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We consider a calculus for multiparty sessions enriched with security levels for messages. We

propose a monitored semantics for this calculus, which blocks the execution of processes as

soon as they attempt to leak information. We illustrate the use of this semantics with

various examples, and show that the induced safety property is compositional and that it is

strictly included between a typability property and a security property proposed for an

extended calculus in previous work.

Dedicated to the Memory of Kohei Honda

1. Introduction

With the advent of web technologies, we are faced today with a powerful computing

environment which is inherently parallel, distributed and heavily relies on communication.

Since computations take place concurrently on several heterogeneous devices, controlled

by parties which possibly do not trust each other, security properties such as confidentiality

and integrity of data become of crucial importance.

A session is an abstraction for various forms of ‘structured communication’ that may

occur in a parallel and distributed computing environment. Examples of sessions are

a client-service negotiation, a financial transaction or an interaction among different

services within a web application. Session types, which specify the expected behaviour

of participants in sessions, were originally introduced in Honda (1993), Takeuchi et al.

(1994) and Honda et al. (1998), on a variant of the π-calculus (Milner 1999) including

a construct for session creation and two n-ary operators of internal and external choice,

called selection and branching. The basic properties ensured by session types are the

absence of communication errors (communication safety) and the conformance to the

session protocol (session fidelity). Since then, more powerful session calculi have been

investigated, allowing multiparty interaction within a session (Honda et al. 2008), and
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equipped with increasingly sophisticated session types, ensuring additional properties like

progress (Bettini et al. 2008; Coppo et al. 2014).

In previous work (Capecchi et al. 2010) and in its expanded version (Capecchi et al.

2014), we addressed the question of incorporating security requirements into session types.

To this end, we considered a calculus for multiparty sessions enriched with security levels

for both session participants and data, and we defined a notion of security for this

calculus. We then proposed a session type system for this calculus, adding access control

and secure information flow requirements in the typing rules, and we showed that this

type system guarantees our security property (preservation of data confidentiality) during

session execution.

In this paper, we move one step further by equipping (a slightly simplified version of)

the above calculus with a monitored semantics, which blocks the execution of processes

as soon as they attempt to leak information, raising an error. Typically, this happens

when a process tries to participate in a public communication after receiving a secret

value. This monitored semantics induces a natural notion of safety on processes: a

process is safe if all its monitored computations are successful, in a dynamically evolving

environment and in the presence of an attacker which may add or withdraw messages

at each step. Expectedly, this monitored semantics is closely related to the security type

system presented in Capecchi et al. (2014). Indeed, some of the constraints imposed

by the monitored operational rules are simply lifted from the typing rules. However,

the constraints of the monitoring semantics are simpler than those of the typing rules,

since they refer to individual computations. In other words, they are local whereas type

constraints are both local and global. We also introduce a refinement of the security

property of Capecchi et al. (2014), which allows the exploration of the behaviour of

waiting session participants ‘ahead of time.’ This look-ahead capacity seems needed when

the recourse to a static analysis (like a session type system) to check the conformance

of potential session participants to the session protocol and security policy is either not

desired or not possible.

Other advantages of safety over typability are not specific to session calculi. Like

security, safety is a semantic notion. Hence it is more permissive than typability in that

it ignores unreachable parts of processes. Safety also offers more flexibility than types

in dynamic environments such as that of web programming, where security policies may

evolve over time.

Compared to security, safety has again the advantage of locality versus globality:

safety is a property of individual computations, while security is a property of the set

of computations of a process. In session calculi, it also improves on security in another

respect. Indeed, in these calculi processes communicate asynchronously and messages

transit in queues before being consumed by their receivers. Then, while the monitored

semantics blocks the very act of putting a public message in the queue after a secret

message has been received, a violation of the security property can only be detected after

the public message has been put in the queue, that is, after the confidentiality breach

has occurred and possibly already caused damage. This means that safety allows early

detection of leaks, whereas security only allows late leak detection.
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Finally, safety seems more appealing than security when the dangerous behaviour comes

from an accidental rather than a malicious transgression of the security policy. Indeed, in

this case a monitored semantics could offer feedback to the programmer, in the form of

informative error messages. Although this possibility is not explored in this paper, it is

the object of ongoing work.

The main contribution of this work is a monitored semantics for a multiparty session

calculus, and the proof that:

1. the induced information flow safety property strictly implies (a refined version of) our

previously defined information flow security property;

2. a simplified version of our previously defined type system, adapted to the present

calculus, strictly implies the induced information flow safety.

A more general contribution of our work is to raise the question of information flow

safety in session calculi. Indeed, while the issue of safety has recently received much

attention in the security community (see Section 10), it has not, to our knowledge, been

addressed in the context of session calculi so far.

The rest of the paper is organized as follows. In Section 2, we motivate our approach

with an example. Section 3 introduces the syntax and semantics of our calculus. In

Section 4, we present our refined security property and illustrate it with examples. Section 5

presents the monitored semantics and Section 6 introduces the notion of safety and

establishes its compositionality. The relation between safety and security is examined in

Section 7. Section 8 presents our simplified type system and Section 9 shows that it implies

safety. Finally, Section 10 concludes with a discussion on related and future work.

This work is an extended version of Capecchi et al. (2011), with complete proofs. It

introduces refined versions of the safety and security properties examined in that paper

and provides two additional results: compositionality of (the refined) safety property,

and the proof that this property is assured by a simplified version of the type system

of Capecchi et al. (2014).

2. Motivating example

Let us illustrate our approach with an introductory example, modelling an online medical

system. Consider a ternary protocol involving a user U, a generic medical service S-gen

and a specialized medical service S-spe. The interaction of the user with the generic

service is supposed to be less confidential than her interaction with the specialized service.

For simplicity we assume the former to have level ⊥ and the latter to have level ⊥ or

� according to the privacy of the exchanged data (here ⊥ means ‘public’ and � means

‘secret’ or ‘private’)†. The user addresses the generic service first, describing her symptoms

and getting back a prescription for a specialized visit. All this interaction is public, so it

takes place at level ⊥. Then the user sends her symptoms to the specialized service and

† In a real-life protocol, the interaction of the user with the generic service would have some level � higher

than ⊥, but for simplicity we consider only two levels here. Also, a practical medical system should include

more than one specialized service, namely one for each main category of diseases.
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I = ā[3]

U = a[1](α1). α1!〈2, symptom⊥〉.α1?(2, visit-prescr⊥).

α1!〈3, symptom⊥〉.α1?(3, diagn�). if critical (diagn�)

then α1!〈3,hosp-admiss�〉.α1?(3, hosp-name�).0

else α1!〈3, treatment�〉.α1?(3, drug-prescr�).0

S-gen = a[2](α2). α2?(1, symptom⊥).α2!〈1, visit-prescr⊥〉.0

S-spe = a[3](α3).α3?(1, symptom⊥).α3!〈1,diagn�〉.α3?(1, option�). if hosp (option�)

then α3!〈1, hosp-name�〉.0
else α3!〈1, drug-prescr�〉.0

Fig. 1. The medical service protocol.

waits for a diagnosis. The symptoms are again sent publicly, but the diagnosis needs to

be kept confidential, so it should be communicated at level �. Now, according to whether

the diagnosis is critical or not, the user asks either to be admitted to hospital or to be

prescribed some drug treatment. The specialized service answers by sending the name of

a hospital or a drug prescription, according to the user’s request. For the protocol to

be secure, these last interactions should take place at level �, since they depend on the

private diagnosis.

More precisely, the whole interaction may be described by the following protocol:

1. a connection is established among U, S-gen and S-spe;

2. U sends her symptoms to S-gen, who sends back a visit prescription;

3. U sends her symptoms to S-spe, who sends back a diagnosis;

4. U has two possible options according to the seriousness of the diagnosis:

4.1. U asks S-spe for hospital admission and waits for a hospital name from S-spe;

4.2. U requests a treatment to S-spe, who answers with a drug prescription.

In our calculus, this scenario may be described as the parallel composition of the

processes I, U, S-gen and S-spe in Figure 1, where the level � of hosp-admiss� in U is

deliberately left unspecified, as we wish to discuss two variants of the protocol, a secure

one and an insecure one.

A session is an activation of a service, involving a number of participants with predefined

roles. Here processes U, S-gen and S-spe communicate by opening a session on service

a. The initiator ā[3] specifies the number of participants of a and triggers a session as

soon as there is a participant for each role. Participants are denoted by integers: here

U=1, S-gen=2, S-spe=3. In process U, the prefix a[1](α1) means that U wants to act as

participant 1 in service a, using channel α1 to communicate. The meaning of a[2](α2) in

S-gen and a[3](α3) in S-spe is similar.

Security levels appear as superscripts on data and variables†. When the session is

established via a synchronization between the initiator and the prefixes a[i](αi), U sends

† Levels on operators, which are needed to track indirect flows (as explained in Section 5), are omitted in this

example.
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a public message to S-gen (prefix α1!〈2, symptom⊥〉) and waits for a public answer

(prefix α1?(2, visit-prescr⊥)). Then U sends the same message to S-spe and waits for a

secret answer (prefix α1?(3, diagn�)). Depending on whether the diagnosis is critical or

not, U issues two different requests to S-spe: either a request of level � for hospital

admission (prefix α1!〈3, hosp-admiss�〉), or a secret request for a drug treatment (prefix

α1!〈3, treatment�〉). We let the reader figure out the rest of the interaction between U and

S-spe, to focus now on the issue of safety and security.

Corresponding to the two possibilities for the level � in α1!〈3, hosp-admiss�〉, we obtain

two different versions of the protocol, one of which is safe and secure, while the other

is neither safe nor secure. In case � = �, the protocol is secure since a public observer

will see no difference between the two branches of the conditional (in both cases he will

observe the empty behaviour). It is also safe since no computation exhibits a ‘level drop’

from an input or test of level � to a following action of level ⊥. Indeed, the monitored

semantics records the level of inputs, and checks them again subsequent actions to prevent

level drops. Instead, if � = ⊥, the first branch of the conditional has a level drop, and

the monitored semantics will block before executing the request that would violate safety.

This version of the protocol is also insecure, since two different behaviours can be

observed by a public observer after testing the secret diagnosis: in one case the emission

of hosp-admiss⊥, in the other case the empty behaviour.

To sum up, for � = � the protocol is safe and secure, while for � = ⊥ it is both unsafe

and insecure. This is what we expect, since by asking publicly for hospital admission, U

accidentally reveals some information about her diagnosis, namely that it is critical.

Let us note that the insecure version of the protocol is also rejected by the type system

of Capecchi et al. (2014), which statically ensures the correction of all possible executions.

Moreover, this example illustrates the fact that safety ensures early leak detection, while

security only allows late leak detection. Indeed, the bisimulation used to check security

will fail only once hosp-admiss⊥ has been put in the queue, and thus possibly exploited

by an attacker. By contrast, the monitored semantics will block the very act of putting

hosp-admiss⊥ in the queue.

For the sake of conciseness, we deliberately simplified the scenario in the above example.

A more realistic example would involve persistent services and allow several users to

interact with them. Our simple example is mainly meant to highlight the novel issue of

monitored execution.

3. Syntax and standard semantics

Our calculus is a variant of that studied in Capecchi et al. (2014): it focuses on the

constructs which are meaningful for safety. For the sake of simplicity, we do not consider

here access control and declassification, although their addition would not pose any

problem. We also restrict the range of values that processes may exchange, omitting the

send/receive of service and channel names, because our monitored semantics treats them

in the same way as other values. Since service names cannot be exchanged, we do not

consider the possibility of restricting them via name hiding.
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Let (S,�) be a finite lattice of security levels, ranged over by �, �′. We denote by � and

	 the join and meet operations on the lattice, and by ⊥ and � its minimal and maximal

elements. We assume the following sets: values (booleans, integers), ranged over by v, v′ . . .,

value variables, ranged over by x, y . . ., service names, ranged over by a, b, . . . , each of which

has an arity n � 2 (its number of participants) and a security level � (Example 5.2 justifies

the necessity of this level), channel variables, ranged over by α, β, . . . , and labels, ranged

over by λ, λ′, . . . (acting like labels in labelled records). Sessions, the central abstraction

of our calculus, are denoted with s, s′ . . . . A session represents a particular instance or

activation of a service. Hence sessions only appear at runtime. We use p, q, . . . to denote

the participants of a session. In an n-ary session (a session corresponding to an n-ary

service) p, q are assumed to range over the natural numbers 1, . . . , n. We denote by Π

a non-empty set of participants. Each session s has an associated set of channels with

role s[p], one for each participant. Channel s[p] is the private channel through which

participant p communicates with the other participants in the session s. A new session s

on an n-ary service a� is opened when the initiator ā�[n] of the service synchronizes with n

processes of the form a�[1](α1).P1, . . . , a
�[n](αn).Pn, whose channels αp then get replaced by

s[p] in the body of Pp. The use of an initiator to start a new session was first proposed in

our previous work (Capecchi et al. 2010). The idea is that, while binary sessions may be

viewed as an interaction between a client and a server, which is naturally started by the

client, in a multiparty session there is no such natural choice of a starting participant. The

participants are on an equal footing, and it seems preferable to add a separate initiator

than to arbitrarily select one of the peer participants as the starting one (as it is done

in other work on multiparty sessions). Moreover, although this is not exploited here, the

presence of the initiator somehow indicates the availability of the service, and in more

complex calculi one could envisage more refined forms for the initiator (for instance, in

case of unavailability of the service, the initiator could act as a forwarder to a substitute

service). We use c to range over channel variables and channels with roles. Finally, we

assume a set of process variables X,Y , . . . , in order to define recursive behaviours.

As in Honda et al. (2008), in order to model TCP-like asynchronous communications

(with non-blocking send but message order preservation between a given pair of par-

ticipants), we use queues of messages, denoted by h; an element of h may be a value

message (p,Π, v�), indicating that the value v is sent by participant p to all participants in

Π, or a label message (p,Π, λ�), indicating that p selects the process with label λ among

those offered by the set of participants Π. The empty queue is denoted by ε, and the

concatenation of a message m to a queue h by h · m. Conversely, m · h means that m is

the head of the queue. Since there may be interleaved, nested and parallel sessions, we

distinguish their queues with names. We denote by s : h the named queue h associated with

session s. We use H,K to range over sets of named queues with different session names,

also called Q-sets.

