
1. Introduction

The aim of this target article is to demonstrate the power,
flexibility, and plausibility of connectionist models in psy-
chology which use localist representations. I will take care
to define the terms “localist” and “distributed” in the con-
text of connectionist models and to identify the essential
points of contention between advocates of each type of
model. Localist models will be related to some classic math-
ematical models in psychology and some of the criticisms of
localism will be addressed. This approach will be contrasted
with a currently popular one in which localist representa-
tions play no part. The conclusion will be that the localist
approach is preferable whether one considers connection-
ist models as psychological-level models or as models of the
underlying brain processes.

At the time of writing, it is thirteen years since the pub-
lication of Parallel Distributed Processing: Explorations in
the Microstructures of Cognition (Rumelhart, McClelland,
& the PDP Research Group 1986). That two-volume set
has had an enormous influence on the field of psychologi-
cal modelling (among others) and justifiably so, having
helped to revive widespread interest in the connectionist
enterprise after the seminal criticisms of Minsky and Papert
(1969). In fact, despite Minsky and Papert’s critique, a num-
ber of researchers (e.g., S. Amari, K. Fukushima, S. Gross-
berg, T. Kohonen, C. von der Malsburg) had continued to
develop connectionist models throughout the 1970s, often
in directions rather different from that in which the 1980’s
“revival” later found itself heading. More specifically, much
of the earlier work had investigated networks in which lo-
calist representations played a prominent role, whereas, by
contrast, the style of modelling that received most attention
as a result of the PDP research group’s work was one that
had at its centre the concept of distributed representation.

It is more than coincidental that the word “distributed”
found itself centrally located in both the name of the re-
search group and the title of its major publication but it is
important to note that in these contexts the words “paral-
lel” and “distributed” both refer to processing rather than
to representation. Although it is unlikely that anyone would
deny that processing in the brain is carried out by many dif-
ferent processors in parallel (i.e., at the same time) and that
such processing is necessarily distributed (i.e., in space), the
logic that leads from a consequent commitment to the idea
of distributed processing, to an equally strong commitment
to the related, but distinct, notion of distributed represen-
tation, is more debatable. In this target article I hope to
show that the thoroughgoing use of distributed representa-
tions, and the learning algorithms associated with them, is
very far from being mandated by a general commitment to
parallel distributed processing.

As indicated above, I will advocate a modelling approach
that supplements the use of distributed representations
(the existence of which, in some form, nobody could deny)
with the additional use of localist representations. The lat-
ter have acquired a bad reputation in some quarters. This
cannot be directly attributed to the PDP books themselves,
in which several of the models were localist in flavour (e.g.,
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interactive activation and competition models, competitive
learning models). Nonetheless, the terms “PDP” and “dis-
tributed” on the one hand, and “localist” on the other, have
come to be seen as dichotomous. I will show this apparent
dichotomy to be false and will identify those issues over
which there is genuine disagreement.

A word of caution: “Neural networks” have been applied
in a wide variety of other areas in which their plausibility as
models of cognitive function is of no consequence. In crit-
icizing what I see to be the overuse (or default use) of fully
distributed networks, I will accordingly restrict discussion
to their application in the field of connectionist modelling
of cognitive or psychological function. Even within this
more restricted domain there has been a large amount writ-
ten about the issues addressed here. Moreover, it is my im-
pression that the sorts of things to be said in defence of the
localist position will have occurred independently to many
of those engaged in such a defence. I apologize in advance,
therefore, for necessarily omitting any relevant references
that have so far escaped my attention. No doubt the BBS
commentary will set the record straight.

The next section will define some of the terms to be used
throughout this target article. As will be seen, certain sub-
tleties in such definitions becloud the apparent clarity of
the localist/distributed divide.

2. Defining some terms

2.1. Basic terms

Before defining localist and distributed representations, we
establish some more basic vocabulary. In what follows, the
word nodes will refer to the simple units out of which con-
nectionist networks have traditionally been constructed. A
node might be thought of as consisting of a single neuron
or a distinct population of neurons (e.g., a cortical minicol-
umn). A node will be referred to as having a level of acti-
vation, where a loose analogy is drawn between this activa-
tion and the firing rate (mean or maximum firing rate) of 
a neuron (population). The activation of a node might lead
to an output signal’s being projected from it. The projection
of this signal will be deemed to be along one or more
weighted connections, where the concept of weight in
some way represents the variable ability of output from one
node to affect processing at a connected node. The rela-
tionship between the weighted input to a given node (i.e.,
those signals projected to it from other nodes), its activa-
tion, and the output which it in turn projects, will be sum-
marized using a number of simple, and probably familiar,
functions. All of these definitions are, I hope, an uncontro-
versial statement of the basic aspects of the majority of con-
nectionist models.

2.2. Localist and distributed representations

The following definitions, drawn from the recent literature,
largely capture the difference between localist and distrib-
uted representations [see also Smolensky: “On the Proper
Treatment of Connectionism” BBS 11(1) 1988; Hanson &
Burr: “What Connectionist Models Learn” BBS 13(3) 1990;
Van Gelder: “The Dynamical Hypothesis in Cognitive Sci-
ence” BBS 21(5) 1998; O’Brien & Opie: “A Connectionist
Theory of Phenomenal Experience” BBS 22(1) 1999].
First, distributed representations:

Many neurons participate in the representation of each mem-
ory and different representations share neurons. (Amit 1995, p.
621)
The model makes no commitment to any particular form of
representation, beyond supposing that the representations are
distributed; that is, each face, semantic representation, or name
is represented by multiple units, and each unit represents mul-
tiple faces, semantic units or names. (Farah et al. 1993, p. 577)

The latter definition refers explicitly to a particular model
of face naming, but the intended nature of distributed rep-
resentations in general is clear. To illustrate the point, sup-
pose we wished to represent the four entities “John,”
“Paul,” “George,” and “Ringo.” Figure 1a shows distributed
representations for these entities. Each representation in-
volves a pattern of activation across four nodes and, impor-
tantly, there is overlap between the representations. For in-
stance, the first node is active in the patterns representing
both John and Ringo, the second node is active in the pat-
terns representing both John and Paul, and so on. A corol-
lary of this is that the identity of the entity that is currently
represented cannot be unambiguously determined by in-
specting the state of any single node.

Now consider the skeleton of a definition of a localist rep-
resentation, as contrasted with a distributed coding:

With a local representation, activity in individual units can be
interpreted directly . . . with distributed coding individual units
cannot be interpreted without knowing the state of other units
in the network. (Thorpe 1995, p. 550)

For an example of a localist representation of our four en-
tities, see Figure 1b. In such a representation, only one
node is active for any given entity. As a result, activity at a
given unit can unambiguously identify the currently repre-
sented entity.

When nodes are binary (i.e., having either activity 1 or 0),
these definitions are reasonably clear. But how are they af-
fected if activity can take, for example, any value between
these limits? The basic distinction remains: in the localist
model, it will still be possible to interpret the state of a given
node independent of the states of other nodes. A natural
way to “interpret” the state of a node embedded in a local-
ist model would be to propose, as did Barlow (1972), a mo-
notonic mapping between activity and confidence in the
presence of the node’s referent:

The frequency of neural impulses codes subjective certainty: a
high impulse frequency in a given neuron corresponds to a high
degree of confidence that the cause of the percept is present in
the external world. (Barlow 1972, p. 381)

It may be that the significance of activating a given node is
assessed in relation to a threshold value, such that only su-
perthreshold activations are capable of indicating nonzero
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Figure 1. Four names represented (a) in a distributed fashion
and (b) in a localist fashion.
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confidence. Put another way, the function relating activa-
tion to “degree of confidence” would not necessarily be lin-
ear, or even continuously differentiable, in spite of being
monotonic nondecreasing.

Having offered both Thorpe’s and Barlow’s descriptions
of localist representation, I must point out that interpreting
a node’s activation as “degree of confidence” is potentially
inconsistent with the desire to interpret a given node’s acti-
vation “directly,” that is, independent of the activation of
other nodes. For example, suppose, in a continuous-activa-
tion version of Figure 1b, that two nodes have near maxi-
mal activity. In some circumstances we will be happy to re-
gard this state as evidence that both the relevant referents
are present in the world: in this case the interpretation of
the node activations will conform to the independence as-
sumption. In other cases, we might regard such a state as
indicating some ambiguity as to whether one referent or the
other is present. In these cases it is not strictly true to say
that the degree of confidence in a particular referent can be
assessed by looking at the activation of the relevant node
alone, independent of that of other nodes. One option is to
assume instead that activation maps onto relative degree of
confidence, so that degree of activation is interpreted rela-
tive to that of other nodes. Although strictly inconsistent
with Thorpe’s desire for direct interpretation, this preserves
what is essential about a localist scheme, namely that the
entity about which relative confidence is being expressed is
identified with a single node. Alternatively, both Thorpe’s
and Barlow’s definitions can be simultaneously maintained
if some competitive process is implemented directly (i.e.,
mechanically), so that it is impossible to sustain simultane-
ously high activations at two nodes whose interpretations
are contradictory. A scheme of this type would, for exam-
ple, allow two nodes to compete for activation so as to ex-
clusively identify a single person.

As an aside, note that a simple competitive scheme has
some disadvantages. Such a scheme is apparently inade-
quate for indicating the presence of two entities, say, John
and Paul, by strongly activating the two relevant nodes si-
multaneously. One solution to this apparent conundrum
might be to invoke the notion of binding, perhaps imple-
mented by phase relationships in node firing patterns
(e.g., Hummel & Biedermann 1992; Roelfsema et al.
1996; Shastri & Ajjanagadde 1993). (Phase relationships
are only one candidate means of perceptual binding and
will be assumed here solely for illustrative purposes.)
Thus, in the case in which we wish both John and Paul to
be simultaneously indicated, both nodes can activate fully
but out of phase with each other, thus diminishing the ex-
tent to which they compete. This out-of-phase relation-
ship might stem from the fact that the two entities driving
the system ( John and Paul) must be in two different spa-
tial locations, allowing them to be “phased” separately. In
the alternative scenario, that is, when only one individual
is present, the nodes representing alternative identifica-
tions might be in phase with each other, driven as they are
by the same stimulus object, and would therefore com-
pete as required.

A similar binding scheme might also be useful if distrib-
uted representations are employed. On the face of it, using
the representations in Figure 1a, the pattern for John and
George will be the same as that for Paul and Ringo. It may
be possible to distinguish these summed patterns on the ba-
sis of binding relationships as before – to represent John

and George the first and second nodes would be in phase
with each other while the third and fourth nodes would
both be out of phase with the first two nodes and in phase
with each other. But complications arise when we wish to
represent, say, John and Paul: would the second node be in
phase with the first node or the third? It is possible that in
this case the second node would fire in both the phases as-
sociated with nodes one and two (though this would poten-
tially affect its firing rate as well as its phase relationships).
Mechanisms for binding are the focus of a good deal of on-
going research, so I shall not develop these ideas further
here.

2.3. Grandmother cells . . .

In a discussion of localist and distributed representations it
is hard to avoid the subject of “grandmother cells.” The con-
cept can be traced back to a lecture series delivered by
Jerome Lettvin in 1969 (see Lettvin’s appendix to Barlow
1995), in which he introduced to a discussion on neural rep-
resentation an allegory in which a neuroscientist located in
the brains of his animal subjects “some 18,000 neurons . . .
that responded uniquely only to the animal’s mother, how-
ever displayed, whether animate or stuffed, seen from be-
fore or behind, upside down or on a diagonal, or offered by
caricature, photograph or abstraction” (from appendix to
Barlow 1995).

The allegorical neuroscientist ablated the equivalent
cells in a human subject, who, postoperatively, could not
conceive of “his mother,” while maintaining a conception of
mothers in general. The neuroscientist, who was intent on
showing that “ideas are contained in specific cells,” consid-
ered his position to be vulnerable to philosophical attack,
and rued not having searched for grandmother cells in-
stead, grandmothers being “notoriously ambiguous and of-
ten formless.”

The term “grandmother cell” has since been used exten-
sively in discussions of neural representation, though not al-
ways in ways consistent with Lettvin’s original conception.
It seems that (grand)mother cells are considered by some
to be the necessary extrapolation of the localist approach
and thereby to demonstrate its intrinsic folly. I believe this
conclusion to be entirely unjustified. Whatever the rele-
vance of Lettvin’s allegory, it certainly does not demonstrate
the necessary absurdity of (grand)mother cells and, even if
it did, this would not warrant a similar conclusion regard-
ing localist representations in general. Given the definitions
so far advanced, it is clear that, while (grand)mother cells
are localist representations, not all localist representations
necessarily have the characteristics attributed by Lettvin to
(grand)mother cells. This depends on how one interprets
Lettvin’s words “responded uniquely” (above). A localist
representation of one’s grandmother might respond par-
tially, but subthreshold, to a similar entity (e.g., one’s great
aunt), thus violating one interpretation of the “unique re-
sponse” criterion that forms part of the grandmother-cell
definition.

2.4. . . . and yellow Volkswagen cells

A related point concerns the “yellow Volkswagen cells” re-
ferred to by Harris (1980). Harris’s original point, which
dates back to a talk given in 1968, illustrated a concern re-
garding a potential proliferation in the types of selective

Page: Localist connectionism

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:4 445
https://doi.org/10.1017/S0140525X00383352 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X00383352


cells hypothesized to be devoted to low-level visual coding.
Such a proliferation had been suggested by experiments
into, for instance, the “McCollough Effect” (McCollough
1965), which had led to the positing of detectors sensitive
to particular combinations of orientation and colour. The
message that has been extrapolated from Harris’s observa-
tion is one concerning representational capacity: that while
“yellowness” cells and “Volkswagen cells” may be reason-
able, surely specific cells devoted to “yellow Volkswagens”
are not. The fear is that if yellow VWs are to be locally rep-
resented then so must the combinatorially explosive num-
ber of equivalent combinations (e.g., lime-green Minis).
There is something odd about this argument. In accepting
the possibility of Volkswagen cells, it begs the question as
to why the fear of combinatorial explosion is not already in-
voked at this level. Volkswagens themselves must presum-
ably be definable as a constellation of a large number of ad-
jective-noun properties (curved roof, air-cooled engine,
etc.), and yet accepting the existence of Volkswagen cells
does not presume a vast number of other cells, one for each
distinct combination of feature-values in whatever feature-
space VWs inhabit. On a related point, on occasions when
the (extrapolated) yellow-VW argument is invoked, it is not
always clear whether the supposed combinatorial explo-
sion refers to the number of possible percepts, which is in-
deed unimaginably large, or to the vanishingly smaller
number of percepts that are witnessed and, in some sense,
worth remembering. Since the latter number is likely to
grow only approximately linearly with lifespan, fears of
combinatorial explosion are unwarranted. It is perfectly
consistent with the localist position that different aspects
of a stimulus (e.g., colour, brand name, etc.) can be repre-
sented separately, and various schemes have been sug-
gested for binding such aspects together so as to correctly
represent, in the short term, a given scene (e.g., Hummel
& Biedermann 1992; Roelfsema et al. 1996; see earlier).
This systematicity (cf. Fodor & Pylyshyn 1988) in the per-
ceptual machinery addresses the problem of combinator-
ial explosion regarding the number of possible percepts. It
in no way implies, however, that in a localist model each
possible percept must be allocated its own permanent rep-
resentation, that is, its own node. A similar point was made
by Hummel and Holyoak (1997) who noted that “it is not
necessary to postulate the preexistence of all possible con-
junctive units. Rather a novel binding can first be repre-
sented dynamically (in active memory), with a conjunctive
unit created only when it is necessary to store the binding
in LTM” (p. 434).

It is entirely consistent with the localist position to pos-
tulate that cells encoding specific combinations will be al-
located only when needed: perhaps in an experiment in
which pictures of yellow VWs and red bikes require one re-
sponse, while red VWs and yellow bikes require another (cf.
XOR); or, more prosaically, in establishing the memory that
one’s first car was a yellow VW. When one restricts the num-
ber of localist representations to those sufficient to describe
actual percepts of behavioural significance (i.e., those that
require long-term memorial representation), the threat of
combinatorial explosion dissipates. Later I shall show how
new localist nodes can be recruited, as needed, for the per-
manent representation of previously unlearned configura-
tions (cf. the constructivist learning of Quartz & Sejnowski
1997, and the accompanying commentary by Grossberg
1997; Valiant 1994).

2.5. Featural representations

The above discussion of yellow VWs illustrates the issue of
featural representation. A featural representation will be
defined here as a representation comprising an array of lo-
calist nodes in appropriate states. Figure 2 shows the feat-
ural representations of Tony Blair, Glenda Jackson, An-
thony Hopkins, and Queen Elizabeth II, where the
relevant features are “is-a-woman,” “is-a-politician,” and
“is/was-a-film-actor.” Clearly, the representations of these
four entities are distributed, in the sense that the identity
of the currently present entity cannot be discerned by ex-
amining the activity of any individual node. Nonetheless,
the features themselves are locally represented (cf. “is-yel-
low,” “is-a-Volkswagen”). Whether or not a politician is
currently present can be decided by examining the activity
of a single node, independent of the activation of any other
node.

It is curious that researchers otherwise committed to the
thoroughgoing use of distributed representations have
been happy to use such featural representations. For in-
stance, Farah et al. (1993), whose commitment to distrib-
uted representations was quoted earlier [see Farah: “Neu-
ropsychological Inference with an Interactive Brain” BBS
17(1) 1994], used a distributed representation for semantic
information relating to particular people. To continue the
earlier quotation:

The information encoded by a given unit will be some “micro-
feature” . . . that may or may not correspond to an easily la-
beled feature (such as eye color in the case of faces). The only
units for which we have assigned an interpretation are the “oc-
cupation units” within the semantic pool. One of them repre-
sents the semantic microfeature “actor” and the other repre-
sents the semantic microfeature “politician.” (Farah et al.
1993, p. 577)

It would be odd to be comfortable with the idea of nodes
representing “is-an-actor,” and yet hostile to the idea of
nodes representing “is-Tony-Blair” or “is-my-grandmother.”
If “is-an-actor” is a legitimate microfeature (though one
wonders what is micro about it), then why is “is-Tony-Blair”
not? Is there any independent rationale for what can and
cannot be a microfeature? Moreover, to anticipate a later
discussion, by what learning mechanism are the localist
(micro)featural representations (e.g., “is-an-actor”) them-
selves deemed to be established? The most natural as-
sumption is that, at some level, local unsupervised featural
learning is carried out. But a commitment to fully distrib-
uted representation of identity, if not profession, would
therefore require that at some arbitrary stage just before
the level at which identity features (e.g., “is-Tony-Blair”)
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Figure 2. Four persons represented in a featural fashion with re-
gard to semantic information.
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might emerge, a different, supervised learning mechanism
cuts in.

Whether or not we choose to define featural representa-
tions as a subclass of distributed representations has little
to do with the core of the localist/distributed debate. No lo-
calist has ever denied the existence of distributed repre-
sentations, especially, but not exclusively, if these are taken
to include featural representations. To do so would have en-
tailed a belief that percepts “go local” in a single step, from
retina directly to grandmother cell, for instance. The key
tenet of the localist position is that, on occasion, localist rep-
resentations of meaningful entities in the world (e.g.,
words, names, people, etc.) emerge and allow, among other
things, distributed/featural patterns to be reliably classified
and enduringly associated.

I should make clear that restricting the definition in the
preceding paragraph to “meaningful entities in the world”
is simply a rather clumsy way of avoiding potentially sterile
discussions of how far localist representation extends down
the perceptual hierarchy. To take a concrete example, one
might ask whether an orientation column (OC) in the visual
cortex should be considered a localist representation of line
segments in a particular part of the visual field and at a par-
ticular angular orientation. An opponent of such a localist
description might argue that in most everyday circum-
stances nothing of cognitive significance (nothing of mean-
ing, if you like) will depend on the activation state of an in-
dividual OC and that later stages in the perceptual path will
best be driven by a distributed pattern of activation across
a number of OCs so as to preserve the information available
in the stimulus. I am sympathetic to this argument – there
seems little point in describing a representation as localist
if it is never interpreted in a localist manner. Nonetheless,
to temper this conclusion somewhat, imagine an experi-
ment in which a response is learned that depends on which
of two small line segments, differing only in orientation, is
presented. Assuming that such a discrimination is learn-
able, it does not seem impossible a priori that a connec-
tionist model of the decision task would depend rather di-
rectly on the activations of specific OCs. (The issue is
related to the decoding of population vectors, discussed
briefly in section 4.3.1 and in the accompanying footnote.)
I have not modelled performance in this rather contrived
task and hence cannot say what should be concluded from
such a model. One can simply note that certain models
might lead to a more charitable view toward an interpreta-
tion that treated single OCs as localist representations. The
general point is that a representation might be labelled lo-
calist or not depending on the particulars of the modelled
task in which the corresponding nodes are taken to be in-
volved. Whether one chooses to reserve the term localist for
representations that are habitually involved in processes/
tasks that highlight their localist character or, alternatively,
whether one allows the term to apply to any representa-
tional unit that can at some time (albeit in unusual or con-
trived circumstances) usefully be treated as localist, is prob-
ably a matter of taxonomic taste. For fear of getting
unnecessarily involved in such matters, I will retreat to us-
ing the term localist to refer, as above, to a form of repre-
sentation of meaningful entities in the world whose localist
character is habitually displayed. I do so in the hope and be-
lief that, at least in the modelling of most types of cognitive-
psychological task, it will be clear what the relevant mean-
ingful entities are.

2.6. What is a localist model?

Given the definitions of localist and distributed represen-
tations discussed so far, what are we to understand by the
term “a localist model”? The first and most crucial point, al-
luded to above, is that a localist model is not well defined
as one that uses localist rather than distributed representa-
tions: localist models almost always use both localist and
distributed representations. More explicitly, any entity that
is locally represented at layer n of a hierarchy is sure to be
represented in a distributed fashion at layer n 2 1. To il-
lustrate, take as an example the interactive activation (IA)
model of visual word recognition (McClelland & Rumel-
hart 1981; Rumelhart & McClelland 1982), which is gener-
ally agreed to be localist. It uses successive processing lay-
ers: In the “lowest” of these are visual-feature detectors,
which respond selectively to line segments in various ori-
entations; in the next layer are nodes that respond selec-
tively to letters in various positions in a word; in the third
are nodes that respond maximally to individual familiar
words. Thus, a given word is represented locally in the up-
per layer and in a distributed fashion at the two previous
layers. Letters-in-position are likewise represented locally
in the second layer but in a distributed manner in the first
layer. It accordingly makes no sense to define a localist
model as one that precludes distributed representation. A
better definition relies only on whether or not there are lo-
calist representations of the relevant entities.

It so happens that, in the IA example, the distributed rep-
resentations at lower layers are of the featural variety, as
discussed above. This, however, is not a crucial factor in the
IA model’s being labelled localist: The lower layers might
have used distributed representations unamenable to a fea-
tural characterization without nullifying the fact that in the
upper layer a localist code is used. The difference between
localist and distributed models is most often not in the na-
ture or status of the representation of the input patterns,
which depends ultimately (in vivo) on the structure and
function of the relevant sense organ(s), but in the nature of
representation at the later stages of processing that input.
As stated above, localists posit that certain cognitively
meaningful entities will be represented in a local fashion at
some, probably late, level of processing, and it is at this level
that decisions about which entities are identifiable in any
given input can best be made.

So can the term “localist model” be universally applied to
models using localist representations? Not without care.
Consider the model of reading proposed by Plaut et al.
(1996). This was developed from the seminal model of Sei-
denberg and McClelland (1989), in which neither letters at
the input nor phonemes at the output were represented in
a local fashion. According to Plaut et al., it was this aspect
of the model, among others, which manifested itself in its
relatively poor nonword reading. Plaut et al. referred to this
as the “dispersion problem.” Perhaps, as Jacobs and Grain-
ger (1994) rather archly suggest, it might better have been
termed the distribution problem, given that Plaut et al.’s so-
lution entailed a move to an entirely local scheme for both
input orthography (letters and letter clusters) and output
phonemes. And yet, even with this modification, it would
be very misleading to call Plaut et al.’s a localist model: The
most powerful and theoretically bold contribution of that
model was to show that the mapping between orthographic
representations of both words and nonwords and their pro-
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nunciations could be carried out in a distributed fashion,
that is, without any recourse to either a locally represented
mental lexicon or an explicit system of grapheme-to-pho-
neme correspondence rules. So whereas the Plaut et al.
model was certainly localist at the letter and phoneme lev-
els, it was undeniably distributed at the lexical level. It is for
this reason that calling that model localist would be thor-
oughly misleading. I conclude that the term “localist
model” should be used with care. In most cases, it will be
better to be explicit about the entities for which localist cod-
ing is used (if any), and to identify the theoretical signifi-
cance of this choice.

A further point should be made regarding localist mod-
els, again taking the IA model as our example. When a word
is presented to the IA model, a large number of nodes will
be maximally active – those representing certain visual fea-
tures, letters-in-position, and the word itself. A number of
other nodes will be partially active. On presentation of a
nonword, no word-node will attain maximal activation but
otherwise the situation will be much the same. The simple
point is this: The fact that activity is distributed widely
around the network should not lead to the incautious sug-
gestion that the IA model is a distributed rather than a lo-
calist model. As noted earlier, it is important to distinguish
between distributed processing and distributed represen-
tation. Having made this distinction we can better interpret
labels that have been applied to other models in the litera-
ture, labels that might otherwise have the potential to con-
fuse.

As an illustration, consider the Learning and Inference
with Schemas and Analogies (LISA) model of Hummel and
Holyoak (1997), as applied to the processing of analogy. The
title of the paper (“Distributed representations of struc-
ture: A theory of analogical access and mapping”) might
suggest that LISA is a fully distributed model, but a closer
look reveals that it uses localist representation. For in-
stance, in its representation of the proposition “John loves
Mary,” there is a node corresponding to the proposition it-
self and to each of the constituents “John,” “Mary,” and
“loves”; these nodes project in turn onto a layer of seman-
tic units that are crucially involved in the analogy process-
ing task. The whole network is hierarchically structured,
with activity distributed widely for any given proposition
and, in this case, organized in time so as to reflect various
bindings of, for example, subjects with predicates. (Most, if
not all, models that use phase binding do so in the context
of localist representation.) LISA thus constitutes a clear ex-
ample of the interaction between localist representations of
entities and a distributed or featural representation of se-
mantics. As in the IA model, there is no contradiction be-
tween distributed processing and localist representation. At
the risk of overstating the case, we can see exactly the same
coexistence of local representation, distributed representa-
tion, and distributed processing in what is often considered
a quintessentially localist model, namely, Quillian’s (1968)
model of semantics. Quillian’s justly influential model did
indeed represent each familiar word with a localist “type”
unit. But a word’s meaning was represented by an intricate
web of structured connections between numerous tokens
of the appropriate types, resulting, on activation of a given
word-type, in a whole plane of intricately structured
spreading activation through which semantic associative re-
lationships could become apparent.

To summarize, a localist model of a particular type of en-

tity (e.g., words) is characterized by the presence of (at least)
one node that responds maximally to a given familiar (i.e.,
learned) example of that type (e.g., a given familiar word),
all familiar examples of that type (e.g., all familiar words)
being so represented. This does not preclude some redun-
dancy in coding. For example, in the word example used
here, it may be that various versions of the same word (e.g.,
different pronunciations) are each represented locally,
though in many applications these various versions would
be linked at some subsequent stage so as to reflect their lex-
ical equivalence.

It is hoped that this definition of what constitutes a lo-
calist model will help to clarify issues of model taxonomy.
Under this taxonomy, the term “semilocalist” would be as
meaningless as the term “semipregnant.” But what are we
to make of representations that are described as “sparse dis-
tributed” or “semidistributed”? It is rather difficult to an-
swer this question in general because there is often no pre-
cise definition of what is meant by these terms. Sparse
distributed representational schemes are frequently taken
to be those for which few nodes activate for a given stimu-
lus with few active nodes shared between stimuli, but this
definition begs a lot of questions. For example, how does
the definition apply to cases in which nodes have continu-
ous rather than binary activations? To qualify as a sparse dis-
tributed representational scheme, are nodes required to ac-
tivate to identical degrees for several different stimuli (cf.
Kanerva’s binary sparse distributed memory, Kanerva 1988;
Keeler 1988)? Or are nodes simply required to activate (i.e.,
significantly above baseline) for more than one stimulus?
Certainly in areas in which the term “sparse distributed” is
often employed, such as in the interpretation of the results
of single-cell recording studies, the latter formulation is
more consistent with what is actually observed. As will be
pointed out later, however, it is not really clear what dis-
tinction can be made between a sparse distributed scheme
defined in this way and the localist schemes discussed
above – after all, the localist IAM model would be classi-
fied as sparse distributed under this looser but more plau-
sible definition. If the class of sparse distributed networks
is defined so as to include both localist and nonlo-
calist networks as subclasses (as is often the case), then
statements advocating the use of sparse distributed repre-
sentation cannot be interpreted as a rejection of localist
models.

A similar problem exists with the term “semidistributed.”
French (1992) discusses two systems he describes as
semidistributed. The first is Kanerva’s sparse distributed
memory (Kanerva 1988), a network of binary neurons in-
spired more by a digital computer metaphor than by a bio-
logical metaphor, but which nonetheless shows good toler-
ance to interference (principally due to the similarities it
shares with the localist models described here). The second
is Kruschke’s (1990) ALCOVE model, which (in its imple-
mented version at least) would be classified under the pre-
sent definition as localist. French developed a third type of
semidistributed network, using an algorithm that sought to
“sharpen” hidden unit activations during learning. Unfor-
tunately, this semidistributed network only semisolved the
interference problem to which it was addressed, in that
even small amounts of later learning could interfere drasti-
cally with the ability to perform mappings learned earlier.
What advantage there was to be gained from using a
semidistributed network was primarily to be found in a
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measure of time to relearn the original associations – some
compensation but hardly a satisfactory solution to the in-
terference problem itself.

It is informative to note that French’s (1992) motivation
for using a semidistributed rather than a localist network
was based on his assumption that localist models acquire
their well-known resistance to interference by sacrificing
their ability to generalize. In what follows I will question
this common assumption and others regarding localist
models, thus weakening the motivation to seek semidistrib-
uted solutions to problems that localist networks already
solve.

3. Organization of the argument

Before launching into the detail of my remaining argument,
I will first signpost what can be expected of the remainder
of this target article. This is necessary because, as will be
seen, on the way to my conclusion I make some moderately
lengthy, but I hope interesting, digressions. These digres-
sions may seem especially lengthy to those for whom math-
ematical modelling is of little interest. Nonetheless, I hope
that the end justifies the means, particularly since the ap-
proach adopted here results in a model that is practically
equivalent to several mathematical models, but with most
of the mathematics taken out.

It seems essential, in writing an article such as this, to em-
phasize the positive qualities of localist models as much as
to note the shortcomings of their fully distributed counter-
parts. In the next part of the paper, I accordingly develop a
generalized localist model, which, despite its simplicity, is
able to exhibit generalization and attractor behaviour –
abilities more commonly associated with fully distributed
models. This is important because the absence of these abil-
ities is often cited as a reason for rejecting localist models.
The generalized localist model is also able to perform sta-
ble supervised and unsupervised learning and qualitatively
to model effects of age of acquisition, both of which appear
difficult for fully distributed models. The model is further
shown to exhibit properties compatible with some mathe-
matical formulations of great breadth, such as the Luce
choice rule and the “power law of practice,” thus extending
the potential scope of its application.

In later sections I consider why, given the power of lo-
calist models, some psychological modellers have been re-
luctant to use them. These parts of the paper identify what
I believe to be common misconceptions in the literature, in
particular those based on conclusions drawn from the do-
main of neuroscience. Finally, I address some of the prob-
lems of a fully distributed approach and identify certain 
inadequacies in some of the measures that have been pro-
posed to overcome these problems.

4. A generalized localist model

In this section I shall describe, in general terms, a localist
approach to both the unsupervised learning of representa-
tions and the supervised learning of pattern associations. In
characterizing such a localist approach I have sought to gen-
eralize from a number of different models (e.g., Burton
1994; Carpenter & Grossberg 1987a; 1987b; Foldiak 1991;
Kohonen 1984; Murre 1992; Murre et al. 1992; Nigrin
1993; Rumelhart & Zipser 1986). These models differ in

their details but are similar in structure and I shall attempt
to draw together the best features of each. The resulting
generalized model will not necessarily be immediately ap-
plicable to any particular research project but it will, I hope,
have sufficient flexibility to be adapted to many modelling
situations.

4.1. A learning module

As a first step in building a localist system, I will identify a very
simple module capable of unsupervised, self-organized learning
of individual patterns and/or pattern classes. This work draws
heavily on the work of Carpenter and Grossberg and colleagues
(e.g., Carpenter & Grossberg 1987a; 1987b; a debt that is happily
acknowledged), with a number of simplifications. The module
(see Fig. 3) comprises two layers of nodes, L1 and L2, fully con-
nected to each other by modifiable, unidirectional (L1-to-L2) con-
nections, which, prior to learning, have small, random weights, wij.
(Throughout the paper, wij will refer to the weight of the connec-
tion from the ith node in the originating layer to the jth node in
the receiving layer.) For simplicity of exposition, the nodes in the
lower layer will be deemed to be binary, that is, to have activations
(denoted ai) either equal to zero or to one. The extension to con-
tinuous activations will usually be necessary and is easily achieved.
The input to the nodes in the upper layer will simply be sum of
the activations at the lower layer weighted by the appropriate con-
nection weights. In fact, for illustrative purposes, I shall assume
here that this input to a given node is divided by a value equal to
the sum of the incoming weights to that node plus a small constant
(see, e.g., Marshall 1990) – this is just one of the many so-called
“normalization” schemes typically used with such networks. Thus
the input, Ij, to an upper-layer node is given by

where a is the small constant. Learning of patterns of activation
at the lower layer, L1, is simply achieved as follows. When a pat-
tern of activation is presented at L1, the inputs, Ij, to nodes in the
upper layer, L2, can be calculated. Any node whose vector of in-
coming weights is parallel (i.e., a constant multiple of) the vector
of activations at L1 will have input, Ij, equal to 11 a/

1
(oalli wij)

. Any
L2 node whose vector of incoming weights is orthogonal to the
current input vector (that is, nodes for which wij 5 0 where ai 5
1) will have zero input. Nodes with weight vectors between these
two extremes, whose weight vectors “match” the current activa-
tion vector to some nonmaximal extent, will have intermediate val-
ues of Ij. Let us suppose that, on presentation of a given L1 pat-
tern, no L2 node achieves an input, Ij, greater than a threshold u.
(With u set appropriately, this supposition will hold when no learn-
ing has yet been carried out in the L1-to-L2 connections.) In this
case, learning of the current input pattern will proceed. Learning
will comprise setting the incoming weights to a single currently
“uncommitted” L2 node (i.e., a node with small, random incom-
ing weights) to equal the corresponding activations at L1 – a pos-
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Figure 3. A simple two-layer module.
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sible mechanism is discussed later. The learning rule might thus
be stated

where J indexes the single L2 node at which learning is being per-
formed, l is the learning rate, and, in the case of so-called “fast
learning,” the weight values reach their equilibrium values in one
learning episode, such that wiJ 5 ai. The L2 node indexed by J is
thereafter labelled as being “committed” to the activation pattern
at L1, and will receive its maximal input on subsequent presenta-
tion of that pattern.

The course of learning is largely determined by the setting of
the threshold, u. This is closely analogous to the vigilance pa-
rameter in the adaptive resonance theory (ART) networks of Car-
penter and Grossberg (1987a; 1987b), one version of which
(ART2a, Carpenter et al. 1991) is very similar to the network de-
scribed here. More particularly, if the threshold is set very high,
for example, u 5 1, then each activation pattern presented will
lead to a learning episode involving commitment of a previously
uncommitted L2 node, even if the same pattern has already been
learned previously. If the threshold is set slightly lower, then only
activation patterns sufficiently different from previously pre-
sented patterns will provoke learning. Thus novel patterns will
come to be represented by a newly assigned L2 node, without in-
terfering with any learning that has previously been accomplished.
This is a crucial point in the debate between localist and distrib-
uted modellers and concerns “catastrophic interference,” a topic
to which I shall return in greater depth later.

The value of the threshold, u, need not necessarily remain con-
stant over time. This is where the concept of vigilance is useful. At
times when the vigilance of a network is low, new patterns will be
unlikely to be learned and responses (see below) will be based on
previously acquired information. In situations where vigilance, u,
is set high, learning of the current L1 pattern is likely to occur.
Thus learning can, to some extent, be influenced by the state of
vigilance in which the network finds itself at the time of pattern
presentation.

In order to make these notions more concrete, it is necessary to
describe what constitutes a response for the network described
above. On presentation of a pattern of activation at L1, the inputs
to the L2 nodes can be calculated as above. These inputs are then
thresholded so that the net input, Ij

net, to the upper-layer nodes is
given by

Ij
net 5 max (0,[Ij 2 u]), (3)

so that nodes Ij with less than u will receive no net input, and other
nodes will receive net input equal to the degree by which Ij ex-
ceeds u. Given these net inputs, there are several options as to how
we might proceed. One option is to allow the L2 activations to
equilibrate via the differential equation

which reaches equilibrium when daj

dt 5 0, that is, when aj is some
function, f, of the net input. A common choice is to assume that f
is the identity function, so that the activations equal the net inputs.
Another option, which will be useful when some sort of decision
process is required, is to allow the L2 nodes to compete in some
way. This option will be developed in some detail in the next 
section because it proves to have some very attractive properties.
For the moment it is sufficient to note that a competitive process
can lead to the selection of one of the L2 nodes. This might be
achieved by some winner-takes-all mechanism, by which the L2
nodes compete for activation until one of them quenches the ac-
tivation of its competitors and activates strongly itself. Or it may
take the form of a “horse-race,” by which the L2 nodes race, un-
der the influence of the bottom-up inputs, Ij

net, to reach a crite-

rion level of activation, x. Either way, in the absence of noise, we
will expect the L2 node with the greatest net input, Ij

net, to be se-
lected. In the case where the Jth L2 node is selected, the pattern
at L1 will be deemed to have fallen into the Jth pattern class. (Note
that in a high-u regime there may be as many classes as patterns
presented.) On presentation of a given input pattern, the selection
(in the absence of noise) of a given L2 node indicates that the cur-
rent pattern is most similar to the pattern learned by the selected
node, and that the similarity is greater than some threshold value.

To summarize, in its noncompetitive form, the network will re-
spond so that the activations of L2 nodes, in response to a given
input (L1) pattern, will equilibrate to values equal to some func-
tion of the degree of similarity between their learned pattern and
the input pattern. In its competitive form the network performs 
a classification of the L1 activation pattern, where the classes cor-
respond to the previously learned patterns. This results in sus-
tained or super-criterion activation (aj . x) of the node that has
previously learned the activation pattern most similar to that cur-
rently presented. In both cases, the network is self-organizing and
unsupervised. “Self-organizing” refers to the fact that the network
can proceed autonomously, there being, for instance, no separate
phases for learning and for performance. “Unsupervised” is used
here to mean that the network does not receive any external
“teaching” signal informing it how it should classify the current
pattern. As will be seen later, similar networks will be used when
supervised learning is required. In the meantime, I shall simply
assume that the selection of an L2 node will be sufficient to elicit
a response associated with that node (cf. Usher & McClelland
1995).

4.2. A competitive race

In this section I will give details of one way in which competition
can be introduced into the simple module described above. Al-
though the network itself is simple, I will show that it has some ex-
tremely interesting properties relating to choice accuracy and
choice reaction-time. I make no claim to be the first to note each
of these properties; nonetheless, I believe the power they have in
combination has either gone unnoticed or has been widely un-
derappreciated.

Competition in the layer L2 is simulated using a standard “leaky
integrator” model that describes how several nodes, each driven
by its own input signal, activate in the face of decay and competi-
tion (i.e., inhibition) from each of the other nodes:

where A is a decay constant; Ij is the excitatory input to the jth
node, which is perturbed by zero-mean Gaussian noise, N1, with
variance s2

1; f1(aj) is a self-excitatory term; C okÞj f2 (ak) re-
presents lateral inhibition from other nodes in L2; and N2 repre-
sents zero-mean Gaussian noise with variance s2

2. The value of
the noise term, N1, remains constant over the time course of a
single competition since it is intended to represent inaccuracies
in “measurement” of Ij. By contrast, the value of N2 varies with
each time step, representing moment-by-moment noise in the
calculation of the derivative. Such an equation has a long history
in neural modelling, featuring strongly in the work of Grossberg
from the mid 1960s onwards and later in, for instance, the cas-
cade equation of McClelland (1979).

4.2.1. Reaction time. Recently, Usher and McClelland (1995)
have used such an equation to model the time-course of percep-
tual choice. They show that, in simulating various two-alternative
forced choice experiments, the above equation subsumes optimal
classical diffusion processes (e.g., Ratcliff 1978) when a response
criterion is placed on the difference between the activations, aj, of
two competing nodes. Moreover, they show that near optimal per-
formance is exhibited when a response criterion is placed on the
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absolute value of the activations (as opposed to the difference be-
tween them) in cases where, as here, mutual inhibition is assumed.
The latter case is easily extensible to multiway choices. This lat-
eral inhibitory model therefore simulates the process by which
multiple nodes, those in L2, can activate in response to noisy, bot-
tom-up, excitatory signals, Inet, and compete until one of the
nodes reaches a response criterion based on its activation alone.
Usher and McClelland (1995) have thus shown that a localist
model can give a good account of the time course of multiway
choices.

4.2.2. Accuracy and the Luce choice rule. Another interesting
feature of the lateral inhibitory equation concerns the accuracy
with which it is able to select the appropriate node (preferably that
with the largest bottom-up input, Ij) in the presence of input noise,
N1, and fast-varying noise, N2. Simulations show that in the case
where the variances of the two noise terms are approximately
equal, the effects of the input noise, N1, dominate – this is simply
because the leaky integrator tends to act to filter out the effects 
of the fast-varying noise, N2. As a result, the competitive process
tends to “select” that node which receives the maximal noisy in-
put, (Ij

net 1 N1). This process, by which a node is chosen by adding
zero-mean Gaussian noise to its input term and picking the node
with the largest resultant input, is known as a Thurstonian process
(Thurstone 1927, Case V). Implementing a Thurstonian process
with a lateral-inhibitory network of leaky integrators, as above,
rather than by simple computation, allows the dynamics as well as
the accuracy of the decision process to be simulated.

The fact that the competitive process is equivalent to a classical
Thurstonian (noisy-pick-the-biggest) process performed on the
inputs, Ij, is extremely useful because it allows us to make a link
with the Luce choice rule (Luce 1959), ubiquitous in models of
choice behaviour. This rule states that, given a stimulus indexed
by i, a set of possible responses indexed by j, and some set of sim-
ilarities, hij, between the stimulus and those stimuli associated
with each member of the response set, then the probability of
choosing any particular response, J, when presented with a stim-
ulus, i, is

Naturally this ensures that the probabilities add up to 1 across the
whole response set. Shepard (1958; 1987) has proposed a law of
generalization which states, in this context, that the similarities of
two stimuli are an exponential function of the distance between
those two stimuli in a multidimensional space. (The character of
the multidimensional space that the stimuli inhabit can be re-
vealed by multidimensional scaling applied to the stimulus-re-
sponse confusion matrices.) Thus hij 5 e2dij, where

where the distance is measured in M-dimensional space, im rep-
resents the coordinate of stimulus i along the mth dimension, and
cm represents a scaling parameter for distances measured along
dimension m. The scaling parameters simply weigh the contribu-
tions of different dimensions to the overall distance measure,
much as one might weigh various factors such as reliability and
colour when choosing a new car. Equation 7 is known as the
Minkowski power model formula and dij reduces to the “city-
block” distance for r 5 1 and the Euclidean distance for r 5 2,
these two measures being those most commonly used.

So how does the Luce choice rule acting over exponentiated
distances relate to the Thurstonian (noisy choice) process de-
scribed above? The illustration is easiest to perform for the case
of two-alternative choice, and is the same as that found in Mc-
Clelland (1991). Suppose we have a categorization experiment in

which a subject sees one exemplar of a category A and one exem-
plar of a category B. We then present a test exemplar, T, and ask
the subject to decide whether it should be categorized as being
from category A or category B. Suppose further that each of the
three exemplars can be represented by a point in an appropriate
multidimensional space such that the test exemplar lies at a dis-
tance dA from the A exemplar and dB from the B exemplar. This
situation is illustrated for a two-dimensional space in Figure 4.
Note that coordinates on any given dimension are given in terms
of the relevant scaling parameters, with the increase of a given
scaling parameter resulting in an increase in magnitude of dis-
tances measured along that dimension and contributing to the
overall distance measures dA and dB. (It is for this reason that an
increase of scaling parameter along a given dimension is often de-
scribed as a stretching of space along that dimension.) The Luce
choice rule with exponential generalization implies that the prob-
ability of placing the test exemplar in category A is

dividing top and bottom by e2dA gives

which equals 0.5 when dA 5 dB. This function is called the logis-
tic function, and it is extremely similar to the function describing
the (scaled) cumulative area under a normal (i.e., Gaussian) curve.
This means that there is a close correspondence between the two
following procedures for probabilistically picking one of two re-
sponses at distances dA and dB from the current stimulus: one 
can either add Gaussian noise to dA and dB and pick the category
corresponding to, in this case, the smallest resulting value (a
Thurstonian process); or one can exponentiate the negative dis-
tances and pick using the Luce choice rule. The two procedures
will not give identical results, but in most experimental situations
will be indistinguishable (e.g., Kornbrot 1978; Luce 1959; Nosof-
sky 1985; van Santen & Bamber 1981; Yellott 1977). (In fact, if the
noise is double exponential rather than Gaussian, the correspon-
dence is exact; see Yellott 1977.)

