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Clarifying the relationship between efficiency
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We study a linear inviscid model of a passively flexible swimmer, calculating its
propulsive performance, eigenvalues and eigenfunctions with an eye towards clarifying
the relationship between efficiency and resonance. The frequencies of actuation and
stiffness ratios we consider span a large range, while the mass ratio is mostly fixed
to a low value representative of swimmers. We present results showing how the
trailing edge deflection, thrust coefficient, power coefficient and efficiency vary in the
stiffness–frequency plane. The trailing edge deflection, thrust coefficient and power
coefficient show sharp ridges of resonant behaviour for mid-to-high frequencies and
stiffnesses, whereas the efficiency does not show resonant behaviour anywhere. For
low frequencies and stiffnesses, the resonant peaks smear together and the efficiency
is high. In this region, flutter modes emerge, inducing travelling wave kinematics
which make the swimmer more efficient. We also consider the effects of a finite
Reynolds number in the form of streamwise drag. The drag adds an offset to the net
thrust produced by the swimmer, causing resonant peaks to appear in the efficiency
(as observed in experiments in the literature).

Key words: flow–structure interactions, propulsion, swimming/flying

1. Introduction

A distinguishing feature of nature’s swimmers and fliers is the flexibility of their
tails and wings, prevailing across a wide range of length scales, time scales and
media. A natural question to ask is whether or not flexibility equips swimmers and
fliers with any propulsive advantages over their rigid counterparts, and if so, what
characterizes such advantages? The prevailing thinking is that flexibility is indeed a
desirable property of a propulsor, but the characterization of its effects, particularly
on the efficiency of propulsion, is tenuous.

To be clear, our own interests lie mainly in inertial swimmers characterized by
high Reynolds numbers, a large ratio of characteristic fluid mass to body mass and
uniformly distributed passive flexibility. This is in contrast to fliers, for example,
where the mass ratio is of order unity and higher, and where the flexibility may be
localized. Nevertheless, we will draw upon some of the literature on flight to motivate
and guide our analysis.

† Email address for correspondence: dfloryan@princeton.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-6353-5075
mailto:dfloryan@princeton.edu
https://doi.org/10.1017/jfm.2018.581


272 D. Floryan and C. W. Rowley

Passive flexibility has generally been found to lead to thrust and efficiency gains
across a range of actuation frequencies, from far below the first natural frequency
of the system, to deep into the region of higher-order natural frequencies (Katz &
Weihs 1978, 1979; Alben 2008b; Ferreira de Sousa & Allen 2011; Dewey et al.
2013; Quinn, Lauder & Smits 2014). In the context of swimming, the efficiency is a
measure of how much of the power used to generate the kinematics of a swimmer
is converted to useful thrust power. (Although exact definitions vary from one work
to the other, they are all in the same spirit.) While thrust generally exhibits local
maxima when actuating near natural frequencies (when the system is in resonance),
efficiency has been observed to exhibit local maxima below natural frequencies, near
natural frequencies and above natural frequencies (Dewey et al. 2013; Moored et al.
2014; Quinn et al. 2014; Quinn, Lauder & Smits 2015; Paraz, Schouveiler & Eloy
2016), as well as at frequencies relatively far from a natural frequency (Michelin
& Llewellyn Smith 2009; Vanella et al. 2009; Kang et al. 2011; Ramananarivo,
Godoy-Diana & Thiria 2011; Zhu, He & Zhang 2014). This muddled relationship
between efficiency and resonance can be partly explained by an ill-conceived notion
of natural frequencies. In some cases (Vanella et al. 2009; Kang et al. 2011; Hua,
Zhu & Lu 2013), natural frequencies were based on an Euler–Bernoulli beam in a
vacuum, whereas Michelin & Llewellyn Smith (2009) has shown that the presence of
a fluid critically affects the natural frequencies of the system. Some of these studies
mistook the added mass of the fluid for drag, leading to an incorrect definition of the
total system mass (Combes & Daniel 2003; Vanella et al. 2009). In other cases where
efficiency and resonance were unrelated, large-amplitude motions were considered,
leading to a regime of highly nonlinear dynamics where the linear notion of resonance
may be inappropriate. We summarize the parameters used in the literature in table 1,
translated to correspond with the definitions employed in this work, as defined in § 2.
Note that some parameters had to be estimated.

The tacit argument in studies where local maxima in efficiency were observed
somewhere near a resonant frequency seems to be that resonance is a condition that
improves the efficiency of a system. Although appealing, it is not immediately clear
that resonance should unconditionally improve the efficiency of a system. Indeed,
most of the works we cite demonstrate local maxima in the input power when the
system is actuated at a resonant frequency, not just the thrust, which degrades the
efficiency. How resonance affects efficiency is subtle, and should be understood
beyond a black-box understanding.

Physical mechanisms unrelated to a fluid–structure resonance have also been
offered to explain maxima in efficiency. According to Moored et al. (2014), peaks in
efficiency occur when the actuation frequency is tuned to a ‘wake resonant frequency’,
which is unrelated to any structural frequency. Quinn et al. (2015) argued that peaks
in efficiency occur when the Strouhal number is high enough that the flow does not
separate but low enough that the shed vortices remain tightly packed, the trailing
edge amplitude is maximized while flow remains attached along the body, and the
effective angle of attack is minimized. In these two works, fluid–structure resonance
did coincide with maxima in efficiency. In Ramananarivo et al. (2011), peak efficiency
was not related to resonance; instead, it was achieved by making use of the nonlinear
nature of a drag transverse to the direction of locomotion. The authors argued that
efficiency is maximized when the trailing edge is approximately parallel to the total
velocity.

In this work, we attempt to clarify the relationship between efficiency and resonance.
Resonance is a condition where some property of the system exhibits a maximum;
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FIGURE 1. Schematic of the problem.

for a passively flexible swimmer, the deflection of its body is one such property. The
relation between efficiency and deflection is complicated, making it unclear whether
or not resonance of the deflection should result in maximal efficiency. To clarify the
matter, we study a passively flexible swimmer using a linear model, valid for small-
amplitude motions. Doing so allows us to formally calculate natural frequencies of the
coupled fluid–structure system, and to stay in a dynamical regime where the notion of
resonance is clear. The linear model cannot account for large-amplitude effects such
as separation (especially of the leading edge vortex), but accurately models attached
flows (Saffman 1992). Systematically examining the effects of nonlinearity – perhaps
separately in the fluid and solid mechanics, and then together – in the context of our
linear results would be a useful step forward in delineating exactly what the role of
nonlinearity is in swimmers.

2. Problem description
Here, the set-up and assumptions are the same as in Moore (2017). Consider a

two-dimensional, inextensible elastic plate of length L and thickness d. The plate is
thin (d� L), and is transversely deflected a small amount Y from its neutral position,
with its slope Yx� 1. Under these assumptions, the dynamics of the plate is governed
by Euler–Bernoulli beam theory. The plate has uniformly distributed density ρs and
flexural rigidity B= EI, where E is the Young’s modulus, I = wd3/12 is the second
moment of area of the plate and w is the width of the plate. The plate is immersed
in an incompressible, inviscid Newtonian fluid of density ρf . There is no flow along
the width of the plate, and far from the plate the flow is unidirectional and constant:
U=Ui. The set-up is altogether illustrated in figure 1.