Table 1 summarizes the syntax of expressions, ranged over by e, e′, . . . , and of processes,

ranged over by P ,Q . . . , as well as the runtime syntax of the calculus (session names,

channels with role, messages, queues). A user process is a process generated without using

runtime syntax.
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Table 1. Syntax of processes, expressions and queues.

c ::= α || s[p] Channel

v ::= true || false || . . . Value

e ::= x� || v� || not e

|| e and e′ || . . . Expression

D ::= X(x, α) = P Declaration

Π ::= {p} || Π ∪ {p} Set of participants

ϑ ::= v� || λ� Message content

m ::= (p,Π, ϑ) Message

h ::= m · h || ε Queue

H ::= H ∪ {s : h} || � Q-set

P ::= ā�[n] Session init.

|| a�[p](α).P p-th session part.

|| c!〈Π, e〉.P Output

|| c?(p, x�).P Input

|| c⊕� 〈Π, λ〉.P Selection

|| c&�(p, {λi : Pi}i∈I ) Branching

|| if e then P else Q Conditional

|| P | Q Parallel

|| 0 Inaction

|| def D in P Recursion

|| X〈e, c〉 Process call

C ::= 〈P , H〉 Basic config.

|| C ‖C Config. parallel

|| (νs)C Session name hiding

Table 2. Structural equivalence.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) def D in 0 ≡ 0

(def D in P ) | Q ≡ def D in (P | Q) def D in (def D′ in P ) ≡ def D′ in (def D in P )

h · (p,Π, ϑ) · (p′,Π′, ϑ′) · h′ ≡ h · (p′,Π′, ϑ′) · (p,Π, ϑ) · h′ if Π ∩ Π′ = � or p �= p′

h · (p,Π, ϑ) · h′ ≡ h · (p,Π′, ϑ) · (p,Π′′, ϑ) · h′ if Π = Π′ ∪ Π′′ and Π′ ∩ Π′′ = �
H ≡ H ′ and h ≡ h′ ⇒ H ∪ {s : h} ≡ H ′ ∪ {s : h′}

P ≡ Q and H ≡ K ⇒ 〈P , H〉 ≡ 〈Q, K〉
C ≡ C ′ ⇒ (νs)C ≡ (νs)C ′ (νss′)C ≡ (νs′s)C

(νs̃)〈P , H〉‖ (νs̃′)〈Q, K〉 ≡ (νs̃s̃′)〈P | Q, H ∪K〉 if qn(H) ∩ qn(K) = �

Let us briefly comment on the primitives of the language. We already described session

initiation. Communications within a session are performed on channels with role using

the next two pairs of primitives: the send and receive of a value and the selection

and branching operators (where one participant chooses one of the branches offered by

another participant). Choice primitives are decorated with security levels, whose use will

be justified in Example 5.3. The variables in the process declarations do not have levels

since they are not necessary, contrary to what happens for the variables in inputs (see

Example 4.11). When there is no risk of confusion we will omit the set delimiters {, },
particularly around singletons.

The operational semantics is defined on configurations 〈P , H〉, which are pairs of a

process P and a Q-set H . Indeed, in our calculus queues need to be isolated from processes

(unlike in other session calculi, where queues are handled by running them in parallel

with processes), since they will constitute the observable part of processes in our security

and safety notions.
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Table 3. Standard reduction rules.

a�[1](α1).P1 | · · · | a�[n](αn).Pn | ā�[n] −→ (νs)〈P1{s[1]/α1} | · · · | Pn{s[n]/αn}, s : ε〉
[Link]

〈s[p]!〈Π, e〉.P , s : h〉 −→ 〈P , s : h · (p,Π, v�)〉 where e↓v� [Send]

〈s[q]?(p, x�).P , s : (p, q, v�) · h〉 −→ 〈P {v/x}, s : h〉 [Rec]

〈s[p] ⊕� 〈Π, λ〉.P , s : h〉 −→ 〈P , s : h · (p,Π, λ�)〉 [Label]

〈s[q]&�(p, {λi : Pi}i∈I ), s : (p, q, λ�i0 ) · h〉 −→ 〈Pi0 , s : h〉 where i0 ∈ I [Branch]

if e then P else Q −→ P where e ↓ true� if e then P else Q −→ Q where e ↓ false�

[If-T, If-F]

def X(x, α) = P in (X〈e, s[p]〉 | Q) −→ def X(x, α) = P in (P {v�/x}{s[p]/α} | Q) where e ↓ v�

[Def]

〈P , H〉 −→ (νs̃)〈P ′, H ′〉 ⇒ 〈E[P ], H〉 −→ (νs̃)〈E[P ′], H ′〉 [Cont]

C −→ (νs̃)C ′ ⇒ (νs̃′)(C ‖ C ′′) −→ (νs̃′)(νs̃)(C ′ ‖ C ′′) [Scop]

C ≡ C ′ and C ′ −→ C ′′ and C ′′ ≡ C ′′′ ⇒ C −→ C ′′′ [Struct]

Formally, a configuration is a pair C = 〈P , H〉, possibly restricted with respect to

session names, or a parallel composition (C‖C ′) of two configurations whose Q-sets have

disjoint session names. In a configuration (νs)〈P , H〉, all occurrences of s[p] in P and H

are bound, as well as those of s in H . By abuse of notation we often write P instead of

〈P , �〉.
As usual, the reduction relation is defined modulo a structural equivalence ≡. The rules

for ≡ are given in Table 2. We use qn(H) for the queue names of H . Assuming Barendregt

convention, no bound name can occur free or in two different bindings. The structural

rules for processes are standard (Milner 1999). Among the rules for queues, we have one

for commuting independent messages and another one for splitting a message for multiple

recipients. The structural equivalence of configurations allows the parallel composition ‖
to be eliminated so that, modulo ≡, each configuration has the form (νs̃)〈P , H〉, where

(νs̃)C stands for (νs1) · · · (νsk)C if s̃ = s1 · · · sk and for C if s̃ is empty.

The transitions for configurations have the form (νs̃)〈P , H〉 −→ (νs̃′)〈P ′, H ′〉. They

are derived using the reduction rules in Table 3. Let us comment on the most interesting

rules.

Rule [Link] describes the initiation of a new session among n processes, corresponding

to an activation of the service a of arity n and security level �. After the connection,

the participants share a private session name s and the corresponding queue, initialized

to s : ε. In each participant Pp, the channel variable αp is replaced by the channel with

role s[p]. Session initiation is the only synchronous interaction of the calculus. All the

other communications, which take place within an established session, are performed

asynchronously in two steps via push and pop operations on the queue associated with

the session.
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The output rules [Send] and [Label] push values and labels, respectively, into the queue

s : h. In rule [Send], e ↓ v� denotes the evaluation of the expression e to the value v�,

where � is the join of the security levels of the variables and values occurring in e. The

input rules [Rec] and [Branch] perform the complementary operations. Rules [If-T], [If-F],

[Def] and [Cont] are standard.

The evaluation contexts E used in Rule [Cont] are defined by

E ::= [ ] || def D in E || E | P || P | E.

The contextual rule [Scop] for configurations is also standard. In this rule, Barendregt

convention ensures that the names in s̃ are disjoint from those in s̃′ and do not appear in

C ′′. As usual, we use −→∗ for the reflexive and transitive closure of −→.

4. Security

We introduce now our property of information flow security for processes (referred to

simply as security in the sequel), which is a refined version of that proposed in Capecchi

et al. (2011) for an extension of the present calculus, discussed at the beginning of Section

3. As will be argued later in some depth, this refinement is interesting in that it leads to

a more discriminating security property, which is closer to that of typability. Notably our

main result on security, which states that safety implies security (Theorem 7.8), also holds

for the original definition of security.

Our security property is essentially noninterference, adapted to our session calculus.

We introduce it by an informal discussion, which is largely recalled from Capecchi et al.

(2014).

We are looking for a security property which is persistent in the sense of Bossi et al.

(2004), namely which holds in any reachable state of a process, assuming the process may

be restarted with fresh Q-sets in any state. This means that we view processes as evolving

in a dynamic and potentially hostile environment, where at each step an attacker/observer

may inject new messages or consume existing messages, in order to discover the secret

data used by the processes.

In our calculus, an insecure information flow – or information leak – occurs when an

action of level �′ depends on the occurrence or the value of an input action of level � �� �′.

A typical information leak occurs when a low action is guarded by a high input, as in

the following process P , where s is some previously opened session with two participants:

(∗) P = s[1]?(2, x�).s[1]!〈2, e〉.0 where e↓v⊥.

In process P , the first participant of session s waits for a message from the second

participant, and then she replies by sending to the second participant the value of a low

expression e.

This process is insecure because the occurrence of the high input depends on whether

or not a matching message is offered by the high environment, which is something we do

not control. Since input is a blocking operator, the low output will be able to occur in the

first case but not in the latter, and the observer will conclude that the low output depends

on the high input. Note that in process P the value v⊥ of the expression e cannot depend
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on the value received for x�, since in this case e should contain x� and therefore its value

could not have level ⊥†. Hence the leak in P is only due to the presence or absence of a

�-message in the environment, not on its value.

Another typical leak occurs when a high input guards a high conditional which tests

the received value in order to choose between two different low behaviours in its branches.

Consider the following process:

(∗∗) Q = s[1]!〈2, true�〉.0 | s[2]?(1, x�).if x� then s[2]!〈3, true⊥〉.0 else s[2]!〈3, false⊥〉.0.

Here session s has three participants. The second participant may input the message

sent by the first participant, and depending on its value (which can be changed by an

attacker between the asynchronous emission and reception) she will send two different

low values to the third participant. This process is insecure because the value of the low

message sent by participant 2 to participant 3 depends on the value of the high message

received by participant 2 from participant 1. Here the leak is caused by the value of a

high message rather than by its presence or absence.

As a matter of fact, the Example (∗∗) above is not completely correct, since in our

persistent notion of security we assume that the attacker can add or withdraw high

messages at each step. Hence, after participant 1 has sent her message to participant

2, this message could again disappear from the queue, and participant 2 would be

blocked, just as participant 1 in Example (∗). However, Example (∗∗) can be easily fixed

by rendering both components of process Q recursive, so that the high message for

participant 2 is continuously offered by participant 1.

This is the reason why most examples in this section will be composed of recursive

processes. We will also make sure that all our examples are well behaved with respect to

session protocols, in the sense that they are typable by means of classical session types

(this means for instance that if a participant is recursive, then the matching participants

must be recursive too). Indeed, interestingly enough, session type systems already rule out

a number of insecure processes. This is why we shall focus on the insecurities that can

appear in session-typable processes.

As in Capecchi et al. (2014), we assume that the observer can see the messages in

session queues. As usual for security, observation is relative to a given downward-closed

set of levels L ⊆ S, the intuition being that an observer who can see messages of level

� can also see all messages of level �′ lower than �. In the following, we shall always

use L to denote a downward-closed subset of levels. For any such L, an L-observer will

only be able to see messages whose levels belong to L, what we may call L-messages.

Hence two queues that agree on L-messages will be indistinguishable for an L-observer.

Let now L-messages be the complementary messages, those the L-observer cannot see.

Then, an L-observer may also be viewed as an attacker who tries to reconstruct the

dependency between L-messages and L-messages (and hence, ultimately, to discover the

L-messages), by injecting or withdrawing L-messages at each step and observing the effect

thus produced on L-messages.

† Recall that the level of an expression is the join of the levels of the variables and values occurring in it.
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To formalize this intuition, a notion of L-equality =L on Q-sets is introduced,

representing indistinguishability of Q-sets by an L-observer. Using =L, we then define

a notion of L-bisimulation �L representing indistinguishability of processes by an L-

observer. Formally, a queue s : h is L-observable if it contains some message with level

in L. Note that this means that empty queues are never observable, even when they are

associated with a service of level in L. Then two Q-sets are L-equal if their L-observable

queues have the same names and contain the same messages with level in L. This equality

is based on an L-projection operation on Q-sets, which discards all messages whose level

is not in L.

Let the function lev be given by: lev(v�) = lev(λ�) = �.

Definition 4.1 (L-projection). The projection operation ⇓ L is defined inductively on

messages, queues and Q-sets as follows:

(p,Π, ϑ) ⇓ L =

{
(p,Π, ϑ) if lev(ϑ) ∈ L,
ε otherwise

ε ⇓ L = ε

(m · h) ⇓ L = m ⇓ L · h ⇓ L

� ⇓ L = � (H ∪ {s : h}) ⇓ L =

{
H ⇓ L ∪ {s : h ⇓ L} if h ⇓ L �= ε,

H ⇓ L otherwise.

Definition 4.2 (L-equality of Q-sets). Two Q-sets H and K are L-equal, written H =L K ,

if H ⇓ L = K ⇓ L.

Let us move now to the notion L-bisimulation. The idea is to test processes by running

them in conjunction with L-equal queues. However, as argued in Capecchi et al. (2014),

we cannot allow arbitrary combinations of processes with queues, since this would lead

us to reject intuitively secure processes as simple as s[1]!〈2, true⊥〉.0 and s[2]?(1, x⊥).0, as

explained next.

For example, the process P = s[1]!〈2, true⊥〉.0 does not react in the same way when

combined with the two Q-sets H1 = {s : ε} =⊥ � = H2. Indeed, while P reduces when

combined with {s : ε}, it is stuck when combined with �. Formally

〈P , {s : ε}〉 −→ 〈0, {s : (1, 2, true⊥)}〉 〈P , �〉 �−→ .

Therefore, an L-observer with L = {⊥} would detect an insecurity by looking at the

resulting Q-sets H ′
1 = {s : (1, 2, true⊥)} �=⊥ � = H ′

2.

To get around this problem, a natural requirement is that the Q-sets always contain

enough queues to enable all outputs of the process to reduce. For this it suffices that in

a configuration 〈P , H〉, every session name which occurs free in P has a corresponding

queue in H . We use sn(P ) (resp. fsn(P )) to denote the set of session names (resp. free

session names) in P .

Definition 4.3. A configuration 〈P ,H〉 is saturated if all session names in P are unrestricted

and have corresponding queues in H , i.e. s ∈ sn(P ) implies s ∈ fsn(P ) and s ∈ qn(H).

Since the only rule that creates a new session is [Link], which simultaneously creates the

corresponding queue, it is easy to check that starting from a closed user process and the

empty Q-set, we always obtain configurations (νs̃)〈P ,H〉 such that 〈P ,H〉 is saturated.
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A dual phenomenon occurs with inputs. Consider the process Q with Q-sets H1 =⊥ H2:

Q = s[2]?(1, x⊥).0 H1 = {s : (1, 2, true⊥)} H2 = {s : (1, 2, true�) · (1, 2, true⊥)}.

Note that 〈Q, H1〉 −→ 〈0, {s : ε}〉, while 〈Q, H2〉 �−→, and {s : ε} �=⊥ H2. What

happens here is that the top-level message in H2 is transparent for the ⊥-equality, but

it prevents the process from reading the subsequent bottom-level message. Note that

the problem comes from the fact that both messages have the same receiver and the

same sender, since if we took H3 = {s : (3, 2, true�) · (1, 2, true⊥)}, then we would have

〈Q, H3〉 −→ 〈0, {s : (3, 2, true�)}〉, thanks to the structural equivalence on queues given

in Table 2.

We may get around this problem by imposing one simple condition on Q-sets

(monotonicity). Monotonicity states that in every queue of a Q-set, the security levels

of messages with the same sender and common receivers can only stay equal or increase

along a sequence.

Definition 4.4 (monotonicity). A queue is monotone if lev(ϑ1) � lev(ϑ2), whenever the

message (p,Π1, ϑ1) precedes the message (p,Π2, ϑ2) in the queue and Π1 ∩ Π2 �= �. A

Q-set H is monotone if every queue in H is monotone.