The consequences for localist modelling of this correspon-
dence, which extends to multichoice situations, are profound. Two
things should be kept in mind. First, a point in multidimensional
space can be represented by a vector of activations across a layer
of nodes, say the L1 layer of the module discussed earlier, and/or
by a vector of weights, perhaps those weights connecting the set
of L1 nodes to a given L2 node. Second, taking two nodes with 
activations dA and dB, adding zero-mean Gaussian noise, and pick-
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ing the node with the smallest resulting activation is equivalent, in
terms of the node chosen, to taking two nodes with activations 
(k 2 dA) and (k 2 dB) (where k is a constant), adding the same
zero-mean Gaussian noise and this time picking the node with the
largest activation. Consequently, suppose that we have two L2
nodes, such that each has a vector of incoming weights corre-
sponding to the multidimensional vector representing one of the
training patterns, one node representing pattern A, the other node
representing pattern B. Further, suppose that on presentation of
the pattern of activations corresponding to the test pattern, T, at
layer L1, the inputs, Ij, to the two nodes are equal to (k2dA) and
(k2dB), respectively (this is easily achieved). Under these cir-
cumstances, a Thurstonian process, like that described above,
which noisily picks the L2 node with the biggest input will give a
pattern of probabilities of classifying the test pattern either as an
A or, alternatively, as a B, which is in close correspondence to the
pattern of probabilities that would be obtained by application of
the Luce choice rule to the exponentiated distances, e2dij (Equa-
tion 9).

4.2.3. Relation to models of categorization. This correspondence
means that mathematical models, such as Nosofsky’s generalized
context model (Nosofsky 1986), can be condensed, doing away
with the stage in which distances are exponentiated, and the stage
in which these exponentiated values are manipulated, in the Luce
formulation, to produce probabilities (a stage for which, to my
knowledge, no simple “neural” mechanism has been suggested1),
leaving a basic Thurstonian noisy choice process, like that above,
acting on (a constant minus) the distances themselves. Since the
generalized context model (Nosofsky 1986) is, under certain con-
ditions, mathematically equivalent to the models of Estes (1986),
Medin and Schaffer (1978), Oden and Massaro (1978), Fried and
Holyoak (1984), and others (see Nosofsky 1990), all these models
can, under those conditions, similarly be approximated to a close
degree by the simple localist connectionist model described here.
A generalized exemplar model is obtained under high-u (i.e., high
threshold or high vigilance) conditions, when all training patterns
are stored as weight vectors abutting a distinct L2 node (one per
node).

4.2.4. Effects of multiple instances. We can now raise the ques-
tion of what happens when, in the simple two-choice categoriza-
tion experiment discussed above, the subject sees multiple pre-
sentations of each of the example stimuli before classifying the test
stimulus. To avoid any ambiguity I will describe the two training
stimuli as “exemplars” and each presentation of a given stimulus
as an “instance” of the relevant exemplar. For example, in a given
experiment a subject might see ten instances of a single category
A exemplar and ten instances of a single category B exemplar. Let
us now assume that a high-u classification network assigns a dis-
tinct L2 node to each of the ten instances of the category A exem-
plar and to each of the ten instances of the category B exemplar.
There will thus be twenty nodes racing to classify any given test
stimulus. For simplicity, we can assume that the learned, bottom-
up weight vectors to L2 nodes representing instances of the same
exemplar are identical. On presentation of the test stimulus, which
lies at distance dA (in multidimensional space) from instances of
the category A exemplar and distance dB from instances of the cat-
egory B exemplar, the inputs to the L2 nodes representing cate-
gory A instances will be (k 2 dA) 1 N1 j, where N1 is, as before, the
input-noise term and the subscript j (0 # j , 10) indicates that 
the zero-mean Gaussian noise term will have a different value for
each of the ten nodes representing different instances. The L2
nodes representing instances of the category B exemplar will like-
wise have inputs equal to (k 2 dB) 1 N1 j, for 10 # j , 20. So what
is the effect on performance of adding these extra instances of
each exemplar? The competitive network will once again select
the node with the largest noisy input. It turns out that, as more and
more instances of each exemplar are added, two things happen.
First, the noisy-pick-the-biggest process becomes an increasingly

better approximation to the Luce formulation, until for an as-
ymptotically large number of instances the correspondence is ex-
act. Second, performance (as measured by the probability of pick-
ing the category whose exemplar falls closest to the test stimulus)
improves, a change that is equivalent to stretching the multidi-
mensional space in the Luce formulation by increasing by a com-
mon multiplier the values of all the scaling parameters, cm, in the
distance calculation given in Equation 7. For the mathematically
inclined, I note that both these effects come about owing to the
fact that the maximum value out of N samples from a Gaussian dis-
tribution is itself cumulatively distributed as a double exponential,
exp(2e2ax), where a is a constant. The distribution of differences
between two values drawn from the corresponding density func-
tion is a logistic function, comparable with that implicit in the
Luce choice rule (for further details see, e.g., Yellott 1977; Page
& Nimmo-Smith, in preparation).

To summarize, for single instances of each exemplar in a cate-
gorization experiment, performance of the Thurstonian process is
a good enough approximation to that produced by the Luce choice
rule such that the two are difficult to distinguish by experiment.
As more instances of the training exemplars are added to the net-
work, the Thurstonian process makes a rapid approach toward an
asymptotic performance that is precisely equivalent to that pro-
duced by application of the Luce choice rule to a multidimen-
sional space that has been uniformly “stretched” (by increasing by
a common multiplier the values of all the scaling parameters, cm,
in Equation 7) relative to that space (i.e., the set of scaling pa-
rameters) that might have been inferred from the application of
the same choice rule to the pattern of responses found after only
a single instance of each exemplar had been presented. It should
be noted that putting multiple noiseless instances into the Luce
choice rule will not produce an improvement in performance rel-
ative to that choice rule applied to single instances – in mathe-
matical terminology, the Luce choice rule is insensitive to uniform
expansion of the set (Yellott 1977).

Simulations using the Luce formulation (e.g., Nosofsky 1987)
have typically used uniform multiplicative increases in the values
of the dimensional scaling parameters (the cm in Equation 7) to
account for performance improvement over training blocks. The
Thurstonian process described here, therefore, has the potential
advantage that this progressive space-stretching is a natural fea-
ture of the model as more instances are learned. Of course, until
the model has been formally fitted to experimental data, the sug-
gestion of such an advantage must remain tentative – indeed early
simulations of data from Nosofsky (1987) suggest that some para-
metric stretching of stimulus space is still required to maintain the
excellent model-to-data fits that Nosofsky achieved (Page &
Nimmo-Smith, in preparation). Nonetheless, the present Thurs-
tonian analysis potentially unites a good deal of data, as well as rais-
ing a fundamental question regarding Shepard’s “universal law of
generalization.” Could it be that the widespread success encoun-
tered when a linear response rule (Luce) is applied to representa-
tions with exponential generalization gradients in multidimen-
sional stimulus space is really a consequence of a Thurstonian
decision process acting on an exemplar model, in which each of
the exemplars actually responds with a linear generalization gra-
dient? It is impossible in principle to choose experimentally be-
tween these two characterizations for experiments containing a
reasonable number of instances of each exemplar. The Thurston-
ian (noisy-pick-the-biggest) approach has the advantage that its
“neural” implementation is, it appears, almost embarrassingly
simple.

4.2.5. The power law of practice. On the basis of the work de-
scribed above, we can conclude that a simple localist, competitive
model is capable of modelling data relating to both choice reac-
tion-time and choice probability. In this section I will make a fur-
ther link with the so-called “power law of practice.” There is a
large amount of data that support the conclusion that reaction-
time varies as a power function of practice, that is, RT 5 A 1
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BN2c, where N is the number of previous practice trials, and A,
B, and c are positive constants (see Logan 1992 for a review). In a
number of papers, Logan (1988; 1992) has proposed that this re-
sult can be modelled by making the following assumptions. First,
each experience with a stimulus pattern is obligatorily stored in
memory and associated with the appropriate response. Second, on
later presentation of that stimulus pattern, all representations of
that stimulus race with each other to reach a response criterion,
the response time being the time at which the first of the repre-
sentations reaches that criterion. The distribution of times-to-cri-
terion for a given representation is assumed to be the same for all
representations of a given stimulus and independent of the num-
ber of such representations. Logan has shown that if the time-to-
criterion for a given stimulus representation is distributed as a
Weibull function (which, within the limits of experimental error,
it is – see Logan 1992), then, using the minimum-value theorem,
the distribution of first-arrival times for a number of such repre-
sentations is a related Weibull function, giving a power function
of practice. He has collected a variety of data that indicate that this
model gives a good fit to data obtained from practiced tasks and
thus a good fit to the power law of practice (e.g., Logan 1988;
1992). At several points, Logan makes analogies with the exem-
plar models of categorization and identification discussed above
but does not develop the point further.

This link between Logan’s instance model and exemplar mod-
els of categorization has, however, been most fully developed in
two recent papers by Robert Nosofsky and Thomas Palmeri
(Nosofsky & Palmeri 1997; Palmeri 1997). Although they draw on
Logan’s instance theory of reaction-time (RT) speed-up, they
identify a flaw in its behaviour. Their criticism involves observing
that Logan’s theory does not take stimulus similarity into account
in its predictions regarding RT. To illustrate their point, suppose
we have trained our subject, as above, with ten instances of a cat-
egory A exemplar and ten instances of a category B exemplar. Con-
sistent with Logan’s instance theory, if we had tested performance
on the test exemplar at various points during training, we would
have observed some RT speed-up – the RT is decided by the time
at which the first of the multiple stored instances crosses the win-
ning line in a horse race to criterion. The time taken for this first
crossing decreases as a power law of the number of instances. But
what happens if we now train with one or more instances of an ex-
emplar that is very similar to the category A exemplar, but is indi-
cated as belonging to category B? In Logan’s model, the addition
of this third exemplar can only speed up responses when the cat-
egory A exemplar is itself presented as the test stimulus. But in-
tuitively, and actually in the data, such a manipulation has the op-
posite effect – that is, it slows responses.

Nososfsky and Palmeri (1997) solve this problem by introduc-
ing the exemplar-based random walk model (EBRW). In this
model, each training instance is represented in memory, just as in
Logan’s model. Unlike in Logan’s model, however, the response to
a given stimulus is not given by a single race-to-criterion. For ex-
emplar similarities to have the appropriate effect, two changes are
made: First, each exemplar races with a speed proportional to its
similarity to the test stimulus. Second, the result of a given race-
to-criterion does not have an immediate effect on the response but
instead drives a random-walk, category-decision process similar to
that found in Ratcliff ’s (1978) diffusion model – multiple races-
to-criterion are held consecutively, with their results accumulat-
ing until a time when the cumulative number of results indicating
one category exceeds the cumulative number indicating the other
category by a given margin. Briefly, as the number of instances
increases, each of the races-to-criterion takes a shorter time, as in
the Logan model; to the extent that the test stimulus falls clearly
into one category rather than another, the results of consecutive
races will be consistent in indicating the same category, and the
overall response criterion will be more quickly reached.

I now suggest an extension of the Thurstonian model developed
earlier, which accounts, qualitatively at least, for the data dis-
cussed by Nosofsky and Palmeri (1997) and addresses the prob-

lems inherent in Logan’s instance model. The network is depicted
in Figure 5. The activation pattern across the lower layer, L1, is
equivalent to the vector in multidimensional space representing
the current test stimulus. Each node in the middle layer, L2, rep-
resents a previously learned instance and activates to a degree in-
versely and linearly related to the distance between that learned
instance and the current test stimulus (as before), plus zero-mean
Gaussian noise, N1. The third layer of nodes, L3, contains a node
for each of the possible category responses; L2 nodes are linked
by a connection of unit strength to the appropriate L3 response
node and to no other. The effective input to each of the L3 nodes
is given by the maximum activation value across the connected L2
nodes. Thus the input driving a category A response will be the
maximum activation across those L2 nodes associated with a cate-
gory A response. The response nodes in L3 compete using lateral-
inhibitory leaky-integrator dynamics, as before. This competition,
in the absence of large amounts of fast-varying noise, will essen-
tially pick the response with the largest input, thus selecting, as
before, the category associated with the L2 instance node with the
largest noise-perturbed activation. The selection process there-
fore gives identical results, in terms of accuracy of response, to the
simple Thurstonian model developed earlier and hence maintains
its asymptotic equivalence with the Luce choice rule. The reac-
tion time that elapses before a decision is made depends on two
things: the number of instance representations available in L2 and
the strength of competition from alternative responses. As more
instances become represented at L2, the maximum value of the
noisy activations creeps up, according to the maximum-value the-
orem, thus speeding highly practiced responses. To the extent that
a given test stimulus falls near to instances of two different cate-
gories, the lateral inhibitory signals experienced by the response
node that is eventually selected will be higher, thus delaying the
response for difficult-to-make decisions, as required by the data.

Does the reaction-time speed-up with practice exhibited by this
model fit the observed power law? I have done many simulations,
under a variety of conditions, all of which produced the pattern of
results shown in the graph in Figure 6. The graph plots mean re-
action time, taken over 1000 trials, against number of instances of
each response category. As can be seen, the speed-up in reaction
time with practice is fitted very well by a power function of prac-
tice, A 1 BN2c. The fact that the time axis can be arbitrarily
scaled, and the exponent of the power curve can be fitted by 
varying the signal-to-noise ratio on the input signals, bodes well
for the chances of fitting this Thurstonian model to the practice
data – this is the subject of current work. We know already that
this signal-to-noise ratio also determines the accuracy with which
the network responds, and the speed with which this accuracy it-
self improves with practice. While it is clear that it will be possi-
ble to fit either the accuracy performance or the RT performance
with a given set of parameters, it remains to be seen whether a sin-
gle set of parameters will suffice for fitting both simultaneously.
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Figure 5. A module that displays power law speed-up with prac-
tice.
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4.2.6. Summary. To summarize this section of the paper, I have il-
lustrated how a simple, localist, lateral inhibitory network, fed by
appropriate noisy bottom-up inputs delivered by some, presum-
ably hierarchical, feature-extraction process, inherits considerable
power from its close relationship to a number of classic mathe-
matical models of behaviour. The network implements a Thurs-
tonian choice-process which gives accuracy results that are indis-
tinguishable (at asymptote) from those produced by application of
the Luce choice rule to representations with exponential general-
ization gradients. It shows accuracy that improves with an increase
in the number of training instances, equivalent in the Shepard-
Luce-Nosofsky formulation to the uniform stretching of multidi-
mensional space. With regard to reaction time, the network’s RT
distributions are very similar to those produced by Ratcliff ’s
(1978) diffusion model (see Usher & McClelland 1995) and to
those found in experimental data. The RTs reflect category simi-
larities and are speeded as a power law with practice. This simple
localist model thus provides a qualitative synthesis of a large range
of data and offers considerable hope that this breadth of coverage
will be maintained when quantitative fitting is attempted.

To this point I have not, at times, made a clear distinction be-
tween supervised and unsupervised learning. Underlying this con-
flation is the belief that the mechanisms underlying the two types
of behaviour largely overlap – more particularly, unsupervised
learning is a necessary component of supervised, or association,
learning. This will, I hope, become more clear later. First I shall
describe qualitatively how variants of the localist model discussed
above can exhibit a number of behaviours more commonly asso-
ciated with distributed models, and at least one behaviour that has
proved difficult to model.

4.3. Generalization, attractor behaviour, “clean-up,”
and categorical perception

4.3.1. Generalization. It is often stated as one of the advan-
tages of networks using distributed representations that
they permit generalization, which means that they are able
to deal appropriately with patterns of information they have
not previously experienced by extrapolating from those pat-
terns they have experienced and learned. In a similar vein,
such networks have been said to be robust, their perfor-
mance worsening only gradually in the presence of noisy or
incomplete input. Generalization and robustness are es-
sentially the same thing: both refer to the networks’ ability
to deal with inputs that only partially match previous expe-

rience. One very common inference has been that networks
using localist representations do not share these abilities. In
this section I show that this inference is unjustified.

First, the previous sections have illustrated how one of
the most resilient mathematical models of the stimulus-re-
sponse generalization process can be cast in the form of a
simple localist network. Put simply, in the face of a novel,
or noisy, stimulus, the input signals to a layer of nodes
whose weights encode patterns of activation encountered
in previous experiences will reflect, in a graded fashion, the
degree of similarity that the current input shares with each
of those learned patterns. If the current pattern is not suf-
ficiently similar to any learned pattern to evoke su-
perthreshold input, then no generalization will be possible,
but to the extent that similarities exist, the network can
choose between competing classifications or responses on
the basis developed above. It will be possible to vary the
breadth of generalization that can be tolerated by varying
the input threshold, u. Thus if no L2 node receives su-
perthreshold input, yet generalization is required, the
threshold can simply be dropped until input, upon which a
response can be based, is forthcoming.

Of course, the stimulus-response model described
above only generalizes in the sense that it generates the
most appropriate of its stock of previously learned re-
sponses on presentation of an unfamiliar stimulus. This
type of generalization will not always be appropriate: imag-
ine a localist system for mapping orthography to phonol-
ogy, in which each familiar word is represented by a node
which alone activates sufficiently in the presence of that
word to drive a representation of that word’s phonology.
Would this system exhibit generalization on presentation
of a novel orthographic string (i.e., a nonword)? Only in the
sense that it would output the phonology of the word that
best matched the unfamiliar orthographic input. This is not
the sort of generalization that human readers perform in
these circumstances; they are content to generate novel
phonemic output in response to novel orthographic input.
The localist approach to simulating this latter ability relies
on the fact that in quasiregular mappings, like that be-
tween orthography and phonology, in which both the input
pattern (i.e., the letter string) and the output pattern (i.e.,
the phonemic string) are decomposable into parts, and in
which each orthographic part has a corresponding phone-
mic part with which it normatively corresponds, the local-
ist model can perform generalization by input decomposi-
tion and output assembly. Specifically, although the
unfamiliar orthographic string cannot activate a localist
representation of the complete nonword (since by defini-
tion no such representation exists), it can lead to activation
in localist units representing orthographic subparts, such
as onset cluster, rime, vowel, coda, and so on, and each of
these can in turn activate that portion of the phonological
output pattern with which it is most usually associated.
This idea of generalization by input decomposition and
output assembly for nonwords, supplemented by a domi-
nant, but not exclusive direct route for known words is, of
course, the strategy used by many localist modellers of sin-
gle-word reading (Coltheart et al. 1993; Norris 1994a;
Zorzi et al. 1998).

In nonregular domains, where generalization by decom-
position and assembly is not possible, the tendency of lo-
calist models either to fail to generalize or, when appropri-
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Figure 6. The model’s performance compared with a power
function (A 1 BN2c). The time-axis can be scaled arbitrarily.
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ate, to perform generalization to the best matching stock re-
sponse, might be seen as a distinct advantage. (Many of the
points that follow can also be found in Forster 1994, but I
believe they bear repetition.) Take the mapping from or-
thography to semantics, or the mapping from faces to
proper names: Is it appropriate to generalize when asked to
name an unfamiliar face? Or when asked to give the mean-
ing of a nonword? In a localist model of the general type de-
veloped above, the threshold for activating the localist rep-
resentation of a known face or a known word can be set high
enough such that no stock response is generated for such
unfamiliar stimuli. When a stock response is required, such
as to the question “Which familiar person does this unfa-
miliar person most resemble?”, the input threshold might
still be dropped, as described above, until a response is
forthcoming. It is unclear whether distributed models of,
for example, face naming or orthography-to-meaning map-
ping (particularly those with attractor networks employed
to “clean up” their output) exhibit this sort of flexibility
rather than attaching spurious names to unfamiliar faces,
spurious meanings to nonwords, or spurious pronuncia-
tions to unpronounceable letter strings.

Are networks that automatically show generalization the
most appropriate choice for implementing irregular map-
pings such as that between orthography and semantics?
Forster (1994) suggests not, while McRae et al. (1997), in
rejecting Forster’s pessimism, note that “feedforward net-
works . . . can learn arbitrary mappings if provided with suf-
ficient numbers of hidden units. Networks that are allowed
to memorize a set of patterns sacrifice the ability to gener-
alize, but this is irrelevant when the mapping between do-
mains is arbitrary” (p. 101).

McRae et al., however, do not show that “sufficient num-
bers of hidden units” would be significantly less than one
for each word (i.e., an easily learned localist solution); and,
even so, it is not clear what advantages such a distributed
mapping would exhibit when compared with a localist lexi-
cal route, given that generalization is specifically not re-
quired. With regard to Forster’s questions about the spuri-
ous activation of meaning by nonwords, McRae et al.’s
simulations used a Hopfield-type model, with restrictions
on data collection allowing them to model the learning of
only 84 orthography-to-semantic mappings. A test of the re-
sulting network, using just ten nonwords, led to “few or no
[semantic] features” being activated to criterion – whether
Forster would be persuaded by this rather qualified result
is doubtful. Plaut et al. (1996) identify essentially the same
problem in discussing their semantic route to reading.
Their unimplemented solution involves semantic represen-
tations that are “relatively sparse, meaning each word acti-
vates relatively few of the possible semantic features and
each semantic feature participates in the meanings of a very
small percentage of words” (p. 105), and they add “this
means that semantic features would be almost completely
inactive without specific evidence from the orthographic
input that they should be active. Notice that the nature of
this input must be very specific in order to prevent the se-
mantic features of a word like CARE from being activated
by the presentation of orthographically similar words like
ARE, SCARE, CAR, and so forth” (p. 105).

Since the mapping between orthography and semantics
clearly requires an intermediate layer of mapping nodes, it
might seem easiest to ensure this exquisite sensitivity to or-

thographic input by making these mapping nodes localist
lexical representations. Of course this would mean that the
second route to reading was the type of localist lexical route
the authors explicitly deny. It remains to be demonstrated
that a genuinely distributed mapping could exhibit the req-
uisite properties and, again, what advantages such a scheme
would enjoy over the rather straightforward localist solution.

Finally, another type of generalization is possible with lo-
calist networks, namely, generalization by weighted inter-
polation. In such a scheme, localist representations of vari-
ous familiar items activate to a level equal to some function
of the degree that they match an unfamiliar input pattern,
the combined output being an activation-weighted blend of
the individual output patterns associated with each familiar
item. This type of generalization is most appropriate in do-
mains in which mappings are largely regular. A similar
arrangement has been postulated, using evidence derived
from extensive cell recording, for the mapping between ac-
tivation of motor cortical neurons and arm movements in
primates (Georgopoulos et al. 1988). Classifying this so-
called population coding as a type of localist representation
is perhaps stretching the notion farther than necessary
(cf. earlier comments regarding orientation columns), al-
though it really amounts to no more than acknowledging
that each cell in a population will respond optimally to some
(presumably familiar) direction, albeit one located in a
space with continuously varying dimensions. In some cases
it might even be difficult to distinguish between this
weighted-output decoding of the pattern of activation
across what I’ll call the coding layer and an alternative de-
coding strategy that imagines the cells of the coding layer
as a set of localist direction-nodes racing noisily to a crite-
rion, with the winner alone driving the associated arm
movement.2 A similar distinction has been explored exper-
imentally by Salzman and Newsome (1994), who located a
group of cells in rhesus monkey MT cortex, each of which
responded preferentially to a given direction of motion
manifested by a proportion of dots in an otherwise ran-
domly moving dot pattern. The monkeys were trained on a
task that required them to detect the coherent motion
within such dot patterns and to indicate the direction of mo-
tion by performing an eight-alternative forced-choice task.
Once trained, the monkeys were presented with a pattern
containing, for example, northerly movement while a group
of cells with a preference for easterly movement was electri-
cally stimulated to appropriate levels of activation. The re-
sponses of the monkeys indicated a tendency to respond with
either a choice indicating north or one indicating east, rather
than modally responding with a choice indicating the aver-
age direction northeast. The authors interpreted these re-
sults as being consistent with a winner-takes-all rather than a
weighted-output decoding strategy. Implicit in this interpre-
tation is the monkeys’ use of a localist coding of movement
direction. It is likely that both decoding strategies are used in
different parts of the brain or, indeed, in different brains: The
opposite result, implying a weighted output decoding strat-
egy, has been found for those neurons in the leech brain that
are sensitive to location of touch (Lewis & Kristan 1998).
More germanely, generalization by weighted output can be
seen in several localist models of human and animal cogni-
tion (e.g., Kruschke 1992; Pearce 1994).

To summarize, contrary to an often repeated but seldom
justified assumption, there are (at least) three ways in which
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localist models can generalize: by output of the most ap-
propriate stock response; by input decomposition and out-
put assembly; or by activation-weighted output.

4.3.2. Attractors. Another much-discussed feature of net-
works employing distributed representations is their ability
to exhibit “attractor” behaviour. In its most general sense
(the one I shall adopt here) attractor behaviour refers to the
ability of a dynamic network to relax (i.e., be “attracted”)
into one of several stable states following initial perturba-
tion. In many content addressable memory networks, such
as that popularized by Hopfield (1982; 1984), the stable
states of the network correspond to previously learned pat-
terns. Such attractor networks are often used to “clean up”
noisy or incomplete patterns (cf. generalization). In math-
ematical terms, a learning algorithm ensures that learned
patterns lie at the minima of some function (the Lyapunov
function) of the activations and weights of the network. The
activation-update rule ensures that, from any starting point,
the trajectory the network takes in activation space always
involves a decrease in the value of the Lyapunov function
(the network’s “energy”), thus ensuring that eventually a
stable (but perhaps local) minimum point will be reached.
Cohen and Grossberg (1983) describe a general Lyapunov
function for content-addressable memories of a given form,
of which the Hopfield network is a special case.

To see how attractor behaviour (again in its general
sense) can be exhibited by a variant of the localist network
described above, assume that we have a two-layer network,
as before, in which the upper layer, L2, acts as a dynamic,
competitive, winner-takes-all layer, classifying patterns at
the lower layer, L1. Let us further assume that L2 nodes
project activation to a third layer, L3, the same size as L1,
via connections whose weights are the same as those of the
corresponding L1-to-L2 connections (see Fig. 7). For sim-
plicity, let us assume that the input threshold, u, is zero. On
presentation of an input pattern at L1, the inputs to the L2
nodes will reflect the similarities (e.g., dot products) of each
of the stored weight vectors to this input pattern. If 
we track the trajectory of the activation pattern at L3 as the
competition for activation at L2 proceeds, we will find that
it starts as a low-magnitude amalgam of the learned weight
vectors, each weighted by its similarity to the current input
pattern, and ends by being colinear with one of the learned
weight vectors, with arbitrary magnitude set by the activa-
tion of the winning node. In the nondeterministic case, the
L3 pattern will finish colinear with the weight vector asso-

ciated with the L2 node receiving the largest noisy input, Ij.
Thus the L3 activation vector is attracted to one of several
stable points in weight-space, each of which represents one
of the learned input patterns. In the noisy case, given the
results presented earlier, the probability of falling into any
given attractor will be describable in terms of a Luce choice
rule. This is precisely the sort of attractor behaviour we re-
quire.

In certain cases we might allow the L2 nodes to project
back down to the nodes in L1 rather than to a third layer,
L3. In this case (reminiscent of the ART networks referred
to earlier), the activation pattern at L1 is attracted toward
one of the stable, learned patterns. This network is essen-
tially an autoassociation network with attractor dynamics.
Such an implementation has some advantages over those
autoassociative attractor networks used by Hopfield and
others. For instance, it should be fairly clear that the ca-
pacity of the network, as extended by competing localist
representations, is, in the deterministic case, equal to the
maximum number of nodes available in L2 to learn an in-
put pattern. In contrast with the Hopfield network, the per-
formance of the localist network is not hindered by the ex-
istence of mixture states, or false minima, that is, minima of
the energy function that do not correspond to any learned
pattern. Thus localist attractor networks are not necessarily
the same as their fully distributed cousins, but they are at-
tractor networks nonetheless: whether or not a network is
an attractor network is independent of whether or not it is
localist.

4.3.3. Categorical perception. Since one can view the lat-
eral inhibitory module as performing a categorization of the
L1 activation pattern, the category being signalled by the
identity of the winning L2 node, the network can naturally
model so-called categorical perception effects (see, e.g.,
Harnad 1987). Figure 8 illustrates the characteristic sharp
category-response boundary that is produced when two
representations, with linear generalization gradients, com-
pete to classify a stimulus that moves between ideal 
examples of each category. In essence, the treatment is 
similar to that of Massaro (1987), who makes a distinction
between categorical perception, and “categorical partition-
ing,” whereby a decision process acts on a continuous (i.e.,
noncategorical) percept. This distinction mirrors the one
between a linear choice rule acting on representations with
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Figure 7. An attractor network.

Figure 8. The left-hand graph shows the strength of input re-
ceived by two L2 nodes, A and B, as a stimulus moves between
their learned patterns. The right-hand graph shows the probabil-
ities of choosing either node when Gaussian noise is added to the
input and the node with the largest resultant input chosen. The
steepness of the crossover is determined by the signal-to-noise ra-
tio.
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exponential generalization gradients and a Thurstonian
choice-process acting on representations with linear gener-
alization gradients, as seen above. The fact that Massaro de-
scribes this partitioning process in Thurstonian terms, yet
models it using the Fuzzy Logic Model of Perception
(Oden & Massaro 1978), serves to emphasize the strong
mathematical similarities between the two approaches.

4.4. Age-of-acquisition effects

Finally, I will briefly mention a specific effect, which is po-
tentially difficult to model in connectionist terms, namely,
the effect of age of acquisition. It has been demonstrated
that subjects in word-naming and lexical decision experi-
ments respond faster to words learned earlier in life (e.g.,
Morrison & Ellis 1995). This is independent of any effect
of word frequency, with which age of acquisition is strongly
negatively correlated. The potential difficulty in accounting
for this effect with a connectionist model concerns how age
of acquisition might plausibly be represented. Various
schemes have been suggested to model frequency effects
but age of acquisition appears to present a much stiffer
challenge, particularly for models that learn via an error-
based learning rule and whose weights, therefore, tend to
reflect the history of learning with a bias toward what has
occurred most recently.

In suggesting a potential solution to this problem, I shall
make three assumptions. First, word naming and lexical de-
cision involve competitive processes. Second, word acqui-
sition is also a competitive process. Third, there is some
variation in the competitive capacity of nodes in a network
and the relative competitive capacity of a given node en-
dures over time. Taking the last of these assumptions first,
it is perhaps not too fanciful to talk of a node’s intrinsic abil-
ity to compete and that, given such a concept, it is uncon-
troversial to assume that there will be some variation in the
competitive capacity of a set of nodes. Competitive capac-
ity might be influenced by the physical location of a node
relative to its potential competitors, the breadth or strength
of its lateral inhibitory connections, its ability to sustain high
activations, and the function relating those activations to an
outgoing, lateral inhibitory signal. Given such influences, it
is at least possible that certain of these aspects of the node’s
situation endure over time, so that, for instance, a node of
high competitive capacity in one time period tends to have
high competitive capacity in the next. In this context we
wish the time over which relative competitive capacity en-
dures to be of the order of tens of years.

The second assumption is that the process by which a
word comes to be represented in long-term memory by a
given node is a competitive one. To support this assumption
it is necessary to suggest some possibilities regarding the
learning of localist representations in general. Earlier in this
paper it was assumed that whenever learning of an entity
was required – for instance, when no committed node re-
ceived superthreshold input on presentation of that entity
– an uncommitted node would come to represent that en-
tity. How might this be achieved? Let us assume that un-
committed nodes can respond to input, whether or not the
magnitude of the input they receive is above the threshold
u; in other words, the threshold for uncommitted nodes is
effectively zero, though the magnitude of their incoming
weights may be small. Further assume that committed
nodes that receive superthreshold input are able to quench

significant activation at uncommitted nodes via lateral in-
hibitory connections. In cases where a pattern is presented
under sufficiently high threshold conditions such that no
committed node receives superthreshold input, numbers of
uncommitted nodes will activate. If learning is presumed to
be enabled under these circumstances, then let each of the
uncommitted nodes adapt its incoming weights such that

where l is a learning rate, wij represents the weight from
the ith L1 node to the jth L2 node, and ai and aj represent
the corresponding node activations. This learning rule, al-
most the same as that given earlier but with the additional
product term aj, is the instar learning rule (Grossberg
1972), which simply states that the weights incoming to 
a given L2 node will change so as to become more like the
currentL1 activation pattern at a rate dependent on the ac-
tivation of that L2 node. Just as for the committed nodes,
the uncommitted nodes will be subject to lateral inhibition
from other uncommitted nodes, thus establishing a com-
petition for activation, and hence a competition, via Equa-
tion 10, for representation of the current pattern. Those 
uncommitted nodes that, either by chance or thanks to
some earlier learning, activate relatively strongly to a given
pattern tend to change their incoming weights faster in re-
sponse to that pattern, and thus accrue more activation –
there is a positive feedback loop. Eventually, the connec-
tion weights to one of the L2 nodes become strong enough
so that that node is able to suppress activation at other un-
committed nodes. At this point, that node will be deemed
to be committed to its pattern, and further learning at that
node will effectively be prevented. The process by which an
uncommitted node competes to represent a novel pattern
might be accomplished in a single presentation of a pattern
(high l, fast learning) or several presentations (low l, slow
learning).

Two things are worth mentioning with regard to this
learning procedure. One is that it is compatible with the
generalization procedure described earlier. On a given test
trial of, say, a category learning experiment, the network
might have its threshold set low enough to allow commit-
ted nodes to receive input, permitting a best-guess re-
sponse to be made. If the guess is later confirmed as cor-
rect, or, more important, when it is confirmed as incorrect,
the threshold can be raised until no committed node re-
ceives superthreshold input, allowing a competition among
previously uncommitted nodes to represent the current 
activation pattern, with that representation then becoming
associated with the correct response. This is very similar 
to the ARTMAP network of Carpenter et al. (1991). The
main difference in emphasis is in noting that it might be
beneficial for the network to learn each new pattern (i.e.,
run as an exemplar model) even when its best-guess re-
sponse proves correct. The second point worth mentioning
is that the learning process suggested above will result in a
number of nodes that come close to representing a given
pattern yet ultimately fail to win the competition for repre-
sentation. These nodes will be well placed to represent sim-
ilar patterns in the future and may, for example, in single-
cell recording studies, appear as large numbers of cells that
seem to cluster (in terms of their preferred stimulus)
around recently salient input patterns.
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The final assumption in this account of the age-of-acqui-
sition effects is that word naming depends on a competitive
process similar to that described above. It is absolutely in
keeping with the modelling approach adopted here to as-
sume that this is the case. Moreover, a number of recent
models of the word-naming and lexical decision processes
make similar assumptions regarding competition (see
Grainger & Jacobs 1996, for a review and one such model).

Age-of-acquisition effects can now be seen to be a nat-
ural feature of any system that is consistent with these three
assumptions. Those nodes, which have a high intrinsic com-
petitive capacity, will tend to become committed to those
words encountered early, since this process is a competitive
one. If competitive capacity endures, then nodes that hap-
pen to represent words acquired early will have an advan-
tage in subsequent competitions, all else being equal. If
word naming and lexical decision engage competitive pro-
cesses, words acquired early will tend to be processed faster
than words acquired late, just as the age-of-acquisition ef-
fect demands. Note that nothing needs to be known about
the distribution of competitive capacity for this account to
be true. The only requirement is that there be significant
variability in these nodes’ competitive capacity that is con-
sistent over time.

4.5. Supervised learning

The process of pattern compression and classification de-
scribed so far is an unsupervised learning mechanism. This
unsupervised process effectively partitions the space of in-
put patterns into distinct regions on the basis of pattern
similarities. By contrast, supervised learning involves the
learning of pattern associations, this term extending to a
wide variety of tasks including stimulus-response learning,
pattern labelling, and binary (e.g., yes/no) or multiway de-
cision making. Pattern association is, of course, the domain
of application of the most common of the PDP networks,
namely, the multilayer perceptron trained by backpropaga-
tion of error (henceforth abbreviated as BP network;
Rumelhart et al. 1986). In the framework developed here,
supervised learning is a simple extension of the unsuper-
vised classification learning described previously. Essen-
tially, once two patterns that are to be associated have been
compressed sufficiently so that each is represented by the
supercriterion activation of a single, high-level node, then
the association of those two nodes can proceed by, for ex-
ample, simple Hebbian learning. (Indeed, one might even
view supervised learning as autoassociative learning of the
amalgam of the compressed, to-be-associated patterns,
permitting subsequent pattern-completing attractor behav-
iour.) Geometrically speaking, the classification process or-
thogonalizes each of the patterns of a pair with reference to
the other patterns in the training set, the subsequent asso-
ciation between those patterns being trivially accomplished
without interfering with previously acquired associations.
The general scheme is shown in Figure 9 and is function-
ally almost identical to the ARTMAP network developed by
Carpenter et al. (1991), as well as to many other networks
(e.g., Hecht-Nielson 1987; Burton et al. 1990; McLaren
1993; Murre 1992; Murre et al. 1992). It is also functionally
equivalent to a noisy version of the nearest-neighbour clas-
sification algorithm used in the machine-learning commu-
nity, and structurally equivalent to more general psycho-

logical models including the category-learning models de-
scribed in previous sections and other models such as the
one proposed by Bower (1996).

The operation of the network is simple. When the acti-
vation of a given node in one of the competitive layers, L2A,
hits a race-winning criterion, x, it can excite one of the
nodes in the mapping layer (see Fig. 9). (I assume that once
a node in a given layer hits its criterion, other nodes in the
layer are prevented from doing so by, for instance, a broadly
applied inhibitory signal or raising of the criterion.) As-
suming that a similar process occurs in the other competi-
tive layer, L2B, the active map node can then be associated
by the L2B winner by simple Hebbian learning. On subse-
quent presentation of one of the associates, driving, say,
L2A, a given classification node will reach criterion, and will
activate its map-layer node, in turn activating the L2B node
corresponding to its associate. This would allow a relevant
response to be made (perhaps by top-down projections
from L2B to L1B). The division between the two halves of
the network is appropriate when considering cross-modal
associations, but will not be so clearly appropriate when as-
sociations are required between two items within a modal-
ity, for example, between two visually presented words. In
this case, processes of selective attention might be em-
ployed, so as to classify one word and then the other; they
will generally be competitors (cf. Kastner et al. 1998) and
hence cannot both win a given race to criterion at the same
time. The identity of the first word can be stored by sus-
tained activation at the map layer, while attention is trans-
ferred to recognition of the second word. When recognition
of the second word is accomplished, associative learning
can proceed as before. Alternatively, one might propose a
scheme whereby L2 nodes responding to different objects
currently present in the world might be permitted to coac-
tivate to criterion (i.e., not compete; see the earlier discus-
sion of binding), on the basis that they are grouped (or
“streamed”) separately, with subsequent association being
achieved, as before, via the mapping layer.

The provision of the mapping nodes allows a good deal of
flexibility in the associations that can be made. The mapping
layer can be configured to allow one-to-one, many-to-one,
or one-to-many mappings. Moreover, under certain circum-
stances, in particular when at least one of the associates is
learned under low-vigilance (cf. prototype) conditions,
remapping of items to alternative associates can be quickly
achieved by rapid reconfiguration of connections to and
from the mapping layer. The low-vigilance requirement sim-
ply acknowledges that flexible remapping of this kind will be
difficult to achieve under conditions in which both “sides”
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of a given set of associations are exhaustively exemplar
coded, that is, when each association-learning trial engages
two new exemplars (previously uncommitted nodes) linked
via a newly established mapping-layer connection.

Such a scheme for supervised learning of pattern associ-
ations enjoys a number of advantages over alternative
schemes employing distributed representations through-
out, such as the BP network.

1. The learning rate can be set to whatever value is
deemed appropriate; it can even be set so as to perform fast,
one-pass learning of sets of pattern associations. The BP al-
gorithm does not allow fast learning: learning must be in-
cremental and iterative, with the learning rate set slow
enough to avoid instabilities. The learning time for back-
propagation thus scales very poorly with the size of the
training set. By contrast, for the localist model, total learn-
ing time scales linearly with the size of any given training
set, with subsequent piecewise additions to that training set
posing no additional problem.

2. Localist supervised learning is an “on-line” process
and is self-organizing, with the degree of learning modu-
lated solely by the variation of global parameter settings for
vigilance and learning rate. Typical applications of BP net-
works require off-line learning with distinct learning sets
and separate learning and performance phases (see below).

3. The localist model is, in Grossberg’s (1987) terms,
both stable and plastic, whereas BP nets are not, exhibiting
catastrophic interference in anything resembling “realistic”
circumstances (see below).

4. Knowledge can be learned by the localist network in
a piecemeal fashion. For instance, it can learn to recognize
a particular face and, quite separately, a name, subse-
quently allowing a fast association to be made between the
two when it transpires that they are aspects of the same per-
son. BP nets do not enjoy this facility – they cannot begin
the slow process of face-name association until both face
and name are presented together.

5. The behaviour of localist nets is easy to explain and in-
terpret. The role of the “hidden” units is essentially to or-
thogonalize the to-be-associated patterns, thus allowing en-
during associations to be made between them. There is
none of the murkiness that surrounds the role of hidden
units in BP nets performing a particular mapping.

More important, these advantages are enjoyed without
sacrificing the ability to perform complex mappings that are
not linearly separable (e.g., XOR, see Fig. 10), or the abil-
ity to generalize (see earlier). The question arises as to why,
given these advantages, there has been resistance to using

localist models. This question will be addressed in the next
section.

5. Some localist models in psychology

In extolling the virtues of localist connectionist models in
psychology, I have occasionally encountered the belief that
such models are not really connectionist models at all, this
title being reserved for “real” connectionist models, such as
those employing the backpropagation (BP) learning rule.
Indeed, in some quarters it seems as if connectionist mod-
elling and application of the backpropagation learning rule
to fully distributed networks are seen as equivalent. I as-
sume that this attitude stems from the great popularity of
networks such as the BP network after the release of the
PDP volumes with accompanying simulation software in
the mid 1980s. Nevertheless, as mentioned earlier, several
of the networks discussed in those volumes were localist.
This suggests that bias against using localist models, or even
against seeing them as connectionist at all, is not based
solely on the wide availability of alternative approaches, but
also on the assumption that localist models are less capable
or less “plausible” than these alternatives. I do not believe
either of these is well-founded.

Before addressing this issue further it is worth noting that
many successful models in psychology are either localist
connectionist models, or, in the light of the preceding dis-
cussion, can be readily implemented as such. I do not wish
to (and could not) give a complete roll call of such models
here, but in the areas in which I have a particular interest,
these include Burton et al.’s (1990) model of face percep-
tion; Estes’s (1986) array model of category learning and
Estes’s (1972) model of ordered recall (though not neces-
sarily Lee & Estes’s 1981 model later development of it);
Morton’s (1969) logogen model and its variants; Nosofsky’s
(1986) generalized category model and the mathematical
equivalents described above; Kruschke’s (1992) ALCOVE
model of attentional category learning; Pearce’s (1994) con-
figural model of conditioning; Hintzmann’s (1986) MIN-
ERVA model; models of speech production by Levelt
(1989), Dell (1986; 1988), and Hartley and Houghton
(1996); Norris’s (1994a) model of reading aloud and his
SHORTLIST model of spoken word segmentation (Norris
1994b); the DRC model of Coltheart et al. (1993); the
TRACE model of word recognition (McClelland & Elman
1986); Usher and McClelland’s (1995) model of the time
course of perceptual choice; the models of immediate ser-
ial recall by Burgess and Hitch (1992; 1999) and Page and
Norris (1998); other models of serial recall by Houghton
(1990), Nigrin (1993), and Page (1993; 1994); Pickering’s
(1997) and Gluck and Myers’s (1997) models of the hip-
pocampus; Shastri and Ajjanagadde’s (1993) model of rea-
soning; Hummel and Biedermann’s (1992) model of object
recognition and Hummel and Holyoak’s (1997) model of
analogy processing; Grainger and Jacobs’s (1996) model of
orthographic processing; Bower’s (1996) model of implicit
memory; and those models described in Grainger and Ja-
cobs (1998). Furthermore, not only is the list of distin-
guished localist models a long one, but in cases where lo-
calist and fully distributed approaches have been directly
compared with reference to their ability to explain data, the
localist models have often proved superior (e.g., Coltheart
et al. 1993; López et al. 1998).
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I should state that not all of these models have stressed
their equivalence with localist connectionist models. In-
deed, it has become common, in the concluding sections
of papers that describe localist models, to apologize for the
lack of “distributedness” and to speculate that the same
performance could be elicited from a more distributed
model. In an attempt to account for this occasional reluc-
tance, I will try, in the next section, to address some of the
concerns most commonly voiced in relation to localist
models.

