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Diffusive bottom boundary layers can produce upslope flows in a stratified fluid.
Accumulating observations suggest that these boundary layers may drive upwelling
and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive
bottom boundary layers to date have concentrated on constant bottom slopes. We
present a study of how diffusive boundary layers interact with various idealized
topography, such as changes in bottom slope, slopes with corrugations and isolated
sills. We use linear theory and numerical simulations in the regional ocean modeling
system (ROMS) model to show changes in bottom slope can cause convergences and
divergences within the boundary layer, in turn causing fluid exchanges that reach
far into the overlying fluid and alter stratification far from the bottom. We also
identify several different regimes of boundary-layer behaviour for topography with
oceanographically relevant size and shape, including reversing flows and overflows,
and we develop a simple theory that predicts the regime boundaries, including what
topographies will generate overflows. As observations also suggest there may be
overflows in deep canyons where the flow passes over isolated bumps and sills, this
parameter range may be particularly significant for understanding the role of boundary
layers in the deep ocean.

Key words: boundary-layer structure, geophysical and geological flows, ocean processes

1. Introduction
In the deep ocean, mixing and upwelling are needed to balance deep water

formation, maintain the stratification and dissipate the kinetic energy input by winds
and tides. In physical terms, mixing transports mass upward and converts kinetic to
potential energy, while upwelling is vertical volume transport. Though the physical
oceanography community has long had estimates of the total integrated amounts of
mixing and upwelling (for example Munk 1966), we do not adequately understand
their distribution in space and time. Modelling studies show that different distributions
of mixing can lead to very different ocean circulations. For example, Huang & Jin
(2002) found in models of the Atlantic that the same total mixing produces different
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deep circulations if the mixing distribution is changed. To model and predict ocean
circulation, we need the distribution of diffusivity, and for that we need to understand
the mechanisms of mixing and upwelling.

Currently, the physical oceanography community devotes most attention to
mechanisms concerned with mixing from internal wave breaking. However, diffusive
boundary layers on sloping bottoms are a potentially significant source of both mixing
and upwelling. This was recognized when they were first described by Phillips (1970)
and Wunsch (1970). Subsequent work has further elucidated the behaviour of these
boundary layers with rotation (Thorpe 1987), when the viscosity and diffusivity vary
with distance from the bottom (Garrett 1991), the time-adjustment of the boundary
layers (MacCready & Rhines 1991), and the response of the boundary layers to
periodic forcing in time (Umlauf & Burchard 2011). Laboratory experiments by
Peacock, Stocker & Aristoff (2004) have confirmed the analytical solution of Phillips
and Wunsch, and explored boundary layers with sharp stratification gradients that
force exchanges with the far field (Phillips, Shyu & Salmun 1986; Salmun &
Phillips 1992). These laboratory studies prefigure some of the key results of this
paper, describing how gradients in stratification and turbulent diffusivity can force
exchanges between the boundary layer and the far field. However, all of these studies
have concentrated on boundary layers over constant-slope bottom boundaries. A rare
study that includes the effect of a change in bottom slope is Page & Johnson (2009),
who studied the boundary-layer response in a diamond-shaped box with heated walls:
a very interesting study, but not concerned with oceanographic applications.

Unfortunately, the ocean bottom is anything but a smooth constant slope. In
fact, there is growing observational evidence that diffusive boundary layers may
arise precisely in the complicated topography of the mid-ocean ridge flank canyons.
Thurnherr and coauthors see the characteristic bottom-intensified upslope flow and
isopycnals bending down to intersect the bottom in multiple such canyons, and also
measure strongly increased turbulence in the same places (for example Thurnherr
et al. 2005 and St. Laurent & Thurnherr 2007). The turbulence in these canyons is
so strong that Thurnherr et al. (2005) estimate that as much as half of all of the
mixing in the deep Brazil Basin may be happening in ridge-flank canyons, though
they occupy only 10 %–15 % of the basin area.

Inspired by these observations, this study begins to examine how diffusive
boundary layers behave over complex topography. We begin by reviewing the
known boundary-layer solution for an infinite constant slope, and discussing the
characteristics of that solution that will be important when the bottom slope varies
(§ 2). Then, after reviewing the numerical methods (§ 3), we present a series
of numerical experiments involving increasingly complicated types of idealized
topography. The first numerical experiments examine a single change in bottom
slope (§ 4), then move on to corrugations on a background slope (§ 5) and sills
(§ 6). In all of these cases, we focus primarily on oceanographically relevant values
for bottom slope, stratification and size of topography. This paper deals only with
non-rotating boundary layers. The effects of rotation in both two-dimensional and
three-dimensional domains are the subject of forthcoming work.

