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Phase effect on the modal interaction of flow instabilities is investigated for
laminar-to-turbulent transition in a flat-plate boundary-layer flow. Primary and secondary
three-dimensional (3-D) oblique waves at various initial phase differences between these
two instability modes. Three numerical methods are used for a systematic approach for
the entire transition process, i.e. before the onset of transition well into fully turbulent
flow. Floquet analysis predicts the subharmonic resonance where a subharmonic mode
locally resonates for a given basic flow composed of the steady laminar flow and the
fundamental mode. Because Floquet analysis is limited to the resonating subharmonic
mode, nonlinear parabolised stability equation analysis (PSE) is conducted with various
phase shifts of the subharmonic mode with respect to the given fundamental mode. The
application of PSE offers insights on the modal interaction affected by the phase difference
up to the weakly nonlinear stage of transition. Large-eddy simulation (LES) is conducted
for a complete transition to turbulent boundary layer because PSE becomes prohibitively
expensive in the late nonlinear stage of transition. The modulation of the subharmonic
resonance with the initial phase difference leads to a significant delay in the transition
location up to ARe,; ~ 4 x 107 as predicted by the current LES. Effects of the initial
phase difference on the spatial evolution of the modal shape of the subharmonic mode are
further investigated. The mechanism of the phase evolution is discussed, based on current
numerical results and relevant literature data.
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1. Introduction

Laminar-to-turbulent transition may occur in boundary-layer flow after instability modes
in the laminar region interact each other. Challenges in assessing the transition

1 Email address for correspondence: sjee @ gist.ac.kr
£ M. Kim and S. Kim contributed equally to this work.

© The Author(s), 2021. Published by Cambridge University Press 927 Al4-1

@ CrossMark


mailto:sjee@gist.ac.kr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.732&domain=pdf
https://doi.org/10.1017/jfm.2021.732

https://doi.org/10.1017/jfm.2021.732 Published online by Cambridge University Press

M. Kim, S. Kim, J. Lim, R.-S. Lin, S. Jee and D. Park

mechanism arise owing to the nonlinear (or energetic) interaction. Various transition
routes were suggested for wall-bounded flow by Morkovin (1969) about five decades ago.
Disturbances outside the boundary layer are converted to a primary instability inside the
boundary layer through the receptivity process, secondary instability normally occurs
as the primary instability grows to sufficiently large amplitude and promotes modal
interactions. The secondary instability (here, subharmonic resonance) occurs following
the amplification of a three-dimensional (3-D) wave initiated by a two-dimensional (2-D)
Tollmien—Schlichting (TS) wave, i.e. the primary instability mode of the Orr—Sommerfeld
flow field. The 3-D wave has one-half the frequency of the fundamental TS wave.

Significant progress has been made in the understanding of secondary instabilities,
which have been well reviewed in Herbert (1988), Kachanov (1994), Saric, Reed & White
(2003) and Schmid (2007). Subharmonic secondary instability has been investigated
extensively, using theoretical approaches (Craik 1971; Herbert 1984, 1988; Wu 2019),
experimental studies (Kachanov & Levchenko 1984; Corke & Mangano 1989; Borodulin,
Kachanov & Koptsev 2002; Wiirz et al. 2012a) and numerical investigation (El-Hady
1988; Nayfeh & Masad 1990; Bertolotti, Herbert & Spalart 1992; Joslin, Streett & Chang
1993; Xu, Lombard & Sherwin 2017; Jee, Joo & Lin 2018; Kim et al. 2019, 2020). The
current study focuses on the subharmonic resonance in the natural transition path for
incompressible flow. Other transition routes including a non-modal interaction leading
to transient growth and bypass transition are well reviewed by Schmid (2007) and Durbin
& Wu (2007), respectively.

It is well recognised that the early stage of secondary instability involves the parametric
resonance of the subharmonic mode with respect to the basic flow composed of steady
slow-varying laminar flow and the 2-D fundamental mode (Herbert 1984, 1988; El-Hady
1988; Nayfeh & Masad 1990). The parametric resonance of the subharmonic mode can
be analysed with Floquet theory applied to the basic flow. Among several parameters
of the instability modes affecting the growth of the subharmonic mode, key parameters
have been identified as the local Reynolds number of the basic flow, the amplitude of
the fundamental mode and the spanwise wavenumber of the subharmonic mode (Herbert
1988). Floquet analysis for subharmonic resonance (Herbert 1984; Herbert, Bertolotti
& Santos 1987; Nayfeh & Masad 1990) has been validated for the well-controlled
experiments of Klebanoff, Tidstrom & Sargent (1962) and Kachanov & Levchenko (1984).

Despite a vast amount of literature on subharmonic resonance, a complete understanding
of the nonlinear interaction between the fundamental and the subharmonic modes has not
been achieved. In particularly, the nonlinear interaction influenced by the phase difference
between the two waves has not gained enough attention in the research community.
Recently, Park er al. (2021) reproduced the phase-dependent subharmonic resonance
observed in the experiment of Borodulin et al. (2002) using nonlinear parabolised stability
equation analysis (PSE). Yet, the effect of the phase difference on the subharmonic
resonance has not been fully identified. Note that previous studies (Borodulin et al. 2002;
Wiirz et al. 2012a; Park et al. 2021) were still confined to the pre-turbulence region due to
experimental (Borodulin ef al. 2002; Wiirz et al. 2012a) and numerical (Park er al. 2021)
constraints.

The goal of the current study is to improve the understanding of the phase effect
on boundary-layer transition, covering a wide transition range from the early stage of
primary and secondary instabilities to turbulent flow. To achieve such a comprehensive
investigation, three numerical methods are judiciously incorporated: Floquet analysis, PSE
and large-eddy simulation (LES). Floquet analysis provides a resonating subharmonic
mode (secondary instability) with respect to the fundamental mode (primary instability).
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An in-house code has been developed for the current Floquet analysis based on previous
studies (El-Hady 1988; Nayfeh & Masad 1990). Because Floquet analysis is limited
to the resonant subharmonic mode (resonant phase difference), PSE is chosen as a
higher-fidelity stability analysis for non-resonant phase differences. Because PSE can
handle the nonlinearity and non-parallelism of the disturbance equations, the instability
evolution affected by the phase can be investigated in the nonlinear transition region. A
well-validated nonlinear PSE code by Park & Park (2013, 2016); Park er al. (2021) is
used in the current study. Although PSE is an effective method for stability analysis in
a pre-turbulence region, it is computationally prohibitive in turbulent flow. The authors
have developed an LES method coupled with stability analysis (Kim et al. 2019, 2020;
Lim et al. 2021) for a cost-effective and high-fidelity simulation of a transitional boundary
layer. This LES method is used for a complete turbulent transition here, and the transition
location controlled by the initial phase difference is quantified. It should be noted that the
current LES approach (Kim et al. 2019, 2020) provides direct numerical simulation (DNS)
fidelity in the laminar region where disturbances are deterministic.

In § 2, three methods, Floquet analysis, PSE and LES are described. The validation
of the current Floquet analysis is discussed in § 3.1. The effect of the phase difference on
the subharmonic resonance is thoroughly investigated using PSE and LES in § 3.2 and 3.3,
respectively. The mechanism of the phase synchronisation from anti-resonant conditions is
discussed in § 3.4. Because the amplitude of the fundamental mode (not the subharmonic
mode) is a major parameter to affect the subharmonic resonance, amplitude effects on
anti-resonance and phase synchronisation are further studied in § 3.5. A summary and
conclusions are given in § 4.