First, however, it is worth pausing briefly to ask why some
researchers have preferred a localist approach to model-
ling. I shall take as an example Jacobs and Grainger (1994;
also Grainger & Jacobs 1996; 1998), who have been most
explicit in their justification of a research programme
based, in their case, on the localist interactive activation
(IA) model (McClelland & Rumelhart 1981; Rumelhart &
McClelland 1982). They see IA as a canonical model, a
starting point representing “the simplest model within a
given framework that fairly characterizes the qualitative be-
havior of other models that share its design and system
principles with respect to the data at hand” (p. 519).

Despite the simplicity of the underlying model, they
have been able to provide detailed simulations of accuracy
and reaction time measures from a variety of orthographi-
cally driven tasks, contradicting earlier pessimism (e.g.,
McClelland 1993a) about whether reaction time measures
would be susceptible to accurate simulation by such net-
works (Grainger & Jacobs 1996). They have further iden-
tified the IA model as particularly appropriate to a strategy
of nested modelling in which, when the model is applied to
a new set of data (in their case, data concerning aspects of
orthographic processing in visual word recognition), it re-
tains its ability to simulate data sets to which it was earlier
applied. The flexibility of the IA model in this regard (as
well as with regard to the modelling of functional overlap
and scalability – Grainger & Jacobs 1996; 1998) is largely
attributable to the technical advantages of localist model-
ling discussed in section 4.5, thus highlighting an impor-
tant interaction between the choice of model type and the
scientific methodology that is adopted in applying that
model. As Jacobs and Grainger (1994) pointed out, not all
developments in connectionist modelling have respected
this constraint on backwards compatibility. For example,
they cite the failure of Seidenberg and McClelland’s (1989)
model of reading to account explicitly for the word-superi-
ority effect; simulating this effect had been a staple target
of the previous generation of models in the area. Although
it is possible that networks using thoroughgoing dis-
tributed representation could be shown to be capable of
flexible, scalable, and nested modelling of functionally
overlapping systems, this has not yet been so clearly
demonstrated as it has been for the localist competitors to
such models.

6. Why some people might be reluctant 
to use localist models in psychology

This section covers, in a little more detail, many of the is-
sues raised (and countered) by Thorpe (1995) in relation to
common arguments used against localist models.

6.1. “Distributed representation is a general principle”

Perhaps the most fundamental reason for choosing a fully
distributed modelling approach over a localist one would be
the belief that distributed representation is simply a general
principle on which the enterprise of connectionist model-
ling is founded. Such a view was clearly stated by Seiden-
berg (1993) who gave the following as the first of his gen-
eral connectionist principles

Knowledge representations are distributed [distributed repre-
sentations of orthography and phonology]. (p. 231)

(the bracketed comment refers to the way in which this
principle was realized in the Seidenberg and McClelland
[1989] model of reading). This enshrinement of distributed
representations (assuming it is intended to imply a rejection
of localist representation) is not only historically inaccurate
– thoroughgoing distributed representation never having
been a necessary feature of a connectionist model – but it
is also rather ironic. The irony stems from the fact that in
the later, improved version of the reading model (Plaut et
al. 1996), orthography and phonology (though not the lexi-
con) were represented locally, as indicated previously.

6.2. “They don’t generalize and/or are not efficient”

As noted above, the fact that fully distributed networks can
generalize is sometimes taken to imply that localist net-
works cannot. I hope I have shown above that this is not the
case. The wider issue of generalization is discussed in detail
in Hinton et al. (1986), in the section entitled “Virtues of
Distributed Representations.” It is interesting to note that
the introduction to this section states that “Several of these
virtues are shared by certain local models, such as the in-
teractive activation model of word perception, or McClel-
land’s (1981) model of generalization and retrieval.” The
virtue of generalization is not confined to fully distributed
models.

The chief virtue that Hinton et al. (1986) attribute to fully
distributed networks, but deny to localist networks, is that
of efficiency. They conclude that certain mappings can be
achieved, using fully distributed networks, with far fewer
hidden units than are used by the corresponding localist
network. This is true and, in this restricted sense, the dis-
tributed networks are more efficient. The following three
points are noteworthy, however. (1) This notion of effi-
ciency will count for nothing if the process by which the
mapping must be learned is not only inefficient but also
rather implausible. This point relates both to the disadvan-
tages of “distributed learning” raised above and to the later
discussion of catastrophic interference. (2) The localist so-
lution enjoys advantages over the distributed solution quite
apart from its ability to perform the mapping. These relate
to the comprehensibility of localist models and the manip-
ulability of localist representations and will be discussed
later. (3) More generally, efficiency in modelling, particu-
larly when arbitrarily defined, is not necessarily an aim in
itself. A lexicon of 100,000 words could be represented by
the distinct states of a 17-bit binary vector – very efficient
but not very plausible as a psychological model. In terms of
modelling neural function, it is at least conceivable that the
brain has arrived at computationally effective but repre-
sentationally “inefficient” solutions to certain problems.
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6.3. “They do not degrade gracefully”

Another advantage often claimed for fully distributed net-
works is that they continue to perform well after damage,
usually considered as loss of nodes or weights. This quality
is sometimes termed “graceful degradation”; similar effects
are usually tacitly assumed to occur in real brains in re-
sponse to damage. By contrast, it is implied, localist models
do not degrade gracefully, since loss of a given node will
render its referent unrepresented. This is true, but only in
a strictly limited sense. First, it should be repeated that lo-
calist models use distributed/featural representations at
“lower” levels – the network will degrade gracefully in re-
sponse to any loss of nodes at these levels, just as it is able
to generalize to new or incomplete input. Second, localist
models do not preclude redundancy. There may be many
nodes that locally represent a given entity – indeed, in the
exemplar models discussed above, this is very likely to be
the case. Thus, loss of a given node will not necessarily leave
its associated entity unrepresented (although in the model
developed earlier, reaction time will increase and accuracy
will diminish). By way of example (expanded slightly from
Feldman 1988), suppose the brain has 1011 neurons and
these are being lost at a rate of 105 per day; the chance of
losing a given cell in a 70-year period is approximately 0.03.
If we assume a small amount of redundancy in representa-
tion, say, five cells per entity, then the probability of leaving
a given entity unrepresented in the same period is, assum-
ing independence, 1028. I would guess that this is some-
what less than the probability of losing one’s entire head in
the same period; hence it would not seem an unreasonable
risk. In this regard, it is important to note that a number of
independent localist representations do not amount to a
distributed representation.

It is worth asking whether humans ever seem to have lost
their ability to represent highly specific entities (presum-
ably via focal damage rather than by gradual wastage).
Howard (1995) describes an aphasic patient who appears to
have lost “specific lexical items from a phonological lexicon
for speech production” (though see Lambon-Ralph, 1998,
for an alternative view, albeit of a different patient). A par-
ticularly interesting feature of these data is that the naming
accuracy for given words is “not demonstrably related to the
availability of either their phonological or their semantic
neighbours.” While it is unwise to claim that this pattern of
results could never be modelled with a fully distributed sys-
tem, it is certainly more suggestive of a system based on lo-
cally represented lexical entries.

6.4. “There are not enough neurons in the brain 
and/or they are too noisy”

Any assertion to the effect that are too few neurons in the
brain to permit localist representations presumes answers
to two questions: How many neurons/functional units are
there? How many are needed? Assuming that the answer
to the second question does not err in requiring the brain
locally to represent all possible percepts rather than some
actual percepts (an error analogous to requiring a library 
to have sufficient capacity to store the vast number of pos-
sible books as opposed to the comparatively minuscule
number of actual books), then perhaps speculating about

insufficient capacity underestimates the answer to the first
question. Most estimates put the number of cells in the
brain at around 1011. Mountcastle (1997) estimates that the
number of cells in the neocortex alone is approximately 3 3
1010. Even if one considers the number of cortical mini-
columns rather than cells, the number is in the vicinity of 5
3 108. Similarly, Rolls (1989) cites a figure of 6 3 106 cells
in area CA1 of the hippocampus, an area he proposes is re-
sponsible for the storage of episodic memories. [See BBS
multiple book review of Rolls’s “The Brain and Emotion”
BBS 23(2) 2000.] These are large numbers and they seem
to place the burden of proof on those who wish to claim that
they are not large enough to allow successful local coding.
Furthermore, proponents of a distributed approach would
presumably have to allocate not just a node, but rather a
whole attractor to each familiar item in memory. Since in
most nonlocalist attractor networks the limit on the num-
ber of distinct attractor basins is smaller than the number
of nodes, it is not clear what is gained in potential capacity
by moving from a local to a distributed coding scheme.

With regard to the assertion that neurons (not to men-
tion nodes) might be too noisy to allow small numbers of
them to perform significant coding, I follow Thorpe (1995)
in citing Newsome et al. (1989) and hence Britten et al.
(1992), who measured the activity of relevant MT cortex
neurons while a monkey performed a psychophysical dis-
crimination task. They found that the “performance” of cer-
tain individual neurons, assessed by placing a discriminant
threshold on their activity, was just as good as the perfor-
mance of the monkey. In other words, the monkey had no
more information than could be derived from the activity
of single cells. Barlow (1995; and in his seminal paper of
1972) makes similar points and reviews other evidence re-
garding the sensitivity and reliability of single neurons.

6.5. “No one has ever found a grandmother cell”

The final complaint against localist representations, again
taken from Thorpe (1995), concerns whether such repre-
sentations have ever been found in real brains. I hardly
need point out that the assertion in the heading is poorly
worded, in that not having found a grandmother cell is not
necessarily the same as not finding a localist representation,
depending on how one chooses to define the former. Apart
from this, the whole question of what would constitute ev-
idence for, or more particularly against, localist representa-
tion seems to have become extremely confused. A review of
the neuroscientific literature reveals that much of this con-
fusion comes from poor use of terms and model nonspeci-
ficity. This review has necessarily been rather cursory, and
space restrictions require even more cursory reporting in
what follows.

6.5.1. Interpreting cell recordings. First, in one sense, the
assertion in heading of section 6.5, even as worded, is not
necessarily true. Figure 11 shows a finding of Young and Ya-
mane (1993), who measured the responses of various cells
in the anterior inferotemporal gyrus and the superior tem-
poral polysensory area to images of the disembodied heads
(!) of Japanese men in full face. The figure shows responses
of one of the AIT cells which responded extraordinarily se-
lectively to only one of the twenty faces. This was the only
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one of the 850 studied cells to respond in this highly selec-
tive manner. Nevertheless, the finding is interesting, since
this cell is not just a localist representation, but apparently
a grandmother cell (or rather a “particular-Japanese-man
cell”). Young and Yamane state quite correctly that they
cannot conclude that this cell responds to only one stimu-
lus, since only a small number of stimuli (albeit with, to my
eye, a high interstimulus similarity) were presented. But
this proviso cannot conceal the fact that no better evidence
could have been found in this experiment for the existence
of at least one localist representation sufficiently tightly 
focussed to be termed a grandmother cell. Of course one
might claim that better evidence for grandmother-cell rep-
resentation in general would have been provided if all 850
cells had responded above baseline for one and only one of
the faces. This is true, but such a finding would be enor-
mously unlikely, even if each of the twenty individuals was
represented in this extreme manner. Purely as an illustra-
tion, suppose that 100,000 cells in the relevant brain region
were dedicated to face representation, with five extreme
grandmother cells dedicated to each of the twenty stimulus
subjects. This would imply a probability of one in a thou-
sand of discovering such a cell on a given recording trial –
approximately the probability with which such a cell was in
fact found. I do not wish this illustration to be interpreted
as indicating my belief in extreme grandmother-cell repre-
sentation. That is not necessary to my more general defence
of localist representation. I simply urge caution in the in-
terpretation of cell-recording data.

The previous paragraph highlights one aspect of a more
general problem with the antilocalist interpretations that
have been put on some single-cell-recording studies. This in-
volves misconceptions about what to expect if one measures
cell responses in a localist network. There seems to be a wide-
spread tendency to assume that if a number of cells activate
for several hundred milliseconds following the presentation
of any given stimulus, with different degrees of activation for
different stimuli, then this speaks against the idea of a local-
ist representation. It does nothing of the sort, although this
fact is often obscured in passages such as the following:

Even the most selective face cells discharge to a variety of in-
dividual faces and usually also discharge, although to a lesser

degree, to other stimuli as well. Thus, faces are presumably
coded in exactly the same way as everything else, namely, by the
firing pattern of ensembles of cells with varying selectivity
rather than of individual cells acting as complex feature detec-
tors. (Gross 1992, p. 6)
Neurons responsive to faces exhibited systematically graded re-
sponses with respect to the face stimuli. Hence each cell would
systematically participate in the representation of many faces,
which straightforwardly implies a population code. (Young &
Yamane 1992, p. 1330)

Statements such as these are widespread and often used to
argue against localist coding. What such arguments seem to
miss, however, is the potential compatibility between dis-
tributed processing and localist representation discussed
earlier. (They also often miss the compatibility between dis-
tributed representation at one level and localist represen-
tation at another, but I shall not dwell on that here.) Think-
ing back to the localist competitive network described
earlier, a broad degree of activation (i.e., activation across a
potentially large number of competing nodes, particularly
if the input threshold, u, is low) would be expected in re-
sponse to any given stimulus, even if only one unit were
eventually to reach criterion, x, and/or win a competition
for sustained activation. The broad pattern of activation
would be different for different stimuli, just as described in
the passages quoted above (and in the earlier discussion on
sparse distributed representations). That grandmother cells
(let alone localist representations) would be “signaling only
one face and responding randomly to others” (Young & Ya-
mane 1992, p. 1329, my emphasis) is not what would be ex-
pected on the basis of any workable localist model. In sum-
mary, even if we ignore the occasional tightly tuned cell, the
finding of broadly distributed (though often transient) re-
sponse to a stimulus does not rule out localist representa-
tion; indeed it is fully consistent with it.

A similar argument applies to the measurement of the
informational content of particular neural firing responses
performed by, for instance, Rolls et al. (1996). Among
other things, they show that on presentation of a variety of
stimuli, the response of a given neuron will convey a lot of
information about the identity of an individual stimulus if
its firing rate for that stimulus is unusually high or unusu-
ally low relative to its responses to the other stimuli. This
is perfectly consistent with a localist coding. Suppose there
exists a person-A node in the sort of localist network de-
scribed earlier. Suppose one then presents eight persons
to the network for identification, such that most of these
persons share some of the features of person-A, only one
(person-A herself ) shares all of those features, and one
person, say person-H, is unusual in sharing no features
whatsoever with person-A (e.g., he looks nothing like per-
son-A). On presentation of each of persons A – H, there-
fore, the person-A node will fire particularly strongly
(supercriterion) to person-A, and particularly weakly to
person-H, with intermediate responses to the other stim-
uli. Thus, the response to person-H will contain plenty of
information (i.e., “this person looks nothing like person-
A”), without any suggestion that the information it con-
tains is of active benefit to the system in its identification
task. In this situation it might also be found that the infor-
mation contained in the firing of a given neuron is low
when averaged across stimuli (as has been found experi-
mentally), since this average is dominated by intermediate
responses to many stimuli.
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Figure 11. Data taken from Young and Yamane (1993), showing
the response of a single cell in the inferotemporal cortex of a
macaque monkey to a number of face stimuli. Spiking rates are
measured relative to baseline response.

https://doi.org/10.1017/S0140525X00383352 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X00383352


An abiding problem has been that terms such as localist,
distributed, population coding, ensemble coding, and so
on, have been used without considering the range of mod-
els to which they might refer. This has led to interpreting
data as supporting or refuting certain types of model with-
out due consideration of the predictions of specific instan-
tiations of each type of model. In many cases, researchers
have concluded that some sort of “population coding” ex-
ists, but have failed to specify how such population coding
operates so as to allow relevant tasks to be performed. For
example, it is easy to hypothesize that colour and shape are
each population coded, but how does this permit the learn-
ing of one response to a green triangle or a red square and
another response to a red triangle or a green square, anal-
ogous to the classic XOR problem that is a staple of con-
nectionist modelling? Again echoing an earlier point, how
does one recall that it was a yellow Volkswagen that one wit-
nessed speeding away from the scene of a bank raid? Sim-
ply positing population coding is not enough if there is no
semipermanent way to tie the individual components of a
percept together so as to form a unitized memory.

One answer to these questions by Rolls (1989) illustrates
clearly one of the terminological problems that further con-
fuse the literature. In describing the role of the hippocam-
pus in episodic memory, Rolls describes a hierarchical sys-
tem, culminating in area CA1 of the hippocampus:

It is suggested that the CA1 cells, which receive these groups
of simultaneously active ensembles, can detect the correlations
of firing which represent episodic memory. The episodic mem-
ory in the CA3 cells would thus consist of groups of active cells,
each representing one of the subcomponents of the episodic
memory (including context), whereas the whole episodic mem-
ory would be represented not by its parts, but as a single col-
lection of active cells, at the CA1 stage. (Rolls 1989, p. 299)

This conclusion is supported by a wealth of data and bol-
stered by references to the localist connectionist literature
(e.g., Grossberg 1982; 1987). Yet when it comes to the pa-
per’s conclusion, we have the following:

Information is represented in neuronal networks in the brain in
a distributed manner in which the tuning of neurons is never-
theless not very coarse, as noted for the above hippocampal
neurons. (Rolls 1989, p. 305)

This isolated statement is, on one level, true, but it com-
pletely deemphasizes the localist character of the conclu-
sions reached throughout the paper. This target article is
one attempt to clarify such issues of model taxonomy.

6.5.2. Evidence consistent with localist cortical coding.
Positive evidence of localist coding of associations in the
cortex, as opposed to hippocampal structures, has been
provided by Miyashita and colleagues (e.g., Higuchi &
Miyashita 1996; Miyashita 1993; Sakai & Miyashita 1991;
Sakai et al. 1994). Sakai and Miyashita trained monkeys in
a paired-association task, using twelve computer-generated
paired patterns. They found task-related neurons in the an-
terior inferotemporal (AIT) cortex which responded
strongly to one or the other of the patterns in a given asso-
ciated pair but weakly to any of the twenty-two other pat-
terns. This occurred in spite of the fact that at least some of
other patterns were quite similar to one or another of the
associated pair, with the two paired patterns being at least
as distinct from each other as from the remainder of the set.
In a further study, Higuchi and Miyashita showed that le-
sioning the entorhinal and perirhinal cortex caused a loss

both in the knowledge of those associations learned prele-
sion, and in the postlesion ability of the monkeys to learn
new paired associations. The lesion nonetheless had no ef-
fect on the response selectivity of cells in AIT cortex to sin-
gle images from the 24-image set. The authors speculated
that projections up to and back from the perirhinal and en-
torhinal cortex permitted associations to be learned be-
tween images which were already selectively represented b
in AIT cortex (cf. Buckley & Gaffan 1998). This idea is strik-
ingly similar to learning of associations between locally rep-
resented entities through projections to and from a map-
layer (e.g., ARTMAP; Carpenter et al. 1991). It is also
compatible with Booth and Rolls’s (1998) recent discovery
of both view-specific and view-invariant representations of
familiar objects in the IT cortex and with the more general
idea that simple tasks such as item recognition can be me-
diated by brain areas separate from the hippocampus
(Aggleton & Brown 1999).

Perhaps the most crucial part of this series of experi-
ments was carried out by Sakai et al. (1994), concerning
what the authors called the fine-form tuning of each of the
AIT neurons. They are unusual in making it clear that “one
may mistakenly conclude that the most effective form in a
screening test, is the optimum form for a recorded cell.” In
other words, finding that a cell responds most strongly to
item D when tested with items A, B, C, and D does not im-
ply that item D is the optimal stimulus for that cell, but only
that it is the best of those tested. They circumvented this
potential problem by using, in their visual-pattern pair-as-
sociation task (as above), patterns generated from Fourier
descriptors, such that continuous variation of a small num-
ber of parameters could generate continuous transforma-
tions of each member of the trained pattern set. These
transformed patterns were always much closer in parame-
ter space to the original patterns than the original, ran-
domly parameterized patterns were to each other. For each
recorded neuron the authors identified the original pattern
(from a total of twenty-four on which the monkeys had been
trained) that elicited the strongest response. Given the
large degree of pattern variation in this screening set, and
thus the relatively broad nature of the cell-selection
process, there was no guarantee that each cell so selected
would respond more strongly to its corresponding trained
pattern than to fine-grained transformations of that pattern.
Nonetheless, this was exactly what was found. In the ma-
jority of cases, presenting the transformed patterns resulted
in a weaker response; in no case was the response to the
transformed pattern stronger than that to the original
learned pattern. This implies that the single-cell response
is tuned to, or centred on, the particular visual pattern
learned. Such a result is difficult to explain in terms of pop-
ulation coding unless one assumes that individual members
of the active population of cells are tuned, by experience, to
give a maximum response to a particular learned pattern –
but such an account is not just similar to a localist account,
it is a localist account. I should note that a similar experi-
ment was performed by Amit et al. (1997) and although
they report cell-recording results from a single cell that
slightly increases its response to a degraded version of a
previously trained visual pattern, they indicate that, on av-
erage, the IT cells from which recordings were elicited
showed a decrease in response to degraded versions of the
trained patterns, consistent with the results of Sakai et al.
(1994).
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7. What’s wrong with using distributed
representations throughout?

So far my emphasis has been on demonstrating the bene-
fits of an approach to modelling that uses localist represen-
tations in addition to featural/distributed representations.
This prolocalist, rather than antidistributed stance, has
been quite deliberate. Nonetheless, it risks being inter-
preted as indicating equanimity in the selection of a mod-
elling approach. To counter this interpretation I shall
briefly outline some of the reasons the thoroughgoing dis-
tributed approach seems less promising. Owing to space
limitations, I shall refer to other work for the detail of the
some of the arguments. In referring to distributed model-
ling techniques, I shall take as my example the backprop
(BP) network. This is perhaps unfair, for its deficiencies do
not necessarily apply to all fully distributed approaches (for
a brief discussion of a rather different class of networks, viz.
Hopfield-type attractor networks, see sect. 4.3.2). Never-
theless, BP has been a dominant approach in connectionist
modelling in psychology over the last decade, and is hence
the most obvious candidate for an illustrative example. Be-
fore outlining my objections to BP and its relatives I should
sound a note of caution. I do not intend my criticisms to be
taken as an attempt to devalue the scientific contribution
made by the body of work built around BP and distributed
representations. In many cases, such as in the fields of read-
ing and past-tense learning, the theorizing of PDP-style
connectionists has stimulated considerable debate and has
forced a reconsideration of long-held views, not least by el-
egantly demonstrating, via simulation, the falsity of certain
(though not all) opposing claims. The fact that many of
these debates are yet to be resolved is testament to the po-
tency and value of the scientific challenge posed by this
brand of eliminative connectionism.

7.1. The stability-plasticity dilemma,
a.k.a. catastrophic interference

The stability-plasticity dilemma (Grossberg 1987) refers to
the need for a learning system to be both stable, in the sense
that it protects what it has learned from overwriting, and
plastic, in that it remains capable of new learning. Gross-
berg (1987) offered principled reasons why the BP algo-
rithm, unlike certain localist models, fails to solve the sta-
bility-plasticity dilemma. McCloskey and Cohen (1989)
identified the same problem in a simulation of association
learning and referred to the lack of stability as an exhibition
of “catastrophic interference.” Essentially the same phe-
nomenon was noted by Ratcliff (1990). There has been a
good deal of work on the subject since then (e.g., French
1991; 1994; Lewandowsky 1991; McRae & Hetherington
1993; Murre 1992; Sharkey & Sharkey 1995; Sloman &
Rumelhart 1992), most of which has concluded that in or-
der to reduce catastrophic interference one must reduce
the overlap between the hidden-unit representations that
intervene between particular associated pattern-pairs. This
is, of course, exactly what is achieved by using localist rep-
resentations as intermediates (for a review and a look-up
model similar to that proposed here, see Sharkey & Sharkey
1995).

The problem of catastrophic interference occurs in
backprop networks as a result of the gradient-descent
learning procedure. At any point during learning the net-

work weights are changing to follow a descending trajec-
tory on an error surface in weight-space. The problem oc-
curs because the shape of this error surface depends only
on the patterns in the current learning set – indeed, the
network can only move appropriately in weight-space by
waiting until it has sampled each member of the current
training set before making an “amalgamated” move. A con-
sequence is that this error-reducing move does not take
into account previously learned training sets. The only way
it can do so is by accumulating training sets, so that new
training sets are interleaved with all previous training sets.
Learning in such networks is therefore “off-line” at two
levels. First, any training set must be presented a large
number of times, with small weight changes each time, for
the relevant mapping to be stably learned. Second, to avoid
overwriting, previous training sets must be interleaved
with the current set.

Since the problem of catastrophic interference has been
well described elsewhere (references above), I shall not de-
scribe it further. Rather, I would like to make some obser-
vations regarding a proposal advanced by McClelland et al.
(1995) that has been taken by some as mitigating the prob-
lem of catastrophic interference with reference to brain
function, and hence enhancing the plausibility of fully dis-
tributed modelling. Their proposal is that the hippocampus
permits fast learning of pattern associations on-line, subse-
quently allowing these associated patterns to be replayed to
a fully distributed neocortical learning system off-line, per-
haps during sleep. The presentation of this hippocampally
generated material to the neocortical system is effectively
interleaved with patterns derived from continuing exposure
to the environment and other patterns “reactivated” from
among those already stored in neocortex. The neocortical
system is supposed to be sufficiently slow-learning to avoid
catastrophic interference under these conditions.

The idea of such memory consolidation has its roots in pro-
posals by Marr (1970; 1971) and Squire et al. (1984). Mc-
Clelland et al. add a computational flavour by suggesting
that the dual-store system has evolved in this way so as to
finesse the interference problems of distributed learning
systems. There are several points to be made regarding this
account.

1. For McClelland et al.’s proposal to be viable, the hip-
pocampal system must be able to learn pattern associations
on-line, with minimal interference. They achieve this by the
“use of sparse, conjunctive coding in the hippocampus . . .
[such that] representations of situations that differ only
slightly may have relatively little overlap.” In other words,
in order to support a fully distributed system at the neo-
cortex, they assume what is effectively a localist system in
the hippocampus. This rather weakens arguments in prin-
ciple against localist representations.

2. In their description of the function of the dual-store
system, McClelland et al. tend to confound the idea and
benefits of slow learning with those of slow, interleaved
learning. Slow off-line consolidation of associations learned
by a fast on-line system is appealing, regardless of whether
what is learned in the fast system is interleaved with what
is already present in the slow system. That is, the benefits
of a dual-store system are quite independent of whether in-
terleaved transfer is carried out from one to the other, as
McClelland et al. propose. A dual-store system, with a fast
system learning the individual, contextualized episodes and
a slow system maintaining the more enduring, context-free
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representations (analogous to the exemplar/prototype dis-
tinction described earlier), only demands interleaved learn-
ing if the slow system is prone to catastrophic interference.

3. Following from the previous point, one must be wary
of a superficially tempting train of thought that runs like
this: for a fully distributed neocortical system to avoid cat-
astrophic interference, it must be supplemented by a fast,
localist system; there exists a fast, localist system, embodied
in the hippocampus; therefore the slow neocortical system
is fully distributed. This logic is clearly erroneous, since the
existence of a localist system in the hippocampus says noth-
ing about whether the neocortical system is localist or fully
distributed in nature. Both the fast and the slow systems
might be localist, thus eliminating the problem of cata-
strophic interference in the neocortex without resorting to
the complexities of interleaved learning.

4. Last, and perhaps most important, part of the putative
mechanism of interleaved consolidation seems to be inad-
equate. McClelland et al. maintain that new patterns stored
in hippocampus are potentially interleaved both with pat-
terns encountered during continuous exposure to the envi-
ronment and with other patterns previously learned by neo-
cortex. The former (i.e., the items that are continuing to be
represented environmentally) will presumably be hip-
pocampally stored and consolidated anyway, so their inter-
leaving can be accomplished either indirectly via the hip-
pocampus or directly from the environment. The problem
concerns the source, for interleaving purposes, of those old
patterns which are no longer represented in hippocampus,
but which are stored solely in neocortex (e.g., those patterns
that are hypothesized to survive hippocampal damage in
retrograde amnesia). The dilemma is this: How can those
patterns associations stored in neocortex be used to train
neocortex? There is a basic problem here: an error-based
learning system, such as the one proposed, cannot teach it-
self. This would be rather like asking someone to mark his
or her own homework. First, if the neocortical system is
imagined as a trained BP network (or similar), it is unclear
how one can extract from the network a representative sam-
ple of the input patterns on which it was trained, so that
these might be interleaved during training with the new
hippocampal patterns. Second, even if one could generate
the relevant input patterns, it is unclear how the network
could then, given one of those input patterns, generate both
an output pattern and a different target pattern, as is re-
quired for gradient-descent learning. As these two patterns,
if they are both to be generated by the neocortical system,
will be the same, there will never be any error term to back-
propagate and hence no learning. The old neocortical pat-
terns will remain effectively unconsolidated and hence vul-
nerable to catastrophic interference.

The only way out of this problem seems to be to find some
way of accurately sampling the neocortical store prior to any
perturbing inputs from the hippocampus so as to generate
a training set of input and target patterns that can be
(quickly) stored in some other system and appropriately
used for slow, interleaved learning in the neocortex. Such a
scheme has not yet been proposed, although Robins (1995)
and French (1997a) have suggested similar schemes, where-
by a smaller but somehow representative set of pseudopat-
terns is loaded back from the slow system to the fast system
(i.e., presumably, the hippocampus) so that the neocortical
training set comprises a hippocampally generated mixture
of these pseudopatterns with recently acquired patterns.

Disregarding the fact that such schemes seem to provide
less than solid protection to old memories (with 20 to 30 per-
cent loss after only 10 to 20 new intervening patterns, often
using more pseudopatterns than original pattern pairs), they
also seem to imply that all knowledge, old or new, must be
effectively located in a fast-learning system (the hippocam-
pus?), with the older knowledge also stored neocortically.
Although this could be construed as consistent with evi-
dence from animals and humans with hippocampal damage,
it is not consistent with recent data from Graham and
Hodges (1997) and Snowden et al. (1996), who show pre-
served recent memories and impaired distant memories in
patients with semantic dementia who have relative sparing
of the hippocampal complex.

The previous paragraph illustrates some difficulties in
endogenously generating from the neocortex patterns for
interleaving with hippocampally generated patterns during
consolidation to the neocortex. If these criticisms are ac-
cepted, avoiding catastrophic interference will depend
strongly on the assumption that exogenously generated pat-
terns (more particularly, pattern pairs, encountered during
ongoing exposure to the environment) will be representa-
tive of the older contents of the neocortex. Note that for a
localist neocortical system, or indeed for any neocortical
system not prone to catastrophic interference, this con-
straint on the stability of the environment is not required.
Hence in McClelland et al.’s approach a fully distributed
neocortex demands that the environment be largely stable
and the learning rate be very slow. Having arrived at this
conclusion one is tempted to ask: why bother, under these
conditions, with consolidation from hippocampus to neo-
cortex at all? Evidence for consolidation is an important
component of the data evinced by McClelland et al. in sup-
port of their model, but, under conditions of a stable envi-
ronment and a slow-learning neocortex, it is not clear what
role consolidation plays. For example, if it is to hasten the
incorporation of new knowledge into the neocortex, this
will reduce the chances of old knowledge being resampled
from the environment during the period over which this in-
corporation takes place, thus increasing the chances of in-
terference.

7.2. Implausibility of the learning rule

Even if one were to disregard the associated problems of
catastrophic interference and interleaved off-line learning,
there are still considerable doubts about the validity of the
BP learning rule as a brain mechanism. These doubts are
readily acknowledged even by those most associated with
the use of this technique, and this can lead to some rather
curious conclusions:

As an example, they focus on the back-propagation learning al-
gorithm . . . pointing out that it is very implausible as a model
of real learning in the brain. . . . This is, of course, true. . . . But
even this glass is a quarter full: in many cases . . . one is not in-
terested in modelling learning per se, and the so-called learn-
ing algorithm is used to set the weights in the network so that
it will perform the tasks of interest. The term “learning” has ir-
relevant psychological connotations in these cases and it might
be less confusing to call such algorithms “weight setting algo-
rithms.” Unless there is some systematic relationship between
the way the necessary weights are found and the aspects of
model performance under study, which in general we have no
reason to expect, it is harmless to use unrealistic learning algo-
rithms. (Farah 1994a, p. 96)
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Skipping over the fact that the whole localist-distributed
debate gives us every reason to expect a systematic rela-
tionship between the means of learning and the subsequent
performance of the system, it seems that, for Farah at least,
one of the major advantages of connectionism over more
traditional models – that they could provide some account
of how certain mappings are learned by example – is irrel-
evant. Given this quote, would it be legitimate to use con-
nectionist networks as psychological models even if it could
be proved that the weighted connections in those networks
could never have been acquired by a process consistent
with the structure and function of the human brain? And
would “lesioning” such networks and comparing their sub-
sequent performance with that of a brain-injured patient
still be considered appropriate, as it is now?

The question regarding the correspondence of network
models and brain function is a difficult one. It is of course
perfectly justified to use networks as cognitive models, dis-
claiming any necessary connection with actual brains. Hav-
ing done so, however, one is less justified to use those same
networks in simulations of brain damage or in studies in-
volving functional brain imaging. Throughout most of this
article, I have been happy to propose localist models as cog-
nitive models; in the latter sections I hope to have conveyed
some optimism that they might also be appropriate as mod-
els of brain function. The convergence of cognitive and
neural models is, I suggest, a good thing, and seems more
likely to emerge from a localist modelling approach than
any current alternative.

7.3. The dispersion problem

I referred earlier to the so-called “dispersion problem,”
identified by Plaut et al. (1996) as the problem underlying
the poor performance of the Seidenberg and McClelland
(1989) model when applied to nonword reading. Their ba-
sic observation was that in Seidenberg and McClelland’s
distributed representation of, say, orthographic onset clus-
ter, the fact that an L is present, with the same associated
pronunciation, in the words “Log,” “Glad,” and “Split” is
utterly concealed by the representational scheme used for
orthography (in this case so-called Wickelfeatures). As
noted earlier, Plaut et al.’s solution was to adopt a com-
pletely localist representation of input orthography and
output phonology. Is dispersion a general problem with
distributed representations? Moving up a hierarchical
level, as it were, will we see a similar problem when we
wish to represent sentences in relation to their constituent
words? Suppose we have a scheme for representing the
sentence “John loves Mary” in which neither “John” nor
“Mary” nor “loves” are locally represented. Will the simi-
larity between this sentence and the sentences “Mary loves
John” or “John loves Ann,” or the novel sentence “John is
celebrating his 30th birthday today,” be concealed by such
a representational scheme? It is clearly difficult to answer
this question for all such distributed schemes, but the re-
lated issues of systematicity and compositionality in con-
nectionist models are identified by Fodor and Pylyshyn
(1988) as being of general concern. While local represen-
tation on its own is not sufficient to address the problems
raised by Fodor and Pylyshyn, the addition of means for dy-
namic binding and inference (see, e.g., Shastri & Ajjana-
gadde 1993) might come closer to providing a satisfactory
solution.

7.4. Problems deciding “when” and “what”

One problem with fully distributed networks which often
gets overlooked in isolated simulations concerns the nature
of the decision at the network’s output. Let us take as an ex-
ample a three-layer BP net trained on the mapping be-
tween distributed patterns representing faces and others
representing their identities. The problem is twofold: how
does the network indicate when it has identified a given 
test face? And how does the network indicate the identity
itself ? Suppose we activate the input pattern correspond-
ing to a given face. Once activation has percolated through
the network, a distributed pattern will be present at the
output. Recognition might be signalled the moment this
pattern is instated, but, if so, what would be the criterion by
which the arrival of an output pattern might be judged? Al-
ternatively, there might be some clean-up process acting on
the output pattern which will take time to settle into an
equilibrium state. But in this case, how will the network sig-
nal that it has arrived at this state? One might speculate that
there is some process overseeing the clean-up system which
monitors its “energy” and signals when this energy reaches
a stable minimum. But what might be the locus of this en-
ergy-monitoring system and how might it function? (For a
computational implementation of a similar scheme based
on settling times, see Plaut et al. 1996.) Even supposing that
the system knows when a stable state has been reached,
how does it surmise which state has been reached? It can-
not “look at” the states of each of the output nodes individ-
ually, since by definition these do not unambiguously iden-
tify the referent of the overall pattern. Thus the
identification system must consider the states of all the
nodes simultaneously and must generate that identity
which is maximally consistent with the current output pat-
tern. But such a system is most obviously implemented us-
ing just the sort of localist decision-process described ear-
lier. Indeed, Amit (1989) has identified just this kind of
localist “read-out” node as an essential adjunct to the dis-
tributed attractor networks with which he has been most
concerned (Amit 1995, pp. 38–43). Advocates of fully dis-
tributed models might claim that all possible actions based
on the identity implied by a given output pattern can sim-
ply be triggered by that output pattern via subsequent fully
distributed networks. I cannot categorically deny this claim,
though it seems rather unlikely to prove feasible in general.

This problem is often obscured in actual simulations us-
ing distributed systems because the identification process
is done by the modeller rather than by the model. A typical
approach is to take the distributed output pattern and cal-
culate which of the learned patterns it best matches, some-
times adding a Luce choice-process for good measure. It
would be preferable to have this functionality built into the
network rather than run as an off-line algorithm. I am not
claiming that fully distributed systems cannot incorporate
such functionality but I have yet to see a specific system that
has successfully done so.

7.5. Problems of manipulation

On a related note, it sometimes proves difficult to manipu-
late distributed representations in the same way that one
can manipulate localist representations. As an example, in
most models of immediate serial recall (e.g., Burgess &
Hitch 1992; 1999; Page & Norris 1998) it proves necessary
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to suppress the recall of items that have already been re-
called. If the items are locally represented, then this can
easily be achieved by suppressing the activation of the rel-
evant node. If the items are represented in a distributed
fashion, however, such that the representations of different
items overlap, it is difficult to suppress one item without
partially suppressing others.

7.6. Problems of interpretation

Fully distributed networks are much more difficult to in-
terpret than their localist counterparts. It is often hard to
explain how a distributed network performs a given map-
ping task. This is not necessarily a problem for the model
qua simulation, but it is a distinct problem for the model
qua explanatory theory. Unfortunately, space does not per-
mit a consideration of this point here but excellent discus-
sions can be found in Forster (1994), Green (1998 and sub-
sequent correspondence), Jacobs and Grainger (1994),
Massaro (1988), McCloskey (1991), Ramsey (1997), and
Seidenberg (1993).

8. Conclusion

This target article has sought to clarify the differences be-
tween localist and fully distributed models. It has empha-
sized how the difference lies not in their use of distributed
representations, which occur in both types of model, but
in the additional use of local representations, which are
only used by the localist. It has been shown, in general,
how localist models might be applied in a variety of do-
mains, noting their close relationship with some classic
models of choice behaviour, stimulus generalization, pat-
tern classification, choice reaction-time, and power law
speed-up with practice. We have discussed how localist
models can exhibit generalization, attractor behaviour, cat-
egorical “perception,” and effects of age of acquisition. Su-
pervised learning of pattern associations via localist repre-
sentations was (re)shown to be self-organizing, stable, and
plastic.

We have considered a number of powerful cognitive
models that are either implemented as, or are transparently
implementable with, localist networks, with an attempt to
defuse some of the more common criticisms of such net-
works. Some of the relevant neuroscientific data have been
surveyed along with areas in which localist models have
been rejected apparently without good cause. Some neuro-
scientific data supportive of a localist approach have been
reviewed, along with some of the reasons a fully distributed
modelling stance may be less promising than the localist al-
ternatives, catastrophic interference being the most serious
among several enduring problems for the fully distributed
approach.

The conclusion is that localist networks are far from be-
ing implausible: They are powerful, flexible, implemen-
table, and comprehensible, as well as being indicated in at
least some parts of the brain. By contrast, the fully distrib-
uted networks most often used by the PDP community un-
derperform in some domains, necessitate complex and im-
plausible learning rules, demand rather baroque learning
dynamics, and encourage opacity in modelling. One might
even say that if the brain does not use localist representa-
tions then evolution has missed an excellent trick.
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NOTES
1. See Bundesen (1993) for a review of independent race mod-

els that have similar properties with regard to the Luce choice
rule. This review came to my attention too late in the preparation
of this target article to allow proper discussion within.

2. Indeed, it is possible to cast the optimal, Bayesian approach
to the decoding of activation patterns on the coding layer, as dis-
cussed and preferred (relative to the weighted vector method de-
scribed above) by Oram et al. (1998), in the form of a localist clas-
sifier of the type discussed earlier. The link relies on formal
similarities between the Luce-Shepard choice rule and Bayes’s
rule as applied to conditional probabilities expressed as exponen-
tial functions. Decoding would comprise a winner-take-all com-
petition over a layer of cells, themselves responding to and classi-
fying the patterns of activation found in the coding layer. Because
each of the cells in the classification layer would respond best to a
given pattern of activation over the coding layer (itself corre-
sponding to a given directional stimulus), and less strongly to more
distant patterns, activations in the classification layer would them-
selves appear to comprise another distributed coding of motion di-
rection, despite being decodable (to give the maximally likely
stimulus-direction) by a simple localist competitive process.
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pecially encouraged.

Localist representation can improve
efficiency for detection and counting

Horace Barlowa and Anthony Gardner-Medwinb

aPhysiological Laboratory, Cambridge CB2 3EG, England; bDepartment 
of Physiology, University College London, London WC1E 6BT, England.
hbb10@cam.ac.uk a.gardner-medwin@ucl.ac.uk

Abstract: Almost all representations have both distributed and localist as-
pects, depending upon what properties of the data are being considered.
With noisy data, features represented in a localist way can be detected very
efficiently, and in binary representations they can be counted more effi-
ciently than those represented in a distributed way. Brains operate in noisy
environments, so the localist representation of behaviourally important
events is advantageous, and fits what has been found experimentally. Dis-
tributed representations require more neurons to perform as efficiently,
but they do have greater versatility.

In addition to the merits Page argues for, localist representations
have quantitative advantages that he does not bring out. The brain
operates in an uncertain world where important signals are always
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liable to be contaminated and masked by unwanted ones, so it is im-
portant to consider how external noise from the environment af-
fects the reliability and effectiveness of different forms of repre-
sentation. In what follows, we shall adopt Page’s definitions of
localist and distributed representation, according to which almost
any scheme or model has both components. In a scheme empha-
sising localist representation, the elements can nonetheless be used
in combinations, and such combinations represent in a distributed
way whatever input events cause them to occur. Similarly in a
scheme emphasising distributed representation, each particular el-
ement is activated by a particular subset of the possible input pat-
terns, and it represents this subset in a localist way; for example, a
single bit in the ASCII code is a localist representation of the some-
what arbitrary collection of ASCII characters for which it is ON. We
shall also assume for simplicity that the brain represents noisy data,
but does not necessarily add noise; of course this is a simplification,
but it is the appropriate starting point for the present problem.

Localist representations and matched filters. The principle of
a matched filter is to collect all the signal caused by the target that
is to be detected, and only this signal, excluding as much as possi-
ble signals caused by other stimuli. In this way the response from
the target is maximised while pollution by noise from nontarget
stimuli is minimised, yielding the best possible signal/noise ratio.
Localist representations of features or patterns in the input data
can be close approximations to matched filters. If the representa-
tion’s elements are linear and use continuous variables, their out-
puts will be the weighted sums of their different inputs. If each
weight is proportional to the ratio of signal amplitude to noise vari-
ance for that part of the input when the desired target is pre-
sented, the element will be a matched filter for that target.

Some neurons in sensory areas of the cortex follow this pre-
scription well, and it makes good sense to regard them as mem-
bers of a vast array of matched filters, each with slightly different
parameters for its trigger feature or optimal stimulus. In V5 or MT
(an area specialising in coherent motion over small regions of the
visual field) the receptive fields of the neurons differ from each
other in position, size, direction, and velocity of their preferred
motion (Felleman & Kaass 1984; Maunsell & Van Essen 1983a;
Raiguel et al. 1995), and preferred depth or disparity of the stim-
ulus (DeAngelis et al. 1998; Maunsell & Van Essen 1983b). It has
been shown that many individual neurons can detect coherent
motion with as great sensitivity as the entire conscious monkey
(Britten et al. 1992; Newsome et al. 1989). Furthermore, human
performance in similar tasks varies with stimulus parameters
(area, duration, dot density, etc.) as if it was limited by the noise
or uncertainty inherent in the stochastic stimuli that are used, so
external noise appears to be an important limit (Barlow & Tripa-
thy 1997). On re-examination it also turns out that external noise
is important in monkey MT neurons (Mogi & Barlow 1998). For
neurons to perform as well as they do, they must have properties
close to those of optimum matched filters, which suggests that the
whole visual cortex is a localist representation of the visual field
using numerous different arrays of filters matched to different
classes of feature. This insight may well apply to all sensory areas
of the cortex and even to nonsensory parts, in which case the cor-
tex would be a strongly localist representation throughout.