Note that saturation and monotonicity are constraints on the Q-sets, which the observer

must respect when experimenting on a process. Intuitively, they require that the Q-sets

chosen by the observer are ‘compatible’ with the process, in the sense that they do not

artificially block its execution. In other words, the observer is only allowed to detect

existing insecurities, not to introduce new insecurities in the process.
To define our bisimulation, we need one further ingredient†. Note that, while the

asynchronous communications among participants can be observed by looking at the
changes they induce on the Q-sets, there is no means to observe the behaviour of a
potential session participant, as long as it is not triggered by the initiator together with
a complete set of matching participants. This means that an ‘incomplete process’ like
P = a⊥[1](α).α!〈2, true⊥〉.0 would be equivalent to 0. However, it is clear that it behaves
differently when plugged into a complying context. For instance, if we put P in parallel
with the initiator and the missing partner we get

〈P | a⊥[2](β).β?(1, x⊥).0 | ā⊥[2], �〉 −→∗ (νs)(〈s[2]?(1, x⊥).0, {s : (1, 2, true⊥)}〉),

while if we put 0 in the same context we get 〈0 | a⊥[2](β).β?(1, x⊥).0 | ā⊥[2], �〉 �−→.

Since session initiation is a synchronous interaction, which is blocking for all session

participants, it would not be possible to use the Q-sets to keep track of it. We therefore

introduce a notion of tester, a sort of behaviourless process which triggers session

participants in order to reveal their potential behaviour. Our testers bear a strong analogy

with the notion of test introduced by De Nicola and Hennessy (1983) in the 80’s, although

they are much simpler in our case, since they are only used to explore potential participant

behaviours and not to test active processes. Moreover, they are not aimed at establishing

a testing equivalence, but merely at rendering the bisimulation more contextual.

† Strictly speaking, this ingredient is not essential to define the bisimulation, but it leads to a more discriminating

security notion than that of Capecchi et al. (2011), closer to that of typability in the type system of Section 8.
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Table 4. Reduction rules for testers.

( a�[p1](αp1
).Pp1

| · · · | a�[pk](αpk ).Ppk | ā�[n] ) � ( a�[pk+1](αpk+1
).0 | · · · | a�[pn](αpn ).0 ) �

(νs)〈Pp1
{s[p1]/αp1

} | · · · | Ppk{s[pk]/αpk}, s : ε〉 where k < n

[ExtLink1]

( a�[p1](αp1
).Pp1

| · · · | a�[pk](αpk ).Ppk ) � ( a�[pk+1](αpk+1
).0 | · · · | a�[pn](αpn ).0 | ā�[n] ) �

(νs)〈Pp1
{s[p1]/αp1

} | · · · | Ppk{s[pk]/αpk}, s : ε〉
[ExtLink2]

〈P � Z, H〉 � (νs̃)〈P ′, H ′〉 ⇒ 〈E[P ] � Z, H〉 � (νs̃)〈E[P ′], H ′〉 [ContTest]

〈P , H〉 −→ (νs̃)〈P ′, H ′〉 ⇒ 〈P � Z, H〉 � (νs̃)〈P ′, H ′〉 [DropTest]

Formally, a tester is a parallel composition of session initiators and degenerate session

participants, which cannot reduce by itself.

Definition 4.5. The syntax of pre-testers is

Z ::= ā�[n] || a�[p](α).0 || Z | Z.

A tester is an irreducible pre-tester.

To run processes together with testers, we introduce an asymmetric (non-commutative)

triggering operator P � Z , whose behaviour is given by the transition relation � defined

by the rules in Table 4. The two ‘external link’ rules [ExtLink1] and [ExtLink2] only differ

for the presence or not of the initiator inside the process. Note the condition k < n in rule

[ExtLink1], which is needed since 0 is not a tester (as we will discuss further below). Rule

[ContTest] is a standard context rule. Rule [DropTest] allows the process to move alone

in case the tester is not needed. Let us stress that in all cases the tester Z disappears after

the reduction. This is because testers are not interesting in themselves, but only insofar

as they may reveal the ability of processes to contribute to a session initiation. A term

P � Z is read ‘P triggered by Z . ’

We are now ready for defining our bisimulation. A relation R on processes is a L-

bisimulation if, whenever two related processes are put in parallel with the same tester

and then coupled with L-equal monotone Q-sets yielding saturated configurations, then

the reduction relation preserves both the relation R on processes and the L-equality of

Q-sets:

Definition 4.6 (L-bisimulation on processes). A symmetric relation R ⊆ (Pr × Pr) is a

L-bisimulation if P1 RP2 implies, for any tester Z and any pair of monotone Q-sets H1
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and H2 such that H1 =L H2 and each 〈Pi, Hi〉 is saturated:

If 〈P1� Z, H1〉 � (νs̃)〈P ′
1, H

′
1〉, then either H ′

1 =L H2 and P ′
1 R P2, or there exist

P ′
2, H

′
2 such that 〈P2� Z, H2〉 � · −→∗ (νs̃)〈P ′

2, H
′
2〉 , where H ′

1 =L H ′
2 and P ′

1 R P ′
2.

Processes P1, P2 are L-bisimilar, P1 �L P2, if P1 R P2 for some L-bisimulation R.

Note that s̃ is either the empty string or a fresh session name s (when the applied rule

opens a new session, in which case by Barendregt convention the name s cannot occur in

P2 and H2).

Intuitively, a transition that adds or removes a L-message must be simulated in one or

more steps, yielding a L-equal Q-set, whereas a transition that does not affect L-messages

(but possibly opens a new session, using or not the tester) may be simulated by inaction.

Let us illustrate the use of testers with some examples. Note that although ‘complete

processes’ may reduce autonomously without the help of any tester, we do not allow

the inaction process as a tester. Indeed, its use may be simulated by any tester whose

names are disjoint from those of the tested process, what we call a fresh tester. In fact,

the quantification over Z in Definition 4.6 may be restricted in practice to those testers

that make the process react, by triggering some of its waiting participants, together with

one fresh tester that forces the process to progress by itself, if possible, and get stuck

otherwise.

We will use 〈P , H〉 −→ 〈P ′, H ′〉 as a shorthand for 〈P � Z, H〉 � 〈P ′, H ′〉, when

the reduction of P � Z does not use the rules [ExtLink1] and [ExtLink2] in Table 4.

Example 4.7. Consider the three processes:

P1 = 0

P2 = a⊥[1](α).α!〈2, true⊥〉.0
P3 = ā⊥[2] | a⊥[1](α).α!〈2, true⊥〉.0 | a⊥[2](β).β?(1, x⊥).0.

It is easy to see that no pair of Pi is in the ⊥-bisimilarity relation. Assume in all cases the

starting Q-sets to be �. To distinguish P2 from P3, which is a complete process that can

progress by itself, we may use the fresh tester b̄⊥[2]. Then this tester will just be dropped

when put in parallel with P3, and P3 will move by itself to a state P ′
3, opening a new

session s and generating the Q-set {s : ε}. Since P2 cannot move alone and the tester b̄⊥[2]

cannot make it react, P2 will respond by staying put, thus keeping unchanged the Q-set

� =⊥ {s : ε}. But now, if P2 and P ′
3 are tested again with b̄⊥[2] and coupled with the

Q-set {s : ε}, then P ′
3 will produce the Q-set {s : (1, 2, true⊥)}, while P2 will remain stuck

on the Q-set {s : ε} �=⊥ {s : (1, 2, true⊥)}.
To distinguish P1 from P2, we may use the tester ā⊥[2] | a⊥[2](β).0, which produces no

effect on P1 but activates P2, allowing it to move to a state P ′
2, from which a low output

is possible. To distinguish P1 from P3 we use the same fresh tester b̄⊥[2] and a similar

reasoning.

Testers may also be used to explore some deadlocked processes, when the deadlock is

caused by inverted ‘calls’ to two different services in dual components, as shown by the

next example. However, as expected, the bisimulation will not equate such a deadlocked
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process with a correct process where the two calls occur in the same order in the two

components.

Example 4.8. Consider the following processes, where s is some previously opened session:

P1 = a⊥[1](α1).b
⊥[1](β1).s[1]!〈2, true⊥〉.0 | b⊥[2](β2).a

⊥[2](α2).0 | ā⊥[2] | b̄⊥[2],

P2 = a⊥[1](α1).b
⊥[1](β1).s[1]!〈2, true⊥〉.0 | a⊥[2](α2).b

⊥[2](β2).0 | ā⊥[2] | b̄⊥[2].

It is easy to see that processes P1 and P2 are not ⊥-bisimilar. Indeed, P1 is deadlocked

since the service calls to a and b occur in reverse order in its two components. Instead,

the calls occur in the same order in the components of P2. Hence P2 may progress by

itself and thus it is sufficient to test it with a fresh tester, as in Example 4.7, to distinguish

it from the blocked process P1.

Note that while being deadlocked P1 is not equated with 0, since the latter is inert

while P1 can be explored with testers that allow the sessions on services a⊥ and b⊥ to be

opened and the following low output to be uncovered.

The notions of L-security and security are now defined in the standard way:

Definition 4.9 (security).

1. A process is L-secure if it is L-bisimilar with itself.

2. A process is secure if it is L-secure for every L.

Let us illustrate our security property with some examples. The simplest insecure process

in our calculus is an input of level � followed by an action of level �′ �� �:

Example 4.10. (Insecurity of high input followed by low action)

Consider the process P and the Q-sets H1 and H2, where H1 =⊥ H2:

P = s[1]?(2, x�).s[1]!〈2, true⊥〉.0, H1 = {s : (2, 1, true�)}, H2 = {s : ε}.
Here we have 〈P , H1〉 −→ 〈s[1]!〈2, true⊥〉.0, {s : ε}〉 = 〈P1, H

′
1〉, while 〈P , H2〉 �−→. Since

H ′
1 = {s : ε} = H2, we can proceed with P1 = s[1]!〈2, true⊥〉.0 and P2 = P . Take now

K1 = K2 = {s : ε}. Then 〈P1, K1〉 −→ 〈0, {s : (1, 2, true⊥)}〉, while 〈P2, K2〉 �−→. Since

{s : (1, 2, true⊥)} �=⊥ {s : ε} = K2, P is not ⊥-secure.

With a similar argument we may show that Q = s[1]?(2, x�).s[1]?(2, y⊥).0 is not ⊥-

secure.

We may now justify the use of security levels on value variables.

Example 4.11. (Need for levels on value variables)

Suppose we had no levels on value variables. Then any variable could be replaced by

values of any level. In this case, any process that performs an input and then outputs a

value of level � �= � would turn out to be insecure. For instance, consider the process

P̂ , which differs from P in Example 4.10 only because it has no level on the variable x,

together with the Q-sets H1, H2

P̂ = s[1]?(2, x).s[1]!〈2, true⊥〉.0, H1 = {s : (2, 1, true�)}, H2 = {s : ε}.
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Then P̂ would be insecure when run with H1 and H2, for the same reason why P was

insecure in Example 4.10. This means that we would have no way to describe a secure

process that receives a value of level ⊥ and then outputs a value of level � �= �, for

instance.

By annotating the variable x with the level ⊥, we make sure that P̂ cannot reduce with

H1 either, and thus the insecurity disappears.

Interestingly, an insecure component may be ‘sanitized’ by its context, so that the

insecurity is not detectable in the overall process. Clearly, in case of a deadlocking

context, the insecurity is masked simply because the dangerous part cannot be executed.

However, the curing context could also be a partner of the insecure component, as shown

by the next example. This example is significant because it constitutes a non-trivial case

of a process that is secure but not safe, as will be further discussed in Section 7.

Example 4.12. (Insecurity sanitized by recursion and parallel context)

Consider the recursive version R of process P in Example 4.10, in parallel with a dual

process R:

R = def X(x, α) = Q in X〈true⊥, s[1]〉
R = def Y (z, β) = Q in Y 〈true�, s[2]〉,

where Q = α?(2, y�1 ).α!〈2, x〉.X(x, α) and Q = β!〈1, z〉.β?(1, y⊥2 ).Y (z, β). We show that R | R
is secure (while R is not). Take any H,K such that H =⊥ K . The move:

〈R | R, H〉 −→ 〈R′ | R, H〉,

where R′ = def X(x, α) = Q in s[1]?(2, y�1 ).s[1]!〈2, true⊥〉.X〈true⊥, s[1]〉 can be simulated

by

〈R | R, K〉 −→ 〈R | R′
, K〉,

where R
′
= def Y (z, β) = Q in s[2]!〈1, true�〉.s[2]?(1, y⊥2 ).Y 〈true�, s[2]〉.

Take now H1 = {s : (1, 2, false�)} =⊥ {s : ε} = H2.

Then the move

〈R′ | R, H1〉 −→ 〈R′′ | R, {s : ε}〉,
where R′′ = def X(x, α) = Q in s[1]!〈2, true⊥〉.X〈true⊥, s[1]〉, can be simulated by:

〈R | R′
, H2〉 −→∗ 〈R′ | R

′′
, {s : (2, 1, true�)}〉 −→ 〈R′′ | R

′′
, {s : ε}〉

where R
′′

= def Y (z, β) = Q in s[2]?(1, y⊥2 ).Y 〈true�, s[2]〉. Let us now compare R1 =

R′′ | R and R2 = R′′ | R′′
. Let K1, K2 be monotone Q-sets such that K1 =⊥ K2, and both

containing a queue s : h. Now, if 〈R1, K1〉 moves first there are two cases:

i. it executes its right component by performing process substitution and then the high

output of R
′
:

〈R′′ | R, K1〉 −→∗ 〈R′′ | R′′
, K ′

1〉.
In this case 〈R2, K2〉 replies by staying idle, since the resulting processes will be equal

and the resulting queues K ′
1, K2 will be such that K ′

1 =⊥ K2,
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ii. it executes its left component

〈R′′ | R, K1〉 −→ 〈R | R, K ′
1〉.

In this case 〈R2, K2〉 does exactly the same

〈R′′ | R′′
, K2〉 −→ 〈R | R′′

, K ′
2〉,

clearly preserving the ⊥-equality of Q-sets. It remains to prove that R | R is ⊥-

bisimilar to R | R
′′
. But this is easy to see since if the first process moves its right

component, then the second process may stay idle, while if the second process moves

its right component, then the first process may simulate the move in three steps.

Conversely, if 〈R2, K2〉 moves first, then either it executes its right component (if the

queue allows it), in which case 〈R1, K1〉 simulates the move in three steps, or it executes

its left component, in which case 〈R1, K1〉 simulates it by moving its left component in

the same way, and then we are reduced once again to prove that R | R′
is ⊥-bisimilar to

R | R
′′
.

We conclude this section by showing that, notwithstanding the use of testers to mimic

the presence of session participants in the environment, our security property fails to be

compositional.

Let us start with an example that suggests how testers could help ensuring composi-

tionality.

Example 4.13. Without testers, the following process:

s[1]?(2, x�).a�[1](α).s[1]!〈2, true⊥〉.0,

would be secure, because it can only read a top message on a queue. However, when

composed in parallel with the process ā�[2]|a�[2](β).0, it gives rise to an insecure process,

as discussed in Example 4.10.