2. Methods

Three numerical methods are used in this study. Parametric resonance of the subharmonic
oblique wave is investigated using Floquet analysis. The PSE is conducted to study the
effect of the phase difference on the parametric resonance. The LES is carried out to
simulate complete transition to turbulent boundary layer. Floquet analysis, PSE and LES
are briefly discussed in §§ 2.1, 2.2 and 2.3, respectively.

In this study, a total variable U is decomposed to the undisturbed part ¥ and the
disturbance .

U=w 4. 2.1)

The Cartesian coordinate system is used with the streamwise x, wall-normal y and
spanwise z direction, along with the corresponding velocity components u, v and w.

Dimensionless variables are obtained with the length scale 5.(R = R,), the free-stream
velocity Us, and the dynamic pressure ﬁf]go, where the local length variable is &, =

%9/ Uso, %, is the distance from the leading edge of a flat plate, ¥ is kinematic viscosity,

the local Reynolds number is R = Used,/V = / UsoXr/D = +/Rey, the reference R is
R, = 400 and p is the fluid density. The tilde denotes a dimensional variable.

2.1. Floquent analysis

Floquet analysis is based on a parametric formulation which describes a secondary
instability for a given primary instability (Herbert 1984; Herbert et al. 1987; El-Hady 1988;
Nayfeh & Masad 1990). The current Floquet analysis, briefly described here, adopts the
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Analysis type Basic flow Disturbance Equation for
(given) (unknown) analysis

Primary instability Laminar solution 2-D fundamental TS wave (Al)

analysis (2.3)

2.4)

Secondary instability Laminar + 2-D TS wave 3-D subharmonic wave (A3)

analysis (Floquet) (2.5) (2.6)

Table 1. Basic flow and disturbance for each analysis of primary and secondary instability.

approach of Nayfeh & Masad (1990) and El-Hady (1988) instead of the stream-function
approach of Herbert (1984) and Herbert et al. (1987).

The governing equations of a disturbance (u, v, w, p) for an undisturbed basic flow
(U, V) are written as

ou Jdv 8w_

— 4+ — 4+ —=0, 2.2
0x + ay + 0z (2-20)
ou ou ou op 1_, oU ou
— 4+ U— — 4+ — - =V — +V— N, =0, 2.2b
o Vo Uy Tax R, ”+[”ax+ 8y]+ u (2.26)

v v op 1 Vv AV
LA A 24 e vZ 0N, =0, (2.2¢)
ot ox Jdy R,

ow ow dp 1 _, ow
— 4+ U— 4+ — V— N,, =0, 2.2d
o TV T TR, W+[ a]+ v (2.2d)

where the square-bracket terms represent the non-parallel nature of the basic flow. The
nonlinear terms of the disturbance N are negligible here.

The instability analysis involves two steps: primary and secondary instability. The
primary instability analysis provides a 2-D fundamental TS wave for a given basic laminar
flow, whereas the secondary instability analysis (Floquet) yields a 3-D subharmonic wave
for a given basic flow in which the 2-D wave is additionally included. The current analysis
is summarised in table 1 with a brief description below.

For the primary instability of a boundary layer, we consider the basic flow

{U,V} ={UL(y), 0}, (2.3)

where Uy is the laminar solution without any disturbance (here the Blasius solution). Then,
a fundamental planar TS wave can be written as

{u, v, p} ={51(y), B3(»), La(M}exp i (wx —wi)] +c.c., (2.4)

where the notation c.c. indicates the complex conjugate. The functions ¢1(y), {3(y) and
£4(y) are the mode shape of the fundamental TS components u, v and p, respectively. For a
spatially evolving disturbance, the complex wavenumber « and the real angular frequency
w are used.
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To obtain the subharmonic oblique wave in the Floquet analysis, the basic flow (2.5)
includes both the laminar flow and the fundamental 2-D TS wave.

U= Ur(y) +A[51(y) exp(if) + ¢ () exp(—if)], (2.5a)
V =A[G(y) exp(i0) + &5 (y) exp(—i0)] , (2.5b)

where A is the r.m.s. amplitude of the fundamental TS wave, ¢* is the complex conjugate
of the function ¢ and 6(x, r) = Re(a)x — wt. The notations Re and Im indicate the real
and the imaginary part of a complex variable, respectively. Floquet theory suggests that
the approximate solution of (2.2) for the given basic flow of (2.5) can be written as

ui )2 ni(y) n7(y)
vija ¢ = | ym(y) ¢ exp(if/2) + § no(y) ¢ exp(—if/2) | cos(Bz) exp(yx), (2.6a)
P12 n4(y) n10(y)

wij2 = [ns(y) exp(i0/2) + n11(y) exp(—if/2)] sin(Bz) exp(yx), (2.6b)

where the subharmonic wavenumber in the streamwise direction is a2 = Re(a)/2,
the subharmonic frequency is wi;» = w/2 (so, 0/2 = ay,2x — w1,2t), the spanwise
wavenumber of the subharmonic mode is 8 and the eigenvalue y is real here. Further
details are documented in Appendix A, including the exact equation for each analysis,
boundary conditions and the computational method for the eigenvalue problems.

2.2. PSE

The method of PSE is an efficient way to treat weakly nonlinear regions where parametric
resonance occurs. The amplitude of the subharmonic mode remains small so that the back
influence of the subharmonic mode on the fundamental mode is negligible. A formal
approach of PSE is to decompose the disturbance v into a fast-varying oscillatory-wave
part and a slow-varying shape function, using Fourier expansion, as written in (2.7).

N

Na
Y@y, o= Y > Py exp [l{f

m=—Ny n=—N, 0

X

AQgn,n) () ds +npz — %ma)t}:| ,

2.7)
where the shape function 1ﬁ(m, n) 18 a complex function, the streamwise wavenumber o, )
is a complex number the spanwise wavenumber § is a real number. The subscript m and
n indicates the temporal and spanwise modes, respectively. The wavenumber « (2 o) of
the fundamental TS wave corresponds to the wavenumber « in (2.4). The subharmonic
wavenumber a1, 1) is associated with the notations a1 2 and y in (2.6),1.e. a(1,1) = a1/2 —
iy . The spatial growth rate of the subharmonic mode is Im(c(;,1)) = —Re(y).

A set of partial differential equations for the shape functions with the unknown variable
a(n,n) 1s obtained for a given frequency (here the fundamental frequency w) and the
spanwise wavenumber . These equations are parabolised and numerically solved in the
PSE code developed in Park & Park (2013, 2016). Nonlinear PSE is conducted with
N, = 6 and N,, = 3, keeping a total of 28 modes including the mean distortion (0, 0)
mode, in the domain of 400 < R < 700. A fourth-order central scheme and a second-order
backward scheme are used for the wall-normal and the streamwise direction, respectively.
Uniform grids with 107 points are used in the streamwise direction. At least 80 points are
placed in the boundary layer with a total 220 points in the wall-normal domain, extending
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to 2003,. Further details of the PSE code and numerical approaches are documented in
Park & Park (2013, 2016), Kim ef al. (2019) and Park ez al. (2021).