Can efficient detection at higher levels always be done by the
weighted combination of inputs from the elements of distributed
representations at lower levels? This would require graded signals
between the levels, and it is doubtful if those passing between cor-
tical neurons have sufficient dynamic range. With binary signals,
and a task of counting occurrences rather than extracting signals
from noise, there is an analogous problem of diminishing the ef-
fects of overlap in distributed representations.

Counting accuracy in localist and distributed representation.
For many of the computations that are important in the brain,
such as learning, or detecting that two stimuli are associated, it is
necessary to count or estimate how often a specific type of event
has occurred. It is easy to see that, because the elements active in
the distributed representation of an event that is to be counted

also respond to other events, the mean response rates of those el-
ements will be greater than the mean responses due solely to the
event to be counted. The average effect of this inflation can read-
ily be allowed for, but in a noisy environment the variance as well
as the mean will be increased, and this cannot be corrected. The
only way to avoid this problem completely would be to have lo-
calist representations for the counted events, though as shown
elsewhere (Gardner-Medwin & Barlow, submitted), distributed
representations can be efficient at counting if they employ enough
elements with sufficient redundancy.

It may be suggested that brains often learn from a single expe-
rience and do not need to count accurately, but such an argument
would be misleading. Efficient statistics are what an animal needs
in order to make correct inferences with the minimum amount of
data collection, and this is more, not less, important when the
number of available trials is low. A system cannot use inefficient
methods of representation if one-shot learning is to occur reliably
when it is appropriate and not when it is not.

The relative merits of localist and distributed representations
are sometimes finely balanced and are discussed in greater detail
elsewhere (Gardner-Medwin & Barlow, submitted). Localist rep-
resentations have the edge in terms of efficiency, but one must
know in advance what needs to be detected and counted, so they
are mainly appropriate for frequent, regularly recurring features
of the environment. In spite of the large numbers of neurons re-
quired, the ability of distributed representations to handle unex-
pected and unprespecified events without ambiguity makes them
better for handling novel experiences.

The principle of local computation. Finally it should be pointed
out that the merit of localist representations stems from the fact
that computation in the brain is done by local biophysical pro-
cesses. Every element of a computation requires a locus in the
brain where all the necessary factors are collected together so that
they can take part in the biophysical process. As an example of the
relevance of this principle, consider the Hebbian assumption about
the locus of learning. Biophysical processes close to a synapse can
readily be influenced by both pre- and postsynaptic activity, since
the required information is present there in the way that the prin-
ciple requires, but it would not be reasonable to assume that dis-
tributed patterns of synchronous activity in remote neurons could
work in the same way. The implied ban on “action at a distance”
may eventually need qualification through better understanding of
neuromodulators and dendritic interactions, but localist represen-
tations have the advantage that they already collect at one element
all the information required for detection and counting; this is what
makes it possible for them to perform these jobs efficiently.

Page ends his manifesto by saying “if the brain does not use lo-
calist representations then evolution has missed an excellent trick.”
Plenty of neurophysiological evidence shows that it has not, in fact,
missed this trick that is so valuable for achieving sensitive and reli-
able detection of weak signals in a noisy background, and for the fre-
quency estimations needed for reliable and efficient learning.
Doubtless evolution has also exploited the advantages that distrib-
uted representation can bring to the handling of the unexpected.

Neurons amongst the symbols?

C. Philip Beaman
Department of Psychology, University of Reading, Reading,
RG6 6AL, United Kingdom. c.p.beaman@reading.ac.uk
www.rdg.ac.uk/AcaDepts/sx/Psych/People/beaman.html

Abstract: Page’s target article presents an argument for the use of local-
ist, connectionist models in future psychological theorising. The “mani-
festo” marshalls a set of arguments in favour of localist connectionism and
against distributed connectionism, but in doing so misses a larger argu-
ment concerning the level of psychological explanation that is appropriate
to a given domain.
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The stance taken by Page in arguing for “localist” representations
in psychological modeling has much to recommend it. Page notes
that many of the models described in the PDP (Parallel Distrib-
uted Processing) books are localist in implementation. Indeed,
prior to the publication of the PDP volumes there were a great
many “localist” psychological theories, although theorists would
perhaps have described themselves as “symbolic” rather than lo-
calist (e.g., Newell 1980).

“Localist” is defined by Page as a model in which one node re-
sponds maximally to a (learned) example of that type. If the qua-
sibiological adherence to the “node” terminology is relaxed (sect.
2.1, para. 1), one could map Page’s terminology readily enough
onto an example of a production rule responding to a particular
condition. On this basis it appears Page is not as isolated in his
opinion as he seems to think. Localist is also a term that can be de-
fined by opposition to “distributed” theories, yet Page explicitly
states that “localist models almost always use both localist and dis-
tributed representations” (sect. 2.6, para. 1). The crux of the ar-
gument then is that fully distributed models, in which each rep-
resentational unit responds to multiple instances of a particular
type, are not as effective and/or useful as localist models in psy-
chological theorising. A major part of the target article is spent 
defending the use of localist representations in connectionist net-
work against imagined attacks of those committed to fully distrib-
uted representations. However, many of the criticisms Page an-
ticipates are neatly circumvented by his original definition that
localist models can use distributed representations. Page thus
buys for himself many of the advantages claimed by advocates of
the distributed representational approach while also retaining the
advantages of localist, symbolic representations. The real question
therefore seems to be, not “What are the advantages of this ap-
proach compared to its competitors?” but, on viewing the situa-
tion overall, does a choice have to be made?

Page’s argument is that there is power in diversity. Within the
same model there is space at one level for localist representations,
and at another level for distributed representations. This is the
“excellent trick” that evolution has not missed. However, the ar-
guments are not entirely consistent. Localist representations are
put forward as computationally useful devices with the implication
that evolution is unlikely to have missed such efficient “tricks”
(sect. 8, para. 3) yet at the same time, it is suggested that the brain
employs some representationally inefficient solutions (sect. 6.2,
para. 2). Although it is possible to reconcile these two arguments
(e.g., by assuming that the representational inefficiency is more
than made up for by the ease with which the representations can
be employed), the apparent inconsistency is noteworthy since it
mirrors a more fundamental inconsistency in the manifesto. The
fundamental inconsistency is that the power in diversity argument
regarding representations in individual connectionist models can
also be applied to psychological theorising as a whole. There is no
need at the present time to make the decision between localist and
fully distributed models, and to make the attempt may be precip-
itous. Within the computational modeling there is space for fully
distributed models and localist models, the trick is to spot which
type of model is most appropriate to which situation.

It may be no accident that much of Page’s previous research was
concerned with models of immediate serial recall that are well-
served by architectures in which a local representation of an
“item” is an appropriate atomic level (Page & Norris 1998) and
manipulations of the item occur. It is instructive to examine this
situation in some detail, as it provides an example of circumstances
in which prior commitment to localist representations becomes
counterproductive.

To model effects of confusion at the phonological level, a more
fine-grained level than coded for by localist item nodes in the Page
and Norris “primacy” model, Page and Norris found it necessary
to posit a two-stage model. In the two-stage model localist item
representations are transferred to a further stage in which confu-
sion over similar items can occur (Fig. 1). The second stage tags
onto the model – a breakdown of the localist item representations

into their constituent phonological parts. This stage is added be-
cause the experimental data demand that such a stage must exist
if one starts with localist item coding: it is not a natural conse-
quence of the model. If a more distributed approach were taken,
one might expect phonological confusions to be an emergent
property of the model, as for example shown in Burgess and Hitch
(1999). This is not to deny that the Burgess and Hitch model is not
also “localist.” The point is simply that by breaking down the rep-
resentations into lower levels initially, the behavior required of the
model emerges as a natural consequence of the representations
chosen, rather than because of post hoc modifications. The diffi-
culty lies in identifying where the behavior required of a model is
contingent upon a certain form of representation, and where is-
sues of representation are incidental.

The central message of the target article – that localist models
be taken seriously – is a tenable one. By the same token, however,
it is also necessary to take other fully distributed and other com-
putational approaches, not addressed here, into account. It seems
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Figure 1 (Beaman). The Page and Norris (1998) account of the
phonological similarity effect. Initial choice of localist “item” rep-
resentations requires an extra stage to be added to the model in
which phonological similarity is computed. Phonological confu-
sion follows naturally from distributed phonological representa-
tions.
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likely that many representational tricks have been exploited by
evolution, some as yet undiscovered and some (perhaps) under-
appreciated.

Some counter-examples to Page’s 
notion of “localist”

Istvan S. N. Berkeley
Department of Philosophy and The Institute of Cognitive Science, The
University of Louisiana at Lafayette, Lafayette, LA 70504. istvan@USL.edu
www.ucs.usl.edu/~isb9112

Abstract: In his target article Page proposes a definition of the term “lo-
calist.” In this commentary I argue that his definition does not serve to
make a principled distinction, as the inclusion of vague terms make it sus-
ceptible to some problematic counterexamples.

In his conclusion (sect. 8), Page tells us that “This target article has
sought to clarify the differences between localist and fully distrib-
uted [connectionist] models.” He makes similar claims in section
6.5.1. In this commentary, I will argue that Page has failed to ad-
equately meet this goal. Page, however, does provide some inter-
esting insight into a novel type of connectionist architecture in the
rest of his paper.

Perhaps a useful place to start is to note that, although in cur-
rent usage, the terms “connectionist” and “PDP” are often used as
synonyms, the two terms once had distinct meanings that marked
different approaches to network modeling. Originally, so-called
“connectionist” models were associated with localist work of Bal-
lard and others, from what Smolensky (1991) calls the “Rochester
school.” [See Ballard: “Cortical Connections and Parallel Pro-
cessing” BBS 9(1) 1986; Smolensky: “On the proper treatment of
connectionism” BBS 11(1) 1988.] Indeed, Smolensky (1991) goes
on to note that the name “PDP” was intentionally chosen as a
name to differentiate the much more distributed work of the “San
Diego School,” from that of the Rochester “connectionists.” The
fact that it has become common to use both terms almost inter-
changeably to describe a variety of approaches to network model-
ing suggests that maintaining this distinction does not serve any
really useful purpose. Moreover, despite Page’s attempts at clari-
fying the distinction, it has still not been shown to be a principled
distinction.

Perhaps the clearest statement of Page’s position (he himself in
sect. 2.6, para. 7, refers to it as a “definition”) runs as follows: “a
localist model of a particular type of entity . . . is characterized by
the presence of (at least) one node which responds maximally to a
given familiar . . . example of that type . . . all familiar examples of
that type . . . being so represented” (sect. 2.6, para. 6).

In order for any proposed definition to be successful, it must in-
clude all objects and entities that intuitively fall within the scope

of a term, while ruling out those objects and entities which fall out-
side the scope of a term. Moreover, a definition should also be
such that it appropriately attributes properties in a manner that is
intuitive. Unfortunately, Page’s definition, as formulated above,
fails to meet these conditions of successful definition. This is per-
haps best illustrated with a concrete example.

Berkeley et al. (1995) describe a network that was trained to de-
termine the validity and type of a set of 576 logic problems, orig-
inally studied by Bechtel and Abrahamsen (1991). Berkeley et al.
(1995) subjected the network to a detailed analysis using what has
become known as the banding analysis technique (see also Berke-
ley 2000; Dawson 1998). One particular hidden unit of their net-
work, hidden unit 8, was discovered to adopt three distinct levels
or states of activation. These three levels of activation, along with
their associated interpretations are illustrated in Table 1.

It appears, intuitively at least, that this unit is localist in nature
and may naturally be interpreted as being a “connective detector”
(indeed, this is the interpretation suggested by Berkeley et al.
(1995). However, following Page’s definition of localist above, al-
though the unit appears to satisfy his criteria for being localist, the
interpretation that should be applied to this unit is that it is an
NOT BOTH . . . AND. . . detector. This is because it is this “fa-
miliar example” to which the node “responds maximally.” Thus, as
formulated, Page’s definition seems to attribute properties incor-
rectly.

Part of the difficulty with Page’s notion of a localist model comes
from the fact that he intends the term “localist” to be applied at
the level of entire models, whereas the properties that distinguish
localist from nonlocalist models are specified at the level of the in-
dividual processing units. Although Page (sect. 2.6, para. 3) sug-
gests that the term “localist” is used with some care and that it is
important to be explicit about the entities under consideration, his
notion of a localist model is still problematic. The difficulty arises
due to the inherent vagueness of the phrase “familiar example”
(see Pelletier & Berkeley 1995).

Consider the case of a simple network trained in the classic
XOR problem. Should the inputs be considered as “localist” or not
for the purposes of Page’s definition? On one interpretation,
where the “familiar example” was taken to be something like “sin-
gle input to a two place function,” the network would appear to
clearly count as being localist. On the other hand, if our “familiar
example” were taken to be something like “inputs to a two place
function,” the network would clearly not count as being localist.
The problematic thing here is that XOR is just a low-order version
of the parity problem. Moreover, parity problems are paradigm ex-
amples of the distributed problem type (see Rumelhart et al.
1986). This is because every single bit must be considered in or-
der to determine the correct response to any particular input.
Thus, it appears, due to the vagueness of the phrase “familiar ex-
ample,” Page’s definition of “localist” fails to rule out even this lim-
iting case.

Although Page’s main discussion of novel network architectures
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Table 1 (Berkeley). Hidden unit activation bands along with the median activation values and range 
for each band and the interpretation supplied, for hidden unit 8 of the logic network described 

in Berkeley et al. (1995; p. 176)

Number of
patterns in Median Activation

Band band activation range Interpretation

A 192 0.03 .0.01 Main Connective is OR
B 192 0.11 0.10–0.13 Main Connective is

IF . . . THEN . . .
C 192 0.82 0.80–0.85 Main Connective is NOT

BOTH . . . AND . . .
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is interesting and useful, He appears to have failed to reach one of
his intended goals: the goal of clarifying the distinction between
localist and fully distributed models. Perhaps he should have used
some other terminology?
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Further arguments in support of localist
coding in connectionist networks

Jeffrey S. Bowers
Department of Experimental Psychology, University of Bristol, BS8-1TN
Bristol, United Kingdom. J.bowers@bris.ac.uk eis.bris.ac.uk/~psjxb

Abstract: Two additional sources of evidence are provided in support of lo-
calist coding within connectionist networks. First, only models with localist
codes can currently represent multiple pieces of information simultane-
ously or represent order among a set of items on-line. Second, recent prim-
ing data appear problematic for theories that rely on distributed represen-
tations. However, a faulty argument advanced by Page is also pointed out.

Page’s demonstration of the power, flexibility, and plausibility of
connectionist models with local representations is an important
contribution and should help bring back this class of models into
the mainstream connectionist literature. In the present commen-
tary, I point out an additional computational argument in support
of his case, as well as describe some recent priming data that ap-
pears to provide further support for localist theories of visual word
recognition.

But first, it should be noted that one of Page’s key criticisms
against distributed representations is mistaken (sect. 7.1). He ar-
gues that connectionist models with distributed codes cannot solve
the stability-plasticity dilemma (or in other words, suffer from cat-
astrophic interference). Although Page explicitly focuses on back-
propagation models when making this criticism, the relevant point
concerning the plausibility of distributed representations is that ex-
isting models that learn distributed representations do not suffer
from this problem. In particular, the original ART network of Car-
penter and Grossberg (1987) that solves the stability-plasticity
problem with localist representations has been extended to cases
in which it learns distributed patterns, in both unsupervised and
supervised learning conditions (Carpenter 1997). It seems, there-
fore, that the stability-plasticity problem is not associated with dis-
tributed representations per se but rather the particular learning
algorithms that tend to be used in the psychological literature.

Still, there are computational reasons to prefer models with lo-
calist representations, at least under some circumstances. A key
point not sufficiently emphasized in the target article is that con-
nectionist models that reject localist coding schemes do not do an
adequate job of representing multiple pieces of information si-
multaneously, nor can they adequately represent order amongst a
set of items. The reason is straightforward. If a pattern of activa-
tion across all the units defines a single concept, then overlapping
two patterns on the same set of units will result in nonsense as there
is no way of deciding which features go with which representation.

Of course, there are connectionist models that do represent
multiple pieces of information simultaneously. But what is inter-
esting to note about these networks is that they rely on localist
codes in order accomplish this function. For example, Hummel
and Holyoak (1997) developed a model of analogical reasoning
that supports the co-activation of multiple semantic representa-
tions by relying on a complex interplay between distributed and
localist codes, where localist representations function to bind to-
gether the semantic features that belong to one representation or
another (thus avoiding the nonsense blends that result in networks

that avoid localist representations). In the domain of phonology,
Page and Norris (1998) and Burgess and Hitch (1999) developed
localist connectionist systems of phonological short-term memory
in which order was represented in terms of the relative activa-
tion level of localist codes (also see Grossberg & Stone 1986; Ni-
grin 1993). Once again, these models depended on localist coding
schemes in order to achieve success.

It might be objected that recurrent networks can store and re-
produce sequences of items, and some of these represent infor-
mation in a distributed fashion. But there are two things to note.
First, these models are often more successful in representing or-
der when the inputs are represented in a localist scheme (e.g., El-
man 1990; cf. Marcus 1998). But more important for present pur-
poses, the ability to represent sequential order in recurrent
networks is the product of slow learning mediated by changes in
the connection weights between units, producing a long-term rep-
resentation of ordered information from the training set. What is
needed to model analogical reasoning or phonological short-term
memory (among many other capacities), however, is an ability to
temporarily activate multiple items in real-time. For example, to
model phonological short-term memory, a network must be able
to reproduce a random sequence of seven or so inputs following a
single presentation of the list, with the information quickly decay-
ing from the system after recall. This function has yet to be mod-
eled within a system that relies on distributed codes. Of course,
the mere fact that current models rely on localist codes to support
these functions does not imply that localist codes are required. But
until a model with distributed codes can perform these computa-
tions, the common rejection of localist coding seems premature.

Finally, let me briefly note one finding reported by Bowers and
Michita (1998) that may pose a problem for models of word iden-
tification that rely on distributed coding schemes, but which can
readily be accommodated within localist approaches. Employing
the lexical decision task, we compared long-term priming for
Japanese words written in the same script at study and test (Kanji-
Kanji or Hiragana-Hiragana) or in visually unrelated script (Kanji-
Hiragana or Hiragana-Kanji). Averaging across the two studies,
same script priming was 28 msec and cross-script priming was 24
msec, a difference that did not approach significance. In addition,
little priming was obtained when items were spoken at study and
written at test (6 msec averaging across studies), suggesting that
cross-script priming was mediated by abstract and modality-spe-
cific orthographic codes. What is important to note about these
scripts is that they do not share any letter-by-letter correspon-
dences, as the individual characters in Hiragana and Kanji repre-
sent syllables and morphemes, respectively. Accordingly, the only
level at which the two items can map together within the ortho-
graphic system is at the whole word lexical level, typically rejected
by distributed connectionist models of reading (e.g., Plaut et al.
1996; Seidenberg & McClelland 1989). Whether connectionist
models with distributed representations could accommodate
these lexical priming effect seems doubtful (for similar results, see
Brown et al. 1984; Feldman & Moskovljevic 1987).

Neural networks for selection 
and the Luce choice rule

Claus Bundesen
Department of Psychology, University of Copenhagen, DK-2300
Copenhagen S, Denmark. bundesen@axp.psl.ku.dk
axp.psl.ku.dk/~cvc/cb/index.htm

Abstract: Page proposes a simple, localist, lateral inhibitory network for
implementing a selection process that approximately conforms to the Luce
choice rule. I describe another localist neural mechanism for selection in
accordance with the Luce choice rule. The mechanism implements an in-
dependent race model. It consists of parallel, independent nerve fibers
connected to a winner-take-all cluster, which records the winner of the race.
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In the target article, Page proposes a generalized localist model,
which is a fairly simple, lateral inhibitory network. The network
implements a Thurstone (1927, Case V) selection process by
adding (zero-mean, constant-variance, uncorrelated) Gaussian
noise to its inputs and selecting the unit that receives the maximal
noisy input. Page points out that (a) the choice probabilities of a
Thurstone (1927, Case V) selection process are close to probabil-
ities predicted by a Luce (1959) choice rule and (b) the asymptotic
choice probabilities of the Thurstone selection process, ap-
proached under uniform expansion (Yellott 1977) of the choice
sets, are identical to probabilities predicted by a Luce choice rule.
In section 4.2.3, Page states that, to his knowledge, no simple
“neural” mechanism has previously been suggested for imple-
menting selection in accordance with the Luce choice rule. In
note 1, however, Page mentions that “independent race models
. . . have similar properties with regard to the Luce choice rule,”
refers to Bundesen (1993), and suggests that this point should be
further considered. I shall do so.

In the terminology of Bundesen (1987), a race model of selec-
tion is a model in which elements in the choice set are processed
in parallel and selection is made of those elements that first finish
processing (the winners of the race). If processing times for indi-
vidual elements in the choice set are independent random vari-
ables, the model is called an independent race model. There are
close relationships between independent race models and the
Luce choice rule. Under weak, general assumptions, Bundesen
(1993) proved that the Luce choice rule holds for an independent
race model if, and only if, the hazard functions of the processing
times of the elements in the choice sets are mutually proportional
to each other. This implies, for example, that the Luce choice rule
holds if the hazard functions are constant over time (i.e., if the pro-
cessing times are exponentially distributed; cf. Bundesen et al.
1985; Luce & Green 1972). If the hazard functions vary over time,
then the Luce choice rule holds if they vary in synchrony so that
the ratios among the hazard rates are kept constant over time (cf.
Bundesen 1990, Footnote 4; Marley & Colonius 1992). Bundesen
(1993) further proved that, regardless of whether the hazard func-
tions are mutually proportional, the Luce choice rule holds for the
asymptotic choice probabilities approached under uniform ex-
pansion of the choice sets. Apparently, the Luce choice rule holds
asymptotically for any plausible independent race model.

To make a neural network implementation of an independent
race model, we need a device for recording the winner of a neural
race (a firing race among independent neural fibers). Bundesen
(1991) noted that a winner-take-all cluster of the general type pro-
posed by Grossberg (1976; 1980) can be used for this purpose. The
cluster consists of a set of units such that each unit excites itself
and inhibits all other units in the cluster. Suppose that, when the
cluster is initialized, a single impulse from the environment to one
of the units is sufficient to trigger this unit. Also suppose that, once
the unit has been triggered, it keeps on firing because of its self-
excitation. Finally suppose that, when the unit is firing, it inhibits
the other units in the cluster so strongly that they cannot be trig-
gered by impulses from the environment. If so, one can read from
the state of the cluster which unit received the first impulse from
the environment after the cluster was initialized. Thus, the clus-
ter serves as a device for recording the winner of a race.

Neural fibers are stochastic latency mechanisms (McGill 1963).
A typical neural fiber behaves approximately as a Poisson genera-
tor: To a first approximation, the latency measured from an arbi-
trary point of time (corresponding to the starting time of a race)
to the first firing of the fiber is exponentially distributed. A set of
parallel, independent nerve fibers (Poisson generators) connected
to a winner-take-all cluster for recording the fiber that fires first
(the winner of the race) forms a neural mechanism for imple-
menting selection in strict accordance with the Luce choice rule
(Bundesen 1991). This implementation of selection by the Luce
choice rule is the most simple I can imagine. Approximations to
selection by the Luce choice rule are obtained if the network is
elaborated so that responses are based on the fiber that first

reaches a criterion of having fired g times, where g . 1 (gamma
race models in the terminology of Bundesen 1987). Other ap-
proximations to selection by the Luce choice rule are obtained if
the network is elaborated so that responses are based on the fiber
that first reaches a criterion of having fired d times more than any
other fiber, where d . 1 (random-walk models; cf. Bundesen &
Harms 1999; Logan 1996).

The many ways to distribute 
distributed representations

A. Mike Burton
Department of Psychology, University of Glasgow, Glasgow, G12 8QQ,
United Kingdom. mike@psy.gla.ac.uk
www.psy.gla.ac.uk/~mike/home.html

Abstract: Distributed representations can be distributed in very many
ways. The specific choice of representation for a specific model is based
on considerations unique to the area of study. General statements about
the effectiveness of distributed models are therefore of little value. The
popularity of these models is discussed, particularly with respect to re-
porting conventions.

Page’s localist manifesto does great service to the psychology com-
munity. He brings together a set of arguments which have previ-
ously existed largely as asides or unarticulated hunches accompa-
nying certain modelling research. While agreeing with Page’s
analysis, I will make two additional comments, the first on a tech-
nical aspect of distributed representations, and the second on the
reason for their appeal.

If we are told that a particular representation is distributed,
then we know almost nothing about it. There is an important sense
in which all localist models are alike, but all distributed models are
distributed after their own fashion. Properties usually attributed
to distributed representations, such as generalisability and grace-
ful degradation, are in fact properties of specific representations,
distributed in particular ways, for the purposes of a specific model.
Learning algorithms designed to acquire a range of representa-
tions are designed to optimise the representational capacity of a
particular network, given the range of representations required.
Consider two of the influential connectionist models discussed by
Page, the model of word recognition by Seidenberg and McClel-
land (1989) and the model of deficits in person recognition by
Farah et al. (1993). These two models have such radically differ-
ent learning algorithms, resulting in such different representa-
tions, that they seem to relate to each other not at all. It is certainly
true that both represent information as patterns of activation
across a simple set of processing units, and this is a beguiling sim-
ilarity. However, the similarity is at surface level only. The under-
lying method by which unit activations are assigned a role in any
given representation is so different in the two models, that they
cannot be considered to share very much in common.

Despite the heterogeneity of distributed models, they are very
often represented as providing general properties, and especially
properties which emerge as a direct result of their distributed na-
ture (e.g. see Farah 1994b). Since each distributed model achieves
these properties in a different way, there is no general reason to
be impressed by the approach. Instead, one must evaluate mod-
els individually.

In contrast, localist models are much more severely con-
strained. If one wants to build a model of (say) familiar person
recognition, then it is clear that one must include a specific rep-
resentational primitive corresponding to (say) Bill Clinton. Given
that all localist models will have to include this representation, one
is able to choose between models on the basis of how well they are
structured, and how well they capture the data, rather than need-
ing to enquire whether model behaviour is an artefact of the par-
ticular representational primitives one has chosen to use. Page
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correctly points out that many localist models have a distributed
component. In the person recognition case, it would be absurd to
suggest that one could arrive at a satisfactory model without front-
end primitives which are distributed over inputs (e.g., pixels, or
retinal activations). Some models of face recognition include these
input representations, which are distributed, as well as localist
representations of the “Bill Clinton” form (Burton et al. 1999). To
my knowledge, no localist modeller has ever denied that big things
are made up of little things. What divides localist and distributed
modellers is whether we need explicit representations of “things”
at all. Developments of these arguments can be found in Young
and Burton (1999), and in subsequent discussion by O’Reilly and
Farah (1999) and Burton and Young (1999).

Page asks why localist representations have not been popular
recently, and lists some common misconceptions. There is a fur-
ther point to add here. Psychologists have traditionally found it
rather hard to evaluate models. There is a marked contrast be-
tween presentation of experimental work, and presentation of
modelling work. Almost any trained psychologist, on reading an
experimental paper, could replicate the experiments reported.
There are two reasons for this. First, the psychologist will have
been trained in experimental techniques and the analysis of data.
Second, publication conventions have evolved which require de-
tailed exposition of methods.

Unfortunately, it is much harder to reproduce simulations from
the literature. Very many psychologists have not been trained in
simulation techniques. University programmes in psychology em-
phasise empirical methodology, in many cases exclusively. This
leaves researchers poorly equipped to evaluate claims made by
computer modellers, or to replicate the models reported. Further,
the reporting conventions concerning publication of simulations
are not remotely as sophisticated as those for publication of em-
pirical work. This often means that insufficient information is pro-
vided to allow replication, even for those with the technical train-
ing to do so.

The problem in evaluating models means that one can some-
times be impressed by the behaviour of a model one does not fully
understand. Models, when demonstrated, certainly have an im-
mediacy which can make them more compelling than other forms
of theoretical development. I believe this is a general problem
which results in the evaluation of modelling being much more sus-
ceptible to fashion than the evaluation of empirical work, and this
may account for the popularity of distributed representations over
the past fifteen years. Since this has been rather a critical passage,
I should add that the fault has not lain exclusively with the mod-
ellers. McClelland and Rumelhart (1988) provided an extremely
useful set of software demonstrations, designed explicitly to en-
courage researchers to learn the detailed workings of these mod-
els. It is ironic that some of the most vocal critics of distributed
representations first came to modelling through this software.

These problems of reporting and expertise are not unique to
psychology. McDermott (1981) provides an insightful analysis of
reporting conventions in artificial intelligence, which is still of con-
temporary interest. His proposals include the notion that we can
learn as much from an honest failure as from a working model.
Further, he suggests that textual descriptions of models are no
substitute for working versions, designed in such a way as to allow
detailed inspection. Had these conventions been adopted, it
seems unlikely that distributed representations would have been
so dominant in recent research.

Combining distributed and localist
computations in real-time neural networks

Gail A. Carpenter
Department of Cognitive and Neural Systems, Boston University, Boston, MA
02215. gail@cns.bu.edu cns.bu.edu/~gail/

Abstract: In order to benefit from the advantages of localist coding,
neural models that feature winner-take-all representations at the top level
of a network hierarchy must still solve the computational problems inher-
ent in distributed representations at the lower levels.

By carefully defining terms, demonstrating strong links among a va-
riety of seemingly disparate formalisms, and debunking purported
shortcomings of winner-take-all systems, Page has made a signifi-
cant contribution toward the creation of a functional classification
of the growing array of neural and cognitive models. One important
feature of the target article is a clarification of terminology. For ex-
ample, a model is here labeled “localist” when the representation
at the top level (n) of a network hierarchy is localist (sect. 2.6, para.
1). This definition is based on the logical conclusion that, once a
code representation has reached the limit of winner-take-all com-
pression, additional network levels would be redundant. Con-
versely, any nonredundant localist system would normally have dis-
tributed representations at the lower levels 1 . . . n 2 1. By
considering systems in their hierarchical configurations, Page
shows that models and related data previously viewed as “distrib-
uted” in fact derive essential properties from localist mechanisms.

Page’s hierarchical definition of localist networks implies that
any such system with more than two levels could inherit the com-
putational drawbacks, as well as the benefits, of distributed net-
works. As Page points out (sect. 7.1), many distributed models are
subject to catastrophic interference and require slow learning and
multiple interleaved presentations of the training set. One of my
research goals in recent years has been the development of real-
time neural network systems that seek to combine the computa-
tional advantages of fully distributed systems such as multilayer
perceptrons (Rosenblatt 1958; 1962; Rumelhart et al. 1986; Wer-
bos 1974) with the complementary advantages of localist systems
such as adaptive resonance theory (ART) networks (Carpenter &
Grossberg 1987b; 1993; Carpenter et al. 1991; Carpenter et al.
1992). An initial product of this ongoing project was the distrib-
uted ART (dART) family of neural networks (Carpenter 1996;
1997; Carpenter et al. 1998), which permit fast as well as slow
learning, and distributed as well as localist code representations,
without catastrophic forgetting. Where earlier ART models, in or-
der to help stabilize memories, employed strongly competitive ac-
tivations to produce winner-take-all coding, dART code represen-
tations may be distributed across any number of nodes. In order
to achieve its computational goals, the dART model includes a
new configuration of the network architecture, and replaces the
traditional path weight with a dynamic weight, which is a joint
function of current coding node activation and long-term memory
(LTM). The dART system also employs new learning rules, which
generalize the instar (equation [10], sect. 4.4, para. 3) to the case
where the target node activation patterns at layer L2 may be fully
distributed. The original instar equation implies that, unless learn-
ing is very slow, all weight vectors wj would converge to the same
input pattern a at every location where the target L2 node is ac-
tive (aj . 0). With the distributed instar learning rule, dynamic
weights automatically bound the sum of all LTM changes, even
with fast learning. The computational innovations of the dART
network would allow distributed representations to be incorpo-
rated at levels 1 . . . n 2 1 in a network hierarchy while retaining
the benefits of localist representations at level n.

In contrast to the aim of the dART research program, which is
to define a real-time, stand-alone neural network with specified
properties, the primary aim of the target article is to unify diverse
computational and conceptual themes. In the service of this goal,
the corresponding learning module (sect. 4.1) is, by design, skele-
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tal. However, such a partially specified model might risk being un-
duly rejected on the basis of what it seems not to do, and some of
the model’s properties are subject to misinterpretation if taken at
face value. For example, Page’s localist model permits learning
only at an uncommitted node, which then encodes the current in-
put. The decision whether to activate an uncommitted node de-
pends upon the value of the threshold u, which is somewhat anal-
ogous to the vigilance matching parameter r in an ART model. In
particular: “If the threshold is set slightly lower [than 1], then only
activation patterns sufficiently different from previously pre-
sented patterns will provoke learning” (sect. 4.1, para. 2). Page
points out that this construction would help solve the problem of
catastrophic interference, since coding a new pattern does not af-
fect previous learning at all. On the other hand, this feature might
also be the basis for rejecting this model, and by extension other
localist models, since each category can be represented only as a
single exemplar: there is no opportunity for new exemplars that
correctly activate a given category to refine and abstract the initial
learned representation. In contrast, a more fully specified localist
model could permit controlled learning at committed nodes as
well as at uncommitted nodes, hence creating prototype as well as
exemplar memories while still retaining the ability to resist cata-
strophic interference. Even though this capability is not part of
Page’s simplified model, the possibility of learning at committed
nodes is implied later in the article (sect. 4.5, para. 3): “when at
least one of the associates is learned under low-vigilance (cf. pro-
totype) conditions, remapping of items to alternative associates
can be quickly achieved by rapid reconfiguration of connections
to and from the mapping layer.”

Similarly, a reader may be misled who takes seriously the asser-
tion: “The extension [of the learning module in the target article]
to continuous activations will usually be necessary and is easily
achieved” (sect. 4.1, para. 1). This statement is true, but defining
an extension of the simplified system is not a matter of straight-
forward substitution. In particular, the learning module is defined
only for the case of binary inputs, and the validity of its computa-
tional properties relies implicitly on the assumption that a?a 5 uau
5 iai2, which is true only when a is binary.

In summary, the simplified localist learning module defined by
Page is a valuable tool for unifying and clarifying diverse for-
malisms, but a more complete computational development is
needed to define stand-alone neural network systems that realize
the promise of the localist analysis.

Localist representations 
and theoretical clarity

Norman D. Cook
Faculty of Informatics, Kansai University, Takatsuki, Osaka, 569 Japan.
cook@res.kutc.kansai-u.ac.jp

Abstract: In the Localist Manifesto, Page enumerated several computa-
tional advantages that localist representations have over distributed rep-
resentations, but the most important difference between such networks
concerns their theoretical clarity. Distributed representations are nor-
mally closed to theoretical interpretation and, for that reason, contribute
little to psychology, whereas the meaning of the information processing in
networks using localist representations can be transparent.

Page has clearly demonstrated that localist representations can ac-
complish as much as or more than fully distributed representations,
and obligates us to reconsider the significance of the common, but
facile arguments against the localist approach. Insofar as he argues
that both local and distributed processes are often needed in neural
networks, the manifesto means that modelers should not shy away
from declaring that “this group of cells performs function X” or “rep-
resents information Y.” I have no quarrel with those constructive ar-
guments, but I think that Page has been too gentle on the negative

aspects of fully distributed representations. He hints at the problem
by referring to the “murkiness” of distributed representations (sect.
4.5), noting that “fully distributed networks are much more difficult
to interpret than their localist counterparts” (sect. 7.6) and con-
cludes that they “encourage opacity in modeling” (sect. 8). The rel-
ative clarity of local and distributed representation is important be-
cause the vast majority of neural network simulations in psychology
are devised primarily to facilitate an understanding of brain pro-
cesses. In other words, they are at some level explanatory theories,
and not simply “behavioral” simulations intended to reproduce a
particular data set. For this reason, although the technical advan-
tages of localist modeling and learning algorithms that do not suffer
from dispersion and catastrophic interference may be real, they are
less important than the issue of the clarity of theory. Opacity is the
connectionist’s pregnancy test: a little bit is already too much. Un-
like neural networks used as practical tools – where efficiency can
be a relative measure, no level of murkiness can be tolerated in a 
theoretical model. The specific merit that the neural network
methodology, in general, exhibits is that a highly interconnected,
multineuron network can be constructed and all murkiness studied
and manipulated until the ambiguities are understood and elimi-
nated. Insofar as fully distributed representations allow results to be
obtained without clarifying ambiguities, or permit the modeler to
avoid directly confronting the nature of the information processing
that is taking place, or allow “mysterious” effects that somehow fall
out of a highly complex system, then the explanatory model fails to
provide understanding and does not exploit the strengths that are
uniquely possible in the neural network approach. A model that
does not facilitate understanding is a waste of virtual processing and
real time.

A still-prevalent pitfall of many neural networks is to produce
results that rely crucially on an inability to explain what has oc-
curred (Cook 1995a; 1995b; Cook et al. 1995). It is not a problem
that the model does not explain everything or contains starting as-
sumptions that are themselves debatable; that is always the case
(Cook 1999). It is, however, a problem when unexamined (and, in
the case of extremely large distributed-representations, effec-
tively unexaminable) effects play a crucial role in holding the the-
oretical model together. At the other extreme, a localist model that
requires even something as dubious as a unique “grandmother
cell” (something that Page would say is unnecessary to postulate
within a realistic localist framework) is still to be preferred be-
cause the problems, deficiencies and over-simplifications of the
model are at least made explicit and placed face up on the table.
In contrast, the worst-case distributed representation model will
hide its weaknesses in the nonlocalized representation and allow
the modeler to pretend that something profound has emerged
mysteriously from the complexity of the system.

A simple example shown in Figure 1 illustrates how a localist
representation produces a more transparent understanding of
network dynamics, despite the fact that the computational results
are identical using either local or distributed architectures. Both
nets learned the “harmonicity” of simultaneous musical tones us-
ing similar learning rules and input stimuli, but in Network B a
specific grouping of neurons was implemented and Dale’s Law
(any given neuron will have exclusively excitatory or inhibitory ef-
fects) was enforced. The networks underwent supervised learning
such that the strength of activation of the output neuron corre-
sponds to the degree of musical harmonicity (as determined in
psychophysical experiments). Network B evolved a set of neurons
that have the function of representing various musical concepts.
Certain hidden layer neurons represent dissonance between tone
pairs, others represent tension in three note chords, still others
represent the consonance of tone combinations, and so on. Net-
work B is in effect localist in so far as individual “hidden” neurons
come to represent specific functions. Similar functions are in fact
also realized in Network A, but in a distributed fashion that masks
the cognitive meaning of what the network accomplishes. The ar-
chitecture of Network B was designed with an explicit model of
harmonicity in mind, but even when an explicit model is not the
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starting point of the simulation, enforcement of Dale’s Law, the
local grouping of neurons, and the usage of physiologically plausi-
ble learning rules all work to facilitate local representations and,
as a consequence, theoretical transparency.
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Abstract: We contend that if efficiency and reliability are important fac-
tors in neural information processing then distributed, not localist, repre-

sentations are “evolution’s best bet.” We note that distributed codes are the
most efficient method for representing information, and that this efficiency
minimizes metabolic costs, providing adaptive advantage to an organism.

According to Page, localist representations can be both efficient
and reliable. Specifically, he argues that localist encodings require
fewer computational resources than certain types of distributed
models (e.g., Hopfield networks), they are easier to learn and in-
terpret than distributed representations, and when augmented
with repetition coding, they are robust to both noise and damage.
In this commentary we challenge these claims and suggest that ef-
ficiency and reliability support distributed, rather than localist,
representations yielding an adaptive advantage for an organism by
reducing metabolic costs.

Information theory distinguishes between source coding and
channel coding. Source coding is the process of representing in-
formation efficiently (i.e., with minimal length codes) while chan-
nel coding describes methods for introducing redundancy into a
representation to make it robust to the effects of noise or damage.
Page proposes localist source coding in which individual items are
represented by a single binary unit or neuron. In such a system the
resources required for representing information scale linearly
with the number of items – in other words, the system is O(N)
(read “order N”). In contrast, distributed representations require
only O(log2N) units to represent N items and therefore scale with
the log of the number of units – a dramatic saving in computa-
tional resources. Furthermore there are minimal differences be-
tween these two coding schemes in terms of reliability. In the lo-
calist encoding, an incorrect bit can be detected but not corrected
whereas in distributed representations, the error may not be de-
tected or corrected.

Channel coding is used to both detect and correct errors. In
general, these methods add systematic redundancy to the original
code, improving reliability by increasing the cost of representing
information. Page proposes a scheme in which units are repeated
multiple times. Errors are corrected by taking a majority vote. For
example, if each unit is repeated five times then noise which al-
ters up to two bits per item can be corrected. While this technique
is consistent with his “localist manifesto,” it is not particularly ef-
ficient. More efficient channel coding schemes (e.g., Hamming
coding) exist that add new units to a representation based on co-
occurrence information (i.e., multiple active units). Of course, for
co-occurrences to exist, the original pattern cannot be localist.

To reiterate, efficient source and channel coding techniques in-
volve distributed, not localist, representations. In source coding,
the efficiency of the representation is dramatically improved –
from O(N) r O(log2N). In channel coding, the improvement is
less dramatic but the most efficient codes rely on distributed rep-
resentations.

Page raises three objections to this type of efficiency. First, “this
notion of efficiency will count for nothing if the process by which
the mapping must be learned is not only inefficient but also rather
implausible” (sect. 6.2). Second, localist representations are more
comprehensible than distributed codes. Finally, “efficiency in
modelling, particularly when arbitrarily defined, is not necessarily
an aim in itself” (sect. 6.2). We will focus primarily on this final
point and only briefly address the other two issues.

Is efficiency per se beneficial to living organisms or just to satel-
lite communications? The brain has evolved to perform certain
functions and thus the efficiency of representations – in terms of
number of neurons and robustness in the face of noise and dam-
age – may not be of primary importance from a functional per-
spective. However, since the brain is one of the most energy-de-
manding organs of the body, adopting representations that reduce
the metabolic demands associated with neural processes will al-
most certainly have survival value for an organism (Laughlin et al.
1998).

The metabolic costs associated with neural information pro-
cessing come in two forms, the baseline metabolic costs of main-
taining neurons and the additional costs incurred by neural activ-
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Figure 1 (Cook). Two networks that have been trained to learn
the harmonicity of simultaneous tones. Network A has a distrib-
uted representation of all musical concepts – the relationships
among which remain indecipherable in the network. In contrast,
Network B learns the same data, but the qualitative and quantita-
tive relationships among dissonance, chordal tension, and conso-
nance are evident in the trained network. Here, grouping of neu-
rons and enforcing Dale’s Law are sufficient to give Network B a
localist representation of the musical concepts that presumably
Network A also learned. The networks are functionally identical,
but the localist version has potential significance for the psychol-
ogy of music that the distributed version lacks.
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ity. Localist representations increase the number of neurons re-
quired for information processing but decrease the average activ-
ity of individual neurons. Distributed representations do the op-
posite. Since baseline synaptic activity represents up to 75% of
resting glucose utilization of the brain (Phelps et al. 1979), it is
likely that significant reductions in metabolic cost can be obtained
by minimizing the number of neurons. Hence efficient distributed
representations will minimize metabolic costs.

Page raises two additional objections to this notion of effi-
ciency: comprehensibility and learnability. Presumably both will
be addressed in other commentaries so we will limit our response
to two brief comments. First, although localist representations
are often transparent and therefore can be interpreted by an out-
side observer much more readily than distributed representa-
tions, the important point to remember here is that this is not the
purpose of neural representations. Instead, their purpose is to of-
fer the maximal adaptive advantage to an organism. Second, Page
claims that learning distributed representations is both ineffi-
cient and implausible. However, if McClelland et al. (1995) the-
ory of complementary learning systems is correct, then the meta-
bolic costs of maintaining a hippocampus must be outweighed by
the massive reduction in neocortex which it allows. Furthermore,
although backpropagation may be biologically implausible, more
realistic algorithms do exist (e.g., Hinton et al. 1995). Thus learn-
ing distributed representations need not be an insurmountable
problem.