Example 4.14. Consider the following process:

P = P1 | P2 | b�[1](β1).β1!〈2, true⊥〉.0 | b�[2](β2).β2?(1, y
⊥).0 | b̄�[3]

P1 = def X(x, α) = α!〈2, x〉.X(x, α) in X〈true�, s[1]〉
P2 = def Y (y, β) = β?(1, z�).if z� then b�[3](β3).Y (y, β) else a�[1](α1).Y (y, β)

in Y 〈false�, s[2]〉.

This process is insecure. Since the input of P2 is continuously enabled (because P1

continuously emits a matching message), the insecurity stems from the fact that, according

to the value received by P2 for z�, the residual process with a fresh tester will either start

a new session on service b�, where a ⊥-value is exchanged, or get stuck. However, note

that all components are secure, both with � = ⊥ and with � = �. Indeed, testers are of

no help for compositionality here.

We could try to get around this example by adding levels to queues, thus considering

queues of the form s� : h, and adapting our notion of projection for Q-sets so as to

observe low empty queues. This will render insecure the first component with � = ⊥,

but not with � = �. For � = �, all components would still be secure, while the global
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process is insecure. Hence, levels on queues would not be sufficient by themselves to ensure

security compositionality. We could try to go one step further by blocking the execution

of components of the form b�[1](β1).β1!〈2, true�′ 〉.0 whenever � �� �′, producing a failure

signal to stop the bisimulation game, but this would not be satisfactory as it would go

against the extensional character of the security property.

5. Monitored semantics

In this section we introduce the monitored semantics for our calculus. This semantics is

defined on monitored processes M,M ′, whose syntax is the following, assuming μ ∈ S:

M ::= P �μ || M | M || || def D in M,

In a monitored process P �μ, the level μ that tags P is called the monitoring level for P . It

controls the execution of P by blocking any communication of level � �� μ. Intuitively,

P �μ represents a partially executed process, and μ is the join of the levels of received

objects (values or labels) up to this point in execution.

The monitored semantics is defined on monitored configurations C = 〈M, H〉. By abuse

of notation, we use the same symbol C for standard and monitored configurations.

The semantic rules define simultaneously a reduction relation C �→ C ′ and an error

predicate C † on monitored configurations. As usual, the semantic rules are applied

modulo a structural equivalence ≡ (see Table 5). The new specific structural rules for

monitored processes are:

(P | Q)�μ ≡ P �μ | Q�μ (def D in P )�μ ≡ def D in P �μ.

The reduction rules of the monitored semantics are given in Tables 6 and 7. Intuitively,

the monitoring level is initially ⊥ and gets increased each time an input of higher level is

crossed. The reason why the monitoring level should take into account the level of inputs

is that, as argued in Section 4, the process s[1]?(2, x�).s[1]!〈2, true⊥〉.0 is not secure. Hence

it should not be safe either. Moreover, if 〈P �μ, H〉 attempts to perform a communication

action of level � �� μ, then 〈P �μ, H〉 †. We say in this case that the reduction produces

error.

In the conditional (rules [MIf-T, MIf-F]) we can ignore the level � of the tested

expression and keep the monitoring level μ unchanged. This is because in the process

if e then P else Q, the expression e can only be evaluated if all its variables have

been instantiated by previous inputs, thus the monitor is already greater than or equal

to the level of all variables originally present in e. On the other hand, if e originally

contained only constants, then its level does not really matter. In this way the process

if true� then P else Q turns out to be safe even if P performs ⊥-actions, provided P

itself is safe.

The evaluation contexts E for monitored processes in rule [MCont] are defined as

expected.

One may wonder whether monitored processes of the form P
�μ1

1 | P �μ2

2 , where μ1 �= μ2,

are really needed. The following example shows that, in the presence of concurrency, a

single monitoring level (as used for instance in Boudol (2009)) would not be enough.
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Table 5. Structural equivalence of monitored processes and configurations.

P ≡ Q ⇒ P �μ ≡ Q�μ (P | Q)�μ ≡ P �μ | Q�μ

M | 0�μ ≡ M M | M ′ ≡ M ′ | M (M | M ′) | M ′′ ≡ M | (M ′ | M ′′) (def D in P )�μ ≡ def D in P �μ

(def D in M) | M ′ ≡ def D in (M | M ′) def D in (def D′ in M) ≡ def D′ in (def D in M)

M ≡ M ′ and H ≡ K ⇒ 〈M, H〉 ≡ 〈M ′, K〉

C ≡ C ′ ⇒ (νs)C ≡ (νs)C ′ (νss′)C ≡ (νs′s)C

(νs̃)〈M, H〉‖ (νs̃′)〈M ′, K〉 ≡ (νs̃s′)〈M | M ′, H ∪K〉 if qn(H) ∩ qn(K) = �

Table 6. Monitored reduction rules for processes.

if
⊔

i∈{1...n} μi � μ � � then a�[1](α1).P
�μ1
1 | ... | a�[n](αn).P �μn

n | ā�[n]�μ �→
(νs)〈P1{s[1]/α1}�� | ... | Pn{s[n]/αn}��, s : ε〉

else a�[1](α1).P
�μ1
1 | ... | a�[n](αn).P �μn

n | ā�[n]�μ†
[MLink]

if μ � � then 〈s[p]!〈Π, e〉.P �μ, s : h〉 �→ 〈P �μ, s : h · (p,Π, v�)〉
else 〈s[p]!〈Π, e〉.P �μ, s : h〉†

where e ↓ v� [MSend]

if μ � � then 〈s[q]?(p, x�).P �μ, s : (p, q, v�) · h〉 �→ 〈P {v/x}��, s : h〉
else 〈s[q]?(p, x�).P �μ, s : (p, q, v�) · h〉† [MRec]

if μ � � then 〈s[p] ⊕� 〈Π, λ〉.P �μ, s : h〉 �→ 〈P �μ, s : h · (p,Π, λ�)〉
else 〈s[p] ⊕� 〈Π, λ〉.P �μ, s : h〉† [MLabel]

if μ � � then 〈s[q]&�(p, {λi : Pi}i∈I )�μ, s : (p, q, λ�i0 ) · h〉 �→ 〈P ��
i0
, s : h〉

else 〈s[q]&�(p, {λi : Pi}i∈I )�μ, s : (p, q, λ�i0 ) · h〉†
where i0 ∈ I [MBranch]

if e then P else Q�μ �→ P �μ if e ↓ true� if e then P else Q�μ �→ Q�μ if e ↓ false�

[MIf-T, MIf-F]

def X(x, α) = P in (X〈e, s[p]〉�μ | M) �→ def X(x, α) = P in ((P {v�/x}{s[p]/α})�μ | M)

where e ↓ v� [MDef]

〈M, H〉 �→ (νs̃)〈M ′, H ′〉 ⇒ 〈E[M], H〉 �→ (νs̃)〈E[M ′], H ′〉 [MCont]

C �→ (νs̃)C ′ and ¬ C ′′† ⇒ (νs̃′)(C ‖ C ′′) �→ (νs̃′)(νs̃)(C ′ ‖ C ′′)

C† ⇒ (νs̃)(C ‖ C ′)† [MScop]

C ≡ C ′ and C ′ �→ C ′′ and C ′′ ≡ C ′′′ ⇒ C �→ C ′′′

C† and C ≡ C ′ =⇒ C ′† [MStruct]
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Table 7. Monitored reduction rules for testers.

if
⊔

j∈{1...k} μpj � μ � �

then (a�[p1](αp1
).P

�μp1
p1 | ... | a�[pk](αpk ).P

�μpk
pk | ā�[n]�μ) � ( a�[pk+1](αpk+1

).0 | ... | a�[pn](αpn ).0 )

�→ (νs)〈Pp1
{s[p1]/αp1

}�� | ... | Ppk{s[pk]/αpk}��, s : ε〉
else a�[p1](αp1

).P
�μp1
p1 | ... | a�[pk](αpk ).P

�μpk
pk | ā�[n]�μ†

where k < n [MExtLink1]

if
⊔

j∈{1...k} μpj � �

then (a�[p1](αp1
).P

�μp1
p1 | ... | a�[pk](αpk ).P

�μpk
pk ) � ( a�[pk+1](αpk+1

).0 | ... | a�[pn](αpn ).0 | ā�[n] )

�→ (νs)〈Pp1
{s[p1]/αp1

}�� | ... | Ppk{s[pk]/αpk}��, s : ε〉
else a�[p1](αp1

).P
�μp1
p1 | ... | a�[pk](αpk ).P

�μpk
pk †

[MExtLink2]

〈M � Z, H〉 �→ (νs̃)〈M ′, H ′〉 ⇒ 〈E[M] � Z, H〉 �→ (νs̃)〈E[M ′], H ′〉
[MContTest]

〈M, H〉 �→ (νs̃)〈M ′, H ′〉 ⇒ 〈M � Z, H〉 �→ (νs̃)〈M ′, H ′〉 [MDropTest]

Example 5.1. (Need for multiple monitoring levels)

Suppose we could only use a single monitoring level for the parallel process P below,

which should intuitively be safe. Then a computation of P �⊥ would be successful or not

depending on the order of execution of its parallel components

P = a⊥[1](α1).P1 | a⊥[2](α2).P2 | a⊥[3](α3).P3 | a⊥[4](α4).P4 | ā⊥[4]

P1 = α1!〈2, true⊥〉.0 P2 = α2?(1, x
⊥).0

P3 = α3!〈4, true�〉.0 P4 = α4?(3, y
�).0.

Here, if P1 and P2 communicate first, we would have the successful computation

P �⊥�→∗(νs)〈(P3{s[3]/α3} | P4{s[4]/α4})�⊥, s : ε〉 �→ (νs)〈0��, s : ε〉.

Instead, if P3 and P4 communicate first, then we would run into error:

P �⊥�→∗(νs)〈(P1{s[1]/α1} | P2{s[2]/α2})��, s : ε〉.†

Intuitively, the monitoring level resulting from the communication of P3 and P4 should not

constrain the communication of P1 and P2, since there is no causal dependency between

them. Allowing different monitoring levels for different parallel components, when P3 and

P4 communicate first we get

P �⊥�→∗(νs)〈0�� | (P1{s[1]/α1} | P2{s[2]/α2})�⊥, s : ε〉�→∗(νs)〈0�� | 0�⊥, s : ε〉.

The following example justifies the levels of service names and the condition in rule

[MLink]. Session initiation is the only synchronization operation of our calculus. Since

this synchronization involves an initiator as well as a set of participants, the monitoring
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level of each of them must be lower than or equal to the monitoring level of the starting

session.

Example 5.2. (Need for levels on service names)

Consider the following process:

s[2]?(1, x�).if x� then b̄�[2] else 0 | b�[1](β1).β1!〈2, true⊥〉.0 | b�[2](β2).β2?(1, y
⊥).0.

This process is ⊥-insecure, since if there is no �-message in the Q-set the process is

blocked, hence it has a null ⊥-behaviour, while if there is a �-message in the Q-set,

there is a possibility that the process subsequently exhibits a ⊥-action. Hence this process

should be unsafe too. Indeed, the monitoring level of the first component becomes � after

the input and thus, assuming the then branch of the conditional is taken, this branch

must have monitoring level � as well. Then, in order to start the session on service b�,

Rule [MLink] requires � � �, i.e. � = �, and sets the monitoring level of the continuation

to �. This will block the output of the ⊥-value, raising an error, and thus the process will

turn out to be unsafe, as expected.

A similar example shows why we cannot avoid levels on choice operators.

Example 5.3. (Need for levels on selection and branching)

Consider the process:

s[2]?(1, x�).s[2] ⊕� 〈3, λ〉.0 | s[3]&�(2, {λ : s[3]!〈1, true⊥〉.0}).

This process is ⊥-insecure because if there is no �-message in the Q-set the process is

blocked, while if there is a �-message in the Q-set, the process will proceed with the

selection/branching and perform a ⊥-output. Thus this process should be unsafe too. By

adding a level � in the selection/branching constructs and checking this level in Rules

[MLabel] and [MBranch], we allow the monitored semantics to block the computation

before the ⊥-output. Indeed, if � < �, then Rule [MLabel] will raise an error, while if

� = �, then both Rules [MLabel] and [MBranch] will go through successfully and then

[MSend] will raise an error.

6. Safety

In this section, we introduce a property of safety for monitored processes, from which we

derive a property of safety also for processes. We then establish the two first results about

this property, namely that (1) safety implies the absence of runtime errors, and (2) safety

is compositional for both processes and monitored processes.

The remaining results, relating safety to security and typability, will be proven in

Sections 7 and 9, respectively.

A monitored process may be ‘relaxed’ to a simple process by removing its monitoring

levels.

https://doi.org/10.1017/S0960129514000619 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000619


Information flow safety in multiparty sessions 1373

Definition 6.1 (demonitoring). If M is a monitored process, its demonitoring �M� is defined

by

�P �μ� = P �M1 | M2� = �M1� | �M2� �def D in M� = def D in �M�.

We may now define our safety property. Intuitively, a monitored process M is safe if it

can mimic at each step the transitions of the underlying process �M�.

Definition 6.2 (monitored process safety). The safety predicate on monitored processes is

coinductively defined by:

M is safe if for any tester Z and monotone Q-set H such that 〈�M�, H〉 is saturated:

If 〈�M� � Z, H〉 � (νs̃)〈P , H ′〉,
then 〈M � Z, H〉 �→ (νs̃)〈M ′, H ′〉, where �M ′� = P and M ′ is safe.

Definition 6.3 (process safety). A process P is safe if P �⊥ is safe.

We show now that if a process is safe, then none of its monitored computations starting

with H = � and monitor ⊥ gives rise to error. This result rests on the observation

that 〈M, H〉 �→ if and only if 〈�M�, H〉 −→ and ¬ 〈M, H〉†, and that if M is safe,

then whenever a standard communication rule is applicable to �M�, the corresponding

monitored communication rule is applicable to M.

Proposition 6.4 (safety implies absence of runtime errors). If P is safe, then every monitored

computation

〈P �⊥, �〉 = 〈M0, H0〉 �→ (νs̃1)〈M1, H1〉 �→ · · · (νs̃k)〈Mk, Hk〉

is such that ¬ 〈Mk, Hk〉†.

Proof. Note that 〈M, H〉 �→ (νs̃)〈M ′, H ′〉 implies 〈�M�, H〉 −→ (νs̃)〈�M ′�, H ′〉 and

〈M, H〉† implies 〈�M�, H〉 −→ (νs̃)〈Q, H ′〉 for some s̃, Q, H ′. In other words, both

〈M, H〉 �→ (νs̃)〈M ′, H ′〉 and 〈M, H〉† imply that 〈�M�, H〉 can move. Assume

ad absurdum that 〈Mk, Hk〉†. Then, corresponding to the monitored computation

〈P �⊥, �〉 �→∗ (νs̃k)〈Mk, Hk〉†, we would get

〈P , �〉 −→∗ (νs̃k)〈�Mk�, Hk〉 −→ (νs̃k+1)〈Q, Hk+1〉,

for some s̃k+1, Q, Hk+1. By definition this implies that P �⊥ is not safe, therefore P is not

safe either, contradicting our assumption.