It should be noted that the PSE code is based on the compressible form of the
disturbance equation. To approximate the incompressible boundary layer, the mean flow of
very low free-stream speed whose Mach number is 0.0269 is chosen (i.e. 9.16 ms~! with
the standard atmospheric condition at sea level). At this Mach number condition and at
the corresponding mean flow conditions, the density and temperature fluctuations behave
as redundant variables in the PSE analysis. Although the compressible formulation is used
and all terms are kept, the results can be regarded as nearly identical to those obtained from
the incompressible formulation as they have been validated through many cases (Bertolotti
et al. 1992; Chang et al. 1993; Gao, Park & Park 2011; Park & Park 2013). In addition, the
results from the Floquet theory are used as the inlet boundary conditions for the PSE as
well as LES. For the initial condition of PSE, the pressure and velocity disturbances are
set as the Floquet theory results, while the density and temperature disturbances are set as
zero. As a consequence, there might be a small difference in comparison with the solution
with the compressible formulation. However, this discrepancy is also almost negligible
owing to the very low Mach number considered.

2.3. LES
Because neither Floquet analysis nor PSE are efficient for incorporating higher instability
in the late stage of transition, LES is conducted to model the boundary-layer flow well into

a fully turbulent state. The total variable v is decomposed to the spatially filtered v and
the filtered residual part ¥ for LES.

U=yt 28)

Note that there is no distinction between g/vf and ¢ in the computation of laminar flow
because LES is essentially DNS in this case (Kim et al. 2019, 2020). The residual part v’
is a turbulence fluctuation, so ¥' = 0 in the pre-transition region where the deterministic
disturbance v (see (2.1)) is well resolved with the current fine grid.

The filtered incompressible dimensionless Navier—Stokes equations are written as (2.9).

ou;

—0, 2.9
ox, (2.9a)
g 9 . 1% 0T 3p
S () = e 0 2.9b
30 o ) = Rowan o ox; (2:90)
T = —2u;S;, (2.9¢)
_ 10w 0w
S L (04, O 2.9d
) (ij * 8x,-) (2-5d)

where the residual stress tensor 7:5 is modelled to be linearly proportional to the resolved

strain rate S',-j. The turbulence viscosity v; is obtained with the wall-adapting local
eddy-viscosity model (see Nicoud & Ducros 1999). The model coefficient is C,, = 0.5
as suggested in Nicoud & Ducros (1999) and tested in the transitional boundary layer
in Kim et al. (2019, 2020). The sub-grid-scale turbulence model is judiciously chosen
for wall-resolved LES in the transitional boundary layer (Kim ez al. 2020), the model is
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Figure 1. Schematic diagram of the LES computational domain.

properly activated only in the very late transition stage and the subsequent turbulent region
in the current simulation.

The computational domain is depicted in figure 1. At the LES inlet, the fundamental and
subharmonic modes are assigned to the laminar solution. The convective outlet is applied
at the exit boundary, and no-slip condition at the wall. The fine grid of Kim et al. (2019)
is used here with a small enough time step A; = (1/256)(2nt/w) where w is the angular
frequency of the fundamental mode. Further details on the LES approach can be found in
Kim et al. (2019, 2020).

2.4. Inlet conditions for PSE and LES

Both PSE and LES computations require a disturbance at the inlet boundary, which is
located at R = 400. The 2-D TS wave and the pair of the 3-D oblique waves are obtained
from the current Floquet analysis. Following the Floquet analysis of Herbert ef al. (1987),
which has been validated for the experiment of Kachanov & Levchenko (1984), the angular
frequency of the 2-D wave is @ = 0.0496 and the spanwise wavenumber of the 3-D wave
is B = 0.132 based on the current non-dimensionalisation. These two parameters can be

rewritten as F = w/R x 10 = 124 and b = B/R x 10° = 0.33, respectively, which are
also commonly used in the literature. The r.m.s. amplitudes of the 2-D wave and the 3-D
wave are Az, 0) = 4.0 x 10~3 and Aaqy =1.64 x 1073, respectively, at the inlet, where
the free-stream velocity is used for the scaling. At the LES and PSE inlet boundary, 2-D
fundamental and 3-D subharmonic modes are added to the laminar solution; namely a
zero-pressure-gradient flat-plate flow at R = 400.

The current Floquet analysis provides the mode shape of the fundamental (2-D TS wave)
¢ and the subharmonic (3-D oblique wave) n modes, as shown in figure 2. The amplitude of
each mode is scaled with the maximum value of each mode. The u component dominates
both the fundamental and subharmonic modes. The amplitude peak of the fundamental
and subharmonic modes is located at approximately one quarter of the boundary-layer
thickness. The phase profile of the fundamental mode ¢ is relatively constant near the
amplitude peak, whereas the phase of 7 changes continuously.

The phase difference A¢ between the fundamental and the subharmonic modes is
defined as (2.10), following experimental studies of Borodulin ef al. (2002); Wiirz et al.
(2012a).

Ap = %¢(2,0) —¢a,1) ALY, 1),maxs (2.10)

where y(1,1),max 1s the location for the amplitude peak of the subharmonic mode which
1S ¥(1,1),max = 1.43 at the inlet. The initial phase difference between the fundamental and
subharmonic modes is A¢;, = 130° from the Floquet analysis. In the current PSE and LES
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Figure 2. The fundamental and the subharmonic modes obtained from the current Floquet analysis at R = 400.
(a) Amplitude |¢ |/ max([¢]). (b) Phase ¢(2,0) = arg(¢). (¢) Amplitude |n|/ max(|n]). (d) Phase ¢(1,1) = arg(n).

computations, Ag;, varies in the periodic range of 180° to allow investigation of the effect
of the phase difference on the secondary instability and eventually on turbulent transition.
The subharmonic phase is shifted with respect to the given fundamental mode. There is no
distinction between the phase lead and lag results in the periodicity of 180° for the phase
difference.

3. Results

The effect of the modal phase on the growth of the secondary instability (here, the
subharmonic mode) is investigated using three approaches, i.e. Floquet analysis, PSE
and LES. The baseline case is the subharmonic resonance in the zero-pressure-gradient
boundary layer on a flat plate, which was experimentally studied by Kachanov &
Levchenko (1984). The current Floquet analysis, validated against the experimental
(Kachanov & Levchenko 1984) and the numerical data (Herbert er al. 1987) in § 3.1,
provides a resonating subharmonic mode for the given basic flow which consists of laminar
flow and the fundamental mode (2-D TS wave). Because of the nature of the eigenvalue
problem explored in the Floquet analysis, other methods are required for less resonating
conditions affected by the modal phase. Here, PSE and LES are used. The phase effect
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is first discussed with PSE in § 3.2 and then with LES in § 3.3. A further investigation
on the transition location delay affected by the phase and the resonance mechanism from
an anti-resonant initial condition is included in § 3.4. Because the fundamental amplitude
is one of major parameters affecting the subharmonic resonance, it is speculated that the
evolution of the subharmonic mode from the anti-resonant initial condition is also affected
by the fundamental amplitude, not the subharmonic amplitude. Such amplitude effects are
assessed in § 3.5.