The motion of the plate alters the velocity field of the fluid, whose forces in turn
modify the motion of the plate. The transverse position of the plate satisfies the Euler–
Bernoulli beam equation

ρsdwYtt + BYxxxx =w1p, (2.1)

where 1p is the pressure difference across the plate due to the fluid flow, subscript t
denotes differentiation with respect to time and subscript x denotes differentiation with
respect to streamwise position. The fluid motion satisfies the linearized incompressible
Euler equations

∇ · u= 0,
ρf (ut +Uux)=−∇p,

}
(2.2)

where u= ui+ vj. The above linearization is valid when the perturbation velocity u is
much smaller than U. Since the perturbation velocity depends on the plate’s vertical
velocity, its slope and the rate of change of its slope, the linear assumption holds for
small-amplitude motions of the plate.
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We non-dimensionalize the above equations using L/2 as the length scale, U as the
velocity scale and L/(2U) as the time scale, yielding

2RYtt +
2
3 SYxxxx =1p,
∇ · u= 0,

ut + ux =∇φ,

 (2.3)

where

R=
ρsd
ρf L

, S=
Ed3

ρf U2L3
, φ = p∞ − p. (2.4a−c)

In the above, x, t, Y , u and p are now dimensionless, with the pressure non-dimension-
alized by ρf U2. The coordinates are aligned such that x = −1 corresponds to the
leading edge and x= 1 corresponds to the trailing edge. R is a ratio of solid-to-fluid
mass, and S is a ratio of bending-to-fluid forces. Note that 1φ =−1p.

The fluid additionally satisfies the no-penetration and Kutta conditions, which can
be stated as

v|x∈[−1,1],y=0 = Yt + Yx,

|v||(x,y)=(1,0) <∞.

}
(2.5)

We impose heaving and pitching motions h and θ , respectively, on the leading edge
of the plate, while the trailing edge is free, resulting in boundary conditions

Y(−1, t)= h(t), Yx(−1, t)= θ(t), Yxx(1, t)= 0, Yxxx(1, t)= 0. (2.6a−d)

The fluid motion resulting from the actuation of the leading edge of the plate imparts
a net horizontal force onto the plate. In other words, energy input into the system
by the actuation of the leading edge is used to generate a propulsive force. The net
horizontal force (thrust) on the plate is

CT =

∫ 1

−1
1pYx dx+CTS, (2.7)

where CTS is the leading edge suction force (formula given in Moore 2017), and the
power input is

CP =−

∫ 1

−1
1pYt dx. (2.8)

The leading edge suction force used in Moore (2017) is the limit of the suction force
on a leading edge of small but finite radius of curvature, in the limit that the radius
tends to zero. The leading edge suction force is a reasonable model of the actual flow
when it is attached (Saffman 1992), so we have chosen to include it. In terms of
dimensional variables, CT = T/((1/2)ρf U2Lw) and CP = P/((1/2)ρf U3Lw), where T
and P are the dimensional net thrust and power input, respectively. Finally, the Froude
efficiency is defined as

η=
TU
P
=

CT

CP
, (2.9)

where the overbar denotes a time-averaged quantity.
In this work, we restrict ourselves to actuation at the leading edge that is sinusoidal

in time, that is,
h(t)= h0ejσ t,

θ(t)= θ0ejσ t,

}
(2.10)
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Re R=
ρsd
ρf L

S=
Ed3

ρf U2L3
f ∗ =

fL
U

h0 θ0

Inviscid 0.01 10−2–102 10−1–102 2 (linear) 1 (linear)

TABLE 2. Parameter values used in this work.

where σ = πLf /U is the dimensionless angular frequency, f is the dimensional
frequency in Hz, j =

√
−1, and the real part in j should be taken when evaluating

the deflection. Since the system is linear in Y , the resulting deflection of the
plate and fluid flow will also be sinusoidal in time. We leave the details of the
method of solution to appendix A, noting that all calculations in this work used 64
collocation points. The method to calculate the eigenvalues of the system is detailed
in appendix B and some useful formulas for the numerical method used are given in
appendix C.

3. A note on parameters
It is important to acknowledge that the system parameters we use will critically

affect the phenomena we observe. The dissensus in the literature on the relationship
between efficiency and resonance may be partly attributed to results being overexten-
ded from one dynamical regime to another. We thus take the opportunity here to
explicitly state the parameters we employ in this work, as well as to show some
resulting qualitative features.

To be clear, the system is parameterized by its Reynolds number Re, mass, stiffness
and frequency and amplitude of actuation. Our flow is inviscid, but we will consider
some of the effects of a finite Reynolds number later on. As revealed by the non-
dimensional quantities in (2.4), the mass and stiffness of the system depend on both
the solid and the fluid. For underwater swimmers, the mass ratio is generally quite
low since swimmers are neutrally buoyant but thin; this is in contrast to fliers, for
example, where the mass ratio is of order unity and higher. Since our interests lie
in swimming flows, we take the mass ratio to be R= 0.01 throughout. We vary the
stiffness of the system from very flexible (S� 1) to very stiff (S� 1), characterized
by the stiffness ratio S. We vary the frequency of actuation so that it covers multiple
natural frequencies of the system. Our system is linear, so scaling the amplitude by
some factor will simply scale the flow and deflection fields by the same factor. In this
sense, amplitude does not matter in our problem, so we set the heaving and pitching
amplitudes so that the maximum deflection of the trailing edge of a rigid plate is equal
to the length of the plate. The amplitude affects both thrust and power quadratically,
and does not affect efficiency in this linear setting. We do not consider nonlinear
effects caused by large amplitudes. The parameters we use in the proceeding sections
are summarized in table 2.

As a final note, we point out the effect of the mass of the system. Although we
fix the mass ratio to be R = 0.01 in the proceeding sections in this work, we take
the opportunity here to vary R in order to show how swimmers and fliers may differ,
at least qualitatively. In figure 2, we show the efficiency as a function of mass and
stiffness ratios for plates heaving and pitching at a reduced frequency f ∗ = 1 (the
results are similar to those in figure 11 of Moore (2017), but for slightly different
parameter values). The white areas demarcate where the plate produces a net drag
(and hence negative efficiency). The relationship between efficiency and stiffness
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FIGURE 2. (Colour online) Efficiency as a function of mass ratio R and stiffness ratio
S for a (a) heaving and (b) pitching plate at f ∗ = 1. Areas with negative efficiency have
been whited out.

is qualitatively different for low and high mass ratios. At high mass ratios (where
the plate is much more massive than a characteristic mass of fluid), the plate does
not produce thrust unless the stiffness ratio is high. At O(1) mass ratios, efficiency
increases monotonically as the plate becomes stiffer. At low mass ratios, efficiency
does not change monotonically with stiffness.

In figure 3, we show the first four natural frequencies of the coupled fluid–structure
system as a function of the mass ratio for the limit of large bending velocity compared
to flow velocity; we will refer to such frequencies (and, more generally, eigenvalues
and eigenfunctions) as quiescent natural frequencies, and refer the reader to § B.2 for
more details. To be clear, when we write ‘natural frequencies’ we mean the imaginary
parts of the eigenvalues of the system, calculated as in appendix B. For just the results
in this plot, we have changed the time scale such that a flat line indicates that only the
mass of the plate (but not the fluid) matters. The non-dimensional angular frequency
here is ω∗ = ω

√
3ρsL4/(4Ed2), where ω = 2πf is the dimensional angular frequency.

For high values of the mass ratio, the natural frequencies scale with the mass of the
plate (ω∗ ∼ R0). For low values of the mass ratio, however, the natural frequencies
scale with the mass of the surrounding fluid (ω∗∼R1/2). There is also a region where
both the characteristic plate and fluid masses must be considered. We also note that
for a non-zero incoming flow, the natural frequencies may change (we will show this
later).

Together, the results briefly shown here underline the importance of specifying the
dynamical regime of the system, in particular the mass ratio R. All of our results will
be for R= 0.01, and we expect our conclusions to hold for low mass ratios (R. 0.1).