Note that the converse of Proposition 6.4 does not hold, as shown by the next example.

This means that we could not use absence of runtime errors as a definition of safety, since

that would not be strong enough to guarantee our security property, which allows the

pair of L-equal Q-sets to be refreshed at each step (while maintaining L-equality).
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Example 6.5. Consider the process P

P = a⊥[1](α1).P1 | a⊥[2](α2).P2 | ā⊥[2]

P1 = α1!〈2, true�〉.α1?(2, x
�).0

P2 = α2?(1, z
�).if z� then α2!〈1, false�〉.0 else α2!〈1, true⊥〉.0.

Note first that this process is not ⊥-secure because after P1 has put the value true�

in the Q-set, this value may be changed to false� while preserving L-equality of Q-sets,

thus allowing the else branch of P2 to be explored by the bisimulation. This process is

not safe either, because our definition of safety mimics L-bisimulation by refreshing the

Q-set at each step. By contrast, the monitored execution of 〈P �⊥, �〉 uses at each step the

Q-set produced at the previous step. Therefore, the monitored execution will never take

the else branch and will always succeed. Hence the simple absence of runtime errors is

not sufficient by itself to enforce safety.

Intuitively, this discrepancy between safety and error-freedom is due to the fact that

in Proposition 6.4 a computation of 〈�M�, H〉 is assumed to proceed in isolation, in a

static and protected environment, while our notions of safety and security assume that

processes evolve in a dynamic and potentially hostile environment, where the Q-sets may

vary at each step.

Let us turn now to the main result of this section, namely the compositionality of the

safety property. We start by proving that safety is compositional for monitored processes.

The compositionality for processes will then follow as an easy corollary.

Theorem 6.6. If M1 and M2 are safe, then M1 | M2 is safe.

Proof. Let SMP be the set of safe monitored processes. Since SMP is defined

coinductively, it is enough to show that the set of parallel compositions of safe monitored

processes

ParSMP = {M = M1 | M2 || Mi is safe, for i = 1, 2},
is closed with respect to the property of Definition 6.2 to obtain ParSMP ⊆ SMP .

Namely, we have to prove that, if M ∈ ParSMP , then for any tester Z and for any

monotone Q-set H such that 〈�M�, H〉 is saturated, the following holds:

If 〈�M� � Z, H〉 � (νs̃)〈P , H ′〉,
then 〈M � Z, H〉 �→ (νs̃)〈M ′, H ′〉, where �M ′� = P and M ′ ∈ ParSMP .

Note that there is a one-to-one correspondence between the rules of the standard semantics

and those of the monitored semantics. For any rule [Rule] in the former, there is a

corresponding rule [MRule] in the latter. We proceed by case analysis on the rule [Rule]

applied to infer the transition 〈�M�, H〉 � (νs̃)〈P , H ′〉.
The interesting rules [Rule] are those for which [MRule] imposes some monitoring

constraint, namely the communication rules and the three Link rules. The case of a

communication rule, say [Send], is simple since the action comes from one of the two

components �Mi� (i=1 or i=2) and the tester is not used. Suppose the action comes

from �M1�. In this case the transition has the form 〈�M1 | M2� � Z, H〉 � 〈P , H ′〉
and it is deduced by Rule [DropTest] from 〈�M1 | M2�, H〉 � 〈P , H ′〉, where P =
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P1 | �M2� for some P1 such that 〈�M1�, H〉 −→ 〈P1, H ′〉. Since M1 is safe, we have

then 〈M1, H〉 �→ 〈M ′
1, H ′〉 by Rule [MSend], where �M ′

1� = P1 and M ′
1 is safe.

This implies 〈M1 | M2, H〉 �→ 〈M ′
1 | M2, H ′〉, whence by Rule [MDropTest] we

deduce 〈M1 | M2 � Z, H〉 �→ 〈M ′
1 | M2, H ′〉, which is the required move since

�M ′
1 | M2� = P1 | �M2� and M ′

1 | M2 ∈ ParSMP .

The case of the Link rules is more interesting. There are essentially two subcases,

according to whether the session participants and the initiator are all in the same Mi and

possibly in the tester or they come from both Mi and possibly from the tester. We prove

the result for Rule [ExtLink1], the proofs for Rules [Link] and [ExtLink2] being similar

and simpler. We distinguish two cases

1. The initiator and a subset of the participants come from the same Mi and the

remaining participants come from the tester. Then the reasoning is similar to that for

the communication case above, using the safety of Mi and the Rules [ExtLink1] and

[MExtLink1].

2. The participants and the initiator are scattered among the tester and both Mi. This is

the most interesting case, since we need to use a different tester Ti for each component

Mi, whose role is to simulate the other component.

Suppose, M1 =
∏

j∈J1
a�[pj](αpj ).P

(1)
pj

�μj | ā�[n]�μ and M2 =
∏

j∈J2
a�[pj](αpj ).P

(2)
pj

�μj ,

where {pj | j ∈ J1 ∪ J2} ⊆ {1, . . . , n} and {pj | j ∈ J1} ∩ {pj | j ∈ J2} = �.

(Note that since all participant roles are different, we cannot assume without loss

of generality that the first #(J1)
† participants come from M1 and the following

#(J2) from M2.) Then the transition inferred by means of Rule [ExtLink1] has

the form �M1 | M2� � Z � (νs)〈P1 | P2, s : ε〉, where P1 =
∏

j∈J1
P (1)
pj {s[pj]/αpj} and

P2 =
∏

j∈J2
P (2)
pj {s[pj]/αpj}. Define now the two testers Z1 =

∏
j∈J2

a�[pj](αpj ).0 | Z and

Z2 =
∏

j∈J1
a�[pj](αpj ).0 | ā�[n] | Z . Then by construction �Mi� � Zi � (νs)〈Pi, s : ε〉.

Since both Mi are safe, by Rule [MExtLink1] we get for each of them a monitored

transition Mi � Zi �→ (νs)〈P ��
i , s : ε〉, where both P

��
i are safe and

⊔k1+k2

k=1 μjk � μ � �.

This implies (M1 | M2) � Z �→ (νs)〈(P1 | P2)
��, s : ε〉, which is the required move

since �(P1 | P2)
��� = P1 | P2 and P

��
1 | P ��

2 ∈ ParSMP .

Corollary 6.7. If P1 and P2 are safe, then P1 | P2 is safe.

Proof. By definition of safety, P
�⊥
1 and P

�⊥
2 are safe. Then, by Theorem 6.6, also

P
�⊥
1 | P �⊥

2 ≡ (P1 | P2)
�⊥ is safe.

7. Relating safety and security

In this section, we prove that safety implies security. As already discussed in the previous

sections, both these properties are persistent, namely they are required to hold in any

reachable state of the process, to take into account the possibility of intrusive observations

(or ‘attacks’) in the course of execution. However, note that safety is a property of

† We use #(J) to denote the cardinality of the set J .
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individual computations, while security is a property of the whole set of computations

of a process. Hence proving that safety implies security amounts to prove that a global

property of the set of computations is implied by a local property of each computation

in the set.

In order to prove that safety implies security, we need some preliminary results.

Lemma 7.1 (monotonicity of monitoring). Monitoring levels may only stay equal or

increase along execution: If 〈P �μ � Z,H〉 �→ (νs̃)〈P ′�μ′ , H ′〉, then μ � μ′.

We define now the class of L-high processes, namely processes which always modify the

Q-sets in a way that is transparent for L-observers.

Definition 7.2 (L-highness of processes). A process P is L-high if for any monotone Q-set

H such that 〈P , H〉 is saturated and any tester Z it satisfies the property:

If 〈P � Z, H〉 � (νs̃)〈P ′, H ′〉, then H =L H ′ and P ′ is L-high.

Lemma 7.3. If P �μ is safe and μ �∈ L, then P is L-high.

Proof. By induction on P . We only consider some interesting cases.

If P = s[p]!〈Π, e〉.P ′, then 〈P , s : h〉 −→ 〈P ′, s : h · (p,Π, v�)〉, where e ↓ v�. From the

safety of P �μ we get that 〈P �μ, s : h〉 �→ 〈P ′�μ, s : h · (p,Π, v�)〉 and P ′�μ is safe. This

means that μ � �. Then, since μ �∈ L, also � �∈ L and thus s : h =L s : h · (p,Π, v�). Finally,

P ′ is L-high by induction.

If P = s[q]?(p, x�).P ′, then 〈P , s : (p, q, v�) · h〉 −→ 〈P ′{v/x}, s : h〉, which implies

〈P �μ, s : (p, q, v�) · h〉 �→ 〈P ′{v/x}��, s : h〉 and μ � � and P ′{v/x}�� is safe. Since μ �∈ L
implies � �∈ L we get s : (p, q, v�) · h =L s : h. Again, P ′{v/x} is L-high by induction.

Lemma 7.4. If P = s[q]?(p, x�).P ′ and P is safe, then P �� is safe.

Proof. For any v of level �, P has a unique transition. Correspondingly, P �⊥ has

a monitored transition 〈P �⊥, {s : (p, q, v�) · h}〉 �→ 〈P ′{v/x}��, s : h〉. Since P is

safe, by definition P �⊥ is safe, therefore its residual P ′{v/x}�� is safe. Then, since also

〈P ��, {s : (p, q, v�) · h}〉 �→ 〈P ′{v/x}��, s : h〉, we may conclude that P �� is safe.

We next define the bisimulation relation that will be used in the proof of soundness.

Roughly, all monitored processes with a high monitoring level are related, while the other

processes are related if they are congruent.

To define the bisimulation it is handy to consider monitored processes where monitors

are pushed as deeply as possible into terms, so that a single monitor never controls two

processes in parallel. This is formalized by the following mapping df, which essentially

transforms a monitored parallel composition of processes into a parallel composition of

monitored processes.
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Definition 7.5 (distributed form of monitored processes). The distributed form of a mon-

itored process M (notation df(M)) is defined by

df(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

df(M1) | df(M2) if M = M1 | M2,

df(P
�μ
1 ) | df(P

�μ
2 ) if M = (P1 | P2)

�μ and Pi �≡ 0, i = 1, 2

df(P
�μ
i ) if M = (P1 | P2)

�μ and Pj ≡ 0, i �= j

def D in df(N) if M = def D in N,

def D in df(P �μ) if M = (def D in P )�μ,

M otherwise.

It is easy to verify that df(M) ≡ M.

Definition 7.6 (bisimulation for soundness proof: monitored processes). Given a downward-

closed set of security levels L ⊆ S, the relation RL
◦ on monitored processes in distributed

form is defined inductively as follows:

M1 RL
◦ M2 if M1 and M2 are safe and one of the following holds:

1. M1 = P
�μ1

1 , M2 = P
�μ2

2 , and μ1, μ2 �∈ L;

2. M1 = M2 = P �μ, and μ ∈ L;

3. Mi =
∏m

j=1 N
(i)
j , where ∀j ∈ {1, . . . , m}, N

(1)
j RL

◦ N
(2)
j follows from (1) or (2);

4. Mi = def D in Ni, where N1 RL
◦ N2.

Definition 7.7 (bisimulation for soundness proof: processes). Given a downward-closed set

of security levels L ⊆ S, the relation RL on processes is defined by:

P1RLP2 if there are monitored processes in distributed form M1,M2

such that Pi ≡ �Mi� for i = 1, 2 and M1 RL
◦ M2.

We may now show our main result, namely that safety implies security. The proof

consists in showing that safety implies L-security, for any L. The informal argument goes

as follows. Let ‘low’ mean ‘in L’ and ‘high’ mean ‘not in L. ’ If P is not L-secure, this

means that there are two different observable low behaviours after a high input. This

implies that in at least one of the two computations there is some observable low action

after the high input. But in this case the monitored semantics will yield error, since it does

so as soon as it meets an action of level � �� μ, where μ is the monitoring level of the

executing component (which will have been set to high after crossing the high input).

Theorem 7.8 (safety implies security). If P is safe, P is also secure.

Proof. We prove that P is L-secure for any L. The proof consists in showing that

the relation RL defined in Definition 7.7 is an L-bisimulation containing the pair (P , P )

for any safe process P . Note first that if P is safe, then P RL P because P �⊥ RL
◦ P

�⊥ by

Clause (2). Suppose now that P1 RL P2. This means that there exist monitored processes in

distributed form M1,M2 such that Pi ≡ �Mi� for i = 1, 2 and M1 RL
◦ M2. Since processes

and configurations are considered modulo ≡ we can assume without loss of generality

that Pi = �Mi� for i = 1, 2. Let H1, H2 be two monotone Q-sets such that H1 =L H2 and

〈Pi, Hi〉 for i = 1, 2 are saturated.
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We want to show that for each tester Z and each reduction 〈P1 � Z, H1〉 � (νs̃)〈P ′
1, H

′
1〉,

either we have H ′
1 =L H2 and P ′

1 R P2, or 〈P2 � Z, H2〉 � · −→∗ (νs̃)〈P ′
2, H ′

2〉, where

H ′
1 =L H ′

2 and P ′
1 RL

◦ P
′
2.

We proceed by induction on the definition of RL
◦ (Definition 7.6).

— Clause (1). In this case M1 = P
�μ1

1 , M2 = P
�μ2

2 and μ1, μ2 �∈ L. Suppose there is a

transition 〈P1 � Z, H1〉 � (νs̃)〈P ′
1, H

′
1〉. By Lemma 7.3, P1 is L-high, thus H ′

1 =L H1.

Since P1 is safe, there exists μ′1 such that 〈P �μ1

1 � Z, H1〉 �→ (νs̃)〈P ′
1
�μ′1 , H ′

1〉, where

P ′
1
�μ′1 is safe (the fact that M1 is in distributed form ensures that the residual is of the

form P ′
1
�μ′1 ). By Lemma 7.1, we have μ1 � μ′1, whence μ′1 �∈ L. Then 〈P2, H2〉 may reply

by the empty move, since H ′
1 =L H2 and P

′�μ′1
1 RL

◦P
�μ2

2 by Clause (1) again, whence

P ′
1 RL P2 by Definition 7.7.

— Clause (2). In this case M1 = M2 = P �μ, and μ ∈ L, and the proof proceeds by case

analysis on the form of P . We examine some interesting cases. We will consider testers

only when they are necessary.

– LetMi=a�[p](αp).Qp
�μ, thenP =a�[p](αp).Qp.Take Z =

∏
1�q�n,q �=p a

�[q](αq).0 | ā�[n],
where n is the arity of a. We can only reduce by applying rule [ExtLink2]. So we

get 〈P � Z, H1〉 � (νs)〈Qp{s[p]/αp}, H1 ∪ {s : ε}〉, where s is fresh. Now,

this can be matched by 〈P � Z, H2〉 � (νs)〈Qp{s[p]/αp}, H2 ∪ {s : ε}〉. From

H1 =L H2 we get H1 ∪ {s : ε} =L H2 ∪ {s : ε}. Since P �μ is safe, there is a transition

〈P �μ � Z, H1〉 �→ 〈Qp{s[p]/αp}��, H1 ∪ {s : ε}〉 and Qp{s[p]/αp}�� is safe. Hence,

Qp{s[p]/αp}�� RL
◦ Qp{s[p]/αp}�� by Clause (1) if � �∈ L and by Clause (2) if � ∈ L.