The major themes that emerge are that changes in bottom slope drive exchange of
large volumes of fluid between the boundary layer and the far field, connecting the
dynamics and stratification of the two regions; and that interactions with topography
do not only modulate the bottom boundary-layer flow, but can actually change its
geometry.
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FIGURE 1. Schematic of diffusion-driven boundary-layer flow. The thin black lines are
surfaces of constant density. To satisfy the no-flux boundary condition, they must bend
down to intersect the bottom at a right angle. This creates a horizontal pressure gradient,
driving an upslope velocity (v). The key variables illustrated here are: α, the slope angle;
δ = 1/γ , the boundary-layer thickness scale; and (ξ , η) the along-slope and slope-normal
coordinates.

2. Constant-slope solution and expected response to varying slope

Phillips (1970) and Wunsch (1970) both presented an analytical solution for
diffusive boundary layers over a constant bottom slope α. The concept behind this
type of boundary layer is simple and elegant. If there is no flux of density from
the boundary, the slope-normal density gradient must go to zero at the boundary. If
the bottom boundary is sloping, this no-flux boundary condition causes isopycnals
to bend downward to intersect the slope at a right angle, as shown schematically in
figure 1. This in turn creates a horizontal pressure force because denser fluid is at
the same depth as lighter, and this drives an upslope flow. Both authors assumed
Boussinesq dynamics over an infinite constant slope, and found a boundary layer
with a bottom-intensified upslope jet:

v(η)= 2κγ cot α e−γ η sin γ η (2.1)

where v is the upslope velocity, η is the slope-normal coordinate and α is the constant
slope angle, as shown in figure 1. The thickness scale of the boundary layer, δ, is
given by

δ = 1
γ
=
(

4νκ
N2 sin2 α

)1/4

. (2.2)

Higher rates of mixing ν (viscosity) and κ (diffusivity) are associated with thicker
boundary layers, as is stronger stratification (smaller N). Smaller bottom angle α is
also associated with a thicker boundary layer. A typical theoretical velocity profile
with its bottom-intensified upslope current is shown in figure 2(a), compared with a
numerically calculated velocity field.

There are two aspects of this solution that suggest variations in bottom slope α

might have dramatic effects on the boundary layer. First, we can derive the horizontal
length scale over which the boundary layer responds to changes. This spatial scale L
arises from the adjustment timescale τ , the time required for diffusion to act across
the thickness of the boundary layer δ:

τ ∼ δ
2

κ
∼
√

Pr
N sin α

. (2.3)
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FIGURE 2. The boundary layer requires a length scale L to accelerate to its constant-
slope solution. The upper plot (a) compares the constant-slope solution from (2.1) (thin
black lines) to numerically calculated velocity profiles at various points along a slope. The
area where the x-axis is less than 0 has a flat bottom, and the diffusion-driven boundary
layer starts at 0. The thick black line shows the predicted thickening of the boundary
layer as it accelerates over the distance L. The bottom slope in this simulation is α0 =
0.022. The lower plot (b) shows the bottom stress as a function of along-slope position for
10 simulations with bottom slopes ranging from 0.01< α < 0.12, again with along-slope
distance normalized by L.

Here Pr is the Prandtl number, ν/κ . To get the spatial scale, we multiply τ by the
boundary-layer velocity scale from (2.1):

L∼ vτ ∼ 2δ cot α ∼ (κν)
1/4

N1/2

cos α
sin3/2 α

. (2.4)

Overall, L ∼ α−3/2 for small angles, so steeper slopes with thinner boundary layers
adjust over shorter distances. Before doing any detailed calculations or numerical
simulations, we can see that if the bottom slope changes on scales much larger than
L, the constant-slope solution should be approximately correct everywhere. However,
if the bottom slope changes on scales smaller than L, the boundary layer might behave
very differently. This adjustment scale also helps to resolve an apparent contradiction
in the Phillips/Wunsch solution, namely that the boundary-layer thickness and velocity
appear to go to infinity as the bottom slope angle goes to zero. As α→ 0 the time τ
and space L required to adjust to that solution go to infinity even faster, so it takes
an infinitely long time and infinitely much space for the boundary layer to adjust to
the steady-state solution where v is unbounded. No real finite physical system would
ever get there.