3.1. Validation of instability analysis

The current instability analysis consists of two parts, one for the primary instability (2-D
fundamental TS wave) and the other for the secondary instability (3-D subharmonic
oblique wave). The eigenvalue problem of each analysis is summarised in table 1 along
with the given basic flow. Floquet analysis provides the most unstable mode for the
subharmonic oblique wave, yielding the mode shape 1 and the exponent y whose positive
real value is the spatial growth rate of the subharmonic wave.

The mode shape and the amplitude growth of the subharmonic mode are compared
with the experimental data of Kachanov & Levchenko (1984) and the Floquet analysis of
Herbert et al. (1987), as shown in figure 3. The amplitude growth is obtained, using the
integration

A X
M = / _Im(o[(zyo)) ds, (3.1
A2,0)(x0) X0
A * )
a,H(x) :/ Re(y)ds=/ —Im(e(1.1y) ds, (3.2)
Aa o)  Jx X0

where the initial location x¢ corresponds to R = 400 and the initial amplitudes are
A@p,0)(x0) =4 x 10-3 and A, 1(xp) = 1.64 x 1073, The two mode shapes are identical
to the literature data at R = 600 in figures 3(a) and 3(b). The location R = 600 is
positioned in the subharmonic resonance range shown in figure 3(c). The amplitude growth
from the current Floquet analysis matches well with the experimental data of Kachanov
& Levchenko (1984) and the Floquet analysis of Herbert et al. (1987). According to the
discussion of Herbert et al. (1987), the subharmonic mode in the experiment (Kachanov
& Levchenko 1984) was not fully formed until R ~ 540 because of the proximity to
the vibrating ribbon for the disturbance generation. The measurement of Kachanov &
Levchenko (1984) showed that the disturbance mode (1, 1) had no definite phase value
until R ~ 540 and was deeply buried in background noise. Note that branch I of the neutral
curve of the subharmonic mode in linear stability analysis is located near R = 540 (see
Kachanov & Levchenko 1984, figure 3). It should be mentioned that the spatial growth data
of the subharmonic mode (Herbert et al. 1987) are used for the comparison here because
the transformed data of the temporally growing mode (Herbert 1984) overestimates the
growth rate (Herbert et al. 1987).

The current Floquet analysis provides only the most resonating condition for the
subharmonic mode for the given basic flow. Less resonating conditions, including the
anti-resonant condition, can be obtained with the phase variation of the subharmonic
oblique wave with the amplitude fixed. PSE and LES computations are explored for the
investigation of the phase effect on the subharmonic resonance in the following sections.
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Figure 3. Comparison among the current Floquet analysis, the Floquet analysis of Herbert e al. (1987) and
the experimental data of Kachanov & Levchenko (1984) for the (¢) fundamental and (b) subharmonic modes
at R = 600 and (c) the amplitude growth of the two modes.

3.2. Phase effects on subharmonic resonance in PSE computations

The PSE method is computationally efficient in investigating nonlinear interactions of
instability modes in the transition region. The current PSE method, validated in the
subharmonic resonance (Park & Park 2013; Kim et al. 2019), is explored here with the
baseline inlet condition obtained from the current Floquet analysis. The inlet condition
consists of the 2-D fundamental TS and 3-D subharmonic oblique modes. Further details
of the baseline inlet condition, including the amplitude of the each mode, are provided in
§2.4.

The current Floquet analysis yields the phase difference between the fundamental and
subharmonic modes A¢;, = 130° at the inlet location R = 400. Only the phase of the
subharmonic mode varies so that the whole periodic range 0 < A¢;, < 180° is simulated
here. Other characteristics, including the amplitudes (A(2,0y and Aj,1)) and the mode
shapes (¢ (y) and 5(y)), remain the same at the inlet.

927 Al14-10


https://doi.org/10.1017/jfm.2021.732

https://doi.org/10.1017/jfm.2021.732 Published online by Cambridge University Press

Effects of phase difference on boundary-layer transition

(@ | ®
10 : : : : N 10
2.0) o 0
102 % 24 1072 EXMIEXX XX XXX XX XXXXXXXXKXXXXXXXXKXKX |
3
BRIUSS 2 103 L
§ ’ it +++++++++++++++++++++++++
= 104 (1’1) ’ 4t, +++ ( > ) +4
L o ] 1041+ + ;
P i
1059 .’ st %
R v i ] .
10°6 - - - - - 10°6 -
400 450 500 550 600 650 700 0 90 180
R Ag,, (deg.)

Figure 4. Amplitude of the fundamental and subharmonic modes affected by the initial phase difference in the
current simulation. (a¢) Amplitude growth: x, Floquet analysis, (2,0); o, Floquet analysis, (1,1); dashed dotted
line, PSE, A¢;, = 130°; blue solid line, PSE, A¢;, = 105°; orange dotted line, PSE, A¢;, = 40°; red dashed
line, PSE, A¢;,, = 15°. (b) Amplitude at R = 600: x, PSE, (2,0); +, PSE, (1,1).

The initial phase difference significantly affects the amplitude evolution of the
subharmonic mode as shown in figure 4. A total of 44 initial phases differences are
simulated in the current PSE. Four selected phase differences, including the baseline
Ag¢in, = 130°, are shown in figure 4(a). A phase shift of 25° from the baseline A¢;, = 105°
provides the almost identical evolution of the baseline amplitude for the subharmonic
mode. The Floquet analysis data are similar to the PSE data of A¢;, = 130° and
Ag¢in, = 105°. The phase shift of 90° from the baseline Ag;, = 40° yields a visual
delay in the growth of the subharmonic mode. The case of A¢;, = 15° even damps the
subharmonic mode at the beginning until R >~ 600, and the subharmonic mode starts to
exponentially grow after R = 600. The amplitude of the fundamental mode remains almost
the same until R >~ 670 regardless of the initial phase shift of the subharmonic mode.

Figure 4(b) shows the amplitude of the fundamental and subharmonic modes at
R = 600. The subharmonic mode resonates most when the initial phase difference is
A¢i, = 105°. The subharmonic resonance is not sensitive to the phase if the phase
difference is in the wide range of 60 < A¢;, < 150° where the amplitude does not change
by more than a factor of 1.5. In contrast, the subharmonic amplitude is significantly
damped in the narrow range of 5 < A¢;, < 25°, more than a factor of five compared to
the case of A¢;, = 105°. At the phase valley A¢;, = 15°, the subharmonic amplitude
is two orders of magnitude lower than that of Ag¢;, = 105°. The least resonating
condition is called anti-resonance. The phase difference between maximum resonance and
anti-resonance in the current PSE is 90°, as similarly observed in experiments with mild
adverse pressure gradients (Borodulin et al. 2002).

Floquet analysis yields slightly large amplitude growth for the subharmonic mode,
compared with the PSE in the downstream region (see figure 4a). Because the disturbance
equations are much simplified in the Floquet analysis, the detailed response of the
subharmonic mode with respect to the given basic flow could be different to the
PSE counterpart. Additional PSE computations are conducted to investigate whether
the assumptions used in the Floquet analysis contribute to the slight difference in the
amplitude growth. Three distinct assumptions of the Floquet analysis are individually
tested in the additional PSE computations: the parallel assumption of the basic flow, the
exclusion of the nonlinear feedback from the subharmonic to fundamental mode and the
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exclusion of the mean flow distortion (0, 0) mode. Each individual assumption yields
almost identical results to the PSE data shown in figure 4(a). It can be conjectured that
a different set of disturbance equations as a whole between the Floquet analysis and PSE
may contribute to the subtle difference in the growth in figure 4(a).