In both cases Qp{s[p]/αp}RLQp{s[p]/αp}.
– Let Mi = s[p]!〈Π, e〉.P ′�μ and ∃ v, ∃ � � μ such that e ↓ v�. In this case P =

s[p]!〈Π, e〉.P ′ and the reduction 〈P , H1〉 −→ 〈P ′, H ′
1〉 is obtained by rule [Send].

Applicability of rule [Send] assures that there is a queue s : h1 in H1. Since 〈P ,H2〉
is saturated, there will be a queue s : h2 in H2. If Hi = Ki ∪ s : hi, we have

H ′
1 = K1 ∪ s : h1 · (p,Π, v�), and the matching move will be 〈P , H2〉 −→ 〈P ′, H ′

2〉,
where H ′

2 = K2 ∪ s : h2 · (p,Π, v�). Indeed, if � /∈ L then H ′
1 =L H1 =L H2 =L H ′

2.

If � ∈ L then H ′
1 =L H ′

2 follows from K1 =L K2 and s : h1 =L s : h2. Since P �μ is

safe, we know that there is a monitored transition 〈P �μ, H1〉 �→ 〈P ′�μ, H ′
1〉 and

that P ′�μ is safe. Hence P ′�μ RL
◦ P

′�μ by Clause (2) again, which implies P ′RLP ′.

– Let Mi = s[q]?(p, x�).P ′�μ, where μ � �. In this case P = s[q]?(p, x�).P ′ and

the move of 〈P , H1〉 is obtained by rule [Rec] and has the form 〈P , H1〉 −→
〈P ′{v/x}, H ′

1〉 for some v such that the message (p, q, v�) occurs at the head of queue

s in H1. As above, since P �μ is safe, we know that 〈P �μ, H1〉 �→ 〈P ′{v/x}��, H ′
1〉

and that P ′{v/x}�� is safe. Now, if � �∈ L we get H ′
1 =L H2 and P �� is safe by Lemma

7.4. Then 〈P , H2〉 may reply by the empty move, since P ′{v/x}�� RL
◦ P

�� by Clause

(1) and thus P ′{v/x}RL P . If � ∈ L, since H1 =L H2, the message (p, q, v�) must

occur at the head of queue s also in H2. Then, assuming Hi = Ki ∪ s : (p, q, v�) · hi,
we have

〈P , K1 ∪ s : (p, q, v�) · h1〉 −→ 〈P ′{v/x}, K1 ∪ s : h1〉,
〈P , K2 ∪ s : (p, q, v�) · h2〉 −→ 〈P ′{v/x}, K2 ∪ s : h2〉.
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Here P ′{v/x}�� RL
◦ P

′{v/x}�� by Clause (2), which implies P ′{v/x}RL P ′{v/x}.
Lastly H1 =L H2 implies K1 ∪ s : h1 =L K2 ∪ s : h2.

— Clause (3). Let Mi =
∏m

j=1 N
(i)
j , where ∀j (1 � j � m) we have N

(1)
j RL

◦ N
(2)
j either by

Clause (1) or by Clause (2). This means that for each j, there exists μj such that

N
(i)
j = Q

(i)
j

�μj
. Then Pi =

∏m
j=1 Q

(i)
j and the move of 〈P1, H1〉 comes either from a

single component Q
(1)
j , or from a group of k � m components that synchronize to

open an n-ary session on service a�, possibly with the help of a tester. Using structural

equivalence, we may assume that in the first case the moving component is Q
(1)
1 , and

in the second case the group of moving components is
∏k

j=1 Q
(1)
j , for some k � m. We

examine the two cases in turn.

a. If Q(1)
1 moves alone, then the move

(
) 〈P1, H1〉 � (νs̃)〈Q′(1)
1 |

∏m
j=2 Q

(1)
j , H ′

1〉

is deduced from 〈Q(1)
1 , H1〉 � (νr̃)〈Q′(1)

1 , H ′
1〉.

Since N
(1)
1 RL

◦ N
(2)
1 , by induction we have either (i) H ′

1 =L H2 and Q
′(1)
1 RL Q(2)

1 , or

(ii) 〈Q(2)
1 , H2〉 � · −→∗ (νs̃)〈Q′(2)

1 , H ′
2〉 with Q

′(1)
1 RL Q′(2)

1 and H ′
1 =L H ′

2.

We consider the case (ii), since the case (i) is simpler. From (ii) we infer

(

) 〈P2, H2〉 � · −→∗ (νs̃)〈Q′(2)
1 |

∏m
j=2 Q

(2)
j , H ′

2〉

Since the Mi are safe, corresponding to (
) and (

) we have

〈M1, H1〉 �→ (νs̃)〈N ′(1)
1 |

∏m
j=2 N

(1)
j , H ′

1〉,

〈M2, H2〉 �→∗ (νs̃)〈N ′(2)
1 |

∏m
j=2 N

(2)
j , H ′

2〉,

where the M ′
i = N

′(i)
1 |

∏m
j=2 N

(i)
j are again safe, �N ′(i)

j � = Q
′(i)
j and N

′(1)
1 RL

◦ N
′(2)
1 .

Therefore N
′(1)
1 |

∏m
j=2 N

(1)
j RL

◦ N
′(2)
1 |

∏m
j=2 N

(2)
j by Clause (3) again, from which

we derive Q
′(1)
1 |

∏m
j=2 Q

(1)
j RL Q

′(2)
1 |

∏m
j=2 Q

(2)
j . We conclude that (

) is the

required matching move.

b. Here we assume that P1 =
∏k

j=1 Q
(1)
j |

∏m
j=k+1 Q

(1)
j and that all the processes in∏k

j=1 Q
(1)
j synchronize, possibly with the help of the tester. Let us consider the case

where the applied rule is [ExtLink1] (the proofs in the other cases are similar). Let

k < n, Q(1)
j = a�[pj](αpj ).R

(1)
pj for 1 � j � k−1 and Q

(1)
k = ā�[n] and Z be the tester.

Suppose that the move of 〈P1 � Z, H1〉 is

(�) 〈P1 � Z, H1〉 � 〈P ′
1, H1 ∪ {s : ε}〉,

where P ′
1 = (νs)〈

∏k−1
j=1 R

(1)
pj {s[pj]/αpj} |

∏n
j=k+1 Q

(1)
j , H1 ∪ {s : ε}〉. Since M1 is

safe, 〈M1 � Z, H1〉 has a corresponding monitored transition deduced by Rule

[MExtLink1]:

〈M1 � Z, H1〉 �→ (νs)〈
∏k−1

j=1 R
(1)
pj {s[pj]/αpj}

�� |
∏m

j=k+1 N
(1)
j , H1 ∪ {s : ε}〉,

where �k
j=1μj � � and the safety of M1 implies the safety of each R(1)

pj {s[pj]/αpj}
��.
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We distinguish now two cases, according to whether � ∈ L or � �∈ L:

i. If � ∈ L, then μj ∈ L for each j such that 1 � j � k. In this case we know

that N
(1)
j RL

◦ N
(2)
j follows from Clause (2), and hence N

(2)
j = a�[pj](αpj ).R

(1)
pj

�μj

for each j such that 1 � j � k − 1 and N
(2)
k = ā�[n]�μk . This means that

P2 =
∏k−1

j=1 a
�[pj](αpj ).R

(1)
pj | ā�[n]�μk |

∏m
j=k+1 Q

(2)
j . Then 〈P2, H2〉 has the

following move

(��) 〈P2 � Z, H2〉 � (νs)〈
∏k−1

j=1 R
(1)
pj {s[pj]/αpj} |

∏m
j=k+1 Q

(2)
j , H2 ∪ {s : ε}〉.

Since M2 is safe, 〈M2 � Z, H2〉 has a corresponding monitored transition:

〈M2 � Z, H2〉 �→ (νs)〈
∏k−1

j=1 R
(1)
pj {s[pj]/αpj}

�� |
∏m

j=k+1 N
(2)
j , H1 ∪ {s : ε}〉.

Define now M ′
i =

∏k−1
j=1 R

(1)
pj {s[pj]/αpj}

�� |
∏m

j=k+1 N
(i)
j . Then, by Clause (2) we

have that R(1)
pj {s[pj]/αpj}

�� RL
◦ R

(1)
pj {s[pj]/αpj}

�� for each j such that 1 � j � k−1,

and by hypothesis we have N
(1)
j RL

◦ N
(2)
j for each j such that k + 1 � j � m,

either by Clause (1) or by Clause (2). Then M ′
1 RL

◦ M
′
2 by Clause (3) and hence

(��) is the required matching transition for (�).

ii. If � �∈ L, we may assume without loss of generality that there exists k′ � k − 1

such that μj ∈ L for 1 � j � k′ and μj �∈ L for k′ + 1 � j � k − 1. For

the initiator we could have μk ∈ L or μk �∈ L. Note that it could be that

μj ∈ L for each j such that 1 � j � k − 1, i.e. k′ = k − 1, and μk ∈ L. In this

case we proceed as in case i.) above, except that we use Clause (1) to deduce

Rpj{s[pj]/αpj}�� RL
◦ Rpj{s[pj]/αpj}�� for each j such that 1 � j � k − 1.

So, let us assume that k′ < k − 1 and μk �∈ L (the case where μk ∈ L is similar

and simpler). Then N
(1)
j = N

(2)
j for 1 � j � k′, because N

(1)
j RL

◦ N
(2)
j follows

necessarily from Clause (2). Instead, N(1)
j RL

◦ N
(2)
j for k′ + 1 � j � k follows

necessarily from Clause (1). Define now

M ′
1 =

∏k−1
j=1 Rpj{s[pj]/αpj}�� | 0�� |

∏m
j=k+1 N

(1)
j ,

M ′
2 =

∏k′

j=1 a[pj](αpj ).Rpj
�� |

∏m
j=k′+1 N

(2)
j .

Note that the component 0�� in M ′
1 is used to match N

(2)
k in M ′

2. The safety of

M1 implies the safety of all Rpj{s[pj]/αpj}��, which in turn imply the safety of

each a�[pj](αpj ).Rpj
��

for 1 � j � k′.

Notice that M ′
1 RL

◦ M
′
2 by Clause (3), because the first k components are related

by Clause (1), and the remaining ones are related by hypothesis either by

Clause (1) or by Clause (2). Let P ′′
1 = �M ′

1�. Since P ′′
1 ≡ P ′

1 and P2 = �M ′
2�, by

Definition 7.7 we have P ′
1 RL P2. Thus, since H1 ∪ {s : ε} =L H1 =L H2, we may

use the empty move of 〈P2, H2〉 to match the move (�) of 〈P1, H1〉.
— Clause (4). If Rule [Def] is used to infer the transition of 〈P1 � Z, H1〉, then, by

definition of distributed monitored processes, there is only one monitor controlling the

process variable which is replaced. Therefore we can use Clause (1) or (2). Otherwise,

Rule [Cont] is used and induction applies.
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The converse of Theorem 7.8 does not hold, as shown by the process R of Example

4.12, or by the following more classical example:

Example 7.9. (Secure unsafe process) Consider the process P = P1 | P2, whose second

participant contains a high conditional that emits two equal low messages in its branches.

P1 = def X(x, α) = Q1 in X〈true�, s[1]〉,
P2 = def Y (y, β) = Q2 in Y 〈false⊥, s[2]〉,

where Q1 = α!〈2, x〉.X(x, α) and Q2 = β?(1, z�).if z� then β!〈3, y〉.Y (y, β) else

β!〈3, y〉.Y (y, β). Let us first argue that this process is secure. Notice that, since the first

participant persistently emits the message (1, 2, true�), the input of the second participant

is always enabled: then, even considering the worst case where P is run first with two

arbitrary ⊥-equal Q-sets H and K and then with H1 = {s : (1, 2, false�)} and H2 = {s : ε}
(again ⊥-equal), the moves

〈P , H〉 −→ 〈P1 | P ′
2, H〉,

and

〈P1 | P ′
2, H1〉 −→ 〈P1 | def Y (y, β) = Q2 in if false� then Q else Q, {s : ε}〉,

where P ′
2 = def Y (y, β) = Q2 in Q2{false⊥/y}{s[2]/β} and

Q = s[2]!〈3, false⊥〉.Y 〈false⊥, s[2]〉, can be simulated by

〈P , K〉 −→ 〈P ′
1 | P2, K〉,

and

〈P ′
1 | P2, H2〉 −→∗ 〈P , {s : (1, 2, true�)}〉 −→∗,

〈P1 | def Y (y, β) = Q2 in if true� then Q else Q, {s : ε}〉,

where P ′
1 = def X(x, α) = Q1 in Q1{true�/x}{s[1]/α}. Clearly the two continuations are

⊥-bisimilar, since without touching the Q-set they both evolve to

P1 | def Y (y, β) = Q2 in Q.

On the other hand, P is clearly not safe since in both branches of the conditional it tries

to perform a ⊥-output after having set the monitor to � when receiving the �-input.

8. Type system

In this section, we present our security type system, which will be shown to imply safety.

This type system is a restriction to our calculus of the system given for a richer calculus

in Capecchi et al. (2014), to which we refer for motivations, explanations and the proof

of subject reduction.
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Table 8. Global and session types.

Global G ::= p → Π : 〈S�〉.G communication

|| p → Π : {λi : Gi}�i∈I choice

|| t variable

|| μt.G recursive

|| end end

Session T ::= !〈Π, S�〉;T send

|| ?(p, S�);T receive

|| ⊕�〈Π, {λi : Ti}i∈I〉 selection

|| &�(p, {λi : Ti}i∈I ) branching

|| μt.T recursive

|| t variable

|| end end

Sorts S ::= bool || . . .

8.1. Typing expressions and processes

As standard for typing processes we need two kinds of types, global types and session

types.

The grammar of global and session types is given in Table 8. Global types represent

the whole session protocol and session types correspond to the communication actions,

representing each participant’s contribution to the session. We comment on global types

and session types in turn.

The communication type p → Π : 〈S�〉.G says that participant p multicasts a message

of type S and level � to all participants in Π and then the interactions described in G

take place. The choice type p → Π : {λi : Gi}�i∈I says that participant p multicasts one of

the labels λi to the participants in Π. If λj is sent, interactions described in Gj take place.

Type μt.G is a recursive type, where the type variable t is guarded in the standard way.

Type end represents the termination of a session.

The send type !〈Π, S�〉;T expresses the sending to all participants in Π of a value of

type S and of level �, followed by the communications described in T . The selection type

⊕�〈Π, {λi : Ti}i∈I〉 represents the transmission to all participants in Π of a label λj in

{λi | i ∈ I}, followed by the communications described in Tj . The receive and branching

types are dual to the send and selection ones. Recursive types μt.G and μt.T are considered

modulo folding and unfolding.