4. Inviscid results

Here, we present our results on the kinematics and propulsive characteristics of
uniformly flexible swimmers. Since our interests lie in clarifying the role of resonance,
we limit ourselves to purely heaving and purely pitching plates; allowing simultaneous
heaving and pitching would add two parameters, and would potentially dilute our
results on the role of resonance. Given our interests, it also makes sense to present
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¡R0

FIGURE 3. (Colour online) First four natural frequencies in a quiescent fluid as a function
of mass ratio. Asymptotic behaviour overlaid.

results for flexible plates relative to rigid plates. For example, we will present the
mean thrust that a flexible plate produces relative to the mean thrust that an otherwise
identical rigid plate produces. We therefore begin by briefly reviewing the results for
rigid plates.

4.1. Propulsive characteristics of rigid swimmers
The linear inviscid theory for sinusoidally heaving and pitching rigid plates was
developed in Theodorsen (1935), and extended in Garrick (1936) to provide results on
the propulsive characteristics of such plates. The mean thrust produced, as well as the
mean power needed to produce the mean thrust, are shown in figure 4 as a function
of the reduced frequency for the amplitudes in table 2. At high reduced frequencies,
the mean thrust coefficient varies as f ∗2 for both heaving and pitching plates. At low
reduced frequencies, the mean thrust coefficient varies sub-quadratically for a heaving
plate, and super-quadratically for a pitching plate, for the reduced frequencies shown
here. Note that a heaving plate always produces net thrust in the mean, whereas
a pitching plate produces net drag in the mean for f ∗ < 0.202. The story is much
the same for the mean power coefficient. At high reduced frequencies, the mean
power coefficient varies as f ∗2 for both heaving and pitching plates. At low reduced
frequencies, the mean power coefficient varies sub-quadratically for a heaving plate,
and super-quadratically for a pitching plate, for the reduced frequencies shown here.
The power input for a heaving plate is always positive in the mean, whereas the
power input for a pitching plate is negative in the mean for f ∗ < 0.013. As f ∗→ 0,
CT→ 0 and CP→ 0 for both heaving and pitching plates.

Given the mean thrust and power, we may calculate the efficiency, shown in
figure 5 as a function of the reduced frequency. At high reduced frequencies, η→ 0.5
for both heaving and pitching plates. At low reduced frequencies, the efficiencies for
heaving and pitching plates diverge. For a heaving plate, the efficiency increases as
the reduced frequency decreases, with η→ 1 as f ∗ → 0. For a pitching plate, the
efficiency becomes negative since a pitching plate produces net drag at low reduced
frequencies. Note that because of how the efficiency is defined, there is a vertical
asymptote where the mean power coefficient is zero, at f ∗≈ 0.013. To the left of this
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FIGURE 4. (Colour online) (a) Mean thrust coefficient and (b) mean power coefficient
as a function of reduced frequency f ∗ for a heaving (red) and pitching (blue) rigid plate.
Asymptotic behaviour included. At low f ∗, a pitching rigid plate produces drag in the
mean.
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FIGURE 5. (Colour online) Efficiency as a function of reduced frequency f ∗ for a heaving
(red) and pitching (blue) rigid plate. At low f ∗, a pitching rigid plate produces drag in
the mean, hence its efficiency is negative.

asymptote the efficiency is positive since both the mean thrust and power coefficients
are negative, but we shall ignore any such cases since we are only interested in
thrust-producing plates.

Having briefly reviewed the propulsive characteristics of rigid plates in the linear
inviscid regime, we now move on to uniformly flexible plates. It is worth bearing
in mind how the thrust, power and efficiency vary with reduced frequency for rigid
heaving and pitching plates when we present the results for flexible heaving and
pitching plates.

4.2. Propulsive characteristics of flexible swimmers
We begin by considering the kinematics of the flexible plate actuated sinusoidally at
its leading edge. For our purposes, it is sufficient to look at the deflection at a single
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FIGURE 6. (Colour online) Trailing edge amplitude as a function of reduced frequency
f ∗ and stiffness ratio S for a (a) heaving and (b) pitching plate with R= 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate has
the same trailing edge amplitude as the equivalent rigid plate. Under-resolved areas have
been whited out.

point along the length of the plate, which we choose to be the trailing edge. The
amplitude of the trailing edge deflection is shown in figure 6. More specifically, we
have plotted the logarithm of the ratio of the trailing edge amplitude of a flexible
plate to the trailing edge amplitude of an otherwise identical rigid plate. The dashed
white lines indicate where the flexible plate has the same trailing edge amplitude as
the rigid plate. For both heaving and pitching plates, we see ridges of local maxima in
trailing edge amplitude in the stiffness–frequency plane. For a given ridge, its reduced
frequency increases with the non-dimensional stiffness.

We suspect that the locations of the local maxima of trailing edge amplitude
correspond to resonances in the system. To verify our suspicion, we formally calculate
the first ten pairs of quiescent eigenvalues of the coupled fluid–structure system, that
is, the eigenvalues of a clamped plate in an otherwise quiescent fluid. (Formally,
by quiescent we mean in the limit where the bending velocity is large compared
to the fluid velocity.) We have re-plotted the trailing edge amplitudes from figure 6
in figure 7, with the imaginary parts of the eigenvalues overlaid (and re-scaled to
match the non-dimensionalization employed in the plots). Indeed, the local maxima
in trailing edge amplitude align with the quiescent natural frequencies of the system.
The alignment is not as good when both the reduced frequency and non-dimensional
stiffness are low; we leave this point aside now but will revisit it later. It can be
easily shown that the quiescent natural frequencies scale as f ∗ ∼ S1/2.

To explain why the local maxima in trailing edge amplitude occur when the system
is actuated at its natural frequencies, we turn to the transfer function from actuation
to trailing edge deflection. Recall that the transfer function of a linear input–output
system is a function G(s), where s is a complex number, such that the response to an
input of the form est is given by G(s)est. Since the trailing edge deflection is just a
sample of the entire deflection field, the poles of the transfer function will be the
eigenvalues of the system. Generally, the eigenvalues are in the left half-plane. In
figure 8, we schematically illustrate the magnitude of a simple transfer function in
the complex plane. In figure 8(a), a single pole of the transfer function is marked as
a cross, and the contour lines show level sets of the magnitude of the transfer function
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FIGURE 7. (Colour online) Same as in figure 6, but with quiescent natural frequencies
overlaid as green lines.
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FIGURE 8. (Colour online) Schematic explaining resonance. (a) Level sets on the complex
plane of the magnitude of a transfer function with one pole, marked with a cross. (b)
Magnitude of the same transfer function evaluated on the imaginary axis.

in the complex plane. For a single pole λ, the transfer function is G=1/(s−λ), where
s= σ + iω is the complex variable. The magnitude of the transfer function decreases
with distance from the pole in the complex plane, resulting in the circular level sets
centred about the pole. Since our actuation is sinusoidal (i.e. eiωt), we are specifically
interested in the behaviour along the imaginary axis; this is shown in figure 8(b). It
is clear that maxima in the magnitude of the transfer function will occur when we
actuate the system at a frequency equal to the imaginary part of an eigenvalue of
the system (a ‘natural frequency’); in other words, maxima in the magnitude of the
transfer function occur when we actuate at resonance. This will generally hold true
even when the system has multiple eigenvalues, as long as they are far enough from
each other.

With the swimmer’s kinematics understood more or less in terms of the system’s
eigenvalues, we move on to its propulsive characteristics. The mean thrust and
power coefficients are shown in figures 9 and 10, respectively. We have plotted the
logarithm of the ratio of the mean thrust/power coefficient of a flexible plate to
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FIGURE 9. (Colour online) Thrust coefficient as a function of reduced frequency f ∗ and
stiffness ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that
of an equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same thrust coefficient as the equivalent rigid plate. Under-resolved areas and areas which
produce negative thrust have been whited out.
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FIGURE 10. (Colour online) Power coefficient as a function of reduced frequency f ∗ and
stiffness ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that
of an equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same power coefficient as the equivalent rigid plate. Under-resolved areas and areas which
produce negative power input have been whited out.

the mean thrust/power coefficient of an otherwise identical rigid plate to show how
flexibility modifies the propulsive characteristics. The dashed white lines indicate
where the flexible values match the rigid values. Regions of low reduced frequency
that have negative mean thrust/power have been whited out. Just as for the trailing
edge amplitude, we see ridges of local maxima in the mean thrust and power
coefficients.

