 3.5-dBm, respectively, at 2.45 and 3.5-GHz. That value
of EVM is typical for system communication requirements
involving OFDM broadband signals, e.g. WLAN or
WiMAX. The analysis results of the EVM in the three differ-
ent operative conditions are reported in Table 1 for 11 and
3.5-dBm, respectively, for lower and higher frequency. In
the table, System # 1 refers to the modulated signal with
center band at 2.45-GHz and System # 2 to the one at
3.5-GHz. As can be noted from the table, System # 1 does
not improve its figure sensibly, while System # 2 exhibits a sig-
nificant reduction of the EVM from 5.2 to 1.2%, moving from
the concurrent to the single-band operation mode. A different
point of view of these results is achieved observing the spectra
for concurrent and single-system operations. With reference
to Figs 19 and 20, it is possible to clearly observe modification
of the PA output spectrum in the two bands and for the two
different operations. While the integrated power for the two
systems does not change considerably, moving from single

EVM EVM EVM systems to concurrent systems, the gain flatness and the
Sys # 1 ON Sys # 1 OFF Sys #1 ON  out-of-band spectrum change significantly only for the
Sys # 2 OFF Sys # 2 ON Sys#2ON  3.5-GHz system. This is a result consistent with the EVM
Sys# 1 8% na 1.9% figures reported in Table 1 and with the compression charac-
Sys # 2 na 1.2% 5.2% teristic reported in Fig. 18, providing better insight into the
operation of the dual-band PA.
concurrent
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Fig. 19. Comparison between spectra at 2.45-GHz in single-system operation (bottom figure) and in the presence of a concurrent system at 3.5-GHz (top figure).

The graphs also report the large signal gain of the PA.

https://doi.org/10.1017/51759078709000087 Published online by Cambridge University Press

123


https://doi.org/10.1017/S1759078709000087

124

VITTORIO CAMARCHIA ET AL.

concurrent

-10 40
E 20 (bR _ it A ' 30
S - i ‘ - P .

=30 I 1 ] — 20 o
5 | I B
5 ! | f | 1L AL LY. 1) . 3
o 40 | | | i 10z
& I[j i il -2
5 -50 ‘ / | -0
a . |
3
o -60— — -10

=70 |||||||:]||l:||||||||l!|||r!||||||||||||||'||||||l~'|"|"lr“rl||i‘1[! — -20

3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3.540
freq [MHz]
single band
-10 40
- < L
E -20 h | { f — 30
m g R
5, |
£ -30 20 o
€ - S )
- 3
8 -40— I — 10 =
% g —_— - m
5 -507] — 0
a - =
3
o -60 | — _10
A Ll | ||||k (IATINTR
A" LB B e UL AL L LI L L L L B I kL UL B =20

3.460 3.465 3470 3475

3.480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3.540

freq [MHz]

Fig. 20. Comparison between spectra at 3.5-GHz in the single-system operation (bottom figure) and in the presence of a concurrent system at 2.45-GHz (top

figure). The graphs also report the large signal gain of the PA.

V. CONCLUSIONS

This paper has dealt with the design of a concurrent low-cost
dual-band PA fabricated in SiGe technology and its system-
level investigation. A hybrid MIC approach has been
adopted both for a fast prototyping of the PA and for the
evaluation of the device potentiality based on an extensive
linear and nonlinear characterization. This has permitted
the design of matching networks in order to optimize their
behavior at 2.45 and 3.5-GHz. The measured PA prototype
has shown output powers of 17.2 and 17-dBm at a 1-dB com-
pression point, at 2.45 and 3.5-GHz, respectively, for CW
single-mode operation, with a PAE around 20%.
Nevertheless, the dual-band PA design methodology pre-
sented here and its investigation at system level highlighted
new concepts and possible system architecture solutions for
the development of the next generation of a multi-band trans-
ceiver front-end.
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