In conclusion, we contend that both efficiency and reliability
lead one to adopt distributed, not localist, representations. Dis-
tributed codes minimize metabolic costs and therefore provide an
adaptive advantage to an organism. Let us be clear. We are not
suggesting that the brain uses an efficient coding scheme because
it is theoretically optimal. Instead, our claim is that evolution has
developed schemes to help minimize the metabolic cost of neural
computation. This is achieved through the use of sophisticated en-
coding schemes resulting in the use of distributed representations.
Page (sect. 8) claims “that if the brain doesn’t use localist repre-
sentations then evolution has missed an excellent trick.” We would
like to suggest, however, that if efficiency and reliability are im-
portant factors in neural information processing, then distributed,
not localist, representations are evolution’s best bet.
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The case against distributed representations:
Lack of evidence

Simon Farrell and Stephan Lewandowsky
Department of Psychology, University of Western Australia, Nedlands, W.A.
6907, Australia. {simon; lewan}@psy.uwa.edu.au
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Abstract: We focus on two components of Page’s argument in favour of
localist representations in connectionist networks: First, we take issue with
the claim that localist representations can give rise to generalisation and
show that whenever generalisation occurs, distributed representations are
involved. Second, we counter the alleged shortcomings of distributed rep-
resentations and show that their properties are preferable to those of lo-
calist approaches.

Page eloquently extolls the virtues of localist representations and
their presumed superiority over distributed representations in
connectionist networks. We focus on two aspects of the argument:
First, we contend that generalisation cannot occur without in-
volvement of distributed representations. Second, we refute six
objections levelled against distributed representations.

Localist representations do not generalise. Page identifies a

representation as localist if it is “possible to interpret the state of
a given node independent of the states of other nodes” (sect. 2.2.,
para. 7). For example, the representations {0, 1} and {1, 0} for
items A and B would be considered localist, whereas {0, 1} and
{1, 1} would be considered distributed. Critically, Page advocates
a hybrid approach that “supplements the use of distributed rep-
resentations . . . with the additional use of localist representations”
(sect. 1, para. 3). In support, he presents a generic “localist” net-
work that exhibits a number of desirable properties, among them
the ability to generalise a learned response to noisy input. Critics
have often questioned whether localist representations are capa-
ble of generalisation, so its occurrence in a localist network de-
serves scrutiny.

We contend that the network’s ability to generalise arises en-
tirely from the use of distributed representations at the input layer
which “reflect, in a graded fashion, the degree of similarity that
the current input shares with each of those learned patterns” (sect.
4.3.1, para. 2). Localist representations, as defined by Page, are
necessarily orthogonal to each other. Hence, the graded similarity
that Page identifies as critical for generalisation is inextricably
linked to the presence of distributed representations at the input
layer.

Although this supports our claim that generalisation requires
distributed representations, other research shows that they need
not be confined to the input layer. Hinton (1986) presented a mul-
tilayer network in which representations at the input layer were
strictly localised whereas the hidden layer used distributed repre-
sentations. The network was found to exhibit meaningful general-
ization. Subsequent analysis of the activation profiles of the hidden
layer confirmed the crucial role of distributed representations.

Distributed representations resist objections. Page attributes
six deficiencies to distributed representations (sects. 7.1–7.6), all
of which revolve around the overlap of representations at the hid-
den layer. We counter these objections as follows.

7.1. Catastrophic interference. We concur with Page that inter-
leaved learning, in particular as instantiated by McClelland et al.
(1995), is not a preferred solution to catastrophic interference. We
also agree that elimination of catastrophic interference requires
minimisation of the overlap between representations at the hid-
den layer. However, it does not follow that localist representations
are therefore preferable. First, as alluded to by Page, distributed
solutions other than interleaved learning exist that reduce cata-
strophic interference (for a review, see Lewandowsky 1994). Sec-
ond, localist solutions to the interference problem, as for example
provided by ALCOVE (Kruschke 1992), have been shown to en-
gender impaired generalisation (Lewandowsky 1994). By con-
trast, all available distributed solutions to interference are known
to retain their ability to generalise (Lewandowsky 1994).

A careful consideration of catastrophic interference and gener-
alisation therefore points to an advantage of distributed over lo-
calist representations.

7.2. Implausibility of the learning rule. This criticism rests en-
tirely on the biologically dubious nature of the gradient-descent
algorithm in back-propagation. However, other distributed learn-
ing rules, such as Hebbian learning, have been directly supported
by biological research (e.g., Kelso et al. 1986). Moreover, at a psy-
chological level, direct empirical support for distributed repre-
sentations has been provided by the plethora of studies that have
confirmed the predictions of the Rescorla-Wagner theory of learn-
ing (e.g., Shanks 1991). An essential element of the Rescorla-
Wagner theory is that stimuli (e.g., in a categorisation task) are
represented by ensembles of attributes or features.

7.3. The dispersion problem. Can distributed representations
capture the similarity between sentences such as “John loves
Mary” and “Mary loves John”? (sect. 7.3, para. 1). In agreement
with Page, we find this question difficult to answer for all possible
distributed schemes. However, we note that distributed linguistic
parsers have been implemented that address this problem (e.g.,
Miikkulainen 1996). It follows that distributed schemes are not at
a selective disadvantage in handling the dispersion issue.
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7.4. Problems deciding “when” and “what.” In many distributed
networks, a response is identified by some extraneous process
“done by the modeller rather than by the model” (sect. 7.4, para.
2). Page correctly identifies this as a serious problem. However,
the solution to the problem need not be localist. Distributed net-
works that can unambiguously identify a response, without any ex-
traneous mechanism or any of the other objections raised by Page,
have been presented by Lewandowsky (1999), Lewandowsky and
Farrell (in press), and Lewandowsky and Li (1994).

7.5. Problems of manipulation. Contrary to the claim in the tar-
get article, response suppression can demonstrably be accom-
plished in a distributed network using (Hebbian) “anti-learning”
(e.g., Lewandowsky, in press; Lewandowsky & Li 1994). Page is
correct in assuming that other items might be affected to the ex-
tent that they are similar to the suppressed target, but there is no
evidence that this does not occur empirically. Indeed, this sup-
pression of “neighbours” might explain why similar list items suf-
fer more during serial recall than dissimilar ones.

7.6. Problems of interpretation. We agree that distributed mod-
els are more difficult to interpret than those with localist repre-
sentations. This is because distributed models, unlike localist
schemes, are capable of restructuring the input in interesting and
novel ways that may at first glance escape interpretation.

Consider the distributed network presented by Hinton (1986).
The network learned a set of input-output patterns whose seman-
tic structure was not captured by the localist input and output rep-
resentations. Through supervised learning alone, the network was
found to organise its hidden layer into a distributed representa-
tion that captured the underlying semantic structure. While it re-
quired some analysis to visualise that distributed representation,
the very fact that it was not immediately obvious implies that the
network learned something novel and interesting.

Conclusion. We concur with Smolensky (1990) that represen-
tation is “crucial . . . , for a poor representation will often doom the
model to failure, and an excessively generous representation may
essentially solve the problem in advance” (p. 161). Unlike Page,
we do not believe that localist representations are inherently
preferable to distributed approaches. The alleged flaws of distrib-
uted schemes cited by Page are in fact desirable properties.

Why localist connectionist models 
are inadequate for categorization

Robert M. French and Elizabeth Thomas
Psychology Department (B32), University of Liège, 4000 Liège, Belgium;
Institut Léon Frédéricq, University of Liège, 4000 Liège, Belgium. {rfrench;
ethomas}@ulg.ac.be www.fapse.ulg.ac.be/Lab/cogsci/rfrench.html

Abstract: Two categorization arguments pose particular problems for lo-
calist connectionist models. The internal representations of localist net-
works do not reflect the variability within categories in the environment,
whereas networks with distributed internal representations do reflect this
essential feature of categories. We provide a real biological example of per-
ceptual categorization in the monkey that seems to require population
coding (i.e., distributed internal representations).

Despite Page’s bold frontal assault on distributed connectionism,
we wish to point out what appear to us to be two significant prob-
lems with this type of localist network.

The problem of category variability. Consider two categories,
“fork” and “chair.” The variability within the first category is very
low: there just aren’t that many different kinds of forks. Chairs, on
the other hand, come in all different shapes, sizes and materials:
they range from beanbag chairs to barstools, from overstuffed
armchairs to rattan chairs, from plastic lawn chairs to that paragon
of ergonomic design, the backless computer chair that you kneel
on; some have four feet, some three, some none; some have backs,
some don’t; some are made of metal, others plastic, others wood,

others, cloth and Styrofoam pellets, and so on. In other words, the
variability within the category of chair is enormous.

But in the localist model proposed by Page, and in localist mod-
els in general, this information about category variability is lost.
In distributed models, it takes more hidden nodes to encode a cat-
egory with high-variability than one with low variability. In other
words, the internal representations reflect external category vari-
ability. However, the category nodes in localist networks are un-
able to reflect this differential variability-in-the-environment of
various categories. The one-node internal “representation” corre-
sponding to the extremely low-variability category “fork” is pre-
cisely the same as the one-node internal representation corre-
sponding to the highly variable category “chair.”

Why is this a problem? Most significantly, because of the well-
documented fact of category-specific losses: in general, naming of
inanimate objects is found to be better preserved than naming of
animate objects (Farah et al. 1996; Funnell & Sheridan 1992; War-
rington & Shallice 1984). A model with distributed internal rep-
resentations can handle this problem quite simply: low-variance
categories (e.g., many natural kinds categories, like cat, horse, etc.)
are encoded over fewer “units” than high-variance categories (e.g.,
many artificial kinds categories, like chair, tool, etc.) Random le-
sioning of the model will be more likely, on average, to destroy the
representation of a category with low-variability (e.g., natural
kinds categories) that is coded over a small number of units than
a high-variability category (e.g., artificial kinds categories) coded
over a large number of units. Localist models in which all the cat-
egory nodes are the same will have considerable problems ex-
plaining category-specific deficits of this kind, especially when the
featural inputs to the internal category representations remains in-
tact. If, on the other hand, we assume differing degrees of vari-
ance associated with the internal encoding of different categories,
these kinds of deficits can be predicted in a straightforward man-
ner, as French (1997b) and French and Mareschal (1998) have
shown using a dual-network architecture based on the hippocam-
pal-neocortical separation proposed by McClelland et al. (1995).

As Page points out in his target article, we have argued for the
necessity of “semi-distributed” representations in connectionist
models for many years. But “semi-distributed” does not mean lo-
calist. “Semi-distributed” representations preserve category vari-
ance information; localist representations do not. Further, it
seems crucial to us that these semi-distributed representations
emerge as a result of learning.

Biological category representations. Page is right in pointing
out that some of what is called population or ensemble coding in
biological systems can be viewed as localist. For example, even
though broadly tuned, cells of the motor cortex have their maxi-
mum activity tuned to a particular direction (Georgopoulos et al.
1993). One should therefore be able to ascertain the direction be-
ing represented by looking at the activity of individual neurons (or
very small groups of neurons). However, an example of a cogni-
tively relevant task that cannot be achieved in this fashion can be
found in the anterior temporal cortex. Vogels (1999) reports on the
responses of cells in this area during a tree, non-tree categoriza-
tion task by a monkey. Most of the cells were stimulus selective,
(i.e., they did not respond to all of the presented stimuli) and re-
sponded to both trees and non-trees. The maximum response of
these neurons was not tuned to either category. Even though it
was the case that certain (category-selective) neurons responded
to particular subsets of tree exemplars, no individual neuron (or
small set of neurons) responded to all of the presented trees, while
not responding to any non-tree. These category-selective neurons
alone did not appear to play an important role in the categoriza-
tion performance of the monkey (Thomas et al. 1999). In other
words, population coding was necessary for the monkey to cor-
rectly categorize all exemplars in the test set.
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Some cautionary remarks on the 
“localist model” concept

Richard M. Golden
Cognition and Neuroscience Program, School of Human Development,
GR4.1, University of Texas at Dallas, Richardson, TX 75083-0688.
golden@utdallas.edu www.utdallas.edu/~golden

Abstract: The notion of a “familiar example” used in Page’s definition of
a “localist model” is shown to be meaningful only with respect to the types
of tasks faced by the connectionist model. It is also shown that the model-
ing task ultimately dictates which choice of model: “localist” or “distrib-
uted” is most appropriate.

For the most part, I applaud Page on an excellent article. He cor-
rectly points out that localist representations have unfairly re-
ceived a bad reputation. Page also correctly notes that localist rep-
resentations not only can yield insightful and interpretable
psychological theories, but neurally plausible theories as well.

In section 2.6, paragraph 2, Page also emphasizes that a model
with a “localist representation” is not necessarily a “localist model”
and suggests that “a localist model . . . is characterized by the pres-
ence of (at least) one node which responds maximally to a given
familiar . . . example of that type, . . . all familiar examples of that
type being so represented.” I agree that a model with a “localist
representation” is not necessarily a “localist model,” but the no-
tion of “localist model” as developed in the target article needs to
be more carefully clarified before it can be practically used. I will
illustrate those aspects of the “localist model” concept which I be-
lieve require clarification by considering the classic interactive ac-
tivation (IA) model of context effects in letter perception (Mc-
Clelland & Rumelhart 1981).

The terminology “pseudoword” in the following discussion will
be used to refer to a string of letters that does not form a word yet
has perceptual similarities common to words. A “nonword” will be
defined as a string of letters that does not form a word and is not
a pseudoword. An important finding in the literature concerned
with context effects in letter perception is that letters in pseudo-
words are perceived more efficiently than letters in nonwords.
Page refers to the IA model as a localist model and with respect
to processing tasks involving the processing of a letter in the con-
text of word (or nonword), I would agree with him. However, con-
sider the case where a letter is processed in the context of a pseu-
doword. If the pseudoword letter string THIM is presented to the
IA model, the word units THIS and SHIM might both become
moderately activated, while the word units COME and THAT
might be weakly activated. Here, it seems reasonable to consider
the pattern of activation over all of the word units (and possibly
the letter units as well) as a distributed representation of the con-
cept THIM. That is, the IA model exploits its familiarity with
pseudoword concepts represented, not as localistic activation pat-
terns, but as distributed activation patterns.

This example suggests that, in practice, care must be paid to
carefully defining the concept “familiar example.” If a word is con-
sidered to be a “familiar example,” then the IA model is a localist
model according to the definition in the target article. If a pseu-
doword is considered to be a “familiar example,” then the IA
model is not a localist model since it employs distributed repre-
sentations of pseudowords as well as local representations of
words. One might argue that pseudowords are not technically “fa-
miliar examples,” but the notion of familiarity really needs to be
tied to what knowledge is embedded in the system as opposed to
the relative frequency of events in the external environment.

Golden (1986) introduced a version of the IA model which was
less localist in the sense that it consisted only of units that were
“letter position specific feature detectors.” That is, each unit was
assigned a semantic interpretation of the form “horizontal line
segment present in the third letter of the four letter word” or “ver-
tical line segment present in the first letter of the four letter word.”
In the initial stages of learning, all units responded independently

but as learning progressed, Golden’s distributed IA model learned
to exploit orthographic regularities in letter strings. Golden’s
model could account for letters being perceived more efficiently
in the context of words and pseudowords relative to the context of
nonwords.

Would Golden’s model be considered a “localist” or “distrib-
uted” model? If one considers the “familiar examples” to be “let-
ter position specific features” then Golden’s model would be con-
sidered localist, but such a definition seems unsatisfying since the
model’s behavior is guided by its familiarity with the likelihood of
particular spatial configurations of “letter position specific fea-
tures” which make up “letter position specific letters” and
“words.” Thus, the essential “familiar examples” really are letters
and words and in this sense Golden’s model would be considered
a distributed model.

Furthermore, one could argue that Golden’s distributed model
is neurally plausible since evidence of retinotopic cortical maps is
consistent with the idea of spatial position specific feature detec-
tors. So by this argument one might conclude that here is an ex-
ample of a distributed model which provides a nice neurally plau-
sible psychological account of how experience with letters in
words could give rise to an explanation of the word superiority ef-
fect in a way that the original IA model could not.

In summary, I have tried to make two key points. First, the con-
cepts of a “localist model” and a “distributed model” as introduced
in the target article are largely dependent upon the notion of a “fa-
miliar example.” Therefore, the notion of “familiar example” must
be carefully considered within the context of the model’s behav-
ior. And second, although I agree “localist modeling” assumptions
are generally preferable for theory development in psychology,
the modeling task ultimately dictates which choice of model: “lo-
calist” or “distributed,” is most appropriate.

Localist but distributed representations

Stephen Grossberg
Department of Cognitive and Neural Systems, Boston University, Boston, MA
02215. steve@bu.edu www.cns.bu.edu./Profiles/Grossberg/

Abstract: A number of examples are given of how localist models may in-
corporate distributed representations, without the types of nonlocal inter-
actions that often render distributed models implausible. The need to an-
alyze the information that is encoded by these representations is also
emphasized as a metatheoretical constraint on model plausibility.

Page presents a much-needed analysis of trade-offs between mod-
els such as back propagation (BP) which use purely feedforward
yet nonlocal interactions, and models such as Adaptive Resonance
Theory (ART) which use both feedforward and feedback interac-
tions that obey local constraints. It needs to be emphasized that
“localist” models do not necessarily compute winner-take-all cat-
egories, even though such categories have powerful computa-
tional properties; for example, Carpenter and Grossberg (1991).
A key concern is that distributed models such as BP are defined
by mechanisms whose information is not locally computed with
respect to the underlying network architecture. This is biologically
implausible and also hampers their implementation as VLSI chips.

Masking Fields (Cohen & Grossberg 1986; 1987; Grossberg
1978a; 1986) provided one early example of a competitive “local-
ist” network that does not necessarily compute winner-take-all
categories. Rather, it is a multiple-scale network that can “weigh
the evidence” for representing multiple parts of an input pattern,
with the various part representations activated to different de-
grees. Masking fields were introduced to explain how, under un-
supervised learning conditions, an unfamiliar grouping of familiar
items can ever overcome the salience of the familiar item repre-
sentations so that a new representation of the unfamiliar grouping
can be learned. This problem arises in both visual object recogni-
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tion and speech recognition. A masking field does this by giving
the chunks that represent larger groupings, up to some maximal
length, a prewired competitive advantage over those that repre-
sent smaller groupings. It was shown how this bias could develop
from simple developmental growth laws (Cohen & Grossberg
1986). The network clarifies how the most predictive chunk can
be maximally activated, while less predictive chunks are less acti-
vated, and chunks with insufficient evidence are merely primed.
Such a network naturally explains such data as the Magic Number
Seven (Grossberg 1978a; 1986; Miller 1956), and predicted data
about the word length effect (Samuel et al. 1982; 1983), which
shows that a letter can be progressively better recognized when it
is embedded in longer words of lengths from 1 to 4. This is the
speech analog of the word superiority effect, which it also explains,
unlike the Seidenberg and McClelland (1989) model. Masking
fields have recently been used, within an ART framework, to
quantitatively explain data about how future word sounds can re-
organize conscious percepts of earlier word sounds (Grossberg &
Myers 1999; Repp et al. 1978). None of the distributed models
mentioned by Page can explain these data. More recent develop-
ments of ART continue to analyse how a network can automati-
cally discover, through incremental learning in real time, the op-
timal level of compression with which to represent different input
environments.

Page mentions “binding” as one means of generating distrib-
uted representations. One mechanism for this is the horizontal
connections that exist in neocortex, notably in layers 2/3. Recent
modeling work has clarified how bottom-up, horizontal, and top-
down interactions interact within the laminar circuits of neocor-
tex, notably visual cortex, to bind together distributed activations
into coherent boundary representations (Grossberg 1999; Gross-
berg & Raizada 1999). This work opens the way toward the very
large task of showing how distributed information may be coher-
ently bound in other parts of sensory and cognitive neocortex.

Page notes that both view-specific and view-invariant repre-
sentations of familiar objects can be found in IT cortex. Such rep-
resentations have been shown to self-organize in a number of
ART-based models; see Bradski and Grossberg (1995) for one
such model and related references. A key issue here is that work-
ing memories play a useful role in generating these representa-
tions. These working memories are “distributed,” yet are also
clearly localist.

Page quotes the assertion of McClelland and Rumelhart (1981)
and Rumelhart and McClelland (1982) that their Interactive Ac-
tivation (IA) model is a canonical model “that characterizes the
qualitative behavior of other models.” Actually, the original IA
model had serious defects. These defects illustrate that all localist
models are not created equal, and that one must exercise as much
caution in choosing among them as one does between localist and
nonlocal distributed models. In particular, I early noted that the
IA model had unrealistic processing levels (phonemes, letters,
words) and bottom-up input pathways (both excitatory and in-
hibitory). These properties were inconsistent with key data, and
prevented the model from being able to stably learn from its in-
puts-even though the authors did not attempt to make the IA
model learn (Grossberg 1984; 1987). Later versions of the model
changed these properties to be consistent with previously pub-
lished ART properties; e.g., those in Grossberg (1978a). In this
sense, the IA model is dead, and has been subsumed by ART.
Problems within models like IA can lead people who prefer non-
local distributed models to conclude that their models are better.
A more proper conclusion is that IA was not an adequate model,
localist or not.

Page provides a useful critique of the McClelland et al. (1995)
attempt to explain how interactions between the hippocampus
and neocortex may control learning and memory. He leaves out at
least one issue that I find devastating to all models of this type.
Grossberg and Merrill (1996) provide a critique which builds
upon this concern. It involves the issue of representation, which
is key to all discussions of localist versus distributed coding. In par-

ticular, this model proposes that the hippocampus rapidly encodes
information which is then later transferred to neocortex. But there
is no evidence of which I am aware that the hippocampus can rep-
resent the types of information from vision, audition, and so on,
that would need to be represented there for this proposal to be
plausible. Saying that the information is represented by hip-
pocampus in compressed form does not help, because then one
needs to explain how it gets decompressed in the cortex. I am
amazed that authors of such models have not bothered to respond
to this critique. I hope that it does not take as long as it took the
stability-plasticity issues to get discussed which were introduced
with ART in 1976.

The Law of Practice and localist 
neural network models

Andrew Heathcote and Scott Brown
Department of Psychology, The University of Newcastle, Callaghan, 2308,
NSW, Australia. {heathcote; sbrown}@psychology.newcastle.edu.au
psychology.newcastle.edu.au/

Abstract: An extensive survey by Heathcote et al. (in press) found that the
Law of Practice is closer to an exponential than a power form. We show
that this result is hard to obtain for models using leaky competitive units
when practice affects only the input, but that it can be accommodated
when practice affects shunting self-excitation.

In a recent survey, Heathcote et al. (in press) analyzed the form of
the Law of Practice in 7,910 practice series from 475 subjects in
24 experiments using a broad range of skill acquisition paradigms.
When the practice series were not averaged over subjects or con-
ditions, an exponential function (mean response time, RT 5 A 1
Be2aN, where A is asymptotic RT, B is the amount that learning
decreases RT, and N is practice trials) provided a better fit than a
power function (RT 5 A 1 BN2b) for the majority of cases in
every paradigm. The defining property of an exponential function
is that its relative learning rate, RLR 5 2dRT/dN/(RT 2 A) equals
a constant (a). In contrast, the power function’s RLR decreases hy-
perbolically to zero, RLR 5 b/N. Previous findings in favor of a
power function (e.g., Newell & Rosenbloom 1981) used practice
series averaged over subjects and/or conditions. When exponen-
tial practice series with different rates (a) are averaged, the RLR
of the average decreases, because fast learners (with large a) con-
trol the rate of change early in practice, while slow learners (with
small a) dominate later in practice (see Brown & Heathcote, in
preparation, for detailed analyses of averaging effects). As theo-
ries of skill acquisition model the behavior of individuals, not av-
erages, Heathcote et al. concluded that the “Law of Practice” is
better characterized by an exponential than a power function.
Hence, the power function prediction made by Page’s model does
not accord with recent empirical results.

We believe that an exponential law of practice is extremely dif-
ficult to obtain using Page’s approach to practice effects in com-
petitive leaky integration networks (Equation 5). To see why, con-
sider the time (t) it takes the activation (x(t)) of a leaky integrator
(dx/dt 5 I 2 kx, where I is input and k is leakage rate and x(0) 5
0) to reach a criterion x.

The RLR of (1) with respect to I decreases to zero. If we assume,
as Page does, that practice decreases t by increasing I, the RLR of
(Eq. 1.) with respect to N will decrease to zero unless I(N) $
O(N2) for large N. Such a faster than linear increase in input is dif-
ficult to justify. The increase of I with N is slower than linear for
Page’s “noisy-pick-the-biggest” model. Even if all instances, rather
than just the maximally activated instance, were to contribute to
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I, the increase would be only linear. Page’s simulation results (Fig.
6) indicate that the same power-like effects of increasing I apply
to the time it takes competing leaky integrators to pass an activa-
tion criterion.

However, competitive leaky integrators can account for Heath-
cote et al.’s (in press) findings if practice alters shunting terms,
such as the weights of self-excitatory connections.1 Consider a
two-unit system of the type discussed by Usher and McClelland
(1995), with normalized inputs I and (1 2 I) and linear threshold
transfer functions:

dx1/dt 5 I 2 (k 2 e)x1 2 dx2 (2)

dx2/dt 5 1 2 I 2 (k 2 e)x2 2 dx1 (3)

A response is made when the activation of one unit exceeds a cri-
terion, x. Assume that as practice proceeds, the self-excitatory
weight, e, approaches the leakage rate k, using a weight-learning
rule like Page’s Equation 2:

de/dN 5 l(k 2 e) (4)

In simulations with Gaussian noise added (Eq. 2, 3) at each step
of the integration (Page’s N1 term in his Eq. 5) and larger values
of I so errors did not occur, learning series were consistently bet-
ter fit by an exponential than by a power function. Insight into this
result can be gained from the analytic result for the one unit case
(i.e., Eq. 2 with competitive weight, d 5 0, which was also better
fit by the exponential in simulations):

For a linear Taylor approximation to (Eq. 5), RLR decreases mar-
ginally with N, but asymptotically approaches l rather than zero.
Heathcote et al. (in press) found that an APEX function (RT 5 A
1 Be2aNN2b), which has a RLR that decreases to an asymptote
greater than zero, consistently fit slightly better than an exponen-
tial function. We found the same pattern of fit to our simulation
results for both the one and two-unit models. The parameter es-
timates for these fits also concurred with the survey results. Esti-
mates of the power function A parameter were implausibly small
(as N increases t approaches x/I for the linear Taylor approxima-
tion to [Eq. 5], whereas most power function A estimates were
zero). Fits of a power function with an extra parameter (E) to ac-
count for prior practice (RT 5 A 1 B(N 1 E)2b) produced im-
plausibly large B estimates, mirroring Heathcote et al.’s (in press)
findings with the survey data.

Given limited space it is not possible to quantitatively examine
this type of model further (see Heathcote 1998, for related find-
ings and Heathcote & Brown, in preparation, for a detailed analy-
sis). However, the findings presented are sufficient to demon-
strate that Heathcote et al.’s (in press) results are not incompatible
with the overall localist neural network approach. Indeed, learn-
ing in shunting connections, both self-excitatory and competitive,
provides an adaptive mechanism for consolidating and differ-
entiating local response representations (cf. Usher & McClelland
1995, who note that the “units” in such models may correspond to
collections of neurons bound together by mutually excitatory con-
nections). Reduced leakage with practice can also explain
Jamieson and Petrusik’s (1977) finding (cited in Usher & McClel-
land 1995) that the difference between error and correct RTs de-
creased with practice. As leakage approaches zero, a leaky inte-
grator approximates a classical diffusion process, for which error
and correct RTs are equivalent.

NOTE
1. We also obtained an exact exponential result for inputs that (1) in-

crease with practice according to a learning rule like Page’s Equation 2 (I
5 M(1 2 e2lN)), (2) are nonstationary (decreasing with presentation time
t, as I 5 1/(t 1 (b 2 cI)), b/c . M), and (3) have a shunting effect on a

single unit’s activation (dx/dt 5 (U 2 x)I). We will not pursue this model
here, as it is very different from Page’s approach (see Heath 1992, and
Smith 1995, for more on nonstationary inputs, and Heathcote 1998 for
more on shunting inputs).

Localism as a first step toward symbolic
representation

John E. Hummel
Department of Psychology, University of California, Los Angeles, CA 90095.
jhummel@lifesci.ucla.edu www.bol.ucla.edu/~hummel/

Abstract: Page argues convincingly for several important properties of lo-
calist representations in connectionist models of cognition. I argue that
another important property of localist representations is that they serve as
the starting point for connectionist representations of symbolic (relational)
structures because they express meaningful properties independent of one
another and their relations.

Page’s arguments and demonstrations make a compelling case for
the essential role of localist representations in connectionist mod-
els of cognition (and cognition itself ). One important property of
localist representations that Page does not emphasize (although
he mentions it at the end of sect. 7.3), concerns the role of local-
ist nodes in the representation of relational structures. I argue that
localist representations share a crucial property with the kinds of
representations that are necessary for relational representation in
connectionist systems – namely, independent representation of
meaningful entities – and that they therefore play an essential role
in the ability of connectionist models to account for symbolic as-
pects of cognition.

The notion of a “localist representation” is subtle because local-
ism is not a property of a representation, but of the relationship be-
tween a representation and the entities it represents. To borrow
Page’s example, the activation pattern 2woman, 1politician, and
2actor is a distributed representation of Tony Blair, but a local rep-
resentation of woman, politician, and actor. Every representation is
local at some level. Even a “fully distributed” representation is lo-
calist with respect to some entities, in that each node has an equiv-
alence class of entities to which it corresponds. The equivalence
class may be difficult or impossible for the modeler to understand
(as in the case of the hidden nodes in many BP networks), but un-
less a node is always active (in which case it carries no information),
its activity will correspond to some state of affairs in the network’s
universe: The node is a localist representation of that state of affairs.
As such, the important question is not whether a representation is
localist or distributed, but whether it is localist with respect to a
meaningful state of affairs in the network’s universe.

In this sense, the question of localist versus distributed maps
onto the question of independence (a.k.a., separability; Garner
1974) versus nonindependence (a.k.a., integrality) in mental rep-
resentation. If meaningful concepts, entities or dimensions map
onto individual nodes (or in the case of dimensions, nonoverlap-
ping populations of nodes) – that is, if the system is localist with
respect to those entities or dimensions – then the system repre-
sents those entities as independent of one another. To the system,
the entities or dimensions are separable (cf. Cheng & Pachella
1984). If individual nodes respond to conjunctions of entities or
properties, then the resulting representation is integral with re-
spect to those properties (e.g., nodes that respond to specific con-
junctions of shape and color constitute an integral representation
of shape and color). One hidden limitation of many “fully distrib-
uted” representations (e.g., those that emerge in the hidden lay-
ers of BP networks) is not only that they lack individual nodes to
respond to individual entities (the limitation Page emphasizes),
but also that they typically constitute integral, rather than separa-
ble representations of the important entities or properties in the
network’s universe.
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This limitation is important because separability is crucial for
generalization (cf. sect. 7.3). A network will generalize with re-
spect to what it represents, so if its units do not represent mean-
ingful entities, the network will not generalize with respect to
meaningful entities. Consider the simplified example of a network
learning to categorize colored shapes, and let categories be de-
fined by color, with shape irrelevant but free to vary. If the net-
work represents color independent of shape, then learning to
place, say, all red objects into category A and all blue objects into
category B is a simple matter of learning connections from the
node(s) representing “red” to the node representing “category A,”
and from the node(s) representing “blue” to the node represent-
ing “category B.” Once these connections are in place, learning
will generalize to any new red and blue objects, regardless of their
shapes: the network will generalize the functions red(x) r cate-
gory-A(x) and blue(x) r category-B(x) universally. A network that
violates color-shape independence will not generalize universally.
If nodes represented, for example, conjunctions of shapes and col-
ors, then categorizations learned in the context of one set of shapes
would not necessarily generalize at all to novel shapes.

The role of separability in generalization makes localism (or at
least a form of localism) a necessary ingredient in connectionist
representations of relational structures, such as propositions and
variablized rules (cf. Holyoak & Hummel 2000). To appreciate
what “John loves Mary” has in common with “Mary loves John” a
representational system must be able to represent people inde-
pendent of their relations. Similarly, to represent a variablized rule
(such as for any x, red(x) r category-A(x)), a network must be able
to represent variables independent of their values. Of course, lo-
calism by itself is not sufficient for symbolic connectionist repre-
sentations. Representing variables independent of their values (or
roles independent of their fillers) makes it necessary to actively
bind them together (e.g., by synchrony of firing; see Hummel &
Holyoak 1997). But localism – in the sense of placing units into
correspondence with meaningful equivalence classes in the net-
work’s universe – is a necessary first step.
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Integrating exemplars in category learning:
Better late than never, but better 
early than late
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Abstract: Page’s target article makes a good case for the strength of lo-
calist models. This can be characterized as an issue of where new infor-
mation is integrated with respect to existing knowledge structures. We ex-
tend the analysis by discussing the dimension of when this integration
takes place, the implications, and how they guide us in the creation of cog-
nitive models.

In years past, these pages witnessed a heroic struggle between
symbolists and connectionists. The fact that we now find different
schools of neural network modelers challenging each other’s as-
sumptions within the same pages certainly signals a growing ac-
ceptance of the connectionist perspective. In this context Page
does the connectionist community a great service by demonstrat-
ing the power of localist models and how they address specific
weaknesses in models that rely strictly on distributed representa-
tions. And Page is right in reminding us that localist models pre-
date distributed models. We applaud this effort, and wish to sug-

gest another dimension that could help localist models handle
cognitive phenomena more effectively.

Dimensions of where and when. In one sense, the distinction
between distributed models and localist models centers on where
new information is integrated into existing knowledge structures,
that is, whether new information has distributed effects or local-
ized effects. This distinction in integration will also affect how the
network will work. When a given concept is being used, will ac-
tivity be distributed widely or narrowly?

Another important dimension in the analysis of forms of knowl-
edge integration concerns whether new information is integrated
directly into existing units of knowledge, or whether this integra-
tion happens later, perhaps not even structurally but in the process
of using the network. This dimension focuses on when this inte-
gration takes place. We will use the terms early integration and
late integration to describe extremes on this continuum.

An extreme example of a late integration model would be one
in which the network records each individual exemplar encoun-
tered. The very processes of generalization, so fundamental to
cognition, would thereby occur late in the game, perhaps not un-
til the knowledge is used. In this extreme case, a category would
not exist as an identifiable structure, but instead be represented
by prior exemplars. When a sensory pattern is encountered, a
process of scanning and aggregating the exemplars would take
place in order to determine the category. Other, nonsensory
knowledge related to the category would also have to be aggre-
gated through a similar scanning process. Clearly this is an ex-
treme case, if not a caricature, of late integration, and the prob-
lems are readily apparent.

By contrast, a model that relies on early integration would start
the formation of a category – an identifiable structure in the net-
work – as soon as possible. As new exemplars are encountered
the categorical knowledge is modified in place. Rather than grow-
ing ever larger, the categorical knowledge would undergo refine-
ment through learning. The sensory features most commonly
found in the category’s exemplars would be reinforced, while the
rare and incidental would be discarded. In other words, not only
does the categorical structure come to emphasize the general
properties of the category, its signal/noise ratio is improved in the
process.

Page’s generalized localist model has some flexibility along this
early to late integration continuum, given its underlying architec-
ture and parameters. The vigilance parameter affects whether ex-
isting knowledge is determined adequate and thus whether any
learning needs to take place. The higher the vigilance parameter,
the more likely a new exemplar will be recorded, and the later any
integration is forced to occur. The learning rate parameter deter-
mines whether few or many exemplars contribute to a single node.
The fewer exemplars contributing to a node, the later the inte-
gration.

While having a generalized model can be useful in showing
breadth of possible behaviors, in the challenging enterprise of un-
derstanding the brain it is perhaps more important to narrow
down the space in which to focus our efforts. And in the process
of applying this focus, we may find that the generalized model
may not be so easily adapted. We will now discuss three areas of
psychological considerations that highlight some advantages of
early integration. We conclude by describing how one of the ear-
liest localist models still holds remarkable potential in these re-
spects.

Prototype effects. There is much evidence that human cate-
gories display a number of prototype effects (see Rosch 1977 for
a nice summary). These effects would seem unlikely to emerge
from a late integration process, and it is far easier to account for
all of them if a structure is created that encodes the prototype di-
rectly.

The prototype refers to the encoding of the central tendency of
a category along with some measure of its breadth. It thus requires
time and a multitude of exemplars to form. Once it forms, the pro-
totype plays a key role in numerous psychological phenomena.
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For example, people easily recognize prototypes even if they
have never been encountered (Posner & Keele 1968). People will
rate an unencountered prototype as more likely to have been pre-
viously encountered than a nonprototypic exemplar actually en-
countered (Bransford & Franks 1971). People more quickly rec-
ognize exemplars closer to the central tendency (Rosch 1975).
Moreover, certain psychological phenomena suggest a structural
reality underlying prototype effects. People fill in missing details
of an exemplar its category’s prototype (Bruner 1973). In a similar
phenomenon, people, when recalling a specific exemplar, will shift
it towards the prototype (Bruner & Minturn 1955).

Differentiation or enrichment. If a prototype is ultimately en-
coded in the network directly, it then becomes important to un-
derstand the process by which integration would create it. Many
have argued that perceptual learning of a category is better viewed
as a process of enhancing discrimination rather than simply as an
additive process (e.g., Gibson & Gibson 1955; Hall 1991).

It is often the case that early attempts at categorization are
overly broad and that over time perceptual categorization be-
comes more discriminatory (Mackintosh et al. 1991). Gibson and
Gibson offer the example of developing the ability to distinguish
different varieties of wine.

Clearly, features most common to the exemplars must be di-
rectly encoded within a prototype structure. It is also important,
however, that features that are rare or incidental not hold the pro-
totype hostage; they must be minimized. An additive process,
which late integration favors, has greater difficulty in accounting
for this process of subtraction.

Category drift. Categories change over time. Take, for example,
an individual’s face or a specific street corner. With late integra-
tion an ever growing number of exemplars will be recorded over
an extended period of time. With early integration, however, the
category will update and shift in place, through the aforemen-
tioned process of refinement. This process allows the prototype to
track the environment’s changes. Moreover, late integration suf-
fers from the costly impact of perpetually needing to allocate new
areas to remember new exemplars.

Hebb’s cell assembly. The route we suggest to achieving all this
is, perhaps surprisingly, a historical one. As our final point, we
would like to remind the connectionist community of a specific lo-
calist model of neural structures that has been in existence since
the 1940s. Despite its important advantages in several crucial do-
mains, it has largely been ignored.

Donald Hebb (1949), created the notion of the cell assembly, a
learned conglomeration of neurons that act in concert as a unit
representing a category. While many in the connectionist field use
and cite Hebb’s learning rule, few (although it appears to be a
growing number) refer to or use the cell assembly. The cell as-
sembly is a neural structure that responds to a set of exemplars. It
is a unitary structure that encodes the variety of exemplars en-
countered. And if constructed appropriately, it will display proto-
type effects.

Hebb’s cell assembly is intimately connected with his learning
rule. We believe, however, that his learning rule is incomplete, and
that it requires a synaptic weakening component (examples are
discussed in Hetherington & Shapiro 1993). The synaptic weak-
ening component provides a mechanism for Hebb’s fractionation
concept. Fractionation makes possible the simplification and dif-
ferentiation necessary to develop a prototype in the process of
early integration. And finally, new information can always shape a
cell assembly, allowing it to drift in parallel with its real-world cor-
relate.

Hebb’s cell assembly is a localist model that offers a number of
distinct advantages. Our discussion, though, is not intended to de-
tract from the central thrust of Page’s analysis. Dispensing with
fallacies regarding localist models is an important element in the
debate within connectionism. And if the debate shifts from being
primarily between localist and distributed models towards the
possibilities within the space of localist models, much will have
been accomplished.
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Abstract: Page’s definition of localism is inspired by the instance-based
paradigm. However, the locality of representations is not necessary for a
model to be instance-based and, on the other hand, explicit featural rep-
resentations are generally considered local. The important distinction is
between instance-based and noninstance-based paradigms and not be-
tween distributed and local representations as Page claims.

Page’s discussion of localist models in section 2.6 and his list of ref-
erences makes it clear that when giving his definition he had the
instance-based paradigm in mind. His localist model supports this
interpretation, because its knowledge representation scheme is
instance-based (weights of output units), its learning method is a
version of vector quantization, and its decision method is in fact
the simple first-nearest-neighbor algorithm with some noise
added (Mitchell 1997).

Though Page concentrates on psychological modeling where
delicate details are important, I would like to comment on his ar-
ticle from the more general standpoint of artificial intelligence and
mathematics. The problem that connects these two fields is cata-
strophic inference. From a mathematical point of view, all learn-
ing methods are function approximators. Given the exemplars of
some concept (i.e., a subset of a general category), they form a
function that can classify all possible inputs. There are differences
between the methods but practically every method can be applied
to every problem or every modeling task in psychology; there is
nothing in principle that could prevent this free applicability and,
indeed, this is what we see happening in practice. (For example,
Page demonstrates that his instance-based model can indeed ex-
plain different phenomena.) However, there is a major borderline
between instance-based methods and others: the amount of
knowledge stored by the instance-based models can be increased
any time while the latter forget everything when taught new ex-
amples; this is the price to pay to have fast and effective algo-
rithms. Instance-based methods typically run slower and need
much more memory but they are flexible and extendable.

Based on the above observations my (simplified) interpretation
of Page’s suggestion is that – since in psychological modeling com-
putational efficiency is not very important – we should choose in-
stance-based models. If this interpretation is correct (which I shall
assume henceforth), I agree with the suggestion. My problem is
that Page handles the concept of local representation and in-
stance-based modeling equally, which is unfortunately not true.
The dimension of the distributed/nondistributed nature of repre-
sentation and the dimension of the instance-based/noninstance-
based nature of the paradigm are independent.

To show this independence in a brief technical paragraph, I will
sketch the basic idea of a truly distributed implementation of an
instance-based memory model. Let us represent our learning
samples as vectors of features. Let the values of features be real
numbers. Now, let the representation of our knowledge be the
sum of these vectors. The recognition operation can simply be
taken as the following: if the dot product of the test sample (pre-
sented as a vector) and our memory (i.e., the sum of all exemplars)
is small then we say the sample is not in the memory; if it is large,
then we say it is in the memory (i.e., it is recognized). A mathe-
matical assumption is necessary in order to make the model func-
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tion properly: the vectors involved must be pairwise (approxi-
mately) orthogonal. The number of vectors stored is limited as a
function of their length (i.e., the number of features). This model
has most of the properties of usual instance based models, e.g., it
does not suffer from the catastrophic inference problem, since
one can always add new vectors to the memory (until its capacity
is exceeded). In this framework, generalization and other phe-
nomena can be modeled too. The model is for illustration only.
More sophisticated models based on linear algebraic properties of
vectors and matrices exist, see for example (Kohonen et al. 1981;
Murdock 1982; Pike 1984).

To summarize: the two dimensions of modeling (the distrib-
uted/nondistributed nature of representation and the chosen par-
adigm) are independent. The instance-based paradigm does not
exclude distributed implementations, whereas – unlike Page –
many of us would consider, e.g., explicit featural representations
(in models that are not necessarily instance-based) localist. Fi-
nally, the debate is certainly not confined to the field of connec-
tionism, although instance-based models can have connectionist
implementations (or visualizations) as in Page’s model. Psycho-
logical models and learning algorithms should be classified at a
more abstract level. The properties of the actual units do not nec-
essarily reflect the behavior of a model in certain situations. I think
– clarifying the terminology – “Modelling in psychology: An in-
stance-based manifesto,” would have been a better title for what
Page may have wanted to say.
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Abstract: Examining the implications of a localist model for linguistic per-
formance, I show the strengths of the P-graph, a network of elementary
units of meaning where utterance results from relaxation through the op-
eration of a dynamics of affect values. A unit of meaning is stored in a
synaptic connection that brings together two words. Such a model, con-
sistent with the anatomy and physiology of the neural tissue, eschews a
number of traditional pitfalls of “semantic networks”: (1) ambiguity ceases
to be an issue, as similar uses of a word are automatically clustered to-
gether; (2) faster retrieval of words acquired early is explained by the larger
number of their instances. In addition the P-graph takes advantage of a
plausible form of information storage: the local topology of the neural tis-
sue.

The elementary units of meaning. The trouble with localist hy-
potheses is that one is making oneself vulnerable to embarrassing
questions such as “All right, one instance of the word ‘cat’ is asso-
ciated with a single neuron. So, how do you do this?” Ten years
ago I offered a localist model for knowledge representation (Jo-
rion 1989); I evaded the issue of implementation. I still do today.
If on the contrary one claims that “The acoustic imprint ‘cat’
emerges in a holographic manner from the collaborative effort of
a set of neurons associated with the word ‘cat’” you are spared the
thorny issue of “how?” as all will consent that such complex mat-
ters will be dealt with . . . in due course.