The second reason that we expect changes in the bottom slope to have dramatic
effects on the boundary layer comes from the total volume flux in the boundary layer.
Phillips noted that integrating the density equation from the boundary to limit where
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η→∞ yielded a remarkably compact expression for the total boundary-layer flux Q:

Q=
∫ ∞

0
vdη= − g

ρ0N2 sin α
(κ∇ρ)

∣∣∣∣∞
0

= κ cot α. (2.5)

The total boundary flux Q is given by the diffusivity κ and the bottom slope α.
Therefore, if the slope changes, we expect that fluid will be either forced out of the
boundary layer or entrained into it, coupling the dynamics of the boundary layer to
the far field.

There is a good physical reason why the boundary-layer flux Q is set by the
diffusivity and bottom slope. In a diffusive stratified fluid, there is a continuous
background flux of density up (or buoyancy down, if you prefer) in the far field.
However, approaching the bottom boundary, which we assume has no density flux
across it, there will inevitably be a flux divergence. The upslope, and so upward,
advective mass flux in the boundary layer replaces the mass being mixed up by
diffusion in the interior, compensating for that flux divergence. More diffusive flux
(larger κ) requires a stronger boundary-layer flux Q to compensate for it. A steep
bottom slope (larger α) means the boundary-layer flux has a larger vertical component
and can more easily compensate for a vertical diffusive flux divergence, so a steeper
slope implies a smaller total boundary-layer flux Q.

In the subsequent sections, we will see the effects of both the adjustment length of
the boundary layer and the slope dependence of the boundary-layer flux in numerical
simulations of diffusive boundary layers over varying bottom topography. Before that,
however, we describe the technical details of the numerical simulations that follow.

3. Numerical methods and validation of scaling
We performed a series of two-dimensional, non-rotating numerical experiments

using the regional ocean modeling system (ROMS), developed by Shchepetkin
& McWilliams (2005). ROMS is a fully nonlinear hydrostatic primitive equation
model. It has a free surface and topography-following coordinates, also known as
σ -coordinates.

We present numerical experiments on a range of idealized topography, including
constant bottom slopes, localized changes in slopes, sinusoidal corrugations on slopes
and isolated sills. Mixing in the model was represented as an explicitly specified
eddy diffusivity κ and eddy viscosity ν with eddy Prandtl number Pr= ν/κ = 1. For
most simulations, we took ν, κ = 5 × 10−3 m2 s−1, the mean value Thurnherr et al.
(2005) inferred from turbulent microstructure measurements in abyssal canyons. All
results use these values unless otherwise specified. For completeness, we replicated
simulations with ν, κ one-half this value and one-tenth this value; the dynamics in
these simulations were consistent with the simulations with larger ν, κ . Given the
eddy viscosity, the Reynolds number Re was small in all of the numerical experiments.
The no-slip bottom boundary condition was approximated using a strongly enhanced
linear bottom drag. The results were insensitive to the specific value of the coefficient
of drag. No surface stress was applied. Unless otherwise specified, the stratification
was N2 = 10−5 s−2, also taken from the observations of Mid-Atlantic Ridge canyons
of Thurnherr et al. (2005).

The numerical experiments were initialized with zero velocity throughout the
domain and the velocity field was allowed to come to a steady state. The time to
steady state is the boundary-layer time scale τ , defined in (2.3). It was typically
several hours, and the simulations were run for 2–3 days to ensure it was truly
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steady. By the end of the simulations, the acceleration term in the momentum budget
was no more than 1 % the value of the leading-order dynamical balance. For each
type of numerical experiment, we tested numerical convergence by duplicating key
experiments with doubled horizontal and/or vertical resolution. We took results to
have converged only if the differing resolutions agreed to within 3 %. The final
experiments have vertical grid spacing that varied from about 0.5 m in the bottom
boundary layer to about 15 m in the far field. For comparison, the boundary-layer
thickness πδ in our parameter range was 20–125 m.

Simulations with zero mean bottom slope used closed lateral boundaries. In
simulations with a mean bottom slope, we used open boundary conditions because the
background stratification made periodic boundaries impossible. The open boundary
conditions specified that the barotropic flux through the domain was Q = κ cot α,
calculated in (2.5). They also specified the full, depth-dependent, baroclinic momentum
at the outflowing boundary. In order to match the flow to this outflowing boundary
condition, a long uninterrupted section of constant slope topography was inserted
between the study region and the boundaries. This section was typically 2–10 times
the length scale for boundary-layer adjustment, L, given in (2.4). To ensure the free
surface had no effect, the domain was always at least 35 δ deep. As with convergence
in resolution, we performed tests for each type of topography to ensure the boundary
conditions were not affecting the boundary-layer behaviour. We doubled the domain
size, and if the resulting velocity field changed by less than 3 %, considered the
domain sufficiently large. For clarity, the figures in this paper show only the study
region, not the full domain.