The subharmonic resonance (secondary instability) is influenced by the fundamental
mode (primary instability) via nonlinear interaction. In contrast, almost no variation of the
fundamental amplitude indicates that the feedback effect on the fundamental mode from
the subharmonic mode is negligible until the subharmonic mode gains enough strength. In
the current stability analysis using the Floquet and PSE computations, the early nonlinear
region of the subharmonic resonance ends at approximately R = 670, and after that it can
be expected that more modes rapidly evolve through higher nonlinear interactions (tertiary,
quaternary, and so on).

In the early nonlinear stage, it has been understood that the subharmonic mode resonates
via the parametric resonance (Herbert er al. 1987; El-Hady 1988; Nayfeh & Masad
1990). Key parameters of the basic flow affecting the subharmonic resonance are the
Reynolds number of the laminar flow R, the amplitude A(; ) and the frequency w of the
fundamental mode and the spanwise wavenumber g of the subharmonic mode. In addition
to these parameters, the phase difference between the two modes is also another important
parameter, according to the current PSE with various phase differences. Because the
subharmonic resonance can be affected by the phase difference only, a complete transition
to turbulent flow can also be affected by the phase difference. Because PSE becomes
computationally expensive in the late nonlinear stage of the transition, Navier—Stokes
equations are solved efficiently with the validated LES approach (Jee et al. 2018; Kim
et al. 2019, 2020; Lim er al. 2021) for the final transition to the turbulent flow, which is
discussed in the next section.

3.3. Phase effects on subharmonic resonance in LES computations

High-fidelity LES is conducted here in order to study the effect of the phase difference
between the two instabilities on both the subharmonic resonance and the complete
turbulent transition. A total of nine LES cases are simulated with the inlet phase
differences Ad¢;y,, = 5,7, 10, 11, 15, 20, 25, 105 and 130°. The PSE discussed in §3.2
indicates that the subharmonic mode resonates for the given fundamental mode under
the wide range of 60 < Ag;, < 150°, hence, the two cases Ag;, = 105 and 130° are
simulated here. The PSE also suggests that the subharmonic resonance is significantly
delayed when 5 < A¢y, < 25°, and the anti-resonant condition is highly sensitive to the
initial phase. As a result, seven phases A¢g;, = 5,7, 10, 11, 15, 20 and 25° are selected
in this narrow phase range. Note that the current LES approach has provided DNS-like
fidelity for transitional boundary layers in the authors’ previous studies (Kim et al. 2019,
2020). The LES statistics are obtained with LES data accumulated over eight periods
of the fundamental mode after two flow-through times in the LES domain. The time
window for the statistics is larger here compared to the LES validation study of Kim
et al. (2019) because anti-resonant conditions yield longer-time variations in the flow
solution.

The resonant and anti-resonant conditions are compared between the current LES
and PSE computations, as shown in figure 5. Two higher modes (3, 1) and (4, 0) are
plotted along with the fundamental (2, 0) and subharmonic (1, 1) modes. The PSE is
conducted until only R = 700 owing to an expected surge in the computational cost for
the downstream, late nonlinear transition stage. Instead, LES is conducted continuously in
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Figure 5. Amplitude growth of instability modes affected by the initial phase differences in the current PSE
and LES computations. (¢) Amplitude growth with A¢;, = 105°. (b) Amplitude growth with A¢;, = 15°. (¢)
Amplitude growth with the anti-resonant phase.
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the further downstream up to R = 1050. The amplitude growth in the LES computations
is shown until R = 750 in figure 5.

Both LES and PSE provide almost identical growth of the selected instability modes in
the resonant condition (see figure 5a). The resonant phase A¢;, = 105° yields the oblique
modes (1, 1) and (3, 1) which grow exponentially from almost the inlet. Two planar modes
(2,0) and (4, 0) grow gradually until R >~ 650 primarily owing to the linear growth of
the fundamental mode (2, 0). The harmonic mode (4, 0) is mainly generated from the
nonlinear effect of the fundamental mode, i.e. the nonlinear convective N terms in (2.2).
After R >~ 670, the transition undergoes a highly nonlinear stage, and all the modes grow
exponentially in the current simulation.

In figure 5(b), the initial phase difference A¢;, = 15° is simulated in both LES and PSE.
Both LES and PSE provide delayed subharmonic resonance. However, the subharmonic
mode begins to resonate with the fundamental mode after R ~ 550 in LES, whereas
R =~ 600 in PSE. In the current LES computations, A¢;, = 10° yields the least resonating
condition for the subharmonic mode (anti-resonance), and the instability growth is very
similar to the anti-resonant condition of PSE, as shown in figure 5(c). The fundamental
mode decays after R >~ 650 owing to the insufficient growth of the subharmonic mode until
R = 750. DNS computations (not shown here) in the anti-resonant condition also provide
the almost identical results of the amplitude growth compared with LES, so the difference
between LES and PSE for the anti-resonant phase may not come from the sub-grid-scale
model which provides a negligible eddy viscosity until R = 700.

The current LES and PSE computations indicate that the anti-resonance phenomena is
highly sensitive to the flow condition as shown in figure 6 where the amplitude of the
fundamental and subharmonic modes at R = 600 is plotted with the variation of the initial
phase difference between the two modes. The anti-resonant phase is located in the narrow
phase valley where the subharmonic amplitude varies by approximately a factor of ten
only with the phase shift of 10°. The anti-resonant phase is slightly different between
LES and PSE; A¢;, = 10° in LES and A¢;, = 15° in PSE. It is conjectured that the
anti-resonance phenomena is sensitive to not only the initial phase difference but also
the detailed flow solution of each computation. Because the full Navier—Stokes equations
(2.9) in LES are not identical to those solved in PSE, a subtle difference between LES and
PSE computations can cause a slight difference for the anti-resonant phase.

The phase effect on the subharmonic resonance eventually leads to a significant
difference in the transition-to-turbulence location, as shown in figure 7. The resonant
condition results in staggered A-shape vortical structures at approximately R = 700
which is the footprint of the subharmonic resonance observed in previous experiments
(Corke & Mangano 1989; Borodulin, Kachanov & Roschektayev 2011; Wiirz et al. 2012b)
and high-fidelity computations (Sayadi, Hamman & Moin 2013; Jee et al. 2018; Kim
et al. 2019, 2020). Fully turbulent flow starts roughly after R = 750 in the resonant
condition. In contrast, the anti-resonant condition leads to significantly delayed transition.
Staggered A-shape vortical structures appear in the long range 750 < R < 950 with
prolonged structures near the end of the transition. The vortical structures are elongated
in the streamwise direction probably because of the weak nonlinear interaction among
low-amplitude instabilities expected; see figure 5(c).