In figures 11 and 12, we have re-plotted the mean thrust and power coefficients,
with the quiescent natural frequencies overlaid. Just as for the trailing edge amplitude,
the ridges of local maxima in both mean thrust and mean power align with the
quiescent natural frequencies of the system (the alignment is not as good when the
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FIGURE 11. (Colour online) Same as in figure 9, but with quiescent natural frequencies
overlaid as green lines.
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FIGURE 12. (Colour online) Same as in figure 10, but with quiescent natural frequencies
overlaid as green lines.

reduced frequency and non-dimensional stiffness are low, but we will revisit this issue
later). Since the thrust and power are quadratic functions of the deflection (see (2.7)
and (2.8)), we expect them to exhibit local maxima when the system is actuated at
natural frequencies.

With the behaviour of the deflection, mean thrust and mean power understood,
we are left to understand the behaviour of the efficiency. The efficiency is shown
in figure 13. For a heaving plate, the efficiency generally decreases with reduced
frequency, just like for the rigid plate (cf. figure 5). For a pitching plate, the behaviour
of the efficiency differs from the rigid case in that it increases with reduced frequency,
reaches a peak and then decreases with reduced frequency. Recall that for a rigid
pitching plate, the efficiency monotonically increases with reduced frequency, not
displaying any local maximum. For both heaving and pitching plates, the efficiency
generally increases as the non-dimensional stiffness decreases.

To isolate the effects of flexibility, we have plotted the difference in efficiency
between the flexible and rigid swimmers in figure 14, with a dashed white line
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FIGURE 13. (Colour online) Efficiency as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R= 0.01. Under-resolved areas and
areas with negative efficiency have been whited out.
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FIGURE 14. (Colour online) Efficiency as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the same
efficiency as the equivalent rigid plate. Under-resolved areas and areas with negative
efficiency have been whited out.

indicating where flexible and rigid swimmers attain the same efficiencies. We see that
the flexible swimmer is broadly more efficient than the rigid swimmer (in fact, the
flexible heaving plate always attains greater efficiency than the rigid heaving plate).
This leads us to conclude that flexibility generally makes a swimmer more efficient,
at least for low mass ratios. The mechanism for increased efficiency, however, is
unclear. What about passive flexibility makes a swimmer more efficient?

It is apparent that the efficiency is not related to the quiescent natural frequencies.
Whereas both mean thrust and mean power have ridges of local maxima aligned with
the quiescent natural frequencies, this is not the case for the efficiency. The efficiency
instead has a single broad region of high values in the stiffness–frequency plane.
Elsewhere in the plane, the local maxima in thrust and power cancel each other
exactly, resulting in flat efficiency; such behaviour has been previously observed in
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FIGURE 15. (Colour online) Same as in figure 14, but with natural frequencies overlaid
as cyan lines.

linear models of passively flexible swimmers (Alben 2008b; Moore 2014, 2017). The
broad region of high efficiency is aligned with a line for which reduced frequency
decreases with non-dimensional stiffness, opposite to the behaviour of the quiescent
natural frequencies.

4.3. Fluid–structure eigenvalues and their relationship with efficiency
While the efficiency appears to be unrelated to the quiescent natural frequencies, it
may be possible that it is related to the full eigenvalues of the system. In the quiescent
limit, the forces at play are the elastic forces from the plate and the added mass forces
from the fluid, with lift forces being negligible. In the full problem, however, lift
forces may be important. We expect the lift forces to be dominant when the reduced
frequency and non-dimensional stiffness are low, which is where the region of high
efficiency is, and where the behaviours of the trailing edge amplitude, mean thrust and
mean power deviate from the behaviour of the quiescent eigenvalues.

In figure 15, we again show the difference in efficiency between flexible and rigid
swimmers, but now with the full natural frequencies overlaid. When the reduced
frequency and non-dimensional stiffness are high, the natural frequencies match
closely with the quiescent natural frequencies, as expected. For low values of the
reduced frequency and non-dimensional stiffness, lift forces become important and
affect the natural frequencies, causing them to deviate from their quiescent behaviour.
We even see the emergence of branches for which the reduced frequencies increase
as the non-dimensional stiffness decreases, counter to our intuition for flexible plates.
The region of high efficiency is aligned with the counterintuitive branch of natural
frequencies, leading us to suspect that this strange branch may be responsible for
high efficiency; we therefore find it paramount to understand the behaviour of the
eigenvalues of the system.

In figure 16, we trace the first three eigenvalue pairs of the full coupled
fluid–structure system as the non-dimensional stiffness decreases. Note that the
eigenvalues are solutions of a nonlinear eigenvalue problem, so eigenvalues may
appear and disappear. Also note that the imaginary parts of the eigenvalues in
figure 16(b) are greater than those in figure 15 by a factor of π because of how we
have chosen to define f ∗. In the following description of the eigenvalues, we begin
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FIGURE 16. (Colour online) First few eigenvalues of the system as a function of stiffness
ratio S: (a) real parts, and (b) imaginary parts.

at large stiffness ratio S and describe how the eigenvalues change as we decrease S,
since the eigenvalues essentially behave like those for an Euler–Bernoulli beam in
vacuo for large S.

As the stiffness ratio decreases, the first three eigenvalues behave as expected: the
imaginary parts decrease, and the real parts do not change. We shall refer to these
as primary eigenvalues, and label them P1, P2 and P3. As S further decreases, the
behaviour of P1 changes: its real part first increases a bit, then decreases dramatically,
and then begins to loop up; its imaginary part first decreases more quickly, then
decreases substantially more slowly, until it finally decays to zero. At this point
(S = 0.327), P1 merges with one of the two real eigenvalues that have appeared,
labelled R1 and R2. The two real eigenvalues appear when S = 1.658, shortly after
the behaviour of P1 changes, and they merge and disappear when S = 0.127. Just
after the two real eigenvalues appear, a new conjugate pair, labelled S1, appears
when S = 1.549. We refer to this eigenvalue as a secondary eigenvalue because
it essentially replaces the primary eigenvalue P1. We summarize the behaviour as
follows: the original primary eigenvalue, P1, has decreasing imaginary part until it
becomes purely real. In this time, a pair of real eigenvalues, R1 and R2, appear. P1
and R1 merge when P1 becomes real, and they eventually disappear, along with R2,
when they all collide. A new conjugate pair of secondary eigenvalues, S1, appears
as well, and both its real and imaginary parts increase as S decreases. The second
primary eigenvalue P2 essentially demonstrates the same behaviour, and we hazard a
guess that P3 shows the beginnings of the same behaviour.

What physical mechanism is at the root of the observed behaviour in the
eigenvalues? It should be clear that P1 is an Euler–Bernoulli mode, since it essentially
displays the behaviour of an eigenvalue of an Euler–Bernoulli beam in vacuo. To be
more precise, the behaviour of P1 is dominated by elastic and added mass forces,
leading to Euler–Bernoulli type behaviour. S1, on the other hand, is a flutter mode.
S1 emerges when the stiffness ratio is low, and so its behaviour is dominated by
lift and added mass forces. Both the real and imaginary parts of S1 increase as
the stiffness ratio decreases, characteristic of a flutter mode. The stiffness ratio can
also be thought of as the inverse of a reduced flow velocity, as in Eloy, Souilliez &
Schouveiler (2007), whereby increasing the reduced flow velocity leads to a flutter
instability. If we decreased S even further, S1 would eventually become unstable.
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FIGURE 17. (Colour online) Our simple notion of resonance becomes unclear when
multiple poles are relatively close. (a) Level sets on the complex plane of the magnitude
of a transfer function with four poles, marked with crosses. (b) Magnitude of the same
transfer function evaluated on the imaginary axis.