The best test of the accuracy of this numerical approach is the theoretical solution
for a constant slope given in (2.1). The adjustment to this constant-slope solution is
shown in figure 2. The computational domain has a large area on the left with a flat
bottom and no diffusion-driven boundary-layer flow and an area of constant slope
on the right. The thin black profiles in figure 2(a) show the constant-slope solution,
while the grey lines show the numerically calculated velocity after it has reached
a steady state in time. The numerically calculated boundary layer flow accelerates
along the slope, and approaches the constant-slope profile over the distance scale L,
given in (2.4). By several distances of L along the slope, the velocity field matches
the Phillips/Wunsch solution to within 4 %. Multiple such boundary-layer adjustment
simulations with bottom slopes ranging from α = 0.01 to α = 0.12 confirm that the
velocity field adjusts over length scale L given in (figure 2b). For this range of
slopes, L varies by a factor of 40, but the velocity field and bottom stress in all cases
asymptotically approaches its constant value within a few L.

4. Changes in slope and exchange with far field
Even the simplest possible varying topography, the bottom slope changing at a

single location, creates interesting dynamics. Any change in the slope will change the
boundary layer flux Q, given in (2.5), and so entrain fluid into the boundary layer
or force fluid out of it in an intrusion (figure 3). This allows the boundary layer to
affect the flow and stratification far from the bottom. We can derive the density of
the fluid in the intrusion with a mass budget and demonstrate that fluid is exchanged
between the boundary layer and the far field at its level of neutral buoyancy. An
appropriate control volume for the mass budget is bounded upstream and downstream
of the change in slope far enough away that the boundary layer velocity was not
affected by the change in slope and bounded above far enough from the bottom that
the intrusion cannot reach the top.
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FIGURE 3. A single change in the bottom slope forces fluid out of the boundary layer
and into the far field. Away from the change in slope, the boundary-layer velocity returns
to the constant slope solution (2.1), shown in the grey velocity profile near the right-hand
side of the figure. The numerically simulated boundary-layer velocity shown in the arrows
matches the theoretical prediction to within 4 %. α1 = 0.026 and α2 = 0.061. As in all
figures, the black triangle is 1 km wide and 50 m tall.

The mass flux Mint of the intrusion into the far field is the residual of the mass flux
in the boundary layer over slope α1, the mass flux in the boundary layer over slope
α2, and the vertical diffusive mass flux in the background stratification. The volume
flux in the intrusion Qint is just the difference of Q1 and Q2, the volume fluxes in the
boundary layers over the two slopes (from (2.5)). This gives the average density of
the fluid exchanged between the boundary layer and the far field:

ρint = Mint

Qint
= ρ0

(
1− 5

4
N2

g
Q1δ1 cos α1 +Q2δ2 cos α2

Q1 +Q2

)
(4.1)

where ρ0, the background density, is set to be the bottom density at the change
in slope. In 22 numerical experiments with slopes ranging from 0.01 < α <
0.11, the predicted density of the intrusion agreed with the numerical results to
within 3 %. In comparison to the intrusion density, the far-field fluid at the depth
spanned by the thickness of the boundary layer has density in the range ρ0 to
ρ0(1 − ((N2πδ)/(g cos α))). A little bit of straightforward algebra shows that ρint
always falls in this range: fluid enters and leaves the boundary layer at its level
of neutral buoyancy, so the boundary layer is not expected to generate vertical
velocities or static instability in the far field. However, as we see in the next section,
the exchange of water between the boundary layer and the far field still alters the
background stratification.

5. Boundary-layer flow geometry over corrugated slopes
Just as a single change in bottom slope can cause a point exchange between

the boundary layer and the far field, a continuously varying bottom can cause
exchanges continuously throughout the water column. In this section, we look at
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bottom topography with well-defined horizontal length scales and see the effect of the
space L required for the boundary layer to adjust to its constant-slope solution. This
section considers topography made of a constant background slope with sinusoidal
corrugations superimposed:

h(y)= α0y+ A sin
2πy
λ

(5.1)

where h is the topography, y is the horizontal distance, α0 is the background slope, A
is the half-height of the corrugations and λ is the length of the corrugations. We can
describe the topography completely in terms of three non-dimensional parameters:

δ0

A
= X1 = Boundary layer thickness

Corrugation height
(5.2)

α0

2πA/λ
= 1h

A
= X2 = Background slope

Slope of corrugation
(5.3)

A
λ
= X3 = Corrugation height

Corrugation length
(5.4)

where δ0 is the boundary-layer thickness associated with the background slope α0,
calculated using (2.2) and 1h=αλ/2π is the vertical separation between two adjacent
corrugations. As these parameter values change, so does the behaviour of the bottom
boundary layer. Since we are primarily interested in the oceanographic relevance of
these boundary layers, we will restrict our study to topography that is much longer
than it is tall; X3 < 0.02 in all cases presented.