The stumbling block remains the physiology/chemistry of the
storage process of memory traces and until someone comes up
with an explanation, or at least a valid testable model, researchers
will remain reluctant to commit themselves to localist models. As
shown by Page, those of us who believe in their ultimate vindica-
tion need to keep building a body of converging evidence. Part of
the process consists of refuting commonly assumed obstacles and
other misconceptions.

Because I am taking exception to one of Page’s statements in
this issue, I will sketch how to flesh out a localist approach to lin-
guistic performance. In my 1989 conference paper (Jorion 1989)
and in further developments in my book (Jorion 1990) I put for-
ward a template for linguistic performance (both speech and writ-
ing) as a dynamics operating on a network of memory traces made
of individual words. This P-graph model differs from the classical
“Quillian” semantic network that contains, in addition to words as
acoustic or visual imprints, “meta-information” in the shape of
speech part categorization or syntactic cues. It assumes nothing
more than words being stored and being activated by a dynamics
of affect values leading to relaxation through word utterance.
Words are represented as vertices of a graph and their relation-
ships as nodes: it is the dual graph of the traditional semantic net-
work where words are nodes and relationships between them, ver-
tices.

The P-graph model has specific strengths: (1) it is consistent
with the currently known properties of the anatomy and physiol-
ogy of the nervous system, (2) because the P-graph is the dual of
a classical semantic network, (2.1) a word is automatically distrib-
uted between a number of instances of itself; (2.2) these instances
are clustered according to individual semantic use, (2.3) the
scourge of knowledge representation, ambiguity, is automatically
ruled out; for example, kiwi the fruit and kiwi the animal being as-
sociated only through one relationship, the “superficial” (mean-
ingless) one of homophony, their confusion does not arise: they re-
side in distant parts of the P-graph, and (3) the growth process of
the graph explains why early word traces are retrieved faster than
those acquired later: their number of instances is of necessity large
because they have acted repeatedly as an “anchor” for the in-
scription of new words in the process of language acquisition. This
allows us to do without Page’s extraneous hypothesis that “a node
of high competitive capacity in one time period tends to have high
competitive capacity in the next” (sect. 4.4).

The loss of synaptic connections that accompanies knowledge
acquisition corresponds to increased organization of the neural
tissue (negentropy). This also means that the topology of the sur-
viving connections carries significant information. As long as we
remain ignorant of how memory traces are stored in the brain, that
is, as long as we are unable to read the information encapsulated
within the neural tissue, its very configuration is bound to appear
meaningless, as if the pattern of its existing connections were hap-
hazard. I claimed in my 1989 paper that it would be negligent for
evolution to ignore a highly economical mechanism for informa-
tion storage such as the topology of the neural tissue (Jorion 1989).
I also showed how a simple rule for neuron colonization, that is, a
“has a . . .” relationship establishing a symmetrical connection be-
tween two words (undirected graph) and an “is a . . .” relationship,
an asymmetrical one (directed graph), inscribes topological infor-
mation into a P-graph while ensuring redundancy in the repre-
sentation of any individual word, confirming Page’s insight that
“localist models do not preclude redundancy” (sect. 6.3).

The “paradigm shift” necessary to implement the P-graph al-
ternative to a classical semantic network is that neuron nuclei
cease to be the locus of choice for information storage, synaptic
connections between two neighboring neurons emerging as
stronger candidates. The elementary structure of meaning is no
longer the stand-alone, self-contained concept, but instead the re-
lationship connecting two concepts (rat-rodent; mommy-baby
bottle; piano-horrible); a view reminiscent of Aristotle’s categories
(cf. Jorion 1996).

In this new perspective the meaning of a word equates with the
composite picture emerging from the set of associative units of
two to which it belongs (see Jorion 1990, p. 88). This conception
is remarkably close to Wittgenstein’s view of the meaning of a
word as the resultant of its possible uses: “The meaning is the use.”
Resemblance is no longer only a question of distances measured
over a neural network, it also covers topological similarities. For
example, synonyms do not need to be stored physically close to
each other in the brain (indeed it is unlikely they would be, as syn-

Commentary/Page: Localist connectionism

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:4 483
https://doi.org/10.1017/S0140525X00383352 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X00383352


onyms are typically acquired at different times in life rather than
simultaneously) as long as they are part of isomorphic configura-
tions of elementary units of meaning. Topological similarity may
suffice for harmonics to develop between homological subnet-
works, allowing synonyms to vibrate in unison.

Can we do without distributed models? 
Not in artificial grammar learning

Annette Kinder
Department of Psychology, Philipps-University, D-35032 Marburg, Germany.
kinder@mailer.uni-marburg.de

Abstract: Page argues that localist models can be applied to a number of
problems that are difficult for distributed models. However, it is easy to
find examples where the opposite is true. This commentary illustrates the
superiority of distributed models in the domain of artificial grammar learn-
ing, a paradigm widely used to investigate implicit learning.

In his target article, Page impressively demonstrates the explan-
atory power of localist models. Given the many problems of dis-
tributed models, Page’s conclusion that localist models should be
preferred over distributed ones seems to be totally justified. How-
ever, although it is true that various psychological processes can
be successfully simulated by localist networks (even more suc-
cessfully than by distributed ones), there are other processes for
which localist models are not adequate. One example is implicit
learning, which recently has become a popular research topic in
cognitive psychology. In implicit learning, knowledge about com-
plex sequential material is acquired under incidental training con-
ditions. A paradigm widely used to investigate implicit learning 
is artificial grammar learning (AGL). This commentary illustrates
how the existing localist models fail to account for AGL and why
it would be difficult to conceive more adequate localist models.

In AGL, strings of letters (or other symbols) are presented that
were generated according to an artificial grammar. This kind of
grammar comprises a complex set of rules which constrain the or-
der of the letters in the strings. In an AGL experiment, partici-
pants first have to memorize a subset of all strings which can be
generated by a particular grammar, the so-called grammatical
strings. Only after this training stage is over, they are informed
about the existence of the rules. Subsequently, they are asked to
categorize new grammatical and nongrammatical strings as fol-
lowing or violating these rules, which they normally can do well
above chance level. It has been shown that participants use sev-
eral different sources of information to accomplish this task (John-
stone & Shanks 1999; Kinder 2000; Knowlton & Squire 1996).
AGL is considered as a typical example of implicit learning be-
cause the learning conditions are incidental and the acquired
knowledge seems to be difficult to verbalize.

Two types of connectionist models of AGL have been proposed,
a simple recurrent network (SRN) model and several autoassoci-
ator models. Whereas most autoassociator models of AGL can be
described in purely localist terms, the SRN model mainly relies on
distributed representations. An SRN (Elman 1990) comprises a
minimum of four layers of processing units, an input layer, a hid-
den layer, an output layer, and a context layer. The context layer
contains a copy of the hidden layer’s activation pattern on the last
stimulus presentation. Because of this feature, the network can
learn to predict a stimulus in a sequence not only from its imme-
diate predecessor but from several stimuli presented before. Al-
though the SRN is not fully distributed because it also contains lo-
calist representations, it is closer to the distributed end than to the
localist end of the scale: It learns by backpropagation, and the rep-
resentations of the stimulus sequence, which are the crucial ones
in an SRN, are distributed.

When AGL is simulated in an SRN, the network is trained with
the same stimuli as the participants (Dienes et al. 1999; Kinder

2000). The letters of each string are coded one at a time, from left
to right in the input layer. The network is trained always to predict
the next letter in the string. That way, the network gradually be-
comes sensitive to the absolute and conditional probabilities of let-
ters within the set of training strings. If a network trained that way
is tested subsequently, it is capable of discriminating between
grammatical and nongrammatical strings. More important, it
makes correct predictions about the kind of information partici-
pants use at test. For example, it predicts that participants will en-
dorse test items comprising a higher number of familiar string
fragments more readily than those comprising a lower number of
familiar fragments (Dienes et al. 1999). Furthermore, it correctly
predicts that a test string’s similarity to a specific training item will
influence its endorsement rate only to a very small extent (Kinder
2000).

The only existing localist models of AGL are autoassociator
models (Dienes 1992). These models contain a single layer of units
each of which represents a letter in a particular position. Every
unit is connected to every other unit except to itself. During train-
ing, the connection weights are changed in such a way that the 
network reproduces its input activation pattern as accurately as
possible. Since all units are connected to all other ones, the au-
toassociator models erroneously predict that participants are ca-
pable of learning relations between two distant letters even if the
intervening letters are not systematically related to either of them
(St. John & Shanks 1997; Redington & Chater, submitted). Fur-
thermore, they falsely predict that information about entire train-
ing items will be important in grammaticality judgments (Kinder
2000). Both problems could be solved by allowing only associa-
tions between representations of adjacent letters. However, this
would lead to the false prediction that participants learn informa-
tion only about letter bigrams. Although it might be possible to
conceive a model in which all of these false predictions are
avoided, rather complicated assumptions about the impact of spa-
tial vicinity on weight change would have to be made. By contrast,
such assumptions are not necessary in the SRN model. As a result
of the network’s architecture, its learning mechanism, and the fact
that letters are presented one after another, spatial vicinity influ-
ences the network’s behavior quite naturally.

To summarize, there is neither an acceptable localist alternative
to the SRN model of AGL nor could such an alternative be con-
ceived easily. In another type of implicit sequence learning (e.g.,
Cleeremans & McClelland 1991), SRNs are the only existing
models. Thus, when we try to explain the (implicit) acquisition of
sequences, we cannot do without distributed models.

Localist network modelling in psychology:
Ho-hum or hm-m-m?

Craig Leth-Steensen
Department of Psychology, Northern Michigan University, Marquette, MI
49855-5334. clethste@nmu.edu

Abstract: Localist networks represent information in a very simple and
straightforward way. However, localist modelling of complex behaviours
ultimately entails the use of intricate “hand-designed” connectionist struc-
tures. It is, in fact, mainly these two aspects of localist network models that
I believe have turned many researchers off them (perhaps wrongly so).

From a cognitive modeller’s perspective, localist network model-
ling makes life easy and makes life hard. It makes life easy because
the representational properties of localist network models are so
well and easily defined. The modeller needs only to separate the
representation underlying a cognitive process into its higher and
lower level featural components and then to superimpose those
components on the (hierarchically arranged) units of a localist net-
work. The task of modelling then involves determining the ap-
propriate set of connections (in terms of both their structure and
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their strengths) between the units that, along with the appropri-
ate set of activation processing assumptions, will result in a suc-
cessful simulation of the behaviour in question. With respect to
actual localist modelling endeavours, these behaviours typically
include some form of recognition, recall, identification, or cate-
gorization performance within either a memory or a perceptual/
semantic classification task; behaviours which Page shows are well
served by being modelled within a localist network scheme. It is
when the modeller tries to simulate more complex kinds of be-
havioural phenomena (e.g., see the Shastri & Ajjanagadde 1993
connectionist model of reasoning; and the “back end” of the Leth-
Steensen & Marley 2000 connectionist model of symbolic com-
parison) that life becomes hard. Ultimately, localist attempts to
solve the modelling problems invoked by complex behaviours en-
tail the use of intricate “hand-designed” connectionist structures.
Although I think that most would (should?) agree that designing
such structures is a useful scientific exercise in and of itself, there
are likely to be many different ways to design a set of connections
between localist representations that will solve such problems, but
only a limited number of ways in which they are “solved” by the
brain in actuality.

It is my belief that a general feeling of disdain for localist net-
work modelling has arisen within some members of the cognitive
community for two basic reasons. First, it is precisely this hand-
designed, or a priori defined nature of most of the available lo-
calist network models that has turned many researchers off them.
Cognitive modelling using distributed network representations al-
most invariable begins from the very strong position that the learn-
ing of those representations is always part of the modelling enter-
prise. One is never in the position of staring at a set of network
connections and their weights and wondering how they got to be
that way. In this article, Page goes a long way toward presenting a
very stimulating, generalized approach to the learning of localist
representations; one that one hopes can be appreciated by both
novice and expert network modellers alike. However, because this
approach is applied here only to fairly simple kinds of two- and
three-layer network modules, it is not immediately clear how it
can then be scaled up in order to generate more complex localist
structures such as that of the commonly used interactive activa-
tion (IA) model (particularly with respect to the seemingly neces-
sary inclusion of multiple localist instances).

Second, there seems to be a generalized intellectual bias against
connectionist models that use strictly localist representations in
favour of those using distributed ones precisely because of the
simple and straightforward way in which information is repre-
sented within localist networks. In other words, because the brain
is such a complex organ, the belief (hope?) is that neural repre-
sentation just can’t be that simple. For example, as expressed by
M. I. Jordan (1990 – to whom, however, I do not presume to as-
cribe any such bias) – “[distributed] networks with hidden units
are worthy of study . . . because their structural and dynamic prop-
erties are more interesting [emphasis added] than those of simpler
systems” (p. 497). With respect to actual behavioural phenomena,
however, networks with hidden units also tend to have so much
processing power that they often can substantially outperform the
learning and processing capabilities of humans and, hence, must
then be scaled down to more localist-like systems in order to cap-
ture human performance (e.g., see Lacouture & Marley’s model
of absolute identification, 1991).

In conclusion, let me observe that as intellectually tantalizing as
distributed representational systems are, all of us still owe it to be-
havioural and brain science to fully look into and exhaust the pos-
sibility that the majority of representation within the brain might
just be as simple and straightforward as localist models presume
it to be.

Localist representations are a desirable
emergent property of neurologically 
plausible neural networks

Colin Martindale
Department of Psychology, University of Maine, Orono, ME 04469.
rpy383@maine.maine.edu

Abstract: Page has done connectionist researchers a valuable service in
this target article. He points out that connectionist models using localized
representations often work as well or better than models using distributed
representations. I point out that models using distributed representations
are difficult to understand and often lack parsimony and plausibility. In
conclusion, I give an example – the case of the missing fundamental in mu-
sic – that can easily be explained by a model using localist representations
but can be explained only with great difficulty and implausibility by a
model using distributed representations.

For reasons that I have never understood, localist representations
are virtually taboo in neural-network theory even though as Page
points out in the target article, they offer some distinct advantages
over distributed representations. One very big advantage is that
people can understand connectionist theories that employ localist
representations. Even if such representations served no purpose,
they would be a convenient fiction. As far as I know, I am the au-
thor of the only two undergraduate cognition texts that consis-
tently use a neural-network approach. Martindale (1981) was writ-
ten because I felt that students should be presented with a
state-of-the-art text rather than one using the thoroughly discred-
ited computer metaphor of mind. I used localist representations,
as they were not frowned upon at that time. In the following years,
I tried presenting some models using distributed representations
in my lectures and was confronted with a sea of completely con-
fused faces. Martindale (1991) also uses localist representations,
although I did say in the preface that this was a simplification and
that the “grandmother” node was just a stand-in for a pattern of
activation across a field of nodes. (I did not fully believe that but
was hoping that instructors would see the comment and adapt the
book.)

Students are not the only ones who do not understand models
using distributed representations. Unless they are experts, pro-
fessors do not understand them either. Several years ago, I wrote
a chapter in which I set forth a model of creativity using distrib-
uted representations in a Hopfield (1984) net and simulated an-
nealing (Hinton & Sejnowski 1986) to avoid local minima (Mar-
tindale 1995). A year or so later, I was asked to give an invited
address on creativity; however, the invitation was contingent:
“don’t talk about that neural-network stuff, because no one un-
derstands it.” I have just finished a chapter on neural networks and
aesthetic preference (Martindale, in press). I wanted to use the
model that I had used to explain creativity, but I also wanted peo-
ple to understand me. Thus, I ended up using a neural-network
model with localist representations. This model could easily be
translated into a Hopfield energy-minimization model, but the lat-
ter would be very difficult for most psychologists to understand.
Professors are not stupid, but they have a passion for parsimony
and an aversion to mathematical gymnastics that complicate
rather than simplify matters.

In general, connectionist theorists use a brain metaphor. We do
not usually put forth models where one node corresponds to one
neuron, because we don’t know enough about how neurons work.
A node is thought of being like a neuron or made up of a group of
neurons. Theorists who use distributed representations want to
stop one step short of saying that this distributed set of neurons
will be referred to as the grandmother node. We all agree that
nodes are made up of distributed sets of neurons. Why stop at fea-
ture nodes? As Page points out, those who suggest localized rep-
resentations are always confronted with the fact that no one has
ever found a grandmother neuron. This is not a relevant question,
as we are talking about nodes rather than neurons. However, cells
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fairly close to grandmother neurons have in fact been found.
Young and Yamane’s (1993) “particular-Japanese-man” neuron is
an example. Logothetis et al. (1995) showed monkeys a variety of
objects. Single-cell recordings from the inferotemporal cortex
were made. Most neurons responded to only a given object shown
from a particular viewpoint. However, a small portion responded
in a view-invariant fashion to the objects to which they had been
tuned. This should not be surprising.

Any neurologically plausible neural network (several layers of
nodes, lateral inhibition on each layer, bidirectional vertical excita-
tory connections among nodes on different layers, massive but not
absurd interconnections) is bound to generate some localist repre-
sentations. Consider hearing the musical note C (66 Hz). It is com-
posed of not only this fundamental pure tone but also of its upper
partials, which are integer multiples: C9 (132 Hz), G9 (198 Hz), C0
(264 Hz), E0 (330 Hz), and so on (Helmholtz 1885/1954). Consider
a C-major net that consists of nodes for all of the notes in the C-
major scale on layer L1. Well, the brain doesn’t have just one layer,
but several. What will happen? Given the Hebb learning rule and
its revisions (the correct citation is actually Thorndike 1911), we
would expect the fundamental frequency and the upper partials to
form excitatory connections with one or more nodes on level L2.
These would be localist nodes coding the musical note C (66 Hz)
and its upper partials. If we were to remove the fundamental fre-
quency of 66 Hz, common sense would suggest that we should hear
C0. In fact, we still hear C. This is easy enough to explain: the up-
per partials have excited the L2 C node, and it has activated the
missing fundamental. This explanation is analogous to the localist
explanation of the word-superiority effect. The reader may think
that a distributed representation model of the sort proposed by
McClelland and Rumelhart (1985) could handle this problem: we
connect all the L1 nodes in an excitatory fashion and use the Hebb
rule to train the net. This will give us an N 3 N matrix of connec-
tion weights. It will also give us a mess that would not restore the
missing fundamental. The notes in C-major (or any other scale)
share too many upper partials. They are not orthogonal enough, so
would interfere with each other too much. It might be possible to
solve this problem using only distributed representations, but the
solution would be neither parsimonious nor plausible.

A phase transition between localist 
and distributed representation

Peter C. M. Molenaar and Maartje E. J. Raijmakers
Department of Psychology, University of Amsterdam, 1018 WB Amsterdam,
The Netherlands. op–molenaar@macmail.psy.uva.nl

Abstract: Bifurcation analysis of a real-time implementation of an ART
network, which is functionally similar to the generalized localist model dis-
cussed in Page’s manifesto shows that it yields a phase transition from lo-
cal to distributed representation owing to continuous variation of the range
of inhibitory connections. Hence there appears to be a qualitative di-
chotomy between local and distributed representations at the level of con-
nectionistic networks conceived of as instances of nonlinear dynamical sys-
tems.

This manifesto presents a clear specification and some very chal-
lenging implications of localist representation in connectionist
psychological modelling. Unfortunately, within the limited con-
fines of this commentary we will have to restrict ourselves to a sin-
gle aspect of this excellent manifesto.

Section 4 of the manifesto introduces a generalized localist
model, the architecture of which is reminiscent of an ART net-
work (e.g., Grossberg 1980). Like ART, the generalized localist
model depicted in Figure 3 has two layers for input representa-
tion and coding, respectively. Figure 5 shows an extension of this
generalized localist model involving an additional coding level,
like in ART 2 networks (e.g., Carpenter & Grossberg 1987).

Hence, in conformance with several indications given by the au-
thor, the generalized localist model and ART models share the
same functional architecture.

Given this equivalence between the generalized localist model
and ART, including equivalent local representation at the coding
level(s) equipped with competitive interactions, and because the
distinctions between localist and distributed representations con-
stitute a basic tenet of the manifesto, it might be an interesting
question whether ART can also give rise to distributed represen-
tations. The scenario we have in mind is one in which an ART net-
work starts with regular local coding, but under continuous varia-
tion of a subset of the network parameters suddenly undergoes a
transition to distributed coding. Such a scenario is prototypical of
a mathematical bifurcation analysis of ART, aimed at the detec-
tion and consequent specification of phase transitions in its per-
formance.

Such a bifurcation analysis of ART has been carried out by Raij-
makers et al. (1997), using a real-time implementation of ART as
a system of coupled nonlinear differential equations (exact ART,
cf. Raijmakers & Molenaar 1996). Based on empirical evidence
obtained in the developmental neurosciences (e.g., Purves 1994),
the range and strength of excitatory and inhibitory connections,
arranged in on-center-off-surround competitive fields, were con-
tinuously varied as in actual brain maturation. A number of so-
called fold bifurcations were thus detected, one of which would
seem to be of particular importance for the present discussion.
This concerns the bifurcation marking a phase transition between
local coding and distributed coding owing to a continuous de-
crease of the range of inhibitory connections.

A bifurcation or phase transition is indicative of a qualitative
change in the behavior of a nonlinear dynamic system (e.g., van
der Maas & Molenaar 1992). That is, the dynamic organization of
a system’s behavior suddenly shows qualitatively new properties
like the emergent new types of attractors in phase space (e.g., The-
len & Smith 1994). Hence the phase transition obtained in exact
ART owing to a continuous decrease of the range of inhibitory
connections in the competitive field is also indicative of a qualita-
tive change, in this particular case a qualitative change marking
the transition from local coding to distributed coding. What could
this imply for the distinction between local and distributed repre-
sentation?

At the level of ART as a system of differential equations, and
given the equivalence noted above also at the level of the gener-
alized localist model as a system of differential equations, the bi-
furcation marking the transition between local and distributed
coding involves a qualitative change in the sense indicated above.
Consequently, there appears to be discontinuous border between
local coding and distributed coding. At least at this level of con-
nectionistic models, conceived of as particular instances of non-
linear dynamic systems, there appears to be some kind of di-
chotomy between local representation on the one hand and
distributed representation on the other hand. Of course this leaves
completely open the question whether such a dichotomy also ex-
ists at other, for instance, more functionally defined, levels. The
manifesto presents strong arguments that no such dichotomy be-
tween “distributed” and “localist” may exist at these other levels.

Localist models are already here

Stellan Ohlsson
Department of Psychology, University of Illinois at Chicago, Chicago, IL
60607. stellan@uic.edu www.uic.edu/depts/psch/ohlson-1.html

Abstract: Localist networks are symbolic models, because their nodes re-
fer to extra-mental objects and events. Hence, localist networks can be
combined with symbolic computations to form hybrid models. Such mod-
els are already familiar and they are likely to represent the dominant type
of cognitive model in the next few decades.
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Connectionist models are of limited interest to the student of
higher-order human cognition for three reasons.

1. Human cognition – particularly as expressed in art, litera-
ture, mathematics, technology, and science – is not a reflection of
the perceived environment. It is driven by goals and by the imag-
ination, that is, by mental representations that go beyond experi-
ence. Human behavior is not adaptive or reactive but centrally
generated. Hence, it cannot be explained in terms of mappings of
input patterns onto output patterns, regardless of the mechanism
by which those mappings are obtained.

2. Human behavior is both hierarchical and sequential. Ele-
mentary actions are orchestrated both in space and over time. Hi-
erarchical, sequential processes that extend over time are pre-
cisely the kind of processes that connectionist networks – of
whatever kind – do a poor job of modeling. In contrast, these fun-
damental features of human behavior are quite naturally and un-
problematically represented in symbolic models.

3. Connectionist models represent learning in terms of quanti-
tative calculations over network parameters (weights, strengths,
activation levels). Changes in these parameters influence how the
relevant nodes and links enter into a given cognitive process, that
is, they explain how a piece of knowledge is used. However, the
more fundamental question in learning is how knowledge is con-
structed in the first place. That is, why is this node connected to
that node? Network models – of whatever kind – have no answer
to this question and finesse it by assuming that every node is con-
nected to every other node and by allowing link strengths to take
zero as their value.

However, this subterfuge is untenable. There is not the slight-
est reason to believe that every neuron in the human brain (or
neural column or any other functional unit) is connected to every
other neuron. In fact, what we do know about transmission path-
ways within the brain indicates that this is precisely how the brain
is not wired. Hence, a fundamental assumption, without which
most of the theoretical machinery of connectionist modeling be-
comes irrelevant or unworkable, is not satisfied.

I take these three observations as sufficient proof that connec-
tionist models cannot succeed as models of higher cognition. It
does not follow that such models are without lessons to teach.
First, network modeling has brought home, as only actual explo-
ration of such models could have brought home, a realization of
exactly how much cognitive work can be accomplished by the ma-
nipulation of network parameters. Second, the contrast between
symbolic models and network models has served to highlight se-
vere weaknesses in the symbolic approach. Enduring lessons in-
clude the need to assume distributed rather than serial process-
ing, the need for robust computational techniques, and the
quantitative nature of phenomena such as familiarity effects,
recognition, priming, typicality in categorization, metacognitive
judgments, and so on. There is no doubt that such graded phe-
nomena are better explained in terms of adjustments of quantita-
tive network parameters than in terms of symbolic computations
as classically understood.

The obvious response to this situation is to conclude that a
model of higher-order cognition must include both symbolic com-
putations and quantitative adjustments of the representational
network over which those computations are defined. However,
such a hybrid model was until recently difficult to conceptualize,
due to the connectionists’ insistence that network models had – or
should have – distributed representations as well as distributed
processing, a stance that cannot be reconciled with the symbolic
assumption that there are atomic symbols that refer to extra-men-
tal objects and events.

Mike Page’s localist manifesto provides a welcome resolution of
this dilemma. In a localist network, as defined in the target arti-
cle, the nodes are symbols – they refer to things – and localist
models are therefore symbolic models. It then becomes natural to
envision a cognitive system in which a localist network is respon-
sible for graded cognitive phenomena while symbolic computa-
tions over that network are responsible for phenomena in which

compositionality and systematicity are important (deductive rea-
soning, heuristic search during problem solving, planning, skilled
action, etc.).

However, this move reveals that localist networks are less than
revolutionary. Ideas about strength adjustments and changing ac-
tivation levels have played central roles in semantic networks,
production systems and other types of symbolic models from the
start. The most recent version of the ACT-R model (Anderson &
Lebiere 1998) operates both with subsymbolic, quantitative pro-
cesses (shaped by a different mathematical rationale than the one
behind connectionist models) and symbolic operations on chunks
and rules. Theoretical discussions of such hybrid systems are al-
ready in full swing (Sloman & Rips 1998) and empirical evidence
for them is accumulating (e.g., Jones & McLaren 1999). Although
Page’s article thus comes too late to pioneer the hybrid approach
that no doubt will dominate cognitive modeling in the next few
decades, his article is nevertheless extremely useful in laying out
the arguments why network modelers should abandon the idea of
distributed representations and return to symbolic modeling,
augmented and strengthened by the lessons taught by connec-
tionism.

A competitive manifesto

R. Hans Phafa and Gezinus Woltersb

aPsychonomics Department, University of Amsterdam, 1018 WB Amsterdam,
The Netherlands; bDepartment of Psychology, Leiden University, 2300 RB
Leiden, The Netherlands. pn–phaf@mac/mail.psy.uva.nl
wolters@fsw.leidenuniv.nl

Abstract: The distinction made by Page between localist and distributed
representations seems confounded by the distinction between competitive
and associative learning. His manifesto can also be read as a plea for com-
petitive learning. The power of competitive models can even be extended
further, by simulating similarity effects in forced-choice perceptual iden-
tification (Ratcliff & McKoon 1997) that have defied explanation by most
memory models.

The relationship between input pattern and node activation cen-
ters in the discussion of localist versus distributed representations.
If for a given input pattern a single node in either a (hidden) layer
or subdivision of a layer (i.e., a module; see Murre et al. 1992; Phaf
et al. 1990) is activated, the representation is called local. Page
forcefully argues for localist models. We believe, however, that the
representational issue is not the core of the debate. The repre-
sentational issue hinges on the specific labeling of input and rep-
resentational patterns, which does not in a principled way relate
to internal network design. The McClelland and Rumelhart
(1981) and Rumelhart and McClelland (1982) model for context
effects in letter recognition, for instance, has local representations
in the third (word level) layer when single words are presented,
but distributed representations when exposed to four-letter non-
words. So, localist representations in this model seem to depend
on deciding that among all possible four-letter strings only those
strings that result in a single activation in the third layer are rele-
vant. By the same operation, many distributed models can, in prin-
ciple, be made localist. If, for instance, a back-propagation net-
work has been trained on at least as many independent patterns
as there are hidden nodes, new input patterns can be constructed
that have single node representations. This eventually boils down
to solving n (the number of hidden nodes) equations with n un-
known variables. We can label the newly constructed patterns
(e.g., as particular words), and choose to ignore (e.g., call these
nonwords) all patterns with distributed representations on which
the network was initially trained. So, by subsequently changing the
relevance of the input patterns, a back-propagation network may
become localist.

However, which input patterns are relevant and which are not
is usually not determined after learning has taken place. The issue
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then changes to the question what kinds of representations de-
velop for relevant input patterns during learning, and it focuses
“thus” on the learning procedure. We agree with Page that a broad
distinction can be made between (supervised) associative learning
and (largely unsupervised) competitive learning. Associative
learning couples two activation patterns (i.e., generally input and
output patterns) and does not put restrictions on the number of
activated nodes forming the association. Competitive learning
functions to classify, or categorize, input patterns in distinct
classes. By its very nature, competition works to select single
nodes or neighbourhoods of nodes (e.g., Kohonen 1995) for these
classes and thus leads to the development of local (or even topo-
logically organized) representations for the preselected input pat-
terns. It is, probably, no coincidence that Page extensively dis-
cusses competitive learning under the heading of “A generalized
localist model” (sect. 4).

One of the many interesting applications of competitive learn-
ing that are dealt with by Page is the effect of similarity on prac-
tice (sect. 4.2.5). We suggest here that a similar competitive model
can account for similarity effects in forced-choice perceptual
identification (Ratcliff & McKoon 1997), which has proved a
stumbling block for many computational models of memory. Gen-
erally, previous study facilitates identification of a briefly pre-
sented word (Jacoby & Dallas 1981). Such facilitation, or repeti-
tion priming, is also found when after a brief target presentation,
a choice has to be made between the target word and a foil, but
only when target and foil are similar. More precisely, when the tar-
get is studied beforehand there is facilitation, and when the (sim-
ilar) foil has been studied there is inhibition in forced-choice iden-
tification. Both facilitation and inhibition disappear, however,
when target and foil are dissimilar. This is often interpreted as ev-
idence that previous study does not strengthen perceptual fluency
(which should result in priming also with dissimilar alternatives),
but that it induces a response bias (Ratcliff & McKoon 1997). The
fluency versus bias issue may reflect the distinction between as-
sociative and competitive learning, especially if it is realized that
in connectionist terms there is no need to restrict the bias in com-
petition to a response level.

In models using associative learning, facilitation of target iden-
tification owing to previous study should be found, irrespective of
similarity to a foil. In competitive models reaction times (and er-
rors) do not depend on the extent of the input per se, but on the
time it takes to solve competition (e.g., Phaf et al. 1990). Whereas
associative models tend to rely on absolute levels of activation,
similarity and comparing activations play a more important role in
competition. If in the model of Figure 5, topological ordering is
introduced in the second layer according to a competitive learn-
ing scheme (e.g., Kohonen 1995; Phaf & van Immerzeel 1997), ev-
idence for both target and foil may accrue there in a topologically
organized fashion. The two nodes in the third layer represent the
choice of either target or foil. When target and foil are similar, they
will compete heavily in the middle layer and an increase in weights
to the target will speed up the resolution of competition. Increases
in weight to the foil will slow the resolution of competition. The
competition between dissimilar targets and foils, however, is
solved almost immediately and will not be influenced by changes
in weights to either target or foil.

In this manner, the rather elusive phenomenon of similarity ef-
fects on forced-choice perceptual identification may be modeled
quite directly in competitive models. The relative ease of applying
these models to experimental data, as in the previous example, jus-
tifies the challenging tone of the paper by Page, but we think the
title should be changed in “a competitive manifesto.”

Dynamic thresholds for controlling encoding
and retrieval operations in localist 
(or distributed) neural networks:
The need for biologically plausible
implementations

Alan D. Pickering
Department of Psychology, St. George’s Hospital Medical School, University
of London, London SW17 0RE, United Kingdom. a.pickering@sghms.ac.uk
www.sghms.ac.uk/depts/psychology/aphome.htm

Abstract: A dynamic threshold, which controls the nature and course of
learning, is a pivotal concept in Page’s general localist framework. This
commentary addresses various issues surrounding biologically plausible
implementations for such thresholds. Relevant previous research is noted
and the particular difficulties relating to the creation of so-called instance
representations are highlighted. It is stressed that these issues also apply
to distributed models.

The target article by Page is a welcome advertisement for an older,
alternative tradition in neural net research, previously championed
by Grossberg and others, and which usually employs localist rep-
resentations. Page shows clearly that one cannot justify ignoring
this older work on the grounds that it uses localist representations.

This commentary will focus on the general localist framework
developed by Page, and especially on its central construct: a dy-
namic threshold, u, which controls the course and nature of the
learning and performance of the system. There are a number of
problems with the article’s description of threshold operations.
The model described in section 4.1, where considerable detail is
given, will not work. In a later brief section (4.4), an outline of an
improved model is given. Nonetheless, specific details, concern-
ing a series of critical issues, are not provided. This commentary
will suggest that thinking about the biological implementation of
these thresholds can be helpful in solving the psychological and
computational problems posed by the target article.

The issues identified here apply equally to the ART architec-
tures (Carpenter & Grossberg 1987a) and other localist models
(e.g., Pearce 1994) that are very similar to Page’s account. How-
ever, it must be stressed that any difficulties encountered in im-
plementing these thresholds will not be specific to localist mod-
els. Distributed models face identical issues concerning the
timecourse and dynamics of learning (Hasselmo & Schnell 1994;
Hasselmo & Wyble 1997; Hasselmo et al. 1995).

What is the threshold? In section 4.1, Page considers how lo-
calist representations may be learned in an L2 layer driven by
feedforward input from a (distributed) L1 layer. Computationally
speaking, the threshold parameter is the minimum feedforward
input required for L2 nodes to be activated by input from L1. Bi-
ologically speaking, one might think of the threshold as a property
of the L2 neurons themselves: for example, it might reflect the
minimum synaptic current required before any change in the
membrane potential of L2 neurons can occur. It may be more use-
ful, however, if the threshold reflects the action of an inhibitory
interneuron or neuromodulatory signal, projecting diffusely
across the L2 layer. Furthermore, the activation of the threshold
cells needs to be driven by the outputs of the L2 neurons. Exam-
ples of neuromodulatory thresholds exist in the literature.

In a recent work (Salum et al. 1999), my coauthors and I have
proposed that inhibition of firing in striatal neurons by dopamin-
ergic inputs from ventral tegmental area (VTA) or substantia ni-
gra pars compacta (SNc) may serve a threshold function. The tonic
level of dopaminergic output from VTA/SNc is initially low. How-
ever, as cortical (L1) inputs activate the striatal (L2) neurons, func-
tionally excitatory feedback pathways allow striatal output to in-
crease VTA/SNc firing and hence to increase the threshold. This
mechanism turns off many of the initially active striatal (L2)
nodes, with sustained activity remaining in those with strongest
inputs from cortex (L1); these are the nodes that undergo L1-L2
learning.
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A similar mechanism can be seen in the (distributed) models of
cholinergic suppression of synaptic transmission within the hip-
pocampus (Hasselmo & Schnell 1994; Hasselmo et al. 1995). In
these models, diffuse cholinergic projections modulate synapses
employing other neurotransmitters. An initially high level of
cholinergic cell firing sets a high threshold so that only the
strongest inputs can begin to activate the equivalent of the L2
layer. Outputs from this layer then feed back and reduce cholin-
ergic firing, thereby lowering the threshold so that the L2 neurons
can activate fully and undergo learning.

Different thresholds for different L2 nodes? Next we consider
when an L1 input vector, S, has been learned by an L2. Page de-
scribes the node (the S-node) as being “committed” to the input
S. The system may subsequently experience a similar vector, S*,
and there will be input to the S-node in L2 only if the similarity
between S and S* exceeds the threshold setting. In this case, the
weights to the S-node will be recoded to reflect S*, interfering
with previous learning about S. If S* is sufficiently dissimilar from
S, so that the threshold is not exceeded, Page argues (sect. 4.1)
that S* will come to be represented by an uncommitted L2 node,
thereby preventing interference with prior learning. This is a “cru-
cial point” of the paper, but it begs several questions. The similar-
ity between the input vector S* and the weight vector projecting
to an uncommitted node will usually be much lower than the sim-
ilarity between S* and the weight vector projecting to the S-node.
With equal thresholds across L2, the net input to the committed
node will therefore be greater than that to uncommitted nodes
and so uncommitted nodes will not activate and undergo learning
in the presence of S*. In section 4.4, Page implies that uncom-
mitted nodes have lower thresholds than committed nodes, which
could solve this problem, although no details about how this could
be achieved are given.

A paper by Hasselmo and Wyble (1997) suggests how high
thresholds for committed nodes may be achieved in the hip-
pocampal system. They employed an inhibitory interneuron, I,
projecting to all nodes in the equivalent of the L2 layer. The in-
hibitory weights from I to active L2 nodes were strengthened at
the same time as the excitatory L1-L2 weights were learned. In
the current scenario, this ensures that when S* is subsequently
presented, the output from I creates a higher threshold for the
committed S-node (owing to the strengthening of the inhibitory
weight between I and the S-node, which occurred when S was
presented) than for uncommitted nodes. If this increase in thresh-
old offsets the increased excitatory input to the S-node (based on
the excitatory L1-to-L2 weights learned when S was presented),
then a new L2 node will be recruited to represent S*.

How to make the system generalise. The foregoing sugges-
tions lead to a system that can create orthogonal representations,
without interference, from very similar stimulus inputs. However,
such a stimulus will not generalise its prior learning about S in re-
sponse to the similar stimulus, S*. This has been a central criti-
cism of localist models (see sect. 6.2).

A solution to this problem seems to require that, on a particu-
lar trial, the L2 threshold start at a low level. This permits activa-
tion of L2 nodes based on prior learning. These activations then
feed forward and enter into competition at other layers, where the
response is selected. When L1-to-L2 weight learning subse-
quently takes place, the L2 threshold needs to be switched to a
higher setting so that a new representation can be added in the L2
layer. Once again, this computational solution is briefly mentioned
by Page in section 4.4. He appears to suggest that a reinforcement
signal following the response (correct or incorrect) may raise the
threshold appropriately. Interestingly, there is evidence that do-
pamine cells in VTA/SNc increase firing in response to primary
rewards (Schultz et al. 1995). Page’s suggestion would therefore
fit with Salum et al.’s (1999) account of VTA/SNc dopamine cell
firing as providing a threshold for learning in the striatum. Fur-
thermore, the striatum is clearly implicated in the paradigm task
for Page’s model: human category learning (Ashby et al. 1998).
Unfortunately, these dopamine cells stop responding to reward af-

ter a modest degree of training (Schultz et al. 1995) and there is
no evidence that their projections to the striatum have the plas-
ticity required to differentiate the thresholds for committed and
uncommitted nodes.

Are instance representations biologically plausible? Instance
representations (IRs) are central to the models of Logan (1988;
1992), Nosofsky and Palmeri (1997), and to parts of Page’s article.
IRs are formed when repeated occurrences of the same stimulus
are represented by different L2 nodes. In principle, this is just an
extension of the case in section 2, but with the threshold raised so
high that even the same stimulus fails to undergo further learning
at the previously committed L2 node. Even modifying Page’s
model as suggested in this commentary, I have not been able to
achieve IRs in a stable, biologically plausible simulation. The need
to show that this can be done is an important challenge for the
above theorists.

Stipulating versus discovering
representations

David C. Plaut and James L. McClelland
Departments of Psychology and Computer Science and the Center for the
Neural Basis of Cognition, Mellon Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-2683. plaut@cmu.edu jlm@cnbc.cmu.edu
www.cnbc.cmu.edu/~plaut
www.cnbc.cmu.edu/people/mcclelland.html

Abstract: Page’s proposal to stipulate representations in which individual
units correspond to meaningful entities is too unconstrained to support ef-
fective theorizing. An approach combining general computational princi-
ples with domain-specific assumptions, in which learning is used to dis-
cover representations that are effective in solving tasks, provides more
insight into why cognitive and neural systems are organized the way they
are.

Page sets up a fundamental contrast between localist versus dis-
tributed approaches to connectionist modeling. To us there ap-
pear to be several dimensions to the actual contrast he has in mind.
Perhaps the most fundamental distinction is whether it is stipu-
lated in advance that representational units be assigned to “mean-
ingful entities” or whether, as we believe, it is better to discover
useful representations in response to task constraints. We agree
with Page that localist connectionist models have made important
contributions to our understanding of many different cognitive
phenomena. However, we think the choice of representation used
in the brain reflects the operation of a set of general principles in
conjunction with domain characteristics. It is a program of scien-
tific research to discover what the principles and domain charac-
teristics are and how they give rise to different types of represen-
tations. As a starting place in the discovery of the relevant
principles, we have suggested (McClelland 1993b; Plaut et al.
1996) that the principles include the following: that the activations
and connection weights that support representation and process-
ing are graded in nature; that processing is intrinsically gradual,
stochastic, and interactive; and that mechanisms underlying pro-
cessing adapt to task constraints.

Constraint versus flexibility. Page’s suggestion that we stipu-
late the use of representations in which the units correspond to
meaningful entities would appear on the face of it to be con-
straining, but in practice it appears to confer too much flexibility.
Indeed, throughout his target article, Page applauds the power
and flexibility of localist modeling, often contrasting it with mod-
els in which representations are discovered in response to task
constraints. A particularly telling example is his treatment of age-
of-acquisition effects (which he considers to be “potentially diffi-
cult to model in connectionist terms,” sect. 4.4). Page describes a
localist system, incorporating three new assumptions, that would
be expected to exhibit such effects. However, it would have been
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even easier for Page to formulate a model that would not exhibit
such effects – a localist model without the additional assumptions
might suffice. A critical role of theory is to account not only for
what does occur but also for what does not (see Roberts & Pash-
ler, in press); the localist modeling framework provides no lever-
age in this respect. In contrast, the distributed connectionist
model, which is more constrained in this regard, is potentially fal-
sifiable by evidence of the presence or absence of age-of-acquisi-
tion effects. In fact, Page has it exactly backwards about the rela-
tionship between such effects and connectionist models that
discover representations via back-propagation. Ellis and Lambon-
Ralph (personal communication) have pointed out that age of ac-
quisition effects are actually intrinsic to such models, and their
characteristics provide one potential explanation for these effects.

Page is exactly right to point out that “it sometimes proves dif-
ficult to manipulate distributed representations in the same way
that one can manipulate localist representations” (sect. 7.5). In
other words, the learning procedure discovers the representations
subject to the principles governing the operation of the network
and the task constraints, and the modeler is not free to manipu-
late them independently. Far from being problematic, however,
we consider this characteristic of distributed systems to be critical
to their usefulness in providing insight into cognition and behav-
ior. By examining the adequacy of a system that applies a putative
set of principles to a model that addresses performance of a par-
ticular task, we can evaluate when the principles are sufficient.
When they fail, we gain the opportunity to explore how they may
need to be adjusted or extended.

These considerations are relevant to Page’s analysis of the com-
plementary learning system hypothesis of McClelland et al.
(1995). These authors made the observation that connectionist
networks trained with back-propagation or other structure-sensi-
tive learning procedures (a) discover useful representations
through gradual, interleaved learning and (b) exhibit catastrophic
interference when trained sequentially (McCloskey & Cohen
1989). Based on these observations, and on the fact that the grad-
ual discovery of useful representations leads to a progressive dif-
ferentiation of conceptual knowledge characteristic of human
cognitive development, McClelland et al. (1995) suggested that
the neocortex embodies the indicated characteristics of these
learning procedures. One implication of this would be that rapid
acquisition of arbitrary new information would necessarily be
problematic for such a system, and that a solution to this problem
would be provided if the brain also exploited a second, comple-
mentary approach to learning, employing sparse, conjunctive rep-
resentations, that could acquire new arbitrary information quickly.
The argument was that the strengths and limitations of structure-
sensitive learning explained why there are two complementary
learning systems in hippocampus and neocortex.

In contrast, Page goes to some length to illustrate how a local-
ist approach to learning could completely avoid the problem of
catastrophic interference that arises in connectionist networks
trained with back-propagation. Indeed, in his approach, the hip-
pocampal system is redundant with the neocortex as there is no
need for cortical learning to be slow. Thus, within the localist
framework, the existence of complementary learning systems in
the hippocampus and neocortex is completely unnecessary, and
hence the existence of such a division of labor in the brain is left
unexplained.