When the non-dimensional stiffness is O(1), P1, S1, R1 and R2 simultaneously exist.
For such values of the non-dimensional stiffness, all three types of forces – elastic,
lift and added mass – are non-negligible. The importance of all three types of forces
explains why all three modes – Euler–Bernoulli, flutter and divergence (R1 and R2)
– simultaneously exist.

The same emergence and disappearance of modes occurs for the higher-order modes
as well, but at lower values of the stiffness ratio. The change in behaviour occurs
at lower values of S because the higher-order modes have shorter wavelengths (see
Alben 2008a, for example), significantly increasing the Yxxxx term in (2.3), thereby
significantly increasing the magnitude of the elastic forces. We therefore expect the
elastic forces to become dominated by lift forces at much lower values of S for the
higher-order modes.

As the non-dimensional stiffness decreases, the eigenvalues of the system come
closer together in the complex plane. When multiple eigenvalues are relatively close
to each other, our notion of resonance, schematically illustrated in figure 8, becomes
muddied. In figure 17, we schematically illustrate the magnitude of a transfer function
with multiple poles that are relatively close to each other. In figure 17(a), the poles
of the transfer function are marked as crosses, and the contour lines show level sets
of the magnitude of the transfer function in the complex plane. Because the poles are
close to each other, the level sets are no longer simple circles. Since our actuation is
sinusoidal, we are specifically interested in the behaviour along the imaginary axis;
this is shown in figure 17(b). Because the poles are close to each other, there are no
longer local maxima when the system is actuated at one of its natural frequencies;
instead, there is a broad response across the range of natural frequencies. In our
example, there is a single local maximum despite there being four poles. Moreover,
the local maximum does not occur at any of the natural frequencies of the system,
it occurs between the imaginary parts of λ3 and λ4. This schematic explains why
the ridges of local maxima in trailing edge amplitude, mean thrust and mean power
broaden and smear together as the reduced frequency and non-dimensional stiffness
become small (see figures 6, 9 and 10).

With a good understanding of the eigenvalues of the system, we may now
interpret the behaviour of the efficiency in light of the behaviour of the eigenvalues.
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Specifically, we want to understand the difference in efficiency between flexible and
rigid swimmers (i.e. figures 14 and 15). Broadly speaking, we expect a flexible
swimmer to be more efficient than a rigid one for a simple reason: as a flexible
swimmer moves through the fluid, its body deforms in response to the forcing from
the fluid, so it does not need to fight against the fluid as much as a non-deforming
rigid swimmer does. A flexible swimmer therefore expends less energy in driving
its motion than a rigid swimmer does. This effect becomes more pronounced as the
elastic forces weaken relative to the lift forces – as the swimmer becomes flimsier.
As previously discussed, the elastic forces weaken relative to the lift forces as the
non-dimensional stiffness S decreases. The elastic forces also become relatively
weaker when the frequency of actuation is decreased. As we can see from the
eigenvalues in figure 15, a lower reduced frequency will excite lower-order modes.
The lower-order modes have longer wavelengths, and therefore relatively weaker
elastic forces. To summarize, decreasing S and f ∗ weakens the elastic forces in the
swimmer, thereby weakening its ability to resist the fluid, lowering the power needed
to drive its motion, and making it more efficient.

This is not the complete picture, however. As we can see in figure 15, in the
lower left region there are areas where decreasing S and increasing f ∗ improves the
efficiency, counter to our previous argument. This behaviour can be understood in
terms of the changing behaviour of the eigenvalues of the system in that region.
When S becomes small enough, the primary eigenvalue is essentially replaced
by the secondary eigenvalue. Recall that the primary eigenvalue corresponds to
an Euler–Bernoulli mode, and the secondary eigenvalue corresponds to a flutter
mode. Euler–Bernoulli modes are dominated by elastic forces, while flutter modes
are dominated by lift forces. Based on the previous discussion, swimmers whose
composition includes flutter modes should be more efficient.

A comparison between Euler–Bernoulli mode P2 and flutter mode S1 for S = 0.1
is shown in figure 18, where the modes have been normalized so that their
second derivatives at the leading edge are real and equal to 1 (a supplementary
movie is included which is available online at https://doi.org/10.1017/jfm.2018.581).
Qualitatively, the flutter mode looks more efficient than the Euler–Bernoulli mode,
with the Euler–Bernoulli mode having a rigid fore and aft (this may be easier to
see in the supplementary movie). To quantify this observation, in figure 19 we have
plotted the magnitudes of the modes as well as the phase between the leading edge
and the deflection along the chord for the two modes, normalized as before. The
deflection of flutter mode S1 is greater than that of Euler–Bernoulli mode P2 along
the entire chord. The phase is flat for a large portion of the fore of Euler–Bernoulli
mode P2, indicating that it moves rigidly. The phase also flattens out towards the aft,
indicating that it too is nearly rigid. In contrast, flutter mode S2 has a nearly linearly
decreasing phase. A front-to-back travelling wave would have a linearly decreasing
phase, so flutter mode S1 essentially behaves like a travelling wave (with spatially
varying amplitude). As shown in Wu (1961), travelling wave kinematics can be quite
efficient. The emergence of the flutter modes as S decreases leads to travelling wave
kinematics in the actuated system. For a value of S for which a flutter mode exists,
the phase of the deflection decreases nearly linearly when the system is actuated at
a low frequency, indicating that the kinematics are nearly a travelling wave. As the
frequency of actuation is increased, the phase behaves less linearly, instead alternating
between relatively flat and steep behaviours; the degradation of the travelling wave
kinematics is more severe as the frequency of actuation is increased. The behaviour at
low frequencies is therefore dominated by the flutter modes, while the Euler–Bernoulli

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.581
https://doi.org/10.1017/jfm.2018.581


Relationship between efficiency and resonance for flexible inertial swimmers 289

t t

(a) (b)

FIGURE 18. (Colour online) Ten snapshots, evenly spaced in time, of (a) Euler–Bernoulli
mode P2 and (b) flutter mode S1 for S= 0.1 comprising one period of motion. The modes
have been normalized so that their second derivatives at the leading edge are real and
equal to 1. Supplementary movies are included.

0.6(a)

0.5

0.4

0.3|Y0| ∠Y0

0.2

0.1

0
-1 0

x
1 -1 0

x
1

0

-0.4

-0.8

-1.2

-1.6

Euler–Bernoulli mode P2
Flutter mode S1

(b)

FIGURE 19. (Colour online) (a) Magnitude and (b) phase in radians of the deflection
along the chord for Euler–Bernoulli mode P2 (red) and flutter mode S1 (blue), for S= 0.1.
The modes have been normalized so that their second derivatives at the leading edge are
real and equal to 1.

modes become dominant at higher frequencies. The frequency at which the travelling
wave kinematics degrade increases as S decreases, coinciding with the frequency at
which the efficiency degrades, and with the behaviour of the imaginary parts of the
flutter eigenvalues. We may therefore reasonably conclude that the emergence of the
flutter modes as S decreases makes the swimmer more efficient.

As a final note, we point out that increases in efficiency are often intertwined
with decreases in thrust. This is apparent when comparing the plots of mean thrust
with the plots of efficiency (figures 9 and 14, respectively). To generate large thrust,
the swimmer needs to be able to push against the fluid. To be efficient, however,
the swimmer needs to be compliant to the fluid. A limiting case of this is when
the body of the swimmer takes the form of a front-to-back travelling wave. As the
wave velocity approaches the free-stream velocity, the thrust vanishes, the efficiency
approaches unity and the swimmer merely travels along a sinusoidal path fixed in
space (Wu 1961). We must be mindful of regions of low thrust, especially in the
presence of drag, as we shall explore in the next section.