All corrugations have areas of increasing slope and decreasing slope, leading to both
intrusions and entrainment. The simplest case is small-amplitude corrugations, where
the corrugations are not tall enough to reverse the bottom slope anywhere (1h/A> 1).
As long as the boundary layer is no thicker than A, this implies that L< λ and the
boundary layer can be approximated with the locally constant-slope assumption. We
call this the linear geometry. Since the boundary-layer flux Q changes along-slope,
the corrugations cause a stack of alternating exchange flows between the boundary
layer and the far field (figure 4a, showing an example where α0= 0.02, A= 10 m and
λ=6000 m). The volume fluxes of these exchanges can be similar to or more than the
volume flux in the boundary layer itself. This selectively adds fluid of a given density
to or removes it from the far field, sharpening or weakening far-field stratification at
the level of changes in topographic slope (figure 5). This effect penetrates into the far
field and spreads vertically (in z) according to the scale derived in Koh (1966):

z3 ∼ y
√
νκ

N
. (5.5)

Eventually the outflowing current spreads vertically enough to overlap with the
inflowing currents above and below, until the currents cancel one another out. This
sets the scale of the maximum penetration of the stratification effect of the boundary
on the far field. That slope-normal thickness scales like

D∼ λ3

(
N√
νκ

)
sin4 α0. (5.6)
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(a)

(b)

(c)

FIGURE 4. (Colour online) Example velocity fields induced by boundary-layer dynamics
over a corrugated sloping bottom. Depending on the size and shape of the topography,
there are three principle boundary-layer geometries: (a) linear, (b) overflow and (c)
reversing. In (a), the intrusion layers are shown with light grey shading where the
horizontal velocity is leftward, away from the bottom boundary layer. In each plot, the
black triangle is 1 km wide and 50 m tall, and the small arrow beneath the triangle
shows 2 cm s−1. The large markers (+,E, ×) are a legend to identify the boundary-layer
geometries in the regime diagram presented later in the paper (figure 11). The parameter
values for each simulation are given in the text.

At small slopes, this distance depends very sensitively on the mean slope α0 and the
corrugation wavelength λ. In real oceanic topography, these values vary constantly,
so any estimate of D has significant uncertainty. In our numerical models, D ranges
from more than 20 km to over 1000 km, vastly greater than the size of our numerical
domain or the depth of the ocean. We therefore cannot verify D directly, but we feel
it is a physically relevant length scale that deserves further consideration. It suggests
that the full depth of the ocean may feel the effects of the boundary-layer dynamics.

If we move from small-amplitude topography to the other extreme, very large-
amplitude corrugations (1h/A � 1, δ0/A � 1), the geometry of the boundary-layer
flow changes considerably, but many aspects of the dynamics remain similar. The
boundary-layer flow is upslope on both faces of each corrugation, both upstream and
downstream of the sill (figure 4c, showing an example where α0 = 0.02, A = 35 m,
λ = 3000 m and ν, κ = 5 × 10−4 m2 s−1). Right at the sill, the horizontal velocity
goes to zero and the boundary-layer flux leaves the boundary layer vertically. We
call this behaviour reversing, since the boundary-layer velocity changes sign. Here,
too, the locally constant-slope assumption provides a reasonable estimate of the
boundary-layer behaviour, as here, too, L� λ.
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FIGURE 5. (Colour online) Density anomalies far from the bottom are created by
boundary-layer dynamics over a slope with small-amplitude corrugations. This is a
depth–time diagram of the evolution of the stratification anomaly in the column indicated
with a dashed line in the inset. Stratification is strengthened at some depths, weakened at
others, as fluid is drawn into or forced out of the boundary layer. Results are from the
same small-corrugation-amplitude numerical experiment whose velocity field is shown in
figure 4(a).