Learning representations versus building them by hand. A
common approach in the early days of connectionist modeling was
to wire up a network by hand, and under these circumstances
there seemed to be a strong tendency among researchers to spec-
ify individual units that correspond to meaningful entities (see,
e.g., Dell 1986; McClelland & Rumelhart 1981). However, learn-
ing is a central aspect of many cognitive phenomena, so it is es-
sential that a modeling framework provide a natural means for ac-
quiring and updating knowledge. Once one turns to the possibility
that the knowledge embodied in a connectionist network might be
learned (or even discovered by natural selection), one immedi-

ately has the chance to revisit the question of whether the indi-
vidual units in a network should be expected to correspond to
meaningful entities. It is not obvious that correspondence to
meaningful entities per se (or the convenience of this correspon-
dence for modelers) confers any adaptive advantage.

To his credit, Page acknowledges the central role that learning
must play in cognitive modeling, and presents a modified version
of the ART/competitive learning framework (Carpenter & Gross-
berg 1987b; Grossberg 1976; Rumelhart & Zipser 1985) as a pro-
posal for learning localist representations. However, there are a
number of difficulties with this proposal, all of which point to rea-
sons for continuing to pursue other alternatives. We consider
three such difficulties here.

(1) On close examination, most of the positive aspects of the
proposal derive from properties of the assumed distributed rep-
resentations that are input to the localist learning mechanism. For
example, Page points out that localist models permit graded, sim-
ilarity-based activation. It is crucial to note, however, that the pat-
tern of similarity-based activation that results depends entirely on
the similarity structure of the representations providing input to
the localist units. Unfortunately, nowhere in Page’s target article
does he indicate how his localist approach could solve the prob-
lem of discovering such representations.

In contrast, a key reason for the popularity of back-propagation
is that it is effective at discovering internal, distributed represen-
tations that capture the underlying structure of a domain. For ex-
ample, Hinton (1986) showed that a network could discover kin-
ship relationships within two analogous families, even in the
absence of similarity structure in the input representations for in-
dividuals. Although some runs of the network produce internal
representations with “meaningful” units (e.g., nationality, genera-
tion, gender, branch-of-family), the more general situation is one
in which the meaningful features of the domain are captured by
the principal components of the learned representations (Mc-
Clelland 1994; see also Anderson et al. 1977; Elman 1991).

(2) Page notes that localist models are capable of considerable
generalization. This again arises from the similarity-based activa-
tion due to the distributed patterns of activation that are input to
the localist units. We suggest that one reason localist-style models
(e.g., the generalized context model, Nosofsky 1986, or ALCOVE,
Kruschke 1992) have proven successful in modeling learning in
experimental studies is because they apply to learning that occurs
within the brief time frame of most psychology experiments (1
hour up to at most about 20 hours spread over a couple of weeks).
Within this restricted time frame, we expect relatively little
change in the relevant dimensions of the representation, so the
generalization abilities of models that learn by adapting only the
relative salience of existing dimensions may be sufficient.

What seems more challenging for such approaches is to address
changes in the underlying representational dimensions them-
selves. Such shifts can occur in our task-driven approach through
the progressive, incremental process by which learning assigns
representations in response to exposure to examples embodying
domain knowledge (McClelland 1994). On our view, the estab-
lishment of appropriate representations is a developmental
process that takes place over extended periods of time (months or
years), allowing models that develop such representations to ac-
count for developmental changes such as progressive differ-
entiation of conceptual knowledge (Keil 1979) and developmen-
tal shifts in the basis of categorization of living things from
superficial to a metabolic/reproductive basis (Johnson & Carey
1998).

(3) Within the above limitations, Page’s proposed localist learn-
ing procedure sounds like it might work on paper, but it is telling
that he discusses in detail how the learning process might proceed
only for the case in which every presentation of an item in a psy-
chological experiment results in a separate localist representation.
This form of localism – the idea that every experience is assigned
a separate unit in the representation – seems highly implausible
to us. It is difficult to imagine a separate unit for every encounter
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with every object or written or spoken word every moment of
every day. Such instance-based approaches have led to some in-
teresting accounts of psychological data (by Logan and others, as
Page reviews), but in our view it is best to treat this form of local-
ist modeling as an interesting and useful abstraction of an under-
lyingly distributed, superpositional form of representation. More
specifically, we agree there is a trace laid down in the brain re-
sulting from each experience and that localist models can approx-
imate how these traces influence processing. We believe, however,
that the traces are actually the adjustments to the connections in
a distributed connectionist system rather than stored instances.
McClelland and Rumelhart (1985), for example, showed how a
simple superpositional system can capture several patterns of data
previously taken as supporting instance-based theories, and Co-
hen et al. (1990) demonstrated that distributed connectionist
models trained with back-propagation can capture the power law
of practice just as Logan’s instance models do.

It seems somewhat more plausible to us that multiple occur-
rences of a meaningful cognitive entity such as a letter or word
might be mapped onto the same unit. However, the ability of mod-
els that exploit the kind of procedure Page proposes to actually
produce such representations is unclear. In our experience, to ob-
tain satisfactory results with such models it is necessary to tune the
“vigilance” parameter very carefully, and often in ways that de-
pend strongly on specifics of the training set. But there is a deeper
problem. Whenever there is any tolerance of variation among in-
stances of a particular item, one immediately runs into the fact
that the modeler is forced to decide just what the acceptable level
of mismatch should be. If, for example, a reader encounters a mis-
spelling of the word ANTARTICA, should we necessarily imagine
that the cognitive system must create a separate unit for it? Or if,
in a certain Wendy’s restaurant, the salad bar is not immediately
opposite the ordering queue, should we create a new subcategory
of the Wendy’s subcategory of restaurants? Within a task-driven
learning approach, in which robust patterns of covariation become
representationally coherent, and in which subpatterns coexist
within the larger patterns of covariation, such otherwise thorny is-
sues become irrelevant (McClelland & Rumelhart 1985; Rumel-
hart et al. 1986).

Task-driven learning can discover localist-like representa-
tions. As we have noted, whereas Page would stipulate localist
representations for various types of problems, our approach allows
an appropriate representation to be created in response to the
constraints built into the learning procedure and the task at hand.
At a general level, distributed representations seem most useful in
systematic domains in which similar inputs map to similar outputs
(e.g., English word reading), whereas localist representations (and
here we mean specifically representations involving one unit per
entire input pattern) are most useful in unsystematic domains in
which similar inputs may map to completely unrelated outputs
(e.g., word comprehension, face naming, episodic memory). It is
thus interesting (although, to our knowledge, not particularly well
documented) that standard connectionist learning procedures
tend to produce dense, overlapping internal representations when
applied to systematic tasks, whereas they tend to produce much
sparser, less overlapping representations when applied to unsys-
tematic tasks. Although Page considers the latter to be function-
ally equivalent to localist representations, there are at least two
reasons to reject this equivalence. First, sparse distributed repre-
sentations scale far better than strictly localist ones (Marr 1970;
McClelland & Goddard 1996; Kanerva 1988). Second, and per-
haps more important, sparse distributed representations are on
one end of a continuum produced by the same set of computa-
tional assumptions that yield more dense, overlapping represen-
tations when these are useful to capture the structure in a domain.

Other comments on Page’s critique of “distributed” ap-
proaches. In rejecting what he calls the distributed approach,
Page levels several criticisms that are either incorrect or over-
stated, partly because he seems to adopt an overly narrow view of
the approach. For one thing, Page appears to equate the distrib-

uted approach with the application of back-propagation within
feed-forward networks. He then raises questions about the bio-
logical plausibility of back-propagation but fails to acknowledge
that there are a number of other, more plausible procedures for
performing gradient descent learning in distributed systems
which are functionally equivalent to back-propagation (see, e.g.,
O’Reilly 1996). Page questions whether distributed systems can
appropriately fail to generalize in unsystematic domains (e.g.,
mapping orthography to semantics for pseudowords [sect. 4.3.1])
when such behavior has already been demonstrated (Plaut 1997;
Plaut & Shallice 1993). He also questions how a distributed sys-
tem can decide when and how to respond without some sort of ho-
muncular energy-monitoring system (although see Botvinick et al.
1999, for recent functional imaging data supporting the hypothe-
sis that the anterior cingulate may, in fact, play such a role). In fact,
no such explicit decisions are required; all that is needed is that
the motor system be sufficiently damped that it initiates behavior
only when driven by strongly activated, stable internal represen-
tations (see Kello et al., in press, for a simple demonstration of this
idea).

Based on the above, we suggest that the representations used
by the brain in solving a particular task are not something we
should stipulate in advance. Rather, they are selected by evolution
and by learning as solutions to challenges and opportunities posed
by the environment. The structure of the problem will determine
whether the representation will be localist-like or more distrib-
uted in character.
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What is the operating point? A discourse 
on perceptual organisation

Simon R. Schultz
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Abstract: The standard dogmatism ignores the fact that neural coding is
extremely flexible, and the degree of “coarseness” versus “locality” of rep-
resentation in real brains can be different under different task conditions.
The real question that should be asked is: What is the operating point of
neural coding under natural behavioural conditions? Several sources of ev-
idence suggest that under natural conditions some degree of distribution
of coding pervades the nervous system.

When the task that a monkey is required to perform is reduced to
that undertaken by a single neuron, single neurons perform as well
as the monkey (Newsome et al. 1989). This is interesting not only
in that it tells us that we have managed to find a task that fairly ac-
curately isolates the perceptual decision made by the cell; it also
tells us that the coding régime in which neurons operate is ad-
justed in a task-dependent manner. Clearly there are situations in
which whole animals make discriminations based upon the output
of more than one cell (see sect. 2.5). Further evidence for the task
dependence of coding strategies comes from more recent experi-
ments from the Newsome laboratory (Newsome 1999), which
provide evidence that both winner-take-all and weighted output
decoding strategies are utilised by rhesus macaques depending
upon the task being performed. Information can be sparsely or
coarsely distributed across populations of neurons depending
upon the stimulation conditions. The critical question that must
be asked is: What kind of coding (representational) régime does
natural stimulation and behaviour invoke?

It is still not yet understood whether perception is mostly due
to small numbers of optimally tuned neurons, or the much larger
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number of neurons that must be suboptimally excited by a given
stimulus. Where is the natural “operating point” on the tuning
curve? This provides a way of quantifying precisely how “localist”
the representations are in a naturalistic paradigm. A useful way to
study this operating point is in terms of information theory. Each
neuron that responds must contribute some amount of informa-
tion, measured in bits, to the overall percept. Neurons that re-
spond with higher firing rates will, in general, contribute more in-
formation to the percept than those that elevate their firing rates
only marginally above their spontaneous activity level. Thus along
a given stimulus dimension, the information per neuron will be
higher at the centre (peak) of the tuning curve than further out.
However, substantial discrimination performance is maintained at
some distance from the centre of the tuning curve, as is demon-
strated by the sensitivity MT neurons show to opposed directions
of motion quite far from the preferred-null axis (Britten & New-
some 1999). In general, there will be many more neurons operat-
ing further from the centre of the tuning curve, and the sum of
many lesser contributions may be enough to make up for – or even
overwhelm – the contributions of the high-firing neurons to the
total information represented. This is shown schematically in Fig-
ure 1. Evidence suggesting that this may indeed be the case comes
from inferior temporal cortex recordings by Rolls et al. (1997), in
which low firing rates were found to contribute more to the total
Shannon information than high firing rates, due to both their
greater number and the larger noise at high firing rates.

The preceding discussion largely focused on a single-stimulus
dimension; however, the principle should be even more applica-
ble to the more realistic situation of multidimensional stimulation.
In this case a given neuron, even if “matched” on one dimension,
is extremely likely to be responding submaximally on at least one
other dimension. Indeed, computer simulations have indicated
that for multidimensional stimuli, a large population of cells is re-

quired to code stimulus attributes accurately and to account for
known behavioural performance (Zohary 1992). Studies of the
correlation between simultaneously recorded neurons suggested
that the outputs of hundreds of neurons can be effectively pooled
together for perception (Zohary et al. 1994). However, that work
may significantly underestimate the number of neurons that can
be usefully pooled when naturalistic, multidimensional stimula-
tion is taken into account (Panzeri et al. 1999; Schultz & Panzeri
1999): larger dimensionality decreases the signal correlation and
increases drastically the range over which the information
increases linearly (i.e., factorially) with the number of neurons
pooled.

It has been suggested that localist coding is particularly impor-
tant in higher visual areas such as the anterior inferotemporal cor-
tex. However, one should consider that studies of coding receive
a strong bias from single unit recording strategies themselves. It
has recently been shown that IT cells are in fact arranged in a
columnar structure based on stimulus attributes (Wang et al.
1998). However, unlike in early sensory brain areas, our experi-
ments on higher areas do not directly manipulate the dimensions
along which this spatial organisation occurs – instead, we may 
present different faces or objects that change many stimulus di-
mensions at once. This will lead inevitably to apparent “grand-
mother-cell-like” encoding, where in fact a very similar coding or-
ganisation to early visual areas may exist.

Of course, it is important that we understand what aspects of
the neuronal response can be decoded (although we must not ne-
glect the fact that responses at the level of the cortical heterarchy
we are considering may “enter perception” in themselves). If only
bursting responses were decoded, for instance, this would be
likely to bias coding in the direction of localism. If on the other
hand every spike is important, as seems reasonable for metabolic
reasons, then some degree of distribution of coding must be taken
into account. What is important is that we understand where the
operating point for natural behaviour lies, which is the task that
the system has evolved to undertake. Evidence of the task-de-
pendence of the sparsity of coding and of the flexibility of decod-
ing strategies raises a further intriguing hypothesis: that the de-
gree of distribution of coding is actually dynamic, and may adapt
to the nature of the perceptual task at hand.
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An extended local connectionist manifesto:
Embracing relational and procedural
knowledge
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Abstract: Page has performed an important service by dispelling several
myths and misconceptions concerning the localist approach. The localist
position and computational model presented in the target article, however,
are overly restrictive and do not address the representation of complex
conceptual items such as events, situations, actions, and plans. Working to-
ward the representation of such items leads to a more sophisticated and
articulated view of the localist approach.

Page has performed an important service to the connectionist and
cognitive science community by dispelling several myths and mis-
conceptions concerning the localist approach. Over the years,
these myths and misconceptions have acquired the status of self-
evident truths and it has become almost obligatory for connec-
tionist models to display the “distributed representations inside”
logo in order to lay claim to being the genuine article.
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Figure 1 (Schultz). A schematic figure portraying the total in-
formation represented in a percept from all cells operating at dif-
ferent portions of their tuning curve, and thus at different firing
rates. This could be considered to be a cross-section through a
multidimensional tuning curve. Cells with very low firing rates (far
from the center of the tuning curve) cannot provide much infor-
mation; although cells with high firing rates do, there are not many
of them, and thus their total contribution cannot be high either.
The percept must be mostly contributed to by cells somewhere in
between; precisely where is an empirical issue for further study.
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I enthusiastically concur with the bulk of what Page has to say,
but I would like to elaborate on the localist approach outlined in
the target article based on my own involvement with the approach.
In my opinion, the localist position and the localist computational
model presented in the target article are overly restrictive. The au-
thor has focused primarily on the representation of entities that can
be expressed as soft (weighted) conjunctions of features. The lo-
calist model described in section 4 deals almost exclusively with the
acquisition and retrieval of higher-level concepts (nodes) that are
soft conjunctions of lower-level features. Even the more advanced
example discussed in section 4.5 focuses on learning associations
between such entities. This limited representational focus is also
reflected in the examples of entities enumerated by the author,
namely, “words, names, persons, etc.” (sect. 2.5). What Page leaves
out are more complex conceptual items such as events, situations,
actions, and plans, which form the grist of human cognition.

Events, situations, actions, and plans involve relational and pro-
cedural knowledge, and hence, cannot be encoded as mere soft
conjunctions of features; their encoding requires more structured
representations. Working toward a representation of such com-
plex and structured items leads to a more articulated view of the
localist approach than the one presented in the target article. I will
briefly comment on this view. For more details, the reader is re-
ferred to specific models that instantiate this view (see Ajjana-
gadde & Shastri 1991; Bailey 1997; Shastri 1991; 1997; 1999a;
1999b; 1999c; Shastri & Ajjanagadde 1993; Shastri et al., in press).

In the enriched representational context of events, situations,
actions, and plans the operative representational unit is often a cir-
cuit of nodes rather than a node. Moreover, only some of the nodes
in such a circuit correspond to cognitively meaningful entities (as
the latter are characterized in sect. 2.5). Most of the other nodes
in the circuit serve a processing function or perform an ancillary
representational role. For example, such nodes glue together sim-
pler items in systematic ways to form composite relational items,
they provide a handle for systematically accessing specific com-
ponents of a composite item, they provide a handle for systemat-
ically accessing specific components of a composite item, and they
allow actions and plans to be expressed as partially ordered struc-
tures of subactions and subplans. Thus the encoding of an event
(E1) “John gave a book to Mary” in long-term memory would in-
volve not only nodes corresponding to cognitively meaningful en-
tities such as John, Mary, book, giver, recipient, and object, but
also functionally meaningful nodes such as: a node for asserting
belief in E1, a node for querying E1, binder nodes for encoding
role-entity bindings in E1 (for example, a node for encoding the
binding giver 5 John), binding-extractor nodes for selectively re-
trieving role-fillers in E1 (for example, a node for activating “John”
in response to the activation of the role “giver” in the context of
E1), and nodes for linking the encoding of E1 to a generic per-
ceptual-motor schema for the give action. Furthermore, the lo-
calist encoding of the give schema would involve specific nodes
and circuits for encoding a partially ordered sequence of percep-
tual-motor subactions comprising the give action.

In the expanded localist framework, individual nodes continue
to have well-defined localist interpretations. However, these in-
terpretations are best couched in terms of a node’s functional sig-
nificance rather than its semantic significance (cf. sect. 2.5).

The learning framework presented by the author has a strong
overlap with work on recruitment learning (Diederich 1989; Feld-
man 1982; Shastri 1988; 1999b; 1999c; Valiant 1994; Wickelgren
1979). The architecture described in Figure 9 of the target article
is in many ways analogous to that sketched out in (Shastri 1988,
pp. 182–92). This overlap merits further exploration. In the re-
cruitment learning framework, learning occurs within a network
of quasi-randomly connected nodes. Recruited nodes are those
nodes that have acquired a distinct meaning or functionality by
virtue of their strong interconnections to other recruited nodes
and/or other sensorimotor nodes. Nodes that are not yet recruited
are nodes “in waiting” or “free” nodes. Free nodes are connected
via weak links to a large number of free, recruited, and/or senso-

rimotor nodes. These free nodes form a primordial network from
which suitably connected nodes may be recruited for represent-
ing new items. For example, a novel concept y which is a conjunct
of existing concepts x1 and x2 can be encoded in long-term mem-
ory by “recruiting” free nodes that receive links from both x1 and
x2 nodes. Here recruiting a node simply means strengthening the
weights of links incident on the node from x1 and x2 nodes. In gen-
eral, several nodes are recruited for each item.

The recruitment process can transform quasi-random networks
into structures consisting of nodes tuned to specific functionali-
ties. Typically, a node receives a large number of links, and hence,
can potentially participate in a large number of functional circuits.
If, however, the weights of selected links increase, and optionally,
the weights of other links decrease, the node can become more se-
lective and participate in a limited number of functional circuits.

In Shastri (1999b; 1999c) it is shown that recruitment learning
can be firmly grounded in the biological phenomena of long-term
potentiation (LTP) and long-term depression (LTD) that involve
rapid, long-lasting, and specific changes in synaptic strength (Bliss
& Collingridge 1996; Linden 1994). Moreover, as explained in
Shastri (1999c) the specification of a learning algorithm amounts
to choosing a suitable network architecture and a set of appropri-
ate parameter values for the induction of LTP and LTD.

The recruitment learning framework also offers an alternate ex-
planation for the age-of-acquisition effect discussed in section 4.4.
It suggests that (on an average) more cells are recruited for items
acquired earlier in a learning cycle than for items acquired later
in the cycle. Thus items acquired earlier in the learning cycle have
greater neuronal mass and it is this greater mass that gives these
items their competitive edge.

To conclude, Page must be commended for systematically and
comprehensively presenting a strong case for the localist models.
The localist position and computational model presented in the
target article, however, can be enriched by considering the repre-
sentation of complex items involving relational and procedural
knowledge. Work on representing such items leads to a more ar-
ticulated view of the localist approach than that presented in the
target article.
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Prototypes and portability in artificial 
neural network models

Thomas R. Shultz
Department of Psychology, McGill University, Montreal, Quebec, Canada
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Abstract: The Page target article is interesting because of apparent cov-
erage of many psychological phenomena with simple, unified neural tech-
niques. However, prototype phenomena cannot be covered because the
strongest response would be to the first-learned stimulus in each category
rather than to a prototype stimulus or most frequently presented stimuli.
Alternative methods using distributed coding can also achieve portability
of network knowledge.

The Page target article is surprisingly interesting. I use the term
“surprisingly” because, with all of the deep controversies in cog-
nitive science, it is difficult to care much about whether network
representations are local or distributed. In any given simulation,
choice of representation is of key importance, but it is rarely re-
garded as a life-and-death ideological issue whether these codes
are local or distributed. Many modelers adopt an eclectic ap-
proach that enables them to use representations that (a) work in
terms of covering psychological data and (b) can be justified by
psychological evidence.
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What is significant about Page’s article is the fact that such a
simple, unified, nonmainstream neural model can apparently cap-
ture so many phenomena, from unsupervised learning to age-of-
acquisition effects, in such a natural fashion. That the coding is lo-
cal is somewhat incidental to that source of interest, even though
local coding happens to be critical to the functioning of Page’s par-
ticular networks.

It might be that Page has dichotomized and polarized the field
too much. For example, a reader could easily get the impression
from section 4.3.2 that conventional attractor networks always or
typically employ distributed codes. But there are many instances 
of local encoding in successful attractor network models that are
quite different from the networks that Page proposes. Such mod-
els cover, for example, analogical retrieval and mapping (Holyoak
& Thagard 1989; Thagard et al. 1990), explanation (Read & Mar-
cus-Newhall 1993; Thagard 1989), decision making (Thagard &
Millgram 1995), attitude change (Spellman et al. 1993), person im-
pression (Kunda & Thagard 1996; Read & Miller 1998; Smith &
DeCoster 1998), and cognitive dissonance (Shultz & Lepper 1996).

Page argues that local coding is to be preferred for psychologi-
cal modeling over distributed coding. A less polarizing conclusion
would be that both local and distributed encoding techniques are
legitimate within a variety of different neural network techniques.
Page himself notes that many localist models use some distributed
coding. Because eclectic use of local and distributed codes is so
common, it is somewhat difficult to accept Page’s strongly localist
argument. In the end, Page is willing to call a coding system local
even if only some of its codes are local. With so many modelers
willing to use both local and distributed codes, a strict dichotomy
seems unwarranted.

Because Page’s models can apparently cover such a wide range
of effects, it would be useful to examine this coverage in more de-
tail than was possible in his article. For example, the basic learn-
ing module described in section 4.1 would seem to have consid-
erable difficulty simulating common prototype effects. This
difficulty stems from the fact the strongest second-layer (output)
responses would be the first stimulus learned in each category,
rather than to a prototype stimulus or the most frequent stimuli.
This is because each new stimulus is responded to most by the
second-layer unit that first learned to respond to the most similar
previously learned stimulus. Only stimuli that are sufficiently dif-
ferent from previously learned stimuli will provoke new learning
by an uncommitted second-layer unit. In contrast, psychological
evidence has found the largest recognition responses to occur to
prototypic or especially frequent stimuli, not to first-learned stim-
uli (Hayes-Roth & Hayes-Roth 1977). These psychological proto-
type findings are more readily accounted for by a variety of neural
network models that are different from Page’s models. For exam-
ple, auto-associator networks learning with a Hebbian or delta
rule (McClelland & Rumelhart 1986) or encoder networks learn-
ing with the back-propoagation rule can cover prototype phe-
nomena. Interestingly, it does not matter whether these success-
ful network models use local or distributed codes. It might prove
interesting to examine in more detail the psychological fitness of
the rest of Page’s models, all of which build on this basic learning
module.

One of the major apparent advantages of Page’s localist models
is the relative ease with which local representations can be ma-
nipulated (sect. 7.5), as compared to representations that are dis-
tributed over many units. It is possible that this feature could be
exploited to achieve portability of knowledge. People seem capa-
ble of porting their knowledge to novel problems in creative ways,
and this portability is sometimes regarded as a significant chal-
lenge for artificial neural network models (Karmiloff-Smith 1992).
Local representations like those advocated by Page might be good
candidates for portability. Building or learning connection weights
from a single unit, perhaps representing a complex idea, seems
much easier than establishing connection weights from many such
representation units.

This is not to admit, however, that local coding is required for

knowledge portability in neural networks. Alternative techniques
for achieving knowledge portability with distributed codes might
well be possible too. One example is the work we are currently do-
ing on a system called Knowledge-based Cascade-correlation
(KBCC) Shultz 1998). Ordinary Cascade-correlation (CC) is a
generative feed-forward network algorithm that grows as it learns,
by recruiting new hidden units into a network as needed to reduce
error (Fahlman & Lebiere 1990). The hidden units recruited by
CC are virginal, know-nothing units until they are trained to track
current network error during the recruitment process. However,
KBCC has the ability to store and possibly recruit old CC net-
works that do already know something. In KBCC, old networks
compete with new single units to be recruited. This makes old
knowledge sufficiently portable to solve new problems, if the old
knowledge is helpful in tracking and ultimately reducing network
error. Moreover, because the stored networks are retained in their
original form, KBCC is much more resistant to the catastrophic
interference caused by new learning in most static feed-forward
networks. It is noteworthy once again that all of this can be ac-
complished regardless of whether the coding is local or distributed
in KBCC systems. Actually, even ordinary CC networks are quite
resistant to catastrophic interference because of the policy of
freezing input weights to hidden units after recruitment (Tetew-
sky et al. 1994). This ensures that each hidden unit never forgets
its original purpose, even though it may eventually play a new role
in learning to solve current problems.

Hidden Markov model interpretations 
of neural networks

Ingmar Visser
Developmental Psychology Institute of the University of Amsterdam, 1018
WB Amsterdam, The Netherlands. ingmar@dds.nl
develop.psy.uva.nl/users/ingmar/op–visser@macmail.psy.uva.nl

Abstract: Page’s manifesto makes a case for localist representations in
neural networks, one of the advantages being ease of interpretation. How-
ever, even localist networks can be hard to interpret, especially when at
some hidden layer of the network distributed representations are em-
ployed, as is often the case. Hidden Markov models can be used to pro-
vide useful interpretable representations.

In his manifesto for the use of localist neural network models,
Page mentions many advantages of such a scheme. One advantage
is the ease of interpretation of the workings of such a network in
psychologically relevant terms (sect. 7.6).

As Page justly remarks, a localist model does not imply that dis-
tributed representations are not used in any part of the model;
rather a localist model is characterized by employing localist rep-
resentations at some (crucial) points such as the output level of the
network. More specifically he states that “any entity that is locally
represented at layer n of the hierarchy is sure to be represented
in a distributed fashion at layer n 2 1” (sect. 2.6). Why should the
problem of interpretation not apply to these distributed repre-
sentations at lower levels as well? I think it does, and it’s best to il-
lustrate this with an example.

Following the work of Elman (1990), Cleeremans and McClel-
land (1991) used a simple recurrent network SRN to model im-
plicit learning behavior using localist representations at both in-
put and output layers, but a distributed representation at the
hidden layer of the network. As they show in their paper the SRN
model captures the main features of subjects’ performance by
“growing increasingly sensitive to the temporal context [of the cur-
rent stimulus].” This sensitivity to the temporal context of stimuli
is somehow captured by representations formed at the hidden
layer of the network. In exactly what sense differences in tempo-
ral context affect activity at the hidden layer is unclear: What does
a certain pattern of activity of the hidden layer units mean?
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Visser et al. (1999) uses hidden Markov models to character-
ize learning of human subjects. By analyzing a series of responses
it is possible to extract a hidden Markov model that is, in its 
general form, closely related to the sequence of stimuli that 
were used in the sequence learning experiment. In fact a hidden
Markov model is a stochastic version of a finite state automaton,
the kind of automaton used by Cleeremans and McClelland
(1991) to generate the stimuli for their implicit sequence learn-
ing experiment.

Such a procedure can also be used in analyses of a neural net-
work by having the network generate a series of responses or pre-
dictions. Using a version of the EM algorithm a hidden Markov
model can be extracted from the network (see, e.g., Rabiner
1989). Extraction of a hidden Markov model of the network par-
titions the state space of the hidden layer of the network in dis-
crete (hidden) states. This model is then interpretable in the sense
that the presence or absence of connections between states indi-
cates which sequences of stimuli are admissible and which are not;
that is, the states can be regarded as statistically derived proxies of
local representations. In addition, the extraction procedure does
not rely on inspection of the activities at the hidden layer of the
network as is done for example by Cleeremans et al. (1989) and
Giles et al. (1992).

Extraction of hidden Markov models, and by implication of fi-
nite state machines, can in principle be applied to any neural net-
work but is especially suitable for those that are used for model-
ling sequential behaviors. This is not to say that those networks
should be replaced with HMMs. For example the work of
Cleeremans and McClelland (1991) shows that their SRN model
is very successful in describing subjects’ behavior in implicit 
sequence learning. Although I strongly support Page’s manifesto
for localist modelling, it does not solve all problems of interpre-
tation that arise in neural networks. Hidden Markov models are
a highly useful tool to gain a better understanding of the inter-
nal workings of such networks in terms of proxies of local repre-
sentations.

A population code with added grandmothers?

Malcolm P.Young, Stefano Panzeri, and Robert Robertson
Neural Systems Group, Department of Psychology, University of Newcastle,
Newcastle upon Tyne, NE1 7RU, United Kingdom. m.p.young@ncl.ac.uk
www.psychology.ncl.ac.uk/neural–systems–group.html

Abstract: Page’s “localist” code, a population code with occasional, maxi-
mally firing elements, does not seem to us usefully or testably different 
from sparse population coding. Some of the evidence adduced by Page for
his proposal is not actually evidence for it, and coding by maximal firing 
is challenged by lower firing observed in neuronal responses to natural
stimuli.

Neurophysiologists have for some time entertained the idea that
there is graded dimension between grandmother cell codes and
very coarse population codes (e.g., Fotheringhame & Young
1996). At one extreme, all information about a stimulus is to be
found in the firing of a very small number of neurons, and very lit-
tle is to be found in the firing of the many cells that are relatively
unexcited by it. At the other extreme, all information is to be found
in the graded firing of very many cells, and very little in the firing
of any single cell. The idea of this “sparseness” dimension has the
virtue of suggesting readily testable measures of where neurolog-
ical reality lies along it, such as the ratio between information in
the population at large and that in single unit’s responses. Exper-
imental investigation of the various proposals that have populated
this dimension has been quite fruitful, and it is not often now con-
tended that there is information carried by the unenthusiastic re-
sponses of large numbers of cells. It is also not often contended
that sufficient information for most behavioural tasks can be car-

ried by small numbers of cells, some tens of them in several cases
(e.g., Shadlen & Newsome 1998; Young & Yamane 1992; 1993).
Hence, in visual neuroscience, at any rate, there seems presently
not to be great conflict on this particular issue (as once there cer-
tainly was): codes appear to be populational, but the populations
involved can be very small indeed, particularly toward the top of
any sensory system.

Page’s thinking seems in one way different from that outlined
above. His redefinitions of key terms, such as “localist,” are differ-
ent from those that have exercised experimenters over the last
decade or so, and the experiments have tested different ideas than
his. Page’s idea (hereinafter “localist” with scare quotes) seems to
be that a “localist” code possesses both distributed and grand-
motherish aspects, rather than supposing that it is one or the other,
or some specifiable balance between the two. In this sense he is
mistaken that the “localist” position has been “misconstrued,” and
that there is a widespread tendency to assume that neurophysio-
logical results speak against “localist” representation. His particu-
lar avowed position has not previously been in the minds of ex-
perimenters. Page’s comments about extracts from Young and
Yamane (1992) illustrate this mistake particularly clearly. The fact
that IT neurons’ suboptimal responses are systematically graded,
and not random, indicates that information is carried at the pop-
ulation level. The idea ruled out by these results is that of extreme,
single-cell coding, in which all of the information is carried by
grandmother cells, and which was very much alive at the time, but
now is not. Information being carried at the population level (i.e.,
nonrandom, suboptimal responses) does not bear on Page’s new
and versatile redefinition of “localist.”

In another way, however, we wonder whether his “localist” po-
sition is really anything usefully different from the sparse popula-
tion coding that some cortical neurophysiologists think they see,
notwithstanding his various comments to the contrary. Page’s “lo-
calist” code seems to be a population code with occasional, maxi-
mally firing, highly informative elements – which appears to us to
be very similar to a population code in which a fairly small pro-
portion of the population carries most of the information. The only
difference seems to be that “localist” coding commits itself to the
claim that there should be at least one maximally firing cell for
every familiar stimulus, whereas sparse population coding doesn’t
care one way or the other whether any cell is firing maximally. If
this is the only difference, it is not a very useful or testable one for
brain scientists: How could one know whether a cell is firing max-
imally? For example, the apparently very selective cell reported
by Young and Yamane (1993) is the best evidence for “localist”
coding that Page can conceive. But “localist” coding involves “the
presence of at least one node that responds maximally,” and this
cell’s modest 37 Hz is most unlikely to be its maximum. Many IT
cells respond above 100 Hz in the same circumstances and, given
sufficient time to characterise its preferences, there is no reason
to suppose that this cell could not be driven three times as hard.
Hence, this is no evidence at all for “localist” coding. If there are
more important differences than the claim of maximal firing, Page
should specify in what way “localist” is different from sparse pop-
ulation coding, and in sufficiently clear terms so that we could test
which scheme it is (perhaps in IT). We think that being right and
being wrong are about equally valuable, while being unspecific or
untestable is less valuable. Being right provides a useful founda-
tion for further work to build on; being wrong is useful because in
finding out you’re wrong, generally you or your rivals find out a lot
of interesting things; but being unspecific, untestable or unstimu-
lating doesn’t get anyone anywhere. Meeting the challenge of
specifying testable distinctions would reassure us that Page’s the-
sis does not reside in the latter category.

Finally, there is increasing evidence that neurons respond at
lower rates when processing natural scenes, or indeed any other
scenes about which the visual system can apply prior knowledge
(e.g., Baddeley et al. 1997; Gallant et al. 1998; Scannell & Young
2000), when compared to the extra-ordinary stimuli traditionally
employed by neurophysiologists and psychophysicists. This chal-
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lenges Page’s idea of coding being undertaken by maximally fir-
ing units, as the lower firing rates observed in response to nat-
ural stimuli carry more information (Buracas et al. 1998; Rieke
et al. 1996), and there are strong theoretical reasons to suspect
that generally lower firing accompanies normal vision (Rao &
Ballard 1999; Scannell & Young 2000). These reasons are con-
nected to the fact that neurons can take advantage of prior
knowledge of the world, and make inferences on it; suggest that
visual neurophysiology is again entering an unusually exciting
time, in which many of the old certainties are giving way; and
that representation and processing of visual information is in-
creasingly unlikely to be mediated in the ways championed by
Page.

Author’s Response

Sticking to the manifesto

Mike Page
Medical Research Council Cognition and Brain Sciences Unit, Cambridge,
CB2 2EF, United Kingdom. mike.page@mrc-cbu.cam.ac.uk
www.mrc-cbu.cam.ac.uk/

Abstract: The commentators have raised some interesting issues
but none question the viability of a localist approach to connec-
tionist modelling. Once localist models are properly defined they
can be seen to exhibit many properties relevant to the modelling
of both psychological and brain function. They can be used to im-
plement exemplar models, prototype models and models of se-
quence memory and they form a foundation upon which symbolic
models can be constructed. Localist models are insensitive to in-
terference and have learning rules that are biologically plausible.
They have more explanatory value than their distributed counter-
parts and they relate transparently to a number of classic mathe-
matical models of behaviour.

R1. Introduction

The commentators raise some interesting points regarding
the benefits, or otherwise, of a localist modelling approach.
I have divided my reply into a number of sections that
broadly reflect concerns shared by more than one com-
mentator. There are sections on definitional matters, on dis-
tributed processing over localist representations, and on
the distinction between prototype and exemplar models.
Other topics include models of sequence memory, cata-
strophic interference, and the interpretability of connec-
tionist models. I briefly discuss the notion of efficiency with
regard to biological systems and address the issues raised by
those commentators involved in mathematical modelling.
On occasion I have stretched the section headings some-
what to allow me to deal in one place with different issues
raised in a single commentary. In addition, I have devoted
a whole section of my reply to the commentary by Plaut &
McClelland: these commentators are two of the principal
proponents of the fully distributed modelling approach and
I felt it necessary to address their arguments in a very di-
rect way. I begin by tackling some problems regarding the
definition of terms.

R2. The concept of a localist model has not been
redefined, nor is the proposed model 
a hybrid model

Several commentators (Beaman; Farrell & Lewandow-
sky; Plaut & McClelland; T. Shultz; Young et al.) make
one, or both, of two related points. First, that the concept
of a localist model has been redefined in the target article.
Second, that this new definition permits the inclusion of
distributed representations at many (though not all) levels
of a localist model and that it is this fact that underlies any
advantageous aspects of the “hybrid” model’s performance.
For example, Young et al. find my redefinition of key
terms such as “localist” so “new and versatile” that they rec-
ommend placing the word within scare quotes. Beaman
notes that “many of the criticisms Page anticipates are
neatly circumvented by his original definition that localist
models can use distributed representations.” The impres-
sion given by these commentators is that “redefining” lo-
calist representations in this way is not quite fair play, al-
lowing the localist modeller to enjoy the benefits of
distributed representation without properly subscribing to
a fully distributed approach.

This criticism is unsustainable, not least because no re-
definition of the term “localist” has been either attempted
or achieved in the target article. My definitions of localist
representation and of a localist model were intended to be
clear rather than novel; indeed, it is difficult to see where
the above commentators identify the supposed novelty.
From their commentaries one might surmise that it is the
inclusion of distributed representations in localist models
that is novel but, as is stated in the target article, localist
models have always included distributed representations of
entities at all levels “below” that at which those same enti-
ties are locally represented. Taking the same example as I
did in section 2.6 of the target article, namely, the interac-
tive activation (IA) model of visual word recognition (Mc-
Clelland & Rumelhart 1981), this localist model contained
distributed word-representations at both letter and visual
feature levels. IA was nevertheless a localist model of words
because it also contained a level at which words were locally
represented. The idea that a model that includes both dis-
tributed representations and localist representations of a
given class of entity should best be described as a hybrid
model misses the point: a localist model of a given entity
class is defined (and has been for a long time) by the pres-
ence of localist representations of members of that class,
not by the absence of their distributed representation.

Young et al. state that “[Page’s] particular avowed posi-
tion has not previously been in the minds of experimen-
ters.” If my position is no more than a clear statement of a
long-held localist position, then this raises the question of
which localist position has been experimentally (i.e., neuro-
physiologically) tested. If, as Young et al. imply, experimen-
ters have been interested solely in ruling out “grandmother-
style” localist representation, in which no information is
transmitted by suboptimal responses, then there has been
a tragic lack of communication between the experimental
and the connectionist theoretical work. As far as I can tell,
few, if any, localist connectionist modellers in the last thirty
years have believed in such a style of representation.

To illustrate again the important point regarding the in-
formational content of “neural” responses, suppose one has
a localist representation for each familiar orthographic
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word form, such that each activates to a degree dependent
on its orthographic similarity to a test word. So presented
with the word “MUST,” the node representing the word
“MUSE” (henceforth the MUSE-node) will activate to de-
gree 0.75 6 0.05; the same node presented with the word
“MAKE” will activate to 0.5 6 0.05 and presented with the
word “MUSE” it will, of course, activate optimally at 1.0 6
0.05. Now suppose we present one of these three words
while measuring the activation of this MUSE-node and find
that it activates to degree 0.8. Does this nonoptimal re-
sponse give us any information about which of the three
words was presented? It is clear that it does – the test word
is most likely to have been “MUST.” Now suppose the test
word could have been any four letter word – in this cir-
cumstance a MUSE-node activation of 0.8 would not help
us decide between, say, MULE, FUSE, or MUST, though
we would still have enough information effectively to rule
out MAKE as the test stimulus. More information will be
derived if activation of another node, for example the
FUSE-node, were simultaneously measured at, say, 0.98.
Such levels of activation are only expected if the ortho-
graphic match is perfect. Thus, highly active nodes are in-
formative because high activation is rare. In circumstances
where a very low activation is rare, low activations can also
be highly informative. In general, though, less active nodes
are, individually, rather less informative because their acti-
vation can be caused by a larger number of different states
of affairs. Remembering that there are likely to be many
more partially active nodes than fully active ones for any
given test stimulus (see commentary by S. Schultz), it is
easy to see how any reasonable localist model would be con-
sistent with a finding that a good deal of stimulus informa-
tion is present in nonoptimal responses.

Young et al. contend that the distinction between local-
ist coding and sparse population coding is not a very useful
or testable one. There is one sense in which I agree: if a
sparse population code (that remains undefined by Young
et al. in spite of their recommending clear, testable defi-
nitions) is defined as one for which a small number of nodes
activate to varying and differing extents to various stimuli,
with the more active cells carrying somewhat more (per
cell) of the stimulus information, then a localist code is a
particular kind of sparse distributed code and it will be dif-
ficult to get data preferring one over the other. It is only if
a sparse population code is defined exclusively as a code
that is not localist, that is, a code that in Young et al.’s
phrase “doesn’t care one way or another whether any cell is
firing maximally,” that the difference becomes testable. In-
deed, it not only becomes testable but also, to some extent,
tested. I refer to the work of Sakai et al. (1994), described
in section 6.5.2 of the target article, about which Young et
al. are, perhaps understandably, silent. (Though they both
misquote and misapprehend when they claim that the
Young & Yamane, 1993, result is the best evidence for lo-
calist coding that I can conceive.) Sakai et al. have sought
to test whether recently learned and otherwise arbitrary
patterns are represented by cells in IT cortex that are max-
imally active to the trained patterns and thus less active in
response to minor variations of those patterns. In Young et
al.’s view there needn’t be any such cells, let alone at least
one for each learned pattern as the results indicate. Being
testable and specific is indeed of advantage when it comes
to hypotheses – making the right predictions is an added
bonus. Doing so while stating clearly how a given code

might be decoded in vivo (another feature lacking from
Young et al.’s characterization of sparse population cod-
ing) is better still.

A final point on taxonomy. Molenaar & Raijmakers ob-
serve that variation of a parameter representing inhibitory
range in an exact implementation of ART causes a bifurca-
tion in the behaviour of the network. They label this bifur-
cation as a transition between localist and distributed cod-
ing and use this to infer that there is a genuine dichotomy
between the two coding styles. While I agree that there is
such a dichotomy, I find their argument circular. In the very
act of labelling a transition as being one from localist to dis-
tributed coding, one is assuming a dichotomy between the
two. One cannot then go on to use this characterization as
evidence that the dichotomy is, in some sense, real. Perhaps
I have missed the point here.

R3. A pattern of activation across localist
representations can indicate uncertainty 
but does not imply a fully distributed model

Another point that arises in a number of commentaries, re-
lates to the fact that winner-takes-all dynamics is not a nec-
essary feature at all levels of a localist model. For example,
Grossberg refers to the masking field model of Cohen and
Grossberg (1987) as one that weighs the evidence for vari-
ous parts being present in a multipart input pattern, such as
that corresponding to a sequence of words. I am less con-
vinced than Grossberg that the masking field, as originally
implemented, is as powerful as he suggests – my concerns
relate particularly to learning issues that are avoided by 
Cohen and Grossberg in favour of a “developmental pre-
wiring” scheme that is clearly impractical in general and
that is abandoned in later, and more implementationally
explicit, developments of the masking-field principles (Ni-
grin 1993; Page 1993; 1994). Nonetheless, it is certainly the
case that such evidential weighing can be envisaged as re-
sulting in a pattern of activation across different candidates.
This should not conceal the fact that the evidence-based
distribution of activation is over localist representations of
the candidate words (cf. Shortlist, Norris 1994b). More-
over, when and if the time comes to decide which words are
most likely present, those candidates that are mutually in-
consistent (i.e., that seek to account for some common por-
tion of the input pattern) must indeed compete in some way
before a best-guess parsing can be made. In localist model-
ling it is usually appropriate to reserve winner-takes-all dy-
namics for a level(s) and a time at which a categorical re-
sponse must be made. The level and time at which such
dynamics are initiated will be determined by the task de-
mands. Thus, a layer that is capable of winner-takes-all dy-
namics might not be obliged to employ such dynamics at all
times and in all tasks. Under the appropriate task demands,
such a layer might process a stimulus as a distributed pat-
tern of activation across localist representations. This is
consistent with S. Schultz’s reference to recent work by
Newsome (1999). In tasks such as velocity matching in vi-
sual tracking (e.g., Groh et al. 1997), where the response is
an analogue quantity rather than a categorical one, gener-
alization by weighted activation would be a more reason-
able strategy than one based on winner-takes-all dynamics.