The skin friction Cy in figure 8 indicates the transition region affected by the initial
phase difference. The resonant conditions (Ag¢;, = 105 and 130°) yield the deviation of
Cy from the laminar data at approximately R = 690 and the approach to turbulent Cy at
approximately R = 750. In contrast, the anti-resonant condition with A¢;, = 10° leads
to Cr deviation from the laminar at approximately R = 820 and the turbulent Cy near
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Figure 6. Amplitude of the fundamental and subharmonic modes at R = 600 affected by the initial phase
difference in the current computations.

R = 1000. The prolonged vortical structures in figure 7(b) are associated with the long
transition region.

Current LES computations indicate that the initial phase difference by itself can control
the transition location, which was not disclosed in the literature. The anti-resonant phase
delays the turbulent transition location by AR >~ 1000 — 750 = 250 which corresponds to
ARe, >~ 4.4 x 10°, an approximately 80 % increase in the transition Reynolds number
from the resonant condition. The phase difference between the fundamental and
subharmonic modes was modulated with an array of microphones in previous experiments
with non-zero pressure gradient (Borodulin et al. 2002; Wiirz et al. 2012a). Although
complete transition to turbulent flow was not achieved in the experiments of Borodulin
et al. (2002) and Wiirz et al. (2012a), the nonlinear interaction was significantly delayed
with the anti-resonant phase. The current investigation and the experimental approach in
controlling the phase suggest that turbulent transition can be controlled with the phase
modulation of a major instability mode (here the subharmonic mode).

3.4. Discussion on resonance and anti-resonance

Resonance and anti-resonance phenomenon of the secondary instability (subharmonic
mode) are further discussed here with the evolution of the phase difference between
the fundamental and subharmonic modes. A total of 44 initial phases differences are
simulated in the current PSE (see figure 4b), and the evolution of four selected phases
Agin = 15,40, 105 and 130° are shown in figure 9. The Floquet analysis is also compared
with the PSE data because the Floquet analysis provides the phase-locked condition. Initial
phase differences near the Floquet Ag;;, follow the Floquet phase evolution in the current
PSE with a slight deviation at the beginning. As the initial phase difference deviates
further from the resonant phase, the phase evolution requires more distance to approach
the Floquet phase difference. It takes approximately AR = 200 for the anti-resonant
condition of the initial phase A¢;, = 15° to catch up with the subharmonic resonance,
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Figure 7. Vortical structures in the LES computations with the resonant phase A¢;, = 105° (a) and the
anti-resonant phase A¢;, = 10° (b). The iso-surface of the Q-criteria Q = 3U§CJ /)?2 (R = 400) is used for the
visualisation with the colour contour of the magnitude of the spanwise velocity |w]|.
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Figure 8. Skin friction Cy in the current LES computations with various initial phase difference Ag;,
compared with theoretical data.
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Figure 10. Evolution of the phase difference between the fundamental 2-D and subharmonic 3-D modes in
the current PSE, LES and Floquet analysis with the four selected initial phases.

which is consistent with the exponential growth of the subharmonic mode after R >~ 600
in figure 4(a).

The phase evolution is also confirmed in the LES computations as shown in figure 10.
Two resonant initial phase differences (A¢;, = 105 and 130°) and two anti-resonant phase
differences (A¢;;, = 10 and 15°) are selected for the LES data sets. Two selected PSE cases
are also plotted for comparison. In the resonant conditions, the phase difference quickly
converges to the Floquet phase difference. For the anti-resonant condition of A¢;, = 10°
in LES, the phase difference approaches the Floquet data after R = 600, similarly observed
in the PSE anti-resonance of Ag;, = 15°. Note that the anti-resonance phenomena is
sensitive to detailed numerical solution, so the difference of 5° seems acceptable, as
discussed in § 3.3.

In both PSE and LES, regardless of the initial phase differences, A¢ converges to
the resonant phase difference approximately 90° in the downstream. Similar evolution
of the phase difference between two major instability modes (normally primary and
secondary instability modes) has been observed in experiments (Borodulin er al. 2002;
Wiirz et al. 2012a). Borodulin et al. (2002) noticed a similar convergence to 90° for
the phase difference in an adverse-pressure-gradient boundary-layer flow on a flat plate
(see Borodulin et al. 2002, figure 26). The narrow phase range for the anti-resonant
condition was also observed in the experiment (see Borodulin ef al. 2002, figure 25).
Wiirz et al. (2012a) also measured the evolution of the phase difference starting from
the anti-resonance to the resonance in a boundary layer on a laminar airfoil.

The mechanism of the phase evolution is related to the phase synchronisation of the
subharmonic mode for the parametric resonance. A simple dynamic system expressed in
Mathieu’s equation, which describes a sinusoidal parametric excitation (Kovacic, Rand
& Sah 2018), requires the phase synchronisation for the parametric resonance. An initial
phase shift of the subharmonic mode eventually approaches to the phase synchronisation
(Kim 2020), and the transient interval is associated with the initial phase shift. Kim
(2020) obtained two opposite local solutions, one for exponential growth (resonance) and
another for exponential damping (anti-resonance) in Mathieu’s equation. An arbitrary
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Figure 11. Comparison of the modal shapes between the current Floquet analysis and PSE computations for
anti-resonant conditions. The amplitude is scaled by its own maximum in each case.

initial condition can be decomposed into these two solutions. Obviously, the resonant
component grows exponentially and dominates the subharmonic mode, which results in
the phase evolution to the phase synchronisation. A similar discussion can be found in an
experimental observation of phase evolution (Borodulin et al. 2002; Wiirz et al. 2012a).
Initial phase differences in the anti-resonant condition change the mode shape of
the subharmonic mode during the transient region towards the phase synchronisation,
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as shown in figure 11. In the initial damping region 400 < R < 600 of the anti-resonant
condition, the subharmonic mode undergoes a severe distortion. As the phase difference
approaches to the resonant phase predicted by the Floquet analysis at approximately
R =600 (i.e. the phase synchronisation), the subharmonic mode eventually recovers to
the resonant shape. In contrast, the resonant condition maintains the initial resonant modal
shape as shown in figure 12. Note that the resonant condition is insensitive to the phase
shift if the phase difference is in the wide range of 60 < A¢;, < 150°, which has been
discussed with figure 4(b).

The evolution of the temporal oscillation of the fundamental and subharmonic modes
shown in figure 13 indicates the variation of the phase speed depending on the initial
phase difference Ag;,. The subharmonic oscillation relative to the fundamental oscillation
at y(1,1),max 18 plotted in figure 13. The subharmonic mode, initially resonating with the
fundamental mode, yields almost no variation in the temporal oscillation, which indicates
that the phase speed is synchronised in the overall transition process. In contrast, the
anti-resonant initial condition causes the temporal oscillation of the subharmonic mode
to continuously shift in the phase until R >~ 630. After R > 630, the phase speed of
the subharmonic mode remains the same and is synchronised with the phase speed of
the fundamental mode, i.e. in the phase synchronisation condition.

3.5. Effect of amplitude on anti-resonance and phase synchronisation

It is well known that the subharmonic resonance is affected by major parameters
including the amplitude of the fundamental mode. However, amplitude effects on the
evolution of the subharmonic mode, initially in the anti-resonant condition, have not been
thoroughly investigated. Particularly, the effect on the phase synchronisation location has
not been studied. As a consequence, additional computations with various amplitudes
of the fundamental and subharmonic modes are carried out here for the assessment
of the amplitude effect on anti-resonance and phase synchronisation. The additional
computations are listed in table 2. Due to the computational cost, LES is used for selected
cases.