As is often the case in fluid mechanics, however, the most interesting things
happen not at either extreme, but when everything is order one. When the slope of
the corrugations is similar to the background slope (1h/A ∼ 1) and the amplitude
of the topography is similar to the thickness of the boundary layer (δ0/A ∼ 1), the
boundary layer’s behaviour changes dramatically. The boundary layer accelerates
at the sill and forms an overflow into the trough behind it (figure 4b, showing an
example where α0 = 0.012, A = 25 m and λ = 4200 m). The locally constant-slope
assumption breaks down completely. Downstream of the sill, it would give not just
the wrong answer, but the wrong sign of the answer. In fact, in these overflow cases,
the largest velocities are found immediately downstream of the sill, exactly where
the locally constant-slope assumption would predict flow in the opposite direction.
The velocities are large enough that the Richardson number Ri falls below 0.25, the
threshold for shear instability, for most of the thickness of the boundary layer. We
call this geometry overflow.

The momentum balance confirms that locally constant-slope approximation is
appropriate for very small and very large topography, but quite wrong for topography
in the middle. For very small and very large topography, with linear and reversing
boundary layers, the dominant momentum balance is the same as for a constant
slope: between pressure generated by the no-flux bottom boundary condition and
vertical viscosity (figure 6a,b). Advection is negligible (figure 6c). For an overflow
(figure 6d–f ), the advection is of the same order as the boundary-condition-driven
pressure gradient and the viscous dissipation in the neighbourhood of the sill.

In summary, corrugations produce three distinct types of flow behaviour in the
boundary layer, with each type of behaviour corresponding to a distinct parameter
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Linear(a)

Overflow(d)

(b)

(e)

(c)

( f )

–1.0

–0.5

0

0.5

1.0

FIGURE 6. Leading order momentum balance for boundary layers with linear and overflow
geometries. For small-amplitude topography (a–c), the dynamics remain substantively
linear, with the pressure gradient (a) balancing the viscous dissipation (b) and negligible
advection (c). This is the same momentum balance as in the constant-slope case. For
topography with plunging overflows (d–f ) like that shown in figure 4(b), the dynamical
balance requires significant advection ( f ). The parameter values for these simulations can
be found in the captions to figure 4. As in all figures, the black triangle is 1 km wide
and 50 m tall.

range: linear, overflow and reversing. Only the overflows have significant advection.
We would like to be able to predict quantitatively how a boundary layer will behave
over a given topography. In the next section, we will further idealize the topography
to develop that prediction, and find that bottom stress is the salient quantity.

6. Understanding overflows
In the previous section, we saw that the boundary layer at a sill could behave

in different ways, leading to different flow geometries over a corrugated slope. To
develop a quantitative prediction of the behaviour of the boundary layer, it is useful
to look at an even simpler model topography: a single isolated sill. We will see in
this section that the bottom stress at the sill controls which sills develop overflows
and which do not, then apply that to understanding the results of the previous section.

6.1. Asymmetrical sills and the role of bottom stress
The question of when an overflow will form is highlighted in figure 7. Three
sills, each with left slope α1 = 0.065 and right slope α2 = −0.105, have three
different outcomes. One has an upslope flow on both sides of the sill, with the
two boundary-layer fluxes exiting the boundary layer vertically at the top of the
sill (figure 7a,b); one has an overflow from the shallow-slope side of the sill to the
steeper side (figure 7c,d); and one has an overflow from the steep-slope side to the
shallow slope (figure 7e,f ). The only difference among the three cases is that the
slopes have been lengthened or shortened.

The adjustment behaviour of a boundary layer over a single constant slope helps
explain these various behaviours. On either side of the sill, the bottom boundary layer
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FIGURE 7. (Colour online) Asymmetrical sills with the same side slopes can develop an
overflow at the sill in either direction. Three sills with the same slopes, shown with a
velocity field on the left and a schematic based on streamlines on the right, can have
either no overflow (a,b), an overflow from shallow slope to steep (c,d) or from steep slope
to shallow (e,f ). The strength and direction of the overflow can be characterized by the
distance from the sill to the point of boundary-layer separation, indicated with a large dot.
In all cases the left slope is α1 = 0.065 and right slope is α2 =−0.105, with the vertical
distance from the flat bottom to the top of the sill either 20 or 30 m.