5. Finite Reynolds number effects
Recently, the effects of streamwise drag on efficiency have come to be appreciated,

at least for rigid swimmers (Floryan et al. 2017). Drag can create peaks in efficiency
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and can make the efficiency quite sensitive to changes in the system, as also suggested
in Moore (2014). Here, we consider how streamwise drag due to a finite Reynolds
number affects the system.

The presence of drag in our system does not change it much. The kinematics
will not change, so the trailing edge amplitude remains unchanged. The net thrust
produced decreases uniformly across the stiffness–frequency plane, leaving the picture
qualitatively the same. The power consumption also does not change. The efficiency,
however, will change. Whereas before there were no local maxima in efficiency, the
addition of an offset drag to the system will spur the emergence of ridges of local
maxima in efficiency, just like the ones previously described for the trailing edge
amplitude, mean thrust and mean power.

The ridges of local maxima in efficiency caused by the addition of an offset drag
can be understood in a simple way. We will consider a simplified picture of resonance
in our system. Suppose we actuate the inviscid system at a non-resonant frequency,
resulting in mean thrust coefficient CT0, mean power coefficient CP0 and efficiency
η0=CT0/CP0. If we change the frequency of actuation to a resonant one, our previous
results show that the mean thrust coefficient, power coefficient and efficiency will
become

CT1 = aCT0, CP1 = aCP0, η1 =
CT1

CP1
=

aCT0

aCP0
=

CT0

CP0
= η0, (5.1a−c)

where a > 1. We see that resonance does not alter the efficiency when there is no
drag.

Now consider adding streamwise drag to the system. The baseline mean thrust
changes by an offset, and the mean power does not change. The baseline efficiency
is then

η0 =
CT0 −CD

CP0
=

CT0

CP0
−

CD

CP0
, (5.2)

where CD is the drag coefficient. When we actuate at resonance, the mean thrust and
mean power increase as before, and the drag does not change. The efficiency becomes

η1 =
aCT0 −CD

aCP0
= η0 +

a− 1
a

CD

CP0
>η0. (5.3)

We see that the addition of streamwise drag to the system causes local maxima in
efficiency when the system is actuated at a natural frequency. This effect should be
robust to the source of drag. Note that this effect depends on how strongly resonance
affects the system (the value of a), and on how strong the drag is (CD/CP0). We
demonstrate this effect in figure 20, where we show the efficiency for CD = 0.1
(Floryan et al. 2017). Since the effect depends on the ratio CD/CP0, just for this
plot we have changed the amplitudes to h0 = 0.2 and θ0 = 0.1. Indeed, we see ridges
of local maxima in efficiency which align with the natural frequencies. We also
note that the addition of streamwise drag has pushed the thrust–drag transition to
significantly higher values of the reduced frequency; this underscores the importance
of streamwise drag for swimmers.

Since any real system will have some drag, resonant peaks in efficiency should be
present. We offer our simple explanation as a reason for the existence of resonant
peaks in efficiency observed in the literature, modulo nonlinear effects. Since our
analysis is linear, the aforementioned effect of streamwise drag on the efficiency of
the system is present at first order, and we therefore expect it to be robust to nonlinear
effects.
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FIGURE 20. (Colour online) Efficiency as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R= 0.01 with additional drag. Under-
resolved areas and areas with negative efficiency have been whited out.

6. Conclusions

In this work, we studied a linear inviscid model of a passively flexible swimmer,
valid for small-amplitude, low-frequency motions where there is no separation. The
frequencies of actuation and stiffness ratios we considered spanned a large range,
while the mass ratio was mostly fixed to a low value representative of swimmers.
A short set of results for which we varied the mass ratio indicates that there exist
qualitative differences between flappers with low mass ratios (swimmers) and those
with mass ratios of order unity and higher (fliers). The results presented in this work
are therefore applicable to swimmers, and care should be taken in extending the
results to fliers.

We presented results showing how the trailing edge deflection, thrust coefficient,
power coefficient and efficiency vary in the stiffness–frequency plane. The trailing
edge deflection, thrust coefficient and power coefficient showed sharp ridges of
resonant behaviour for reduced frequencies f ∗ > 1 and stiffness ratios S > 1. In this
region, the locations of the resonant peaks were well predicted by the imaginary
parts of the quiescent eigenvalues of the system. For f ∗ < 1 and S< 1, however, the
resonant peaks smeared together. The efficiency, on the other hand, did not show
resonant peaks anywhere in the stiffness–frequency plane, instead showing a broad
region of high values for f ∗ < 1 and S< 1.

Calculating the full eigenvalues and eigenfunctions of the system, we saw that
the region of high efficiency coincided with the emergence of flutter modes and
disappearance of Euler–Bernoulli modes. The imaginary parts of the eigenvalues of
the flutter modes increase with decreasing stiffness ratio, opposite to the behaviour of
the Euler–Bernoulli modes. The eigenfunctions revealed that flutter modes take on a
form close to a travelling wave, whereas the Euler–Bernoulli modes have nearly rigid
regions. In the actuated system, cases with high efficiency took on near travelling
wave forms, and the degradation of efficiency coincided with a degradation of the
travelling wave. We may therefore reasonably conclude that the emergence of the
flutter modes as S decreases makes the swimmer more efficient.

Lastly, we considered the effects of a finite Reynolds number in the form of
streamwise drag. Streamwise drag added an offset drag to the system, which created
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resonant peaks in the efficiency that are not present in the inviscid system. Since
any real system will have some streamwise drag, resonant peaks should be present.
We offer our simple explanation as a reason for the existence of resonant peaks in
efficiency observed in the literature.
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Appendix A. Method of solution

Consider the case where the imposed leading edge motion is sinusoidal in time with
dimensionless angular frequency σ = πLf /U, where f is the dimensional frequency
in Hz. We may then decompose the deflection into a product of temporal and spatial
terms, with the temporal component being sinusoidal and the spatial component
represented by a Chebyshev series:

Y(x, t)= ejσ tY0(x),

Y0(x)=
1
2
β0 +

∞∑
k=1

βkTk(x),

 (A 1)

where j=
√
−1, the real part in j should be taken when evaluating the deflection, and

Tk(x)= cos(k arccos x) is the Chebyshev polynomial of degree k. For a given deflection
Y of this form, the solution to the flow is given in Wu (1961); we repeat the basics
of that analysis in the proceeding text.

Represent two-dimensional physical space (x, y) by the complex plane z = x + iy,
where i=

√
−1 but ij 6=−1. There exists a complex potential F(z, t)=φ(z, t)+ iψ(z, t),

with φ and ψ harmonic conjugates, that is analytic in z and related to the complex
velocity w= u− iv through the momentum equation by

∂F
∂z
=
∂w
∂t
+
∂w
∂z
. (A 2)

We use the conformal transformation

z=
1
2

(
ζ +

1
ζ

)
(A 3)

to map physical space in the z-plane to the exterior of the unit circle in the ζ -plane.
This transformation maps the plate onto the unit circle. The complex potential can be
represented by a multipole expansion

F(ζ , t)= φ(ζ , t)+ iψ(ζ , t)= iejσ t

(
a0

ζ + 1
+

∞∑
k=1

ak

ζ k

)
. (A 4)
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Evaluating on the unit circle ζ = eiθ gives

φ(ζ = eiθ , t)= ejσ t

(
1
2

a0 tan
θ

2
+

∞∑
k=1

ak sin kθ

)
,

ψ(ζ = eiθ , t)= ejσ t

(
1
2

a0 +

∞∑
k=1

ak cos kθ

)
.