The effect of the initial subharmonic amplitude on anti-resonance is shown in
figure 14(a). The amplitude evolution of the subharmonic mode is vertically shifted
with the initial amplitude of the subharmonic mode itself (see figure 14a). The phase
synchronisation location at approximately R = 630 remains the same in the LES and PSE
computations (see figure 14b), regardless of the initial amplitude of the subharmonic mode
in the current study. The subharmonic initial amplitude is sufficiently small compared
with the fundamental that the subharmonic amplitude effect on anti-resonance and phase
synchronisation is negligible. The growth rates after the phase synchronisation shown in
figure 14(a) also confirm that the subharmonic resonance is not significantly affected
by the subharmonic amplitude itself. The PSE data show a slight different evolution of
the phase difference at approximately R = 600 compared with the LES data, as already
discussed in § 3.3 with figure 10.

The effect of the initial fundamental amplitude on anti-resonance is shown in figure 15.
The higher initial fundamental amplitude induces larger growth of the subharmonic mode
(see figure 15a) and earlier phase synchronisation (see figure 15b). The subharmonic
amplitude quickly grows double exponentially with the highest fundamental amplitude
2 x A,0) owing to the strong driving force of the large fundamental mode. The phase
synchronisation occurs at approximately R = 500 with the highest fundamental amplitude
in both LES and PSE. The subharmonic mode decays initially in all the cases in figure 15
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Figure 12. Comparison of the modal shapes between the current Floquet analysis and PSE computations for
resonant conditions. The amplitude is scaled by its own maximum in each case.

because of the anti-resonant condition. The decaying rate also depends on the initial
amplitude of the fundamental mode, the higher fundamental amplitude leads to more
reduction at approximately R = 450 in the subharmonic amplitude. The low amplitude
of the fundamental mode in the case of 0.1 x A2 0)(xp) cannot trigger the subharmonic
resonance, and both the fundamental and subharmonic modes decay at approximately
R = 620 in the current PSE computation.
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Figure 13. Temporal oscillation of the fundamental and subharmonic modes during the period of the
subharmonic mode 7|y 1y at selected streamwise locations. The LES computations are used: red dashed line,
(1, 1); black solid line, (2, 0). Each mode amplitude is scaled with its own maximum. (@) Initially resonant
condition, A¢;, = 105°. (b) Initially anti-resonant condition, A¢;, = 10°.

Initial amplitudes for each case PSE LES

10 x A(1,1) (x0) and A(2,0) (x0) ° °
0.1 x A1,1)(x0) and A2,0) (x0) ° °

Aq.1)(x0) and 2 x A(2,0) (x0)
A(]y])(xo) and 0.5 x A(Q’()) (X()) °© —
A(l.l) (xo) and 0.1 x A(z,o) (X()) —

Table 2. Computational cases with various initial amplitudes for the current study of amplitude effects on
anti-resonance and phase synchronisation.

Interestingly, the case of A(2,0) yields phase synchronisation much delayed compared
with the case of 0.5 x A(2,0). This is presumably associated with the large distortion of
the subharmonic mode in the case of A o) compared with the case of 0.5 x A2 ) in the
region of 450 < R < 600 as shown in figure 16. It is speculated that the large distortion of
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Figure 15. LES and PSE computations with various initial amplitudes of the fundamental mode A2 o) (xo)
and anti-resonant initial phase differences. (@) Amplitude growth. (b) Evolution of phase difference.
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Figure 16. Evolution of the subharmonic mode shape from the PSE computations with various initial
amplitudes of the fundamental mode and anti-resonant initial phase difference. The amplitude is scaled by
its own maximum in each case.
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Figure 17. PSE computations with various initial amplitudes of the fundamental mode and initially resonant
phase difference.

the mode shape in the case of A(2 ¢y causes a greater distance to recover, which may cause
the amplitude to dwindle until approximately R = 600 in figure 15(a).

The effect of the initial fundamental amplitude on the subharmonic resonance with
the resonating initial condition is shown in figure 17. Note that the PSE with the highest
initial amplitude ends earlier compared with the other cases because these major modes
(2,0) and (1, 1) are already at 1% of the free-stream velocity. The behaviour of the
subharmonic mode affected by the fundamental amplitude is expected owing to the nature
of the parametric resonance.
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4. Conclusions

A thorough investigation has been conducted into the phase effect on the growth of
a secondary instability in the early nonlinear transition region and its final impact on
the turbulent transition location. Numerical methods with various levels of fidelity were
systematically explored. The fundamental 2-D TS wave and subharmonic oblique wave
were chosen for the primary and corresponding secondary instability, respectively.

Floquet analysis provides a resonating subharmonic mode for a given basic flow
composed of steady laminar flow and the fundamental TS wave with the assumption
of locally parallel basic flow and a one-way nonlinear effect from the basic flow to the
subharmonic mode. The current Floquet analysis was validated against the pioneering
analysis of Herbert et al. (1987) and the experimental data of Kachanov & Levchenko
(1984) for the same flow condition. In such an early nonlinear stage in the laminar region,
local Floquet analysis is efficient for obtaining the subharmonic mode resonating to the
given basic flow.

Because the current Floquet analysis is limited to a resonating condition, PSE was used
for the new parametric study on the effect of the phase on the subharmonic resonance.
A total of 44 phase differences between the fundamental and subharmonic modes were
studied by shifting the subharmonic phase with respect to the given fundamental TS wave
while maintaining the initial amplitude of both the waves at the PSE inlet. The current PSE
indicates that the subharmonic resonance is insensitive to the phase difference as long as
the phase shift is less than approximately 45° from the most resonating phase condition. In
contrast to the resonance phenomena, the anti-resonant condition damps the subharmonic
growth at the beginning and delays the resonance significantly. The anti-resonant condition
is sensitive to the phase difference here, only 5° difference can cause the subharmonic
amplitude to vary with a factor of 10 downstream near R = 600 in the current simulation.

To carry through complete simulations to fully turbulent flows, LES was used for
nine selected phase differences (two in the resonant condition and seven near the
anti-resonance). The current LES provides the subharmonic resonance observed in the
Floquet and PSE analyses in the early nonlinear region, indicating that LES is essentially
DNS before highly nonlinear interactions occur. Comparisons between PSE and LES were
also made in less-resonating conditions, and the comparison is acceptable even in the
anti-resonant condition. A slight difference, approximately 5° in the anti-resonant phase
between PSE and LES, is presumably related to the sensitive nature of the anti-resonance
phenomena to detailed flow solutions. The turbulent transition is significantly delayed
when the subharmonic resonance is mostly suppressed in the anti-resonant condition.
The variation of the transitional Reynolds number can be drastic as ARe, ; ~ 4.4 x 10°,
when the phase shifts from the resonant to anti-resonant condition. Although a realistic
transition control technique with the phase modulation requires further investigation, a
few experimental approaches with an array of microphones in Borodulin ez al. (2002) and
Wiirz et al. (2012a) indicate the control potential.