is adjusting to its constant-slope solution. At the bottom of the slope the adjustments
on either side happen independently of each other. Using single-slope simulations
for the respective slopes, like that used to validate the adjustment length scaling L
(figure 2), we can see what the boundary layer on each side of the sill would be
doing at the sill if the boundary layer on the other side did not exist. A schematic
of this approach, treating each side of the sill as the beginning of a constant slope,
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FIGURE 8. Schematic of estimation of bottom stress at a sill. To understand how the
boundary layer will behave at a sill (black topography), we look at simulations of the
boundary layer adjusting to the constant slope of each face of the sill. We compare profiles
(dashed lines) taken over constant slopes (light and dark grey topography) at the same
distance from the flat bottom as the sill top. An example of the profiles associated with
each side are shown in figure 9.
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Symmetrical
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FIGURE 9. The boundary-layer velocities associated with each side of a sill show that the
shallower slope has a faster current almost everywhere in the water column. These profiles
are calculated as diagrammed in figure 8, with the darker profiles showing the shallower
slope boundary layer and paler profiles the steeper slope. The dot-dashed profiles show
the two boundary layers associated with the sill in figure 7(a,b), the dashed show the
sill in figure 7(c,d), and the solid profiles correspond to figure 7(e,f ). The inset plot is a
detail of the 5 m closest to the bottom. The velocity from the steeper side expected to
be greater only close to the bottom in the steep to shallow overflow case. Therefore, this
is the only case where the expected bottom stress at the sill is greater on the steep side.

is shown in figure 8. For both the shallow and steep sides of the sill, we take a
velocity profile from the constant-slope boundary-layer adjustment simulations at the
location where the sill would be. Regardless of the different overflow behaviours,
in all cases and almost everywhere in the water column the velocities associated
with the shallower slope are faster than those from the steeper slope (figure 9). The
shallow-slope boundary layer is both thicker and faster, as its infinite-constant-slope
solution would suggest.

If we look very close to the bottom, though, the shallow-slope boundary layer is
not always faster. Where there is a shallow-to-steep overflow, the near-bottom velocity
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and so the bottom stress is larger on the shallow side. Where there is a steep-to-
shallow overflow, the near-bottom velocity and bottom stress are larger on the steep
side (figure 9, inset), even though the velocity is greater on the shallow side almost
everywhere in the water column. The sign of the bottom stress s controls the direction
of the overflow. A laminar boundary layer separates from the bottom where flow
is converging and the bottom stress goes to zero (Prandtl, 1904, cited in Weldon
et al. (2008)). This point of zero bottom stress, also known as the stagnation point,
is directly tied to the direction and strength of an overflow, because the boundary
layer separates at the maximum extent of the overflow. For stronger overflows, the
stagnation point is farther down the opposite slope. The stagnation point for each case
is marked with a large circle in figure 7; it is taken to be where s is zero.

By combining the constant-slope solution and the adjustment scale L, we can
estimate the bottom stress s at the sill without having to do a full numerical
simulation. As we saw in figure 2(b), the bottom stress s approaches a constant
value over the length scale L, approximately like

s(ξ)= ν ∂u
∂η

∣∣∣∣
η=0

= s0
(
1− e−ξ/L

)
(6.1)

s0 is the constant bottom stress of the infinite-constant-slope bottom boundary layer,
calculated from (2.1):

s0 = ν ∂u
∂η

∣∣∣∣
η=0

= 2
κν

δ2
0

cot α0 =
√
κνN cos α0. (6.2)

We combine the estimated bottom stress from either side of a sill to estimate it at the
sill itself:

Estimated bottom stress= se = s1(ξsill)− s2(ξsill) (6.3)

where s1 and s2 are the bottom stresses of the slopes of each face of the sill. Putting
these three equations together, our estimated bottom stress at the sill se depends only
on the two slopes α1 and α2 and the lengths of the two sides, ξ1 and ξ2:

se =N cos α0
√
κν

(
exp

(
− ξ2

2δ2 cot α2

)
− exp

(
− ξ1

2δ1 cot α1

))
(6.4)

δ1, δ2 are known functions of α1, α2, given in (2.2). If the bottom stress at the sill is
greater than zero, we expect an overflow from left to right; if it is less than zero, we
expect an overflow from right to left; and if it is about zero, we expect no overflow.

This relationship between bottom stress and overflows is confirmed by numerical
simulations of isolated sills. The location of the stagnation point calculated with a full
numerical simulation is strongly correlated with the bottom stress at the sill estimated
from only the shape of the topography (figure 10). Strong overflows are associated
with estimated bottom stresses in the direction of the overflow, while runs without
an overflow have little or no estimated bottom stress. A linear least-squares fit shows
that bottom stress estimated from nothing but the shape of the topography captures
71 % of the variance in both the direction and the strength of overflows at the sills.
Though the best fit line does not pass through the point (0, 0), it is less than one
standard deviation away.