The relation between global types and session types is formalized by the notion

of projection (Honda et al. 2008). The projection of G onto q, denoted (G � q), gives

participant q’s view of the protocol described by G. It is defined by induction on global

types in Table 9. For the choice global type, the condition Gi � q = Gj � q for all i, j ∈ I

assures that the projections of all the participants not involved in the branching are

identical session types.
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Table 9. Projection of global types on participants.

(p → Π : 〈S�〉.G′) � q =

⎧⎪⎪⎨⎪⎪⎩
!〈Π, S�〉; (G′ � q) if q = p,

?(p, S�); (G′ � q) if q ∈ Π,

G′ � q otherwise.

(p → Π : {λi : Gi}�i∈I ) � q =

⎧⎪⎪⎨⎪⎪⎩
⊕�(Π, {λi : Gi � q}i∈I ) if q = p

&�(p, {λi : Gi � q}i∈I ) if q ∈ Π

G1 � q if q �= p, q �∈ Π and Gi � q = Gj � q ∀i, j ∈ I.

(μt.G′) � q =

{
μt.(G′ � q) if q occurs in G′,

end otherwise.
t � q = t end � q = end

Table 10. Meet of session types.

Meet( !〈Π, S�〉;T ) = � 	 Meet(T ) Meet(?(p, S�);T ) = � Meet(⊕�〈Π, {λi : Ti}i∈I〉) = �

Meet(&�(p, {λi : Ti}i∈I )) = � Meet(μt.T ) = Meet(T ) Meet(t) = Meet(end) = �

The typing judgments for expressions are of the form

Γ � e : S�,

where Γ is the standard environment which maps variables with security levels to sort types

with the same security levels, service names with security levels to global types with the

same security levels, and process variables to pairs of sort types with their security levels

and session types. Formally, we define

Γ ::= � | Γ, x� : S� | Γ, a� : G� | Γ, X : S� T ,

assuming that we can write Γ, x� : S�′ only if x does not occur in Γ, that is, standard

environments should not contain the same variable twice. Similarly for Γ, a� : G� and

Γ, X : S� T .

We type values by decorating their types with their security levels, and variables/service

names according to Γ:

Γ � true�, false� : bool� Γ, x� : S� � x� : S� Γ, a� : S� � a� : S�,

We type expressions by decorating their types with the join of the security levels of the

variables and values they are built from. For example a typing rule for and is

Γ � e1 : bool�1 Γ � e2 : bool�2

Γ � e1 and e2 : bool�1��2

.

The meet of session types (Table 10) takes into account the lowest level of exchanged

values and choices. Notice that only for the send type we need to consider the ‘future’

exchanges, since the typing rules for the other constructors already do this job (see

Table 11). The meet is used in the type system rules �Sel� and �Branch� for information

flow control (see Table 11).
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Table 11. Typing rules for processes.

Γ �� P � Δ �′ � �
�SubS�

Γ ��′ P � Δ

Δ end only
�Inact�

Γ �� 0 � Δ

Γ �� P � Δ Γ �� Q � Δ′

�Conc�
Γ �� P | Q � Δ,Δ′

Γ � e : bool�
′

Γ �� P � Δ Γ �� Q � Δ
�If�

Γ �� if e then P else Q � Δ

Γ � e : S� �′ = Meet(T ) Δ end only
�Var�

Γ, X : S� T ��	�′ X〈e, c〉 � Δ, c : T

Γ, X : S� T , x� : S� ��	�′ P � {α : T } �′ = Meet(T ) Γ, X : S� T ��′′ Q � Δ
�Def�

Γ ��′′ def X(x, α) = P in Q � Δ

n is the arity of a
�MInit�

Γ, a� : G� �� ā
�[n] � �

Γ, a� : G� �� P � Δ, α : G � p
�MAcc�

Γ, a� : G� �� a
�[p](α).P � Δ

Γ � e : S� Γ ��′ P � Δ, c : T �′ � �
�Send�

Γ ��′ c!〈Π, e〉.P � Δ, c : !〈Π, S�〉;T

Γ, x� : S� �� P � Δ, c : T
�Rcv�

Γ �� c?(p, x
�).P � Δ, c :?(p, S�);T

Γ �� P � Δ, c : Tj j ∈ I � � �′ �
�

i∈I
Meet(Ti)

�Sel�
Γ �� c⊕�′ 〈Π, λj〉.P � Δ, c : ⊕�′ 〈Π, {λi : Ti}i∈I〉

Γ �� Pi � Δ, c : Ti � �
�

i∈I
Meet(Ti)

�Branch�
Γ �� c&

�(p, {λi : Pi}i∈I ) � Δ, c : &�(p, {λi : Ti}i∈I )

The typing judgments for processes are of the form:

Γ �� P � Δ

where Δ is a process environment which associates session types with channels:

Δ ::= � || Δ, c : T

The merge ‘Δ,Δ′’ of process environments is defined only if dom(Δ)∩ dom(Δ′) = �, where

dom( ) is as expected.

We decorate the derivation symbol � with the security level � inferred for the process:

this level is a lower bound for the communications performed in the process. The set of

typing rules for processes is given in Table 11.

�SubS� is the classical subtyping rule of security type systems. It is crucial for some rule

premises to hold, since it allows the security level inferred for a process to be decreased.

�Inact� gives security level � to 0 since a terminated process cannot leak any

information; in the premise, ‘Δ end only’ means that each channel in dom(Δ) has session

type end.

�Conc� allows the parallel composition of two processes P ,Q to be typed if both

processes are typable and their process environments have disjoint domains.
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�If� requires that the two branches P ,Q of a conditional be typed with the same

process environment Δ, and with the same security level �. This rule is consistent with

the monitored semantics rules �MIf-T� �MIf-F� which do not raise the monitoring level

when executing a conditional. Indeed, the classical requirement that the security level �′

of the tested expression be less than or equal to the security level � of the branches is not

needed here because the process if e then P else Q can only be executed if the expression

e can be evaluated, and this is the case only if all the variables occurring in e have been

instantiated by previous inputs. Since these inputs guard the conditional, the join of their

levels will be less than or equal to � by Rule �Rcv�.
�Var� types X〈e, c〉 with a level which is the meet of the security levels of expression

e and the security levels of the communications performed on channel c. In this way we

take into account the levels of all communications which can be performed by a process

bound to X.

In �Def�, the process P is typed with the meet of the security levels associated with x

and α, in agreement with rule �Var�. The levels of P and Q can be unrelated, since it is

possible that X does not occur in Q. Clearly if X occurs in Q we get �′′ � � 	 �′.

In rules �MInit� and �MAcc� the standard environment must associate with the

identifier a a global type. In �MInit� the emptiness of the process environment in the

conclusion specifies that there is no further communication behaviour after the initiator.

In �MAcc� the premise guarantees that the type of the channel α in P is the p-th

projection of the global type G of a. Concerning security levels, in �MAcc� we check that

the continuation process P conforms to the security level � associated with the service

name a.

�Send� types the sending of a basic value followed by the process P . The premise

makes sure that (i) the expression e has type S� in Γ, where � is the join of all variables

and values in e, and (ii) P is typable in Γ. The condition �′ � � is not a constraint on

P , since whatever level �′′ is inferred for P , it can always be downgraded to such an �′;

this condition simply ensures that the output process cannot be typed with a level higher

than or incomparable with �, thus preserving the invariant that the level �′ of a process

is a lower bound for all security levels of its communications.

�Rcv� is the dual of rule �Send� but it is more restrictive, in that it requires the

continuation P to be typable with level �. This means that P cannot have any actions

of level lower than or incomparable with �. This rule forbids a �-input followed by a

⊥-output, for instance.

�Sel� types a selecting process with the level associated with the selection operator,

which is less than or equal to the meets of the types in the different possible continuations.

�Branch� is the dual of the �Sel� rule.

8.2. Typing queues and Q-sets

We type queues by describing the messages they contain: message types represent the

messages contained in the queues, see Table 12. The message value send type !〈Π, S�〉
expresses the communication to all p ∈ Π of a value of type S�. The message selection

https://doi.org/10.1017/S0960129514000619 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000619


S. Capecchi, I. Castellani and M. Dezani-Ciancaglini 1386

Table 12. Message types and equivalence relation on message types.

Message T ::= !〈Π, S�〉 message send

|| T; T′ message sequence
|| ⊕�〈Π, λ〉 message selection

T; �〈Π, A〉; �′〈Π′, A〉; T′ ≈ T; �′〈Π′, A〉; �〈Π, A〉; T′ if Π ∩ Π′ = �
T; �〈Π, A〉; T′ ≈ T; �〈Π′, A〉; �〈Π′′, A〉; T′ if Π = Π′ ∪ Π′′,Π′ ∩ Π′′ = �

Table 13. Typing rules for queues and Q-sets.

�QInit�
Γ � s : ε � �

Γ � s : h � Θ Γ � v� : S
�QSend�

Γ � s : h · (p,Π, v�) � Θ; {s[p] : !〈Π, S〉}

Γ � s : h � Θ
�QSel�

Γ � s : h · (p,Π, λ�) � Θ; {s[p] : ⊕�〈Π, λ〉}
Γ � s : h � Θ Θ ≈ Θ′

�QCong�
Γ � s : h � Θ′

�QSInit�
Γ �� � � �

Γ �Σ H � Θ Γ � s : h � Θ′

�QSUnion�
Γ �Σ,s H ∪ {s : h} � Θ,Θ′

type ⊕�〈Π, λ〉 represents the communication to all p ∈ Π of the label λ with level � and

T; T′ represents sequencing of message types (we assume associativity for ;).

In order to take into account the structural congruence on queues given in Table 2, we

consider message types modulo the equivalence relation ≈ induced by the rules shown in

Table 12 (with � ∈ {!,⊕�} and A ∈ {S�, λ}).
Typing judgments for queues have the shape

Γ � s : h � Θ,

where Θ is a queue environment associating message types with channels with role:

Θ ::= � | Θ, s[p] : T.

Typing judgments for Q-sets have the shape

Γ �Σ H � Θ,

where Σ is the set of session names which occur in H .

The equivalence ≈ on message types can be trivially extended to queue environments

{s[pi] : Ti | i ∈ I} ≈ {s[pi] : T′
i | i ∈ I} if Ti ≈ T′

i for all i ∈ I.

Typing rules for queues and Q-sets are given in Table 13. The composition ‘;’ of queue

environments is defined by

Θ; Θ′ = {s[p] : T; T′ | s[p] : T ∈ Θ and s[p] : T′ ∈ Θ′} ∪
{s[p] : T | s[p] : T ∈ Θ and s[p] �∈ dom(Θ′)} ∪
{s[p] : T′ | s[p] �∈ dom(Θ) and s[p] : T′ ∈ Θ′}.
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Table 14. Projection of configuration types on participants.

( !〈Π, S�〉; T) � q =

{
!S�; T � q if q ∈ Π,

T � q otherwise.
(?(p, S�);T ) � q =

{
?S�;T � q if q = p,

T � q otherwise.

(⊕�〈Π, λ〉; T) �q =

{
⊕�λ; T � q if q ∈ Π,

T � q otherwise.

(⊕�〈Π, {λi : Ti}i∈I〉) �q =

{
⊕�{λi : Ti � q}i∈I if q ∈ Π,

T1 � q otherwise.

(&�(p, {λi : Ti}i∈I )) � q =

{
&�{λi : Ti � q}i∈I if q = p,

T1 � q otherwise.

(μt.T ) � q =

{
μt.(T � q) if q occurs in T ,

end otherwise.
t � q = t end � q = end

In Table 13, the merge ‘Σ,Σ′’ of name sets and the merge ‘Θ,Θ′’ of queue environments

are defined only if Σ ∩ Σ′ = � and dom(Θ) ∩ dom(Θ′) = �, respectively.

8.3. Typing configurations

Typing judgments for runtime configurations C have the form

Γ �Σ C � < Δ  Θ > .

They associate with a configuration the environments Δ and Θ mapping channels to

session and message types, respectively. We call < Δ  Θ > a configuration environment.

A configuration type is a session type, or a message type or a message type followed by

a session type

Configuration T ::= T session

|| T;T continuation
|| T message

Since channels with role occur both in processes and in queues, a configuration

environment associates configuration types with these channels.

Definition 8.1. The configuration type of a channel s[p] in a configuration environment

< Δ  Θ > (notation < Δ  Θ > (s[p]) ) is defined by

< Δ  Θ > (s[p]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T;T if s[p] : T ∈ Θ and s[p] : T ∈ Δ,

T if s[p] : T ∈ Θ and s[p] �∈ dom(Δ),

T if s[p] �∈ dom(Θ) and s[p] : T ∈ Δ,

end otherwise.

Configuration types can be projected on participants (notation T � q ), see Table 14.

We also define a duality relation �
 between projections of configuration types, which

holds when opposite communications are offered (input/output, selection/branching).
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Table 15. Typing rules for configurations.

Γ �� P � Δ Γ �Σ H � Θ < Δ  Θ > is coherent
�CInit�

Γ �Σ 〈P , H〉 � < Δ  Θ >

Γ �Σ1
C1 � < Δ1  Θ1 > Γ �Σ2

C2 � < Δ2  Θ2 > < Δ1,Δ2  Θ1,Θ2 > is coherent
�CPar�

Γ �Σ1 ,Σ2
C1‖C2 � < Δ1,Δ2  Θ1,Θ2 >

Γ �Σ C � < Δ  Θ >
�GSRes�

Γ �Σ\s (νs)C � < Δ \ s  Θ \ s >

Definition 8.2. The duality relation between projections of configuration types is the

minimal symmetric relation which satisfies

end �
 end t �
 t T �
 T ′ ⇒ μt.T �
 μt.T ′

∀i ∈ I Ti �
 T ′
i ⇒ ⊕�{λi : Ti}i∈I �
 &�{λi : T ′

i }i∈I
T �
 T ⇒ !S�; T �
 ?S�;T

∃i ∈ I λ = λi and T �
 Ti ⇒ ⊕�λ; T �
 &�{λi : Ti}i∈I .

The above definitions are needed to state coherence of configuration environments.

Informally, this holds when the inputs and the branchings offered by the process agree

both with the outputs and the selections offered by the process and with the messages in

the queues. More formally:

Definition 8.3. A configuration environment < Δ  Θ > is coherent if s[p] ∈ dom(Δ) ∪
dom(Θ) and s[q] ∈ dom(Δ) ∪ dom(Θ) imply

< Δ  Θ > (s[p]) � q �
 < Δ  Θ > (s[q]) � p.

It can be easily shown that typing rules assure that configurations are always typed with

coherent environments.

The typing rules for configurations are given in Table 15, where Σ \ s, Δ \ s and Θ \ s
are defined as expected

Σ \ s = {s′| s′ ∈ Σ and s′ �= s} Δ \ s = {s′[p] : T | s′[p] : T ∈ Δ and s′ �= s}
Θ \ s = {s′[p] : T| s′[p] : T ∈ Θ and s′ �= s}.

8.4. Subject reduction

Since process and queue environments represent future or ongoing communications, by re-

ducing processes we get different configuration environments. This is formalized by the no-

tion of reduction of configuration environments, denoted by < Δ  Θ > ⇒ < Δ′  Θ′ >.