 (A 5)

In physical space, on the surface of the plate we have

φ(z= x± 0i, t)= ejσ tΦ±(x)= ejσ t

(
±

1
2

a0

√
1− x
1+ x

±

∞∑
k=1

ak sin kθ

)
,

ψ(z= x± 0i, t)= ejσ tΨ (x)= ejσ t

(
1
2

a0 +

∞∑
k=1

akTk(x)

)
,

 (A 6)

where we have used x= cos θ . ψ has equal values on the top and bottom since it is
even in θ , whereas φ is odd in θ and thus has a discontinuity in physical space.

The no-penetration condition can be written as

∂ψ

∂x

∣∣∣∣
y=0

=−

(
∂

∂t
+
∂

∂x

)2

Y, (A 7)

which simplifies to
DΨ =−(jσ +D)2Y0, (A 8)

where D= d/dx. Given Y0, this equation allows us to solve for all ak except a0. To
solve for a0, we begin by writing the vertical velocity on the surface of the plate as

v(z= x+ 0i, t)= ejσ tV(x)= ejσ t

(
1
2

V0 +

∞∑
k=1

VkTk(x)

)
. (A 9)

The no-penetration condition can then be written as

V = (jσ +D)Y0. (A 10)

The coefficient a0 is given by

a0 =−C(jσ)(V0 + V1)+ V1, (A 11)

where
C(jσ)=

K1(jσ)
K0(jσ)+K1(jσ)

(A 12)

is the Theodorsen function, and Kν is the modified Bessel function of the second kind
of order ν. The expression for a0 is derived in Wu (1961).

With all of the ak known, the pressure difference across the plate can be written as

1p(x, t)= ejσ tP0(x)= ejσ t

(
a0

√
1− x
1+ x

+ 2
∞∑

k=1

ak sin kθ

)
. (A 13)

We note that the pressure difference depends linearly on the deflection Y0.
Altogether, given the deflection Y0, we may calculate the coefficients ak. The

coefficients ak are used to calculate the pressure difference across the plate, which
alters the deflection of the plate via (2.3). The coupled fluid–structure problem must
be solved numerically.
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A.1. Numerical method
Substituting the Chebyshev series (A 1) into the Euler–Bernoulli equation (2.3) gives
a fourth-order differential equation for Y0:

−2σ 2RY0 +
2
3 SD4Y0 = P0. (A 14)

The corresponding boundary conditions (2.6) are re-written as

Y0(−1)= h0, Y0,x(−1)= θ0, Y0,xx(1)= 0, Y0,xxx(1)= 0, (A 15a−d)

where h0 and θ0 are the heaving and pitching amplitudes at the leading edge,
respectively. We reiterate that the pressure difference across the plate P0 is a linear
function of the deflection Y0, and so (A 14)–(A 15) give a linear, homogeneous
boundary value problem for Y0. When solving for the deflection Y0, all infinite series
are truncated to the upper limit N.

The numerical method to solve the boundary value problem is given in Moore
(2017). The method is a pseudo-spectral Chebyshev scheme that uses Gauss–
Chebyshev points. The method is fast (O(N log N)) and accurate, avoiding errors
typically encountered when using Chebyshev methods to solve high-order differential
equations by preconditioning the system with continuous operators. Quadrature
formulas for the thrust and power coefficients in (2.7) and (2.8) are also given in
Moore (2017).

Appendix B. Eigenvalues of the system
Here, we seek to determine the natural response of a flexible plate whose leading

edge is held clamped in an oncoming flow (Eloy et al. 2007; Alben 2008a; Michelin
& Llewellyn Smith 2009). This amounts to finding the eigenvalues and eigenvectors
of the system (2.3) with homogeneous boundary conditions (h(t)≡ 0 and θ(t)≡ 0). To
do so, quantities that were previously written as Fourier–Chebyshev expansions (the
deflection, complex potential and velocity) are now written as Chebyshev series with
time-varying coefficients. Following the preceding analysis, we arrive at the following
equations:

2RYtt +
2
3 SYxxxx =1p, (B 1)

Y(x, t)=
1
2
β0(t)+

∞∑
k=1

βk(t)Tk(x), (B 2)

1p(x, t)= a0(t)

√
1− x
1+ x

+ 2
∞∑

k=1

ak(t) sin kθ, (B 3)

∞∑
k=1

akT ′k =−
1
2
β̈0 −

∞∑
k=1

[β̈kTk + 2β̇kT ′k + βkT ′′k ], (B 4)

where a dot denotes differentiation with respect to t and a prime denotes differentiation
with respect to x.

As before, we need an additional equation to determine a0. For now, we use (A 11)
but treat the Theodorsen function as a constant C. The coefficient a0 is then

a0 =−C(V0 + V1)+ V1, (B 5)
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where Vk is the kth Chebyshev coefficient of the vertical velocity on the surface of
the plate. The Vk are obtained by evaluating the no-penetration condition (2.5):

1
2

V0 +

∞∑
k=1

VkTk =
1
2
β̇0 +

∞∑
k=1

[β̇kTk + βkT ′k]. (B 6)

Treating a0 in this manner will yield a linear eigenvalue problem. After obtaining
the eigenvalues and eigenfunctions of the linear eigenvalue problem, we will use
those as initial guesses for the nonlinear eigenvalue problem, which will use the
full Theodorsen function. But first, we proceed with the description of the linear
eigenvalue problem.

We can write the equations more compactly as follows:

2Rβ̈ + 2
3 SD4β = P, (B 7)

P= Aa, (B 8)
Da=−β̈ − 2Dβ̇ − D2β, (B 9)

V = β̇ + Dβ, (B 10)

with (B 5) for a0. In the above, β is a vector of the Chebyshev coefficients of the
deflection Y , and similarly for P (pressure), a (potential) and V (vertical velocity).
P = Aa simply states that the Chebyshev coefficients of the pressure are linear
combinations of the coefficients ak, and D is the spectral representation of the
differentiation operator.

Putting everything together, we get the following ordinary differential equation
(ODE):

2Rβ̈ + 2
3 SD4β = A [−D−β̈ − 2D−Dβ̇ + e1(e2 −Ce1 −Ce2)

Tβ̇

−D−D2β + e1(e2 −Ce1 −Ce2)
TDβ], (B 11)

where D− is the spectral representation of the integration operator that makes the first
Chebyshev coefficient zero, and ek is the kth Euclidean basis vector. Equation (B 11)
can be written in state-space form as

d
dt

[
β

β̇

]
=

[
0 I

M−1A1 M−1A2

] [
β

β̇

]
,

M = 2RI + AD−,

A1 =−
2
3 SD4
− AD−D2

+ Ae1(e2 −Ce1 −Ce2)
TD,

A2 =−2AD−D + Ae1(e2 −Ce1 −Ce2)
T.


(B 12)

When numerically solving the system, the infinite series are truncated to finite series.
In order to incorporate the four boundary conditions into (B 12), the last four rows of
the differential equation for β̈ are replaced by the boundary conditions. The system
is then

d
dt

[
I 0

0 I−4

] [
β

β̇

]
=

[
0 I

M−1A1 M−1A2

] [
β

β̇

]
, (B 13)

where I−4 is the identity matrix with the last four diagonal entries being zeros. The
last four rows of the right-hand side are replaced by the boundary conditions. We now
have a generalized eigenvalue problem to solve for the eigenvalues of the system.
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B.1. Nonlinear eigenvalue problem
Having obtained the solution to the linear eigenvalue problem, we use it as an initial
guess for the nonlinear eigenvalue problem. The nonlinear eigenvalue problem is
obtained by making the ansatz

Y(x, t)= eλtY0(x),

Y0(x)=
1
2
β0 +

∞∑
k=1

βkTk(x).