Phaf & Wolters rather confuse the issue when they ob-
serve (para. 1) that a localist model of word recognition will
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exhibit “distributed representations when exposed to four-
letter nonwords.” Certainly, such exposure will result in a
distributed pattern of activation over the word layer, but
this is hardly relevant to whether the model is localist at the
word level. Being localist at the word level requires that
each known (i.e., learned) word results in the maximal ac-
tivation of at least one word node. Indeed, learning in a lo-
calist model comprises the establishment of such a tuned
word node. It makes no sense to talk about a model that 
is localist at the nonword level, since this would require 
that all known nonwords – a meaningless concept – have a
local representation. Golden (para. 4) makes the same con-
fusion when he effectively raises the possibility that a
pseudoword (word-like nonword) might be considered a
“familiar example” of the entity-type “word,” which by def-
inition it cannot. The confusion partly springs from
Golden’s omission of the words “of a particular type of en-
tity” from the definition quoted in his second paragraph. A
localist model of words will not represent nonwords locally,
neither would one expect it to. To answer Golden’s ques-
tion regarding his own model, I would consider it distrib-
uted both at the letter level and at the word level. As a gen-
eral model of letter/word recognition, however, it has most
of the problems of fully distributed attractor models to
which I allude in the target article.

R4. Localist representations must be defined
relative to meaningful entities

Berkeley finds my definition of a localist model unsuc-
cessful. He illustrates this with the example of a network
trained to validate and categorize logic problems (Berkeley
et al. 1995). Subsequent analysis of one of the hidden units
revealed that it activated within one of three activation
bands (defined post hoc) depending on whether the logical
connective was OR, IF . . . THEN, or NOT BOTH . . .
AND . . . (in order of increasing activation, the last being
assumed to be maximal activation). Berkeley claims that
by my definition of localist, the node should be deemed a
NOT BOTH . . . AND . . . detector, whereas it is most “nat-
urally” interpreted as a connective detector. Although it is
true that one can discern the current connective by exam-
ining the state of this hidden unit, whether one would re-
ally want to dub such a unit a “connective detector” is de-
batable. Suppose that there were only two types of animals,
a dog and a cat, and that you possessed a node that activated
strongly when presented with a cat, but weakly when pre-
sented with a dog. Would you call the node a “cat detector,”
an “animal detector” (on the grounds that you can infer the
presence of either cat or dog from its level of activation) or
perhaps even a “dog detector”? I prefer the former and cer-
tainly find it the most “natural” description, but I am not
sure it matters much. The “X-detector” terminology is not
part of my definition. A localist representation of item X is
defined as a representation that activates maximally in the
presence of X. A localist model of the class of entities to
which X belongs, has a localist representation for each
learned entity in the class. Using this definition, Berkeley
et al.’s (1995) network does happen to be a localist model of
connectives because it has at least one hidden node that is
maximally active for each of the three connectives.

As Hummel points out, even the hidden units in a fully
distributed model are “localist” in the weak (and untenable)

sense that there will be some vector, or set of vectors, to
which any given hidden unit responds maximally. The
model will only be meaningfully localist with respect to a
given entity class if this optimal vector, or set of vectors, cor-
responds to an example of that class, with all learned mem-
bers of that class being similarly represented. Barlow &
Gardner-Medwin make a similar point with regard to the
ASCII code for computer characters. For any given bit of
the 8-bit code, there will be a set of letters for which that
bit is set to 1. Unless the members of that set match some
other meaningful criterion (e.g., they are all vowels) then it
is not useful or appropriate to describe that bit as a localist
representation of members of the set.

R5. On exemplars and prototypes

Several commentators (Carpenter; French & Thomas;
Ivancich et al.; T. Shultz) discuss the benefits of a proto-
type coding of categories. Ivancich et al. describe a number
of so-called “prototype” effects, for example, the fact that
prototype patterns are easily recognized even if these have
never been previously encountered. My reading of the
large literature on prototype versus exemplar coding sug-
gests that the issue is far from as straightforward as these
commentators assume. For example, there have been a
number of demonstrations that exemplar models are per-
fectly able to simulate most, perhaps all, of these “proto-
type” effects (see e.g., Lamberts 1996, and the literature 
reviewed therein; Dopkins & Gleason 1997). Good recog-
nition of a previously unseen prototype can be explained by
its relatively large mean similarity to exemplars in its class.
The apparent problem noted by T. Shultz (para. 5) would
not apply in a high vigilance regime when the localist model
described in the target article behaves like a classic exem-
plar model. The contrast between prototype, exemplar, and
decision-bound models is the focus of much current work,
both experimental and computational. Although it would
be unwise to attempt a synopsis here, it is my impression
that exemplar models are more than holding their own.

In recent work, Smith and Minda (1998) and Nosofsky et
al. (1994) have sought to moderate the rather strong exclu-
sivity that has characterized the prototype/exemplar de-
bate. The former suggest that both prototype- and exem-
plar-based mechanisms might be employed depending on
factors such as the category structure and the stage at which
learning is tested. The latter describe a “rule-plus-excep-
tion” model in which patterns are classified using simple
logical rules, with exceptions to those rules being individu-
ally stored and applied appropriately. Given the mathemat-
ical analysis presented in the target article, neither of these
models would present too great a challenge with regard to
their localist connectionist implementation. Indeed, there
is nothing in the localist position generally, nor in the gen-
eralized model that I present, that forbids the use of proto-
type or rule representations (a point also made by Jelasity).
Some confusion may have been caused in this regard when,
in the passage in the target article describing the learning
rule (sect. 4.4), I referred to the effective prevention of fur-
ther learning at a committed node. This requirement is
more stringent than is necessary in general and it was sug-
gested specifically with reference to the implementation of
an exemplar model, for which it is appropriate. By lowering
vigilance and allowing some slow modulation of the weights
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to a committed node, something more akin to prototype
learning is made possible within the localist framework (see
Carpenter; T. Shultz). In section 7.1 of the target article,
I suggest that the distinction between exemplar and proto-
type might be mirrored by a dual-store (hippocampal-cor-
tical) memory system – the slower store would be dedicated
to the evolution of context-free and hence more prototypi-
cal representations, as is commonly assumed.

Of course, prototype or rule establishment are not nec-
essarily slow processes. For example, Smith and Minda
(1998) suggest that prototype coding dominates in the early
learning of more highly differentiated categories. Models
such as those in the ART family, very similar to the one I
describe, are able to establish and refine localist represen-
tations of category prototypes (see Carpenter’s commen-
tary). One principle that has been employed in the ART2A
(Carpenter et al. 1991) network, is that of fast commitment
and slow recoding. This involves a new pattern, sufficiently
different from any established category, being able to be-
come represented quickly by a previously uncommitted
node. Subsequent modification of the incoming weights to
this node during the presentation of sufficiently well-
matched patterns, can be slowed so as allow the weights to
track a running average (or prototype) of the patterns that
excite it. Implementation of fast learning at an uncommit-
ted node together with slow learning once committed
might involve no more than modulating the learning rate,
l, in Equation 10 by some decreasing function of the sum
of its bottom-up weights (see sect. R9). Such a mechanism
would allow the category drift referred to by Ivancich et
al., but is not the only way to do so. Category drift might
also be modelled using an exemplar model in which older
exemplars drop out while new exemplars are learned. This
is because, contrary to Carpenter’s interpretation (Car-
penter para. 3), every category in an exemplar model is
represented by the many exemplars or instances to which
that category node is connected. Such a mechanism would
cause the “implied prototype” (not itself represented) to
drift in the direction of more recent exemplars of the rele-
vant class.

Ivancich et al. are right that localist category learning
can be difficult in circumstances where multidimensional
input stimuli include many dimensions that are either ir-
relevant, or even positively unhelpful, to the categorical dis-
tinction that is being learned. Bishop (1995) makes a simi-
lar point (with regard to the application of radial basis
function networks, p. 184) and Plaut & McClelland raise
related concerns in their commentary. To be more specific,
while an exemplar or instance model is guaranteed to be
able to learn the members of any given training set, simply
by learning the instance and connecting the relevant node
to the corresponding category, if many of the dimensions
across which this instance is defined carry information re-
lated to some other aspect of the stimulus, then generaliza-
tion to new instances is likely to be poor. Kruschke (1992),
in his ALCOVE model, implemented a system that learned
to focus “attention” only on dimensions relevant to the task
in hand. In that implementation, the attentional learning
was carried out using a backprop-like learning rule. I am
currently working on a similar attentional learning system
that uses a learning rule more consonant with the localist
networks espoused in the target article.

French & Thomas have a different criticism of the lo-
calist model of category learning. They seem to assume the

opposite view to that of the commentators described above,
in that they assume that the only hardware available for rep-
resenting, say, the categories “fork” or “chair” is a single, ap-
propriately labelled node for each – what one might call
two ultraprototypes. Given this assumption, they reflect
that such a localist model and, indeed, localist models in
general must lose information relating to category variabil-
ity. I find their position somewhat puzzling. The model I de-
scribe in the target article is capable of being run as an ex-
emplar, or even an instance model with each instance being
learned before the relevant node (a unitized representation
of that instance) is connected to another node representing
the category label. Assuming the model is run as a high-vig-
ilance exemplar model, a large proportion of all chairs so far
experienced will be represented in memory and associated
with the chair category. Even in more realistic circum-
stances, when vigilance is relaxed somewhat, one would ex-
pect many different subcategories of chair to be so repre-
sented. Not only that, but one would further expect the
number of memorized subcategories of the category “fork”
to be rather fewer, given the presumed relative lack of vari-
ability in that category. This difference in the number of
nodes devoted to each category is consistent with French
& Thomas’s explanation for category specific anomias,
though the fact that the reverse deficit (inanimate named
worse than animate; e.g., Lambon-Ralph et al. 1998; Tip-
pett et al. 1996) can also be found suggests that this issue is
not as straightforward as they maintain. In the limit, the ex-
emplar model described in the target article is capable of
representing in memory exactly as much variability as exists
among the learned examples of a given labelled category.
Not only that, but it is capable (with a little extra mecha-
nism) of doing as French & Thomas do, and generating
(i.e., listing) a good number of specific instances of differ-
ent types of chair. One wonders how the generic (though
rather ill-specified) distributed network that French &
Thomas prefer might manage that.

French & Thomas also summarize some data from Vo-
gels (1999) and make much of the fact that “no individual
neuron (or small set of neurons) responded to all of the pre-
sented trees, while not responding to any non-tree.” I
would say only this: when single-cell recording, it is ex-
tremely easy not to find the cells participating, perhaps in a
localist fashion, in a given task. It would continue to be dif-
ficult even if one knew those cells to exist.

R6. Models of sequence memory

Both Visser and Kinder raise questions about the capabil-
ities of localist models with respect to memory for se-
quences. Visser describes the simple recurrent network
(SRN) used by Elman (1990) and Cleeremans and Mc-
Clelland (1991) in the modelling of sequence learning.
Visser points out that both used localist representations of
the sequence items, but further notes that the representa-
tion at the hidden units, presumed to encode the learned
sequential dependencies, is a distributed one and hence
rather resistant to interpretation. Visser suggests the ex-
traction of a hidden Markov model of the network that per-
mits its description in terms of transitions between hidden
states, each state corresponding to a configuration of the
hidden units. Kinder also refers to the SRN in the context
of artificial grammar learning (AGL). She too notes the dis-

Response/Page: Localist connectionism

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:4 499
https://doi.org/10.1017/S0140525X00383352 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X00383352


tributed representation of sequence information at its hid-
den layer.

With regard to the simple recurrent network I agree with
both Visser and Kinder that the sequence information is
represented in a distributed fashion. As a consequence, the
SRN is subject to many of the criticisms of fully distributed
networks evinced in the target article. Most notably, the
SRN has a serious problem with catastrophic interference
and with the plausibility of its learning rule. Other connec-
tionist models of general sequence learning (e.g., Nigrin
1993; Page 1993; 1994 – both based on the masking field
principles cited by Grossberg) allow for localist represen-
tations of lists, or more particularly list-chunks, in addition
to the localist representation of list items. A sequence of list
chunks can itself be learned, with the lists of lists equiva-
lently represented by higher-order chunk nodes. Page
(1994) applied such networks to the learning of simple
melodies and to the musical expectations that can be
evoked by the incomplete presentation of familiar melodic
phrases. These networks have none of the problems of in-
terpretation or interference of their SRN counterparts.
Some of the principles of sequence representation used in
this work, and in the earlier work of Grossberg (1978b),
have been used in the modelling of short-term memory
(STM) for serial order (e.g., Page & Norris 1998). It is in-
teresting that in this field there is no experimental evidence
that supports the “chaining-style” sequential representa-
tion implicit in work using the SRN (Henson et al. 1996).
While the localist networks described above have not, to my
knowledge, been applied to the AGL task, it would seem
premature to be as confident as is Kinder that modelling
this task requires distributed networks. This is particularly
so when one considers that much of the experimental work
that has been used to support the “grammar learning” in-
terpretation does not clearly favour such an interpretation
over one based on the learning and subsequent recognition
of familiar lists/list-chunks (see e.g., Johnstone & Shanks
1999 for a recent review). This is precisely the sort of func-
tion for which the localist alternatives were developed.

Bowers points out that several of the more successful
connectionist models of short-term memory for serial order
are localist models. He also notes the requirements of the
task, namely, the repetition of a list immediately after one
presentation, are not particularly suited to simulation using
distributed representations and networks such as that used
by Elman (1990). Beaman, however, seems rather con-
fused about the use of localist representations in models
such as those found in Burgess and Hitch (1999) and Page
and Norris (1998). These models assume that order is held
over unitized representations of list items (e.g., words). Ob-
viously this requires that these unitized items must be “un-
packed” during the generation of, say, a spoken response.
Such phonological unpacking is commonplace in models of
speech production, where the intended utterance is repre-
sented initially across localist representations of lexical
items (e.g., Dell 1986; 1988; Levelt 1989). Indeed, in Page
and Norris (1997) we used a Dell-like speech production
stage as the output stage for our memory model – hardly an
optional extra, as Beaman implies. It does not contain “dis-
tributed phonological representations” (see Beaman, fig-
ure caption) but localist representations of output pho-
nemes driven by localist representations of the words of
which they form part. Both our and Burgess and Hitch’s
(1999) short-term memory models assume such a two-stage

process of recall, with order being initially determined over
unitized items and with possible additional componential
(e.g., phonemic) errors occurring during the unpacking
process. This is to allow the models to simulate some oth-
erwise difficult data relating to the phonological similarity
effect (PSE; Baddeley 1968; Henson et al. 1996). Other
models that do not adopt this strategy have so far been un-
able to simulate these data. For example, Farrell &
Lewandowsky’s suggestion that interference caused by
“anti-Hebbian” suppression might underlie the PSE, fails
to acknowledge that the PSE has its locus primarily on or-
der errors rather than item errors.

R7. Catastrophic interference

Carpenter illustrates by reference to the dART model
(Carpenter 1997; Carpenter et al. 1998) that catastrophic
interference (CI) is not an inevitable consequence of using
fast learning to associate distributed patterns (see also
Bowers). The dART framework contains several features
novel to connectionist modelling and is sufficiently complex
that I cannot honestly claim to be in a position to judge here
its strengths and its weaknesses (if any). Nonetheless, as
Carpenter makes clear in her commentary, there are ben-
efits in having additional localist representations in a model
beyond the avoidance of catastrophic interference. Some of
these benefits were discussed in sections 7.2–7.6 of the tar-
get article.

Farrell & Lewandowsky claim that there are more
conventional distributed solutions to the problem of CI and
cite Lewandowsky (1994) in support. In fact, most of the
networks investigated by Lewandowsky, which employed
versions of the BP learning algorithm modified in various
ways to reduce overlap in hidden unit representations, were
not particularly good at avoiding CI. The best used Kortge’s
novelty rule, which can be applied only to autoassociative
networks (or approximations thereof), and Lewandowsky
showed that this functioned by transforming the input pat-
terns so that their hidden-layer representations were mu-
tually near-orthogonal. Jelasity also describes a distributed
model that, nonetheless, requires that its representations
are mutually orthogonal if interference is to be minimized.
This functional orthogonality is what is achieved in localist
networks such as those described in the target article. The
localist solution is more general than that using the novelty
rule in that it is applicable to tasks other than autoasso-
ciation. Moreover, although Farrell & Lewandowsky
showed that ability to generalize is impaired in certain lo-
calist models (such as ALCOVE implemented with sharply
tuned “hidden” units), the same problem does not occur in
models like that suggested in the target article for which the
functional gradient of generalization can be varied. There
is no justification, therefore, for Farrell & Lewandow-
sky’s conclusion that consideration of CI and generalization
favours distributed models over localist.

Farrell & Lewandowsky make a number of other
points that I shall address here for convenience. They point
out that my criticism of the biological plausibility of the
learning rule is focussed on the BP learning rule. I make the
same point in the target article, noting that the BP learning
rule has, nonetheless, been the one most often employed
for fully distributed models. Farrell & Lewandowsky
favour a Hebbian learning rule, again echoing the target ar-
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ticle. They do not acknowledge properly that the Hebbian
learning rule applied to, say, the association of distributed
representations, can lead to implausible levels of crosspat-
tern interference. Farrell & Lewandowsky’s point about
the Rescorla-Wagner (RW) learning rule is invalid: not only
does the RW theory often apply to situations in which tar-
get patterns are locally represented, but it also suffers from
catastrophic interference (López et al. 1998). More recent
developments of similar models (e.g., Pearce 1994 – a lo-
calist model) do not share this problem.

Farrell & Lewandowsky refer to Miikkulainen’s (1996)
“distributed linguistic parser” as an existence proof that dis-
tributed schemes are not at a disadvantage in this area. Mi-
ikkulainen’s work is indeed impressive but I would hesitate
to draw Farrell & Lewandowsky’s conclusion. The
sphere of application of Miikkulainen’s network is quite
limited, and a good deal of special purpose control struc-
ture is built in. Miikkulainen acknowledges (p. 63) that the
way in which the model learns is nothing like the way in
which the equivalent facility is acquired in vivo. Moreover,
the structure of the resulting network suggests that it suc-
ceeds in its task by acquiring the ability to copy word rep-
resentations into role-defined slots, with the relevant chan-
nelling closely specified by short word sequences (e.g.,
“who the”) in its highly stereotyped input sequences. It is
repeatedly asserted by Miikkulainen that the network is not
an implementation of a symbolic system but the very opac-
ity of the learned network leaves the reader unable to as-
sess the justifiability of this claim. Because we are not told
in sufficient detail how the network actually functions in
carrying out its role-assignments, we are left wondering
whether, on close analysis, it would prove isomorphic to a
symbolic system, in which copy operations were condition-
ally triggered by well-specified word sequences. The fact
that parsing is helped somewhat by semantic attributes en-
coded in the distributed input patterns to the network is
used by Miikkulainen to emphasize the subsymbolic nature
of the resulting processing. It would be a mistake, however,
to believe that such gradedness is the sole preserve of
the distributed subsymbolic model (see commentaries by
Hummel, Shastri, and Ohlsson). It would also be in-
structive to confirm that the network was not over-reliant
on semantics to the extent that the case-role parsing of sen-
tences with either unusual meaning (man bites dog) or no
meaning (the plig wugged the hab) remained possible.

R8. The interpretability of localist models

Barlow & Gardner-Medwin, Cook, Leth-Steensen,
and Martindale all identify the interpretability of localist
models as one of their major advantages. Martindale gives
as an example a model of restoration of the missing funda-
mental to a musical tone, his suggested model being very
similar to those proposed by, for instance, Taylor and Green-
hough (1994) and Cohen et al. (1995). Cook even accuses
me of having been a little gentle on the negative aspects of
fully distributed representations. If I have done so then it is
because I feel uncomfortable in defending the localist posi-
tion simply because it is easier to understand. To give an ex-
ample from physics, the quantum theory of matter is noto-
riously hard to understand, certainly more difficult than the
classical theories that preceded it. Nobody would conclude
from this that classical theories are actually better than

quantum theory as a description of reality. Quantum theory
is held to be a better theory, despite its additional complex-
ity, because it accounts for more data in the realm of its ap-
plication. For this reason, I am reluctant to overplay the in-
terpretability argument. It is at least possible that the brain
functions, like fully distributed networks, in a way that is dif-
ficult to interpret (Farrell & Lewandowsky make a simi-
lar point). It is also possible, however, that the brain turns
out to be rather more interpretable, and perhaps for Jordan
1990 (cited by Leth-Steensen, para. 3) less “interesting,”
than has been widely imagined. For the more complex and
less explanatory accounts to be attractive, one would like
them to be bolstered either by sound arguments from the
point of view of biological plausibility, or (as for quantum
physics) by clearly favourable experimental data, or prefer-
ably by both. At the moment we have neither.

Leth-Steensen also suggests that a general disdain for
localist modelling among some members of the cognitive
community has emerged because of the “hand wiring” of
some of the better known localist models. His claim is that
models using distributed representations start from the
“very strong position” that learning of those representations
is a fundamental part of the learning process. This claim is
weakened, however, if one considers that most applications
of fully distributed modelling techniques are set up ex-
tremely carefully. Sometimes they employ featural (i.e., lo-
calist) representations (whose existence their learning the-
ory cannot begin to explain) in their input and output
representations (e.g., Elman 1990; Plaut et al. 1996). Some-
times, as in the passage quoted from Farah (1994a) in sec-
tion 7.2 of the target article, the learning rule used is ex-
plicitly disavowed as a plausible biological mechanism. This
leaves us very much, as Leth-Steensen puts it (para. 2), “in
the position of staring at a set of network connections and
their weights wondering how they got to be that way.” In
the target article I attempted to lay out some general strate-
gies for the learning of localist representations: this review
was in no way exhaustive. So, while I agree with Leth-
Steensen that the scaling up of localist models is a chal-
lenging exercise (though somewhat less challenging than
the scaling-up of fully distributed approaches), I am opti-
mistic that it can be achieved.

On the question of interpretation, I concur with Barlow
& Gardner-Medwin’s view of localist representations as
closely analogous to matched filters. This analogy sharpens
the discussion in section 7.4 of the target article, regarding
the establishment of what stimulus is present and when that
decision can be made. For an array of matched filters over-
looking a given stimulus pattern at a lower layer, “what” can
be determined by looking for the best-matched filter, and
“when” can be determined by the time at which the activa-
tion of that filter meets some criterion (see e.g., Hanes &
Schall 1996; and Carpenter & Williams 1995 for experi-
mental evidence supporting similar models of reaction time
in vivo).

Finally, Burton makes a number of points relating to de-
finition and interpretability. I agree to such an extent that I
have nothing useful to add to his comments.

R9. The implementation of symbolic models

Hummel, Shastri, Ohlsson, and Bowers all see localist
connectionist models as a useful first step in the building
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of symbolic and relational models that “form the grist of
human cognition” (Shastri, para. 2). I agree with their
analysis. Clearly, the modelling of “higher cognition” in-
troduces complexities that could only be mentioned briefly
in the target article (e.g., sects. 2.2 and 7.3). I am therefore
grateful to these commentators for making more explicit
the nature of this added complexity. What they all agree is
that localist models form a natural and convenient founda-
tion on which to build models of higher cognition. Hum-
mel attributes this advantage to the separability of localist
representations that permits generalization across symbol-
ically defined classes. He gives the example of a network
applied to the classification of red shapes differently from
blue shapes and notes that a localist (or otherwise separa-
ble) solution is readily achieved by connecting a red-node
and a blue-node to nodes corresponding to their respective
categories. It is my feeling that getting a localist network to
learn to ignore the shape dimension (among others) and to
base its categorization solely on colour, is an attentional
learning task that is quite challenging for the sort of local-
ist models I describe, at least in the general case. The chal-
lenge can be seen clearly in the case where the input stim-
ulus is a vector in which those dimensions relevant to
colour are heavily outnumbered by, say, those relevant to
shape. Unless attentional weighting can be learned, the
“closest” stimulus to a (novel) red star, will be likely be a
(learned) blue star, leading to an incorrect classification. As
noted in section R5, this attentional learning is the subject
of current work.

Shastri also gives more references to “recruitment
learning” and explores the overlap with the learning mech-
anisms suggested in the target article. In particular he
identifies more clearly than I had, the fact that recruited,
or what I called “committed” nodes, can be distinguished
from free nodes on the basis of the strength of their in-
coming weights. Pickering’s commentary adds a detailed
neurobiological perspective to this discussion and he sug-
gests various ways in which nodes might be marked as com-
mitted in a way that allows a threshold mechanism to act
differentially on committed and uncommitted cells. In the
target article, I suppose that uncommitted nodes should
have an effective activation threshold of zero (sect. 4.4).
This is to allow them to activate and learn under circum-
stances in which no committed node generates su-
perthreshold activation in response to a given stimulus.
Pickering is justified in thinking that I did not give enough
prominence to this aspect of the model’s functioning in the
target article and I am grateful to him for proposing sev-
eral biologically plausible means by which this functional-
ity might be effected. The one most closely related to my
suggested mechanism involves the idea that as the bottom-
up weights increase to a previously uncommitted node, an
inhibitory connection to a “threshold-controlling” node is
also strengthened. (In fact, it would be helpful if the learn-
ing on the inhibitory connection lagged the bottom-up ex-
citatory learning slightly, so as to prevent its interfering
with this learning.) Uncommitted cells will have a weak
connection to the inhibitory threshold node and so will be
able to activate in the absence of active committed nodes.
As Pickering notes, a very similar mechanism was pro-
posed by Hasselmo and Wyble (1997), although I was un-
aware of this when I made my suggestion. (The fact that
the learning scheme I suggested converges with one
closely based on neurophysiological observation suggests

that Jorion is overly pessimistic in his desire to avoid im-
plementational issues – Jorion, para. 1–2.) The mecha-
nism underlying the committed/uncommitted distinction
might also be usefully co-opted in the modulation of learn-
ing rate on the bottom-up weights. If a strong connection
to the threshold-controlling node were able to decrease
the rate of bottom up learning, this would provide a mech-
anism for the fast-commitment, slow-recoding strategy de-
scribed earlier in section R5.

Last, I must question Ohlsson’s assumption (para. 4)
that the sort of networks I propose (or indeed other net-
works) assume that every functional unit in the brain is con-
nected to every other. In fact, in the networks I describe it
is traditionally assumed that every node is connected to all
nodes in adjacent layers – this is a very different assump-
tion from Ohlsson’s. Indeed, even this assumption is overly
prescriptive. There only need be sufficient connections be-
tween adjacent layers to make it likely that novel patterns
at lower layers can be well represented by previously un-
committed nodes. This does not require full connection
though the lower limit for viable connectivity will likely vary
depending upon the details of the task in hand.

R10. Efficiency

Devlin et al. make some points about the efficiency of dis-
tributed representations. I agree with much of what they
say but feel their commentary is missing five crucial words,
namely, “all other things being equal.” To parody some-
what, all the events that occur at a rate of 10 per second over
a lifespan of 100 years, can be uniquely labelled with a bi-
nary, distributed representation across 35 nodes. All the
words in an average vocabulary would need 16 nodes to be
so represented. No one is suggesting that these levels of
compression are approached, let alone achieved, in the
brain. So issues other than simply abstract efficiency of rep-
resentation must be germane – the target article suggests
what some of those issues might be. Put simply, evolution
will only prefer a compact, efficient and, according to Dev-
lin et al., metabolically cheap code if that code is capable
of doing what is demanded of it. No matter how theoreti-
cally elegant a code might be, if it is not capable of sup-
porting arbitrary mappings, or does not afford good dis-
crimination in noisy environments, or is not learnable
(perhaps at speed), and so on, then it will not last long in
the evolutionary mix. Efficiency can only be used to choose
between models that work.

R11. A reply to Plaut & McClelland

R11.1. Stipulating representations or stipulating proper-
ties? It is suggested by Plaut & McClelland that I am
overstipulative in postulating that representational units be
assigned to meaningful entities. I think they misapprehend
the motivations that drive a localist approach. At core, lo-
calists are interested in ensuring that the networks they de-
velop are at least consistent with some general precepts of
biological plausibility: that they use learning rules that use
only locally available information; that they can perform un-
supervised and supervised learning; that they can learn
quickly if necessary; that their learning rule does not result
in catastrophic levels of retroactive interference. It is these
things that inform the modelling approach; the postulation

Response/Page: Localist connectionism

502 BEHAVIORAL AND BRAIN SCIENCES (2000) 23:4

https://doi.org/10.1017/S0140525X00383352 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X00383352


of localist representations is not itself stipulated, rather it is
a proposed mechanism consistent with these constraints.
Localist representation should not be ruled out a priori in
favour of other less constrained approaches.

I also find Plaut & McClelland’s views on stipulation
somewhat inconsistent. In their continued adherence to a
learning rule that, by its very nature, makes the emergence
of localist representations unlikely, they are in effect stipu-
lating that representational units should not be assigned to
meaningful units (except when convenient, e.g., Plaut et al.
1996). Plaut & McClelland (para. 1) give a list of the prin-
ciples underlying their approach to modelling but strangely
omit distributed representation from this list. The princi-
ples that remain (viz., graded activations and weights, grad-
ual, stochastic and interactive processing, and adaptation to
task constraints) are perfectly compatible with localist mod-
elling and, indeed, have been features of various localist
models for many years.

I described above some of the motivations behind a lo-
calist modelling approach. What might the motivation be
underlying a fully distributed approach that all but forbids
localist representation, even in circumstances where this
might be useful and appropriate? It cannot be a concern for
biological plausibility because such considerations weigh
against this approach. It cannot be study of the brain in vivo
because what evidence there is seems more consistent with
a localist strategy. It cannot be explanatory value because
fully distributed networks are notoriously poor explanatory
devices. Could it be that for Plaut & McClelland and oth-
ers (e.g., Seidenberg 1993), distributed representation is
simply axiomatic? If so, it is hard to know what evidence or
argument would force a reappraisal.

R11.2. Over-dependence on task constraints. Advocated
by Plaut & McClelland is the idea of representations that
are discovered in response to task constraints. This seems
to characterize all representations as intermediaries in the
performance of some task, presumably, given the nature of
their preferred learning rule, a supervised learning task.
But this highlights a major limitation of their approach. 
Any intermediate (e.g., hidden layer) representation that
emerges by slow gradient descent in the context of a given
task is likely to be of use only in the performance of that
task. In other words, the representations are optimized to
the task. Were they to be applied in the context of some
other task, they would either be ineffective or, if learning of
the new task were permitted, vulnerable to catastrophic in-
terference. Unsupervised learning, resulting in localist or
featural representations that can be flexibly applied to novel
tasks, is simply not a feature of Plaut & McClelland’s pre-
ferred models. This makes it all the more surprising that
later in their commentary they say of the input patterns to
a localist network “nowhere in Page’s article does he indi-
cate how his localist approach could solve the problem of
discovering such representations.” If the structured input
patterns to which they refer are featural (i.e., localist rep-
resentations at a lower level), as they were for Plaut et al.
(1996), then I go to some lengths to describe how such rep-
resentations might arise. They, however, do not. How do
they explain the existence of localist letter/phoneme nodes
in the input/output layer of their own model? And if their
answer involves, as I suspect it might, some idea of unsu-
pervised localist learning then exactly what is it about lo-
calist learning that they are against?

R11.3. Flexibility in modelling. With regard to Plaut &
McClelland’s point concerning flexibility, they highlight
my suggested account of age-of-acquisition (AOA) effects,
noting that I make three modelling assumptions. They, like
Jorion, seem to exaggerate the arbitrariness of these as-
sumptions. The first assumption is that there is some en-
during variability in the competitive capacities of the nodes
in a given layer. The alternative assumption, either that
there is no variability or that there is no enduring compo-
nent in what variability exists, seems even more unlikely to
be the case. The second assumption is that word acquisition
is a competitive process – this is not an additional assump-
tion at all, and is fundamental to the whole localist model
that I propose. The third assumption is that word naming/
recognition is also a process involving competition – I am
hardly alone in this proposal, competition forming an im-
portant part of many, perhaps most, models of the naming/
recognition process. So Plaut & McClelland’s claim that
it would have been much easier to have a model without
these assumptions is very questionable, particularly when
one seeks consistency with existing models. And what of
their own preferred model? Any distributed model of the
age-of-acquisition effect must solve the problem of cata-
strophic interference. As I note in the target article, this in-
volves additional assumptions galore (and even these are in-
sufficient). Applying Plaut & McClelland’s test, would it
not have been easier to have a model that did not make
these assumptions and thus failed to avoid catastrophic in-
terference and to show AOA effects?

R11.4. Complementary learning systems do not imply
completely different learning rules. The complementary
learning system hypothesis of McClelland et al. (1995) is
defended by Plaut & McClelland, who suggest that the
deficiencies of distributed learning techniques give a rea-
son for having two complementary learning systems in the
neocortex and the hippocampus. They do not seem to con-
sider that there might be other reasons for such a distinc-
tion, one that boils down to there being a system for fast,
one-shot episodic learning and another for more long-term
averaging. It may well be that the hippocampus is special-
ized towards fast learning of individual events – it is well
placed in the brain for the learning of such multimodal con-
figurations and it appears to implement a sparse conjunc-
tive coding appropriate for such a task. This does not mean
that all other parts of the brain that use a localist learning
rule have to specialize in exactly the same way. Indeed if
they did, one could not really call it specialization. The neo-
cortex doesn’t do the same thing as the hippocampus – that
really would be redundant – but that doesn’t mean that it
must use a completely different type of learning rule. If
Plaut & McClelland really believed that parts of the brain
with the same type of learning rule would necessarily have
to perform the same task, then presumably they would deny
different specializations across different areas of neocortex
– an untenable position.

Plaut & McClelland state that rapid acquisition of ar-
bitrary new information would necessarily be problematic
for their conception of neocortex. Yet recent in vivo studies
of lateral prefrontal cortex (see, e.g., Asaad et al. 1998) show
that this region of neocortex has exactly this specialization.
Whether it can be viably maintained that the rapid changes
seen in prefrontal cortex are all due to fast learning in the
hippocampus is, as far as I am aware, an open question.
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R11.5. The plausibility of exemplar memory. Localist
modelling is not necessarily exemplar-based (see sect. R5),
but it can be. Plaut & McClelland ask what is an accept-
able level of mismatch before a new node is formed. In the
target article I make it clear that the level of vigilance is
likely to be set by task requirements. If in reading a text we
come across a word that is mildly misspelled, so that the in-
tended word is clear, the task demands (i.e., comprehen-
sion) are not likely to be such that a high vigilance regime
is effected so as to ensure learning of the “new” word. This
said, it would be interesting to know how many people read-
ing this response who also read Plaut & McClelland’s
commentary, can remember which word (misspelled) they
gave as an example, and how that word was misspelled. If
some readers can remember these details, as I anticipate,
we might ask how a slow learning system, or indeed one that
cannot store exemplars, could have performed such one-
shot learning and retained the detail relevant to specifying
the misspelling. One might claim that this is episodic mem-
ory (perhaps implemented with a localist system), but if this
is the claim then the encounter with the misspelled word
has indeed created a separate memory. It is inconsistent to
admit the possibility of episodic memory but find exemplar
memory (for perhaps a proportion, rather than the entirety,
of what is encountered) “highly implausible.”

R11.6. Biological plausibility. It is suggested by Plaut &
McClelland that in using the back propagation (BP) algo-
rithm as my example in section 7 of the target article, I ap-
pear to equate the distributed approach with the applica-
tion of this algorithm. They seem to have missed the point
made in the introduction to that section where I explicitly
state that all the deficiencies of BP do not necessarily apply
to other distributed learning rules. As an example Plaut &
McClelland cite O’Reilly’s (1996) GeneRec algorithm that
avoids the use of nonlocal information in its implementa-
tion of gradient descent by running its network in two
phases and by mirroring forward going connections with
backward going connections of (ideally) the same weight.
O’Reilly’s suggested mechanism is convincing enough as a
means of avoiding nonlocality in the learning rule. But even
if we assume that the more complicated network is biolog-
ically plausible, the five other problems outlined in section
7 remain. Most important, O’Reilly’s network has exactly
the same problem with catastrophic interference as does
the standard BP network. Plaut & McClelland do not re-
spond to the argument in section 7.1 of the target article, in
which I question the plausibility of supplying different out-
put and training patterns for a given (old) input pattern pre-
sented to a neocortical learning network. I assume, there-
fore, that catastrophic interference remains a problem for
such networks.

R11.7. Inappropriate generalization and the “what” and
“when” problems. I agree that Plaut (1997) offered a
means by which the semantic representations generated by
nonwords were differentiable from the semantic represen-
tations generated by words. Making the word/nonword dis-
tinction involved the introduction of a new variable called
the “stress” of a pattern; this is the degree to which the se-
mantic pattern is far from being a binary pattern. It is not
that a nonword gives no semantic pattern, just one that is
less binary. Such a mechanism requires not just an extra
mechanism for calculation of stress values but also that all

genuine semantic patterns be binary, which places quite a
severe constraint on featural models of semantic memory.
If, alternatively, the semantics of nonwords are considered
weak if they are a long way from being what they should be,
or a long way from the nearest learned semantic vector,
then we’re back to the question of how such measurements
are implemented in the absence of localist representations.

In response to section 7.4 of the target article (“Deciding
what and when”), Plaut & McClelland make two points.
First, there is some recent functional imaging data sup-
porting an “energy-monitoring” role for the anterior cingu-
late. Second, no such explicit decisions are required. Tak-
ing the first point, the paper referred to (Bottvinick et al.
1999) does not give any more evidence of an energy-moni-
toring system (which Plaut 1997, considers biologically im-
plausible, p. 791), than of any number of alternative inter-
pretations. On the second point, Plaut & McClelland
claim that “all that is needed is that the motor system be 
sufficiently damped that it initiates behaviour only when
driven by strongly activated, stable internal representa-
tions.” But the notion of a strongly activated internal rep-
resentation controlling motor response is only practical, in
the context of distributed representation, if the network can
also act differently in response to different stable states. For
example, a calculation of the length of a vector might tell
you when to make a response (e.g., when the length exceeds
a criterion, although this assumes that the learned patterns
are longer than other nonlearned patterns) but it cannot tell
you which response to make. The response itself is deter-
mined by the pattern across the whole vector, and the best
way to signal the presence of a given pattern is to use a lo-
calist representation (cf. a matched filter – Barlow &
Gardner-Medwin). Similar problems apply to the attrac-
tor networks favoured by Farrell & Lewandowsky. Of
course, one could extensively train a network to respond to
each of a number of distributed stimulus patterns with a
given distributed response pattern, but for a fully distrib-
uted network this learning is necessarily a slow process. Yet
if I ask you to perform the rather Pythonesque task of rais-
ing your left foot every time you hear the word “mattress,”
you can learn the task in one trial. Being intrigued as to how
Kello et al. (in press) had implemented their “simple
demonstration,” I referred to the simulations presented
therein. They model a Stroop response using localist out-
put units, one for each colour – reaction time is simulated
as the time at which the activation of a unit passes a thresh-
old. Their reason for using such a scheme was “to make the
measurement of response latency and duration straightfor-
ward.” Quite.

R12. Mathematical considerations

R12.1. The power law of practice. I am grateful to Heath-
cote & Brown for drawing my attention to the ongoing de-
bate regarding the power law of practice. Being a law-abid-
ing citizen I had taken for granted that the ability of the
generalized localist models to show power-law effects was
a good thing. Heathcote & Brown (and, in more detail,
Heathcote et al., in press) maintain that power-law fits have
been artefactually improved by fitting to an average subject
rather than individually to each subject. When individual
fits are performed they find an exponential model is more
appropriate. If they are correct, then the model’s treatment
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of practice effects will have to be modified. I am doubly
grateful to these commentators for giving an account of the
sort of modifications that might be necessary. They demon-
strate the important point that an exponential improvement
with practice can be obtained with a localist model similar
to the one I suggest. Of course, I am not claiming that other
learning rules cannot model either a power law or an expo-
nential law of practice. Plaut & McClelland cite Cohen et
al. (1990) who use a BP learning rule to achieve power-law
behaviour, albeit by using what they call “simple and inter-
pretable” localist output units, presumably to circumvent
the “what and when” problems of section 7.4 of the target
article.

The fact that Heathcote & Brown demonstrate a local-
ist model capable of an exponential speed-up with practice
means that my defence of localist models does not need to
extend to a defence of the power law of practice. Nonethe-
less, it is worth making one point. For many tasks, instance
theory suggests that performance is actually due to a mix-
ture of algorithmic and memorial processes. Algorithmic
processes dominate early in practice, before a sufficient
stock of memorized responses has been accumulated. Lo-
gan (1988; 1990; 1992) has suggested that algorithmic and
memorial processes race to respond. Rickard (1997) has
suggested that both algorithmic and memorial processes
speed-up as a power function of practice, but that a deci-
sion is made on each trial as to which type of process is used.
A variety of other models are possible. In either case, the
combined curve can differ in its form from the component
curves from which it is made. Heathcote et al. (in press) are,
of course, well aware of this. They present evidence from a
number of studies in which participants were asked to spec-
ify how they dealt, or intended to deal, with a given trial, ei-
ther by algorithm or by memory. In some studies this judge-
ment was given retrospectively, after the relevant response
had been given. In other cases participants were asked to
make a rapid strategy assessment before responding. When
Heathcote et al. (in press) fitted the algorithm and memory
trials separately, they still found a considerable advantage
for the exponential over the power-law practice function.
There are a number of assumptions underlying their analy-
sis: that participants can accurately gauge their strategy,
which might be difficult if both strategies were operative
and racing; or that the algorithmic path does not itself con-
tain memory-based components, as might be imagined in
the case of, say, multidigit arithmetic. Nonetheless, they
make their case for an exponential function convincingly. It
will be interesting to see how the proponents of a power-
law respond to this legal challenge. In the context of my tar-
get article, Heathcote et al.’s (in press) work does not chal-
lenge a localist position (any more than it challenges a
distributed one) though it would require modifications to
my suggested model, perhaps of the sort they suggest.

Heathcote (personal communication) also pointed out an
error in the target article where I used a mathematical ar-
gument to suggest that the Thurstone model is asymptoti-
cally identical to the Luce choice rule under uniform ex-
pansion of the set of instances. In fact, as Heathcote
(personal communication and Colonius 1995) point out,
the extreme value distribution (e.g., the distribution of the
maximum of N values drawn from a given normal distribu-
tion) is degenerate as N approaches infinity. A more accu-
rate statement of my point is that the Thurstone model be-
comes increasingly difficult to distinguish from the Luce

choice model as the number of instances of each exemplar
N increases.

R12.2. The Luce choice rule. An alternative “neural” for-
mulation of the Luce choice rule in terms of independent
race models is described by Bundesen. The analysis pre-
sented in Bundesen (1993) is extremely powerful and sug-
gests a Luce implementation that is even simpler than, and
just as localist as, the one described in the target article. Let
us assume that nodes are Poisson generators and that, on
presentation of a test stimulus in a classification or identifi-
cation task, each fires with a rate proportional to a Gaus-
sian function of the distance between its learned weight
vector and the test vector, that is each has a Gaussian tun-
ing curve with distance. Under these circumstances Bun-
desen’s suggested mechanism for registering the first spike
will choose a given identification/classification according to
the Shepard-Luce-Nosofsky (SLF) formula given in Equa-
tion 8 with d representing a squared Euclidean distance. I
have chosen to describe the model with a squared Euclid-
ean distance here, because it implies a Gaussian tuning
curve for the node: the Gaussian distribution is often used
to model neural tuning curves. For an SLF model using a
linear (rather than squared) distance measure, Bundesen’s
model would need to have nodes whose tuning curves ap-
proximated a negative exponential of the distance. This tun-
ing function was used in Kruschke’s (1992) ALCOVE
model, but is rather less neurally plausible than the Gaus-
sian, due to its being very sharply peaked at zero distance.

In his final paragraph, Bundesen notes a number of
elaborations of the first-to-fire criterion. These models,
which require integration over several spikes and which
give approximations to the Luce choice rule, are more like
the model that I present in the target article. It is clear that
a variety of localist networks are able accurately and natu-
rally to model the Luce choice rule.

R13. Conclusion

Having set out my case in the target article, and having read
the commentaries that it elicited, I am still firmly of the
opinion that localist models have much to recommend
them in the field of psychological modelling. Connectionist
modelling received a boost in popularity with the appear-
ance (or reappearance) of the BP learning algorithm, but
this has tended to lead to the overshadowing of older, lo-
calist approaches. With the growing prominence of other
investigative techniques applied to the understanding of
brain function, a localist modelling perspective will, I be-
lieve, prove increasingly valuable.
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