Definition 8.4 (reduction of configuration environments). Let ⇒ be the reflexive and

transitive relation on configuration environments generated by

1. < {s[p] : !〈Π, S�〉; T }  Θ > ⇒ < {s[p] : T }  Θ; {s[p] : !〈Π, S�〉} >;
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2. < {s[p] : ⊕�〈Π, {λi : Ti}i∈I〉}  Θ > ⇒ < {s[p] : Tj}  Θ; {s[p] : ⊕�(Π, λj)} > (j ∈ I);

3. < {s[q] :?(p, S�); T }  {s[p] : !〈q, S�〉}; Θ > ⇒ < {s[q] : T }  Θ >;

4. < {s[q] : &�(p, {λi : Ti}i∈I )}  {s[p] : ⊕�(q, λj)}; Θ > ⇒ < {s[q] : Tj}  Θ > (j ∈ I);

5. < Δ,Δ′′  Θ > ⇒ < Δ′,Δ′′  Θ′ > if < Δ  Θ > ⇒ < Δ′  Θ′ >;

where message types are considered modulo the equivalence relation of Table 12.

The first two rules correspond to participant p putting a value or a label in the queue.

The following two rules correspond to participant q reading a value or a label from the

queue. The last rule is contextual: notice that we add only statements to the process

environments, since only one statement is considered in the first four reduction rules,

while we do not need to add statements to the queue environments, which are always

arbitrary.

We are now able to state the result of type preservation under reduction. For the

proof we refer to Capecchi et al. (2014), where a similar type system was presented for a

richer calculus (including declassification, delegation, as well as exchange and restriction

of service names).

Theorem 8.5 (subject reduction). Suppose, Γ �Σ C � < Δ  Θ > and C −→∗ C ′. Then

Γ �Σ C ′ � < Δ′  Θ′ > with < Δ  Θ > ⇒ < Δ′  Θ′ >. Moreover, if C = 〈P , H〉,
C ′ = 〈P ′, H ′〉 and Γ �� P � Δ, then Γ �� P

′ � Δ′.

Our type system also preserves the fundamental properties ensured by classical session

types, i.e. linearity of communications inside sessions and absence of communication

mismatches. This is easy to see, once we observe that our type system projects down to

the classical session type system of Bettini et al. (2008) when we ignore security levels

and associated type constraints. We shall therefore concentrate here on establishing the

soundness of our type system for safety.

9. Relating safety and typability

In this section, we complete the picture set up in Section 7 by showing that typability

implies safety. As a result, the relation among our three approaches for information flow

analysis in multiparty sessions can be summarized as follows: typability ⇒ safety ⇒
security.

We consider substitutions, ranged over by σ, which map value variables to values and

channel variables to channels with role. We say that σ agrees with Γ if Γ � x� : S� implies

Γ � σ(x) : S�. It is easy to verify that Γ �� P � Δ implies Γ �� σ(P ) � σ(Δ) for all σ that

agree with Γ.

We prove now the following theorem, from which our result will follow as an easy

corollary.

Theorem 9.1. If Γ �� P �Δ for some Γ, Δ, then σ(P )�� is safe for all σ which agree with Γ.

Proof. By induction on the derivation of Γ �� P � Δ and then by case analysis on the

last rule applied to infer the transition 〈σ(P ) � Z, H〉 � (νs̃)〈P ′, H ′〉, where Z is any

tester.
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Γ �� P � Δ �′ � �

�SubS�.
Γ ��′ P � Δ

Inspecting the rules of Table 7 it is easy to verify that if σ(P )�� reduces,

then σ(P )��
′
reduces too for all �′ � �. Therefore by definition the safety of σ(P )�� implies

the safety of σ(P )��
′
for all �′ � �.

Δ end only

�Inact�.
Γ �� 0 � Δ

Since 0 cannot reduce, by definition 0�� is trivially safe for all �.

Γ �� P � Δ Γ �� Q � Δ′

�Conc�.
Γ �� P | Q � Δ,Δ′

By induction σ(P )�� and σ(Q)�� are safe. The safety of σ(P )��

and σ(Q)�� implies the safety of σ(P | Q)�� by compositionality (Corollary 6.7).

Γ � e : bool�
′

Γ �� P � Δ Γ �� Q � Δ

�If�.
Γ �� if e then P else Q � Δ

By induction σ(P )�� and σ(Q)�� are safe. The process

if e then P else Q reduces only if either σ(e) ↓ true�′ or σ(e) ↓ false�′ . Then, taking the

case σ(e) ↓ true�′ , the reduction if σ(e) then σ(P ) else σ(Q) −→ σ(P ) can be mimicked by

if σ(e) then σ(P ) else σ(Q)�� �→ σ(P )��. Similarly for the case σ(e) ↓ false�′ .

Γ � e : S� �′ = Meet(T ) Δ end only

�Var�.
Γ, X : S� T ��	�′ X〈e, c〉 � Δ, c : T

The process X〈e, c〉 cannot reduce, so X〈e, c〉�� is trivially

safe for all �.

Γ, X : S� T , x� : S� ��	�′ P � {α : T } �′ = Meet(T ) Γ, X : S� T ��′′ Q � Δ

�Def�.
Γ ��′′ def X(x, α) = P in Q � Δ

The process def X(x, α) =

σ(P ) in σ(Q) can reduce only if σ(Q) ≡ X〈e, s[p]〉 | Q′. In this case it reduces to

σ(P ){v/x}{s[p]/α} | Q′, where e↓v� and Γ � v� : S�. Notice that x and α are bound, so

they cannot occur in the domain of σ, and the substitution σ{v/x}{s[p]/α} agrees with

Γ, X : S� T , x� : S� whenever σ agrees with Γ. So by induction σ(P ){v/x}{s[p]/α}��	�′ and

σ(Q)��
′′

are safe. Since X〈e, s[p]〉 | Q′ must be typed using rules �Var� and �Conc�, we get

�′′ � � 	 �′, thus σ(P ){v/x}{s[p]/α}��′′ is safe. The safety of σ(Q)��
′′

implies by definition

the safety of σ(Q′)��
′′
. The safety of σ(P ){v/x}{s[p]/α}��′′ and Q��′′ imply the safety of

σ(P ){v/x}{s[p]/α} | Q′��′′ by compositionality (Corollary 6.7).

In the monitored semantics we have

def X(x, α) = P in σ(Q)��
′′

�→ σ(P ){v/x}{s[p]/α} | Q′��′′ . Therefore, def X(x, α) =

P in σ(Q)��
′′

is safe.

n is the arity of a

�MInit�.
Γ, a� : G� �� ā

�[n] � �
The process ā�[n] reduces to (νs)〈0, s : ε〉 with the tester which

contains all the required n participants. In the monitored semantics too, the process ā�[n]��

with the same tester reduces to (νs)〈0, s : ε〉��, so ā�[n]�� is safe.

Γ, a� : G� �� P � Δ, α : G � p
�MAcc�.

Γ, a� : G� �� a
�[p](α).P � Δ

The process a�[p](α).σ(P ) reduces to

(νs)〈σ(P ){s[p]/α}, s : ε〉 with the tester which contains all the other participants and the

initiator. By induction σ(P ){s[p]/α}�� is safe. In the monitored semantics too, the process

a�[p](α).σ(P )�� with the same tester reduces to (νs)〈σ(P ){s[p]/α}, s : ε〉��. Therefore

a�[p](α).σ(P )�� is safe.
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Γ � e : S� Γ ��′ P � Δ, c : T �′ � �

�Send�.
Γ ��′ c!〈Π, e〉.P � Δ, c : !〈Π, S�〉;T

To reduce, the process s[p]!〈Π, σ(e)〉.σ(P ) needs a

queue s : h. If σ(e) ↓ v� we have 〈s[p]!〈Π, σ(e)〉.σ(P ), s : h〉 −→ 〈σ(P ), s : h · (p,Π, v�)〉. By

induction σ(P )��
′
is safe. Similarly, in the monitored semantics,

〈s[p]!〈Π, σ(e)〉.σ(P )��
′
, s : h〉 reduces to 〈σ(P )��

′
, s : h · (p,Π, v�)〉, since by hypothesis

�′ � �. Thus s[p]!〈Π, σ(e)〉.σ(P )��
′
is safe.

Γ, x� : S� �� P � Δ, c : T

�Rcv�.
Γ �� c?(p, x

�).P � Δ, c :?(p, S�);T

To reduce the process c?(p, x�).σ(P ) we need a queue

s : (p, q, v�) · h, i.e. we have 〈s[q]?(p, x�).σ(P ), s : (p, q, v�) · h〉 −→ 〈σ(P ){v/x}, s : h〉.
If the configuration 〈s[q]?(p, x�).σ(P ), s : (p, q, v�) · h〉 is well typed we have Γ � v� : S�,

and therefore the substitution σ{v/x} agrees with Γ, x� : S� whenever σ agrees with Γ. We

get by induction that σ(P ){v/x}�� is safe. In the monitored semantics also the configuration

〈c?(p, x�).σ(P )��, s : (p, q, v�) · h〉 reduces to 〈σ(P ){v/x}��, s : h〉, so c?(p, x�).σ(P )�� is safe.

Γ �� P � Δ, c : Tj j ∈ I � � �′ �
�

i∈I
Meet(Ti)

�Sel�.
Γ �� c⊕�′ 〈Π, λj〉.P � Δ, c : ⊕�′ 〈Π, {λi : Ti}i∈I 〉

Similar to the case of rule �Send�.

Γ �� Pi � Δ, c : Ti � �
�

i∈I
Meet(Ti)

�Branch�.
Γ �� c&

�(p, {λi : Pi}i∈I ) � Δ, c : &�(p, {λi : Ti}i∈I )
Similar to the case of rule �Rcv�.

Corollary 9.2. If Γ �� P � Δ for some Γ, Δ, �, then σ(P ) is safe for all σ which agree

with Γ.

Proof. Immediate consequence of Theorem 9.1, since the safety of σ(P )�� implies the

safety of σ(P )�⊥, and by definition process σ(P ) is safe if the monitored process σ(P )�⊥ is

safe.

Clearly completeness fails, since there are safe processes which cannot be typed, a

simple example being if true� then s[1]!〈2, true�〉.0 else s[1]!〈2, false⊥〉.0.

Notice that also if true� then s[1]!〈2, true⊥〉.0 else s[1]!〈2, false�〉.0 is safe (in spite of the

level ⊥ in the chosen branch), because the conditional does not raise the monitor level.

Indeed, it would be weird to view this program as unsafe, given that it always behaves

like s[1]!〈2, true⊥〉.0.

10. Conclusion

We have proposed a monitored semantics to prevent runtime information leaks in a

multiparty session calculus. We have shown that the safety property induced by this

semantics is strictly included between the typability property and a refinement of the

security property considered for an extended calculus in Capecchi et al. (2014) (actually

this refinement was already introduced in the Appendix of that paper).

There is a wide literature on the use of monitors (frequently in combination with

types) for assuring security, but most of this work has focussed so far on sequential

computations, see for instance (Boudol 2009; Guernic et al. 2007; Sabelfeld and Russo

2010). More specifically, (Guernic et al. 2007) considers an automaton-based monitoring
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mechanism for information flow, combining static and dynamic analyses, for a sequential

imperative while-language with outputs. The paper (Boudol 2009), which provided one

of the inspirations for our work, deals with an ML-like language and uses a single

monitoring level to control sequential executions. The work (Askarov and Sabelfeld

2009) shows how to enforce information-release policies, which may be viewed as

relaxations of noninterference, by a combination of monitoring and static analysis, in

a sequential language with dynamic code evaluation. Dynamic security policies and

means for expressing them via security labels have been studied for instance in Myers

and Liskov (2000) and Zheng and Myers (2007).

In session calculi, concurrency is present not only among participants in a given

session, but also among different sessions running in parallel and possibly involving

some common partners. Hence, different monitoring levels are needed to control different

parallel components, and these levels must be joined when the components convene to

start a new session. As we use a general lattice of security levels (rather than a two level

lattice as it is often done), it may happen that while all the participants monitors are

‘low’, their join is ‘high,’ constraining all their exchanges in the session to be high too.

Furthermore, we deal with structured memories (the Q-sets). In this sense, our setting is

slightly more complex than some of the previously studied ones. Moreover, a peculiarity

of session calculi is that data with different security levels are transmitted on the same

channel† (which is also the reason why security levels are assigned to data, and not to

channels). Hence, although the intuition behind monitors is rather simple, its application

to our calculus is not completely straightforward.

Session types have been proposed for a variety of calculi and languages. We refer to

Dezani-Ciancaglini and de’ Liguoro (2010) for a survey on the session type literature.

However, the integration of security requirements into session calculi is still at an early

stage. Enforcement of integrity properties in multiparty sessions, using session types, has

been studied in Bhargavan et al. (2009) and Planul et al. (2009). These papers propose

a compiler which, given a multiparty session description, implements cryptographic

protocols that guarantee session execution integrity.

It is easy to build a version of the typing rules of Table 11 without subtyping (Rule

�SubS�), in which there is a one-to-one correspondence between process constructors and

typing rules. This syntax-directed type system would support a type inference algorithm

of linear complexity in the process structure. Security is clearly undecidable in general,

since it requires checking bisimulation. Safety is undecidable too, as computations may be

infinite, but it should be more tractable than security in a large number of cases, mainly

thanks to compositionality.

We expect that a version of our monitored semantics, enriched with labelled transitions,

could turn useful to the programmer, either to help her localize and repair program

insecurities, or to deliberately program well-controlled security transgressions, according

to some dynamically determined condition. To illustrate this point, let us look back at

our medical service example of Figure 1 in Section 2. In some special circumstances,

† Each session channel is used ‘polymorphically’ to send objects of different types and levels, since it is the

only means for a participant to communicate with the others in a given session.
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we could wish to allow the user to send her hospital admission request in clear, for

instance in case of an urgency, when the user cannot afford to wait for data encryption

and decryption. Here, if in the code of U we replaced the test on critical (diagn�) by a

test on no-urgency� and critical (diagn�), then in case of urgency we would have a safety

violation, which however should not be considered incorrect, given that it is expected

by the programmer. A labelled transition monitored semantics, with labels representing

security errors, would then allow the programmer to check that her code’s insecurities

are exactly the expected ones. This labelled semantics could also be used to control

error propagation, thus avoiding to block the execution of the whole process in case of

non-critical or limited errors. In this case, labels could be recorded in the history of the

process and the execution would be allowed to go on, postponing error analysis to natural

breaking points (like the end of a session).

The work presented in this paper can be seen from two different perspectives. Our first

goal was to extend the analysis of information leak detection/prevention in multiparty

sessions by introducing safety, a notion which is more local and flexible than typability

and security. To this aim, we kept our model very simple: the execution of a process is

blocked as soon as there is a safety violation. In a more applied perspective, the present

proposal could be seen as a first step towards a more flexible model, better suited for

implementation in real systems, where safety violations could simply be signalled to the

programmer and the execution be blocked only in very dangerous cases. In this model,

the security levels composing the lattice could be enriched to incorporate information

about the criticality of the violation, in order to drive different effects on the execution

(warnings, errors, blockings).
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