 (B 14)

This is the same as in appendix A, except that we allow the exponent λ to be any
complex number instead of just an imaginary number. Proceeding as in appendix B,
we arrive at the following equations:

2λ2Rβ + 2
3 SD4β = P, (B 15)

P= Aa, (B 16)
Da=−λ2β − 2λDβ − D2β, (B 17)

V = λβ + Dβ, (B 18)
a0 =−C(λ)(V0 + V1)+ V1, (B 19)

where the notation is as in appendix B.
Putting everything together, we get the following equation:

2λ2Rβ + 2
3 SD4β = A [ −λ2D−β − 2λD−Dβ + λe1(e2 −C(λ)e1 −C(λ)e2)

Tβ

−D−D2β + e1(e2 −C(λ)e1 −C(λ)e2)
TDβ ], (B 20)

where the notation is as in appendix B. Truncating the upper limit of the infinite series
to N, equation (B 20) gives N + 1 equations for N + 2 unknowns (the N + 1 elements
of β and λ). We add an equation which normalizes β in order to make the system
square. As before, the last four equations are replaced by the boundary conditions. We
solve for β and λ using the Newton–Raphson method, using absolute and relative error
tolerances 10−6. For cases where the Newton–Raphson method did not converge, we
calculated the solution by looking at a global picture of the determinant of the system
and finding its roots.

To validate our method for calculating eigenvalues, we calculate the eigenvalues for
the same set of parameters as in figure 4(c,d) in Alben (2008a). In figure 21, we
compare the eigenvalues calculated using our method to some of the eigenvalues in
Alben (2008a), adopting the notation used in that work. Our eigenvalues agree well
with those from Alben (2008a), lending confidence to our method.

B.2. Quiescent fluid
Consider the case where the plate is immersed in a quiescent fluid, i.e. where the
bending velocity is large compared to the fluid velocity. How do the eigenvalues
of the system change? To answer this question, we solve the Euler–Bernoulli and
Euler equations (2.1)–(2.2) in the limit of large bending velocity. In this limit, the
appropriate time scale to use is the bending time scale, which we choose to be
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FIGURE 21. (Colour online) Comparison between eigenvalues calculated using our method
and those found in figure 4(c,d) in Alben (2008a). Note that just for this figure, we adopt
the notation used in Alben (2008a).

√
3ρsL4/(4Ed2). Non-dimensionalizing the solid and fluid equations using the length

scale L/2 and the bending time scale yields

Ytt + Yxxxx =
1

2R
1p,

∇ · u= 0,

ut +

√
3R
S

ux =∇φ,

 (B 21)

where R and S are as in (2.4), and φ= p∞− p. In the above, x, t, Y , u and p are now
dimensionless, with the pressure non-dimensionalized by ρf Ed3/(3ρs dL2). The limit
of a quiescent flow corresponds to R/S→ 0, or equivalently Ed2/ρsL2

� U2, which
explicitly puts this limit in terms of velocity scales. For now, we keep all terms and
discuss the limit later. Intuitively, large values of the solid-to-fluid mass ratio R make
the fluid dynamics inconsequential to the deflection of the plate (a heavy plate will
be unaffected by the surrounding fluid).

The fluid additionally satisfies the no-penetration condition, stated as

v|x∈[−1,1],y=0 = Yt +

√
3R
S

Yx. (B 22)

The boundary conditions on the plate are

Y(−1, t)= 0, Yx(−1, t)= 0, Yxx(1, t)= 0, Yxxx(1, t)= 0. (B 23a−d)

We solve for the fluid motion for a given deflection as in appendix A. Writing the
deflection as

Y(x, t)=
1
2
β0(t)+

∞∑
k=1

βk(t)Tk(x), (B 24)
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and the components of the complex potential evaluated on the surface of the plate as

φ(z= x± 0i, t)=±
1
2

a0(t)

√
1− x
1+ x

±

∞∑
k=1

ak(t) sin kθ,

ψ(z= x± 0i, t)=
1
2

a0(t)+
∞∑

k=1

ak(t)Tk(x),

 (B 25)

the pressure difference across the surface of the plate is

1p(x, t)= a0(t)

√
1− x
1+ x

+ 2
∞∑

k=1

ak(t) sin kθ. (B 26)

The coefficients ak are obtained by applying the no-penetration condition,

∂ψ

∂x

∣∣∣∣
y=0

=−

(
∂

∂t
+

√
3R
S
∂

∂x

)2

Y. (B 27)

This does not yield a0, which is instead given by the Laplace domain equation

a0 =−

√
3R
S

C(V0 + V1)+

√
3R
S

V1. (B 28)

In the limit of a quiescent fluid (R/S→ 0), a0→ 0. Thus all of the coefficients ak are
determined by (B 27), which itself simplifies since the second term in the parentheses
is zero in the limit R/S→ 0. We note that in this limit the only fluid force on the
plate is the force due to added mass.

Putting everything together, we get the following ODE:

β̈ + D4β =−
1
R

AD−β̈, (B 29)

where β is the vector of coefficients βk, D is the spectral representation of the
differentiation operator and D− is the spectral representation of the integration operator
that makes the first Chebyshev coefficient zero. The operator A maps the coefficients
ak, which are the coefficients of a sine series for the pressure, into the corresponding
coefficients of a cosine series. If T s is an operator which takes us from the x-domain
to the sine domain, and T c is an operator which takes us from the x-domain to the
cosine domain, then A = T cT−1

s . Equation (B 29) can be written in state-space form
as

d
dt

[
β

β̇

]
=

 0 I

−

(
I +

1
R

AD−
)−1

D4 0

 [β
β̇

]
. (B 30)

When numerically solving the system, the infinite series are truncated to finite series.
In order to incorporate the four boundary conditions into (B 31), the last four rows of
the differential equation for β̈ are replaced by the boundary conditions. This is fine to
do since the last four rows read β̈k = 0 due to four applications of the differentiation
operator D. The system is then

d
dt

[
I 0

0 I−4

] [
β

β̇

]
=

 0 I

−

(
I +

1
R

AD−
)−1

D4 0

 [β
β̇

]
, (B 31)
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where I−4 is the identity matrix with the last four diagonals being zeros. The last four
rows of the right-hand side are replaced by the boundary conditions. We now have a
generalized eigenvalue problem to solve for the eigenvalues of the system.

Appendix C. Some useful formulas

The following is a collection of useful definitions and formulas from Moore (2017)
for the Chebyshev method employed here. The (interior) Gauss–Chebyshev points are

xn = cos θn, θn =
π(2n+ 1)
2(N + 1)

, for n= 0, 1, . . . ,N. (C 1)

Consider a function f (x) interpolated at these points by the polynomial pN(x) of
degree N:

f (xn)= pN(xn), for n= 0, 1, . . . ,N,

PN(xn)=
1
2

b0 +

N∑
k=1

bkTk(x).

 (C 2)

On the θ -grid this is

f (xn)=
1
2

b0 +

N∑
k=1

bk cos kθn, for n= 0, 1, . . . ,N. (C 3)

Thus we may use the fast discrete cosine transform to transform between a function’s
values on the collocation points, f (xn), and the Chebyshev coefficients, bk.

The antiderivative of pN(x) is

D−1pN(x)=
1
2

B0 +

N+1∑
k=1

BkTk(x),

Bk =
1
2k
(bk−1 − bk+1), for n= 1, 2, . . . ,N.

 (C 4)

B0 is a free constant of integration.
The derivative of pN(x) is

DpN(x)=
1
2

b′0 +
N∑

k=1

b′kTk(x),

b′N+1 = b′N = 0,
b′k = b′k+2 + 2(k+ 1)bk+1, for n=N − 1,N − 2, . . . , 0.

 (C 5)

Since the endpoints x=±1 are not part of the collocation grid, we give a formula
to evaluate the function at the endpoints:

pN(±1)=
1
2

b0 +

N∑
k=1

(±1)kbk. (C 6)
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