The resonance and anti-resonance phenomenon were further discussed with the
evolution of the phase difference. In a resonating condition, the phase difference quickly
follows the phase evolution of the Floquet analysis even though the initial phase is
moderately deviated from the Floquet phase. In the anti-resonant condition, it takes a
significant distance for the subharmonic mode to catch up on the phase evolution of
the Floquet analysis. The mechanism of the phase evolution is associated with the phase
synchronisation of the subharmonic mode for the parametric resonance. A similar phase
evolution towards the resonant phase has been noticed even in a simple nonlinear dynamic
system governed by Mathieu’s equation (Kim 2020) and experimental measurements
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under non-zero pressure gradients (Borodulin er al. 2002; Wiirz et al. 2012a). In the
anti-resonant condition, the subharmonic mode shape deviates from the resonating shape
at the beginning as the subharmonic amplitude damps, and then it returns to the resonating
shape as phase synchronisation occurs.

Because an anti-resonant condition can lead to a significant transition delay, it was
imperative to investigate parameters affecting the anti-resonance. Previous studies focused
on the parametric resonance of the subharmonic mode in resonant conditions, not
anti-resonance. In the current study, amplitude effects on anti-resonance and phase
synchronisation were investigated using both the PSE and LES computations. The initial
amplitude of the subharmonic mode does not significantly change the evolution of the
subharmonic mode in anti-resonant conditions, as long as the subharmonic amplitude is
sufficiently small enough not to interfere the one-way influence of the fundamental to
subharmonic modes. In contrast, the initial amplitude of the fundamental mode strongly
affects the evolution of the subharmonic mode even in anti-resonance and eventually the
phase synchronisation location for the subharmonic resonance, the higher fundamental
amplitude causes earlier recovery of the subharmonic mode from a desynchronised to a
synchronised phase.
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Appendix A. Primary and secondary instability (Floquet) analyses

Equations for the primary instability are obtained for the fundamental TS wave,
substituting (2.3) and (2.4) into (2.2), and eliminating non-parallel terms, as provided in
the Appendix of El-Hady (1988),

0 =0, (Ala)
& = [o® +iRy(@UL - )| &1 + Ry ULt + iaRota, (Alb)
03 = —iagy, (Alc)
: 2
{4 = —w;;;z - {%O-i-i(aUL—w)}Q, (Ald)

where ¢ = d¢/dy. The set of the first-order differential equations with the boundary
conditions given in (A2) yields an eigenvalue problem for the eigenvalue o and the
eigenfunctions ¢.

H=3=0 aty=0, (A2a)

1,83 —~> 0 asy— oo. (A2b)

Substituting (2.5) and (2.6) for the basic flow and the disturbance in (2.2), respectively,
with {u, v, w, p} being replaced with {u, v, w, p}1/2, and equating the coefficients of
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exp(=£if/2) on both sides, the following set of first-order ordinary differential equations
for the secondary instability is obtained.

n =n, (A3a)
2 = I'n1 + RoULns + Ro(y + i1 2)na

+ AR, (y +ia12)1m7 + ARy E3n8 + AR, 219, (A3Db)
m = —(y +iai2)m — Bns, (A30)

. 1 .
N4 = _IT[()/ +iay2)n + I'nz + Bnel
0

+A(y —i3a12)83n7 — Aly —i(a + a1,2)1¢1m9 +ABEL3N11, (A3d)
15 = N6» (A3e)
ne = —BRona + I'ns + AR, (y —ia12)61imn + ARy E3n12, (A3f)
n7 = ns, (A3g)
ng = I'n7 + RoUrno + Ro(y — i1 2) 110

+ AR, (y —ia12)¢in + ARy 32 + AR5 13, (A3h)
no = —(y —iay2)n7 — B, (A3i)

. 1 )
no = —IT[(J/ —ia12)n8 + I no + Bl
0

+A(y +13a12)¢35n1 — Aly +i(a™ + a12)15m3 +ABLSns, (A3))
N1 = 12, (A3k)
M2 = —BRomo + ' i1 + AR, (y + ia1,2)¢n5 + AR5 16, (A3)

where I' = aj, + % — y* = 2ia1 oy + Roly UL +i(e12UL — @12))] and B is the
spanwise wavenumber for the subharmonic wave. Note that the presence of the
fundamental TS wave in the basic flow provides the nonlinear interaction between
the fundamental and subharmonic modes through all the terms including U and V in
(2.2) (even the square bracket terms). The nonlinear interaction is one-way in the current
analysis because only the subharmonic oblique wave is influenced by the fundamental TS
wave, not vice versa. In the derivation from (2.2) to (A3), higher subharmonic modes such
as exp(i36/2) are ignored.

Note that the current formulation in (2.6) is an extended version of Nayfeh & Masad
(1990, (33)) and El-Hady (1988, (14)) in order to cooperate the complex exponent y later,
whereas the real y is assumed in Nayfeh & Masad (1990) and El-Hady (1988). Although
the current Floquet analysis is able to handle the complex y, the subharmonic oblique
wave perfectly synchronised with the fundamental TS wave, i.e. the real y, is of interest
here. The physical meaning of the function 7 is given in table 3 where y is real.

The set of 12 differential equations (A3) with boundary conditions given in (A4) yields
an eigenvalue problem for the eigenvalue y and the eigenfunction 7,

m=mn=ns=n7=n9=n1=0, aty=0, (Ada)
1,13, N5, N7, M9, N1 — 0, asy — oo. (A4b)

The Blasius solution is used for the laminar flow Ur(y). Although the Blasius solution
is not strictly parallel (i.e. V =0 and 0U/dx # 0), the assumption of locally parallel flow
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Function Physical Meaning Function When y = Re(y)

N modal shape of uy > n m
2 modal shape of ity 2 UK m
n3 modal shape of vy /> n9 3
N4 modal shape of pj /> n10 un
s modal shape of wy/2 N 5
N6 modal shape of w2 N2 g

Table 3. Physical meaning of function 7 for indices 1-6 and the relevant additional function when y is real.

is used for the analysis of both the primary instability (A1) and the secondary subharmonic
instability (A3), following the previous approach in Herbert (1984), Herbert et al. (1987),
Nayfeh & Masad (1990) and El-Hady (1988).

The total number of the grid points is 512 in the wall-normal distance of 2003, with
approximately 300 points inside the boundary-layer thickness 53,, and the first wall-normal
grid size is 7 x 10735,. The current wall-normal mesh points are obtained using the
mapping from a semi-infinite to a finite domain suggested in Schmid & Henningson (2001,
Appendix A.4) as described in (AS).

1+ h; 2j— N
— L h= ’
) — hj N

c1 c1 700 196.5
= 0, = — = 35’ = == 200, = —, = —
"0 R - T 9930 2T 03
(A5)

yjzcl j:(),l,...,N, N=512,

Using the Matlab built-in function polyeig, the eigenvalue problem with (A1) and (A2)
is solved for the 2-D TS wave. The same function is used for the Floquet analysis (A3) with
the boundary condition (A4) to obtain the subharmonic characteristic exponent y along
with the eigenfunctions 7. The function polyeig solves the polynomial eigenvalue problem
(Ap + Al + - - - + A,4M)b = 0 where A is the eigenvalue, b is the eigenvector and A is
the given square coefficient matrix (see Higham & Higham 2016, Ch. 9.8). For the current
quadratic eigenvalue problems, n = 2.
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