This result is useful in two ways. First, it confirms that bottom stress controls
whether an overflow forms and how strong it is. Second, we can apply this
understanding to more complicated topography such as corrugations on a slope
to predict under what circumstances an overflow will form.
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FIGURE 10. The virtual bottom stress, composed from simulations on constant slopes, is
strongly correlated with the strength of an overflow in a simulation of an asymmetrical
sill. The strength of the overflow is indicated by the location of the stagnation point in the
boundary layer over an asymmetrical sill (ystag) relative to the location of the top of the
sill (ysill). The location of the stagnation point and the estimated bottom stress come from
different sets of numerical experiments and are calculated independently. A total of 71 %
of the variance in more than 30 simulations is explained by a simple linear fit (black line).

6.2. Predicting flow over corrugations with bottom stress
We can apply the prediction from § 6.1 of the strength and direction of sill overflows
to the corrugated slope numerical experiments in § 5. This will give another test of
the salience of bottom stress in determining boundary-layer behaviour.

Corrugated slopes showed three bottom boundary-layer geometries: linear, that
were well-described by making a locally constant-slope assumption; overflows, where
the boundary layer accelerated at the sill and flows down into the trough behind it;
and reversing, with upslope flows on both faces of each corrugation. An example of
each is shown in figure 4. To predict whether an overflow will form, we estimate
the bottom stress s as in the previous section. The peak of each corrugation can be
approximated as an isolated sill; with the horizontal peak-to-trough distance giving
ξ1, ξ2, the slope lengths. For a corrugated slope, the estimated bottom stress se at the
sill from (6.4) is

se = s0

[
exp

(
−cos−1 X2

2X1
(1− X2)

√
X2 − 1

X2

)

− exp

(
−2π− cos−1 X2

2X1
(1+ X2)

√
X2 + 1

X2

)]
. (6.5)

This expression assumes that the bottom slope is small everywhere. Under this
assumption, the estimated bottom stress at the sill does not depend on the third
non-dimensional parameter describing the topography, X3 = A/λ. If se > 0, the
stagnation point is downstream of the sill and we expect an overflow; if it is not, we
do not.
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Reversing
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FIGURE 11. (Colour online) The behaviour of the boundary layers over corrugated slopes
are separated in non-dimensional parameter space. The x-axis is a ratio of the background
slope to the slope of the corrugations, and the y-axis is the ratio of the boundary-layer
thickness to the height of the corrugations. The symbols refer to the flow geometry,
summarized in figure 4: linear (+), overflow (E) and reversing (×). The predicted
boundaries between the different geometries are shown as black contours: the curved
line showing where bottom stress goes to zero at the peak of the sill and the straight
line showing where the bottom stress becomes positive everywhere. These predictions are
based entirely on the topography, and require no direct numerical computation.

The predictions can be compared with the numerical results in the (X1, X2) plane
(figure 11). The three types of flow are well separated in this parameter space. As
expected, the linear boundary layers (+) are all found in or near the region where
bottom stress is positive everywhere in the domain (X2 = 1h/A > 1). The contour
defining topographies where the stagnation point from (6.5) is expected to be exactly
at the peak of the sill approximately separates the overflows (E) from the reversing
boundary layers (×). We do not expect the prediction to be perfect because it is
based on a sill where two constant slopes meet at a point, not a continuously varying
sinusoidal corrugation and there is a weak effect from variation in X3. Broadly,
however, the numerically simulated corrugations behave as predicted.

7. Discussion and conclusions
We have explored the effects of a varying slope α on the behaviour of flow in a

diffusive and viscous boundary layer, especially its effect on the overlying stratified
fluid. Because the volume flux Q varies with α, spatial changes in α are expected
to result in convergences and divergences within the boundary layer. A numerical
model confirms this, showing that mass is drawn into the boundary layer from the
overlying fluid when the slope is decreasing and forced out of the boundary layer
into the overlying fluid when the slope is increasing. In the case of a single transition
from a shallow constant slope to the steep constant slope, the expelled fluid forms
a horizontal intrusion that penetrates far into the ambient fluid (e.g. figure 3). The
average density and volume flux in the intrusion predicted by mass balance (4.1) agree
quite well with the model.
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A sloping bottom with periodic corrugations can produce a series of alternating
inflows and outflows that affect fluid far from the bottom. In our numerical model,
the alternating inflows and tend to spread vertically and so overlap each other as
one moves horizontally away from the sloping bottom. As a result, their penetration
distance might be that required for the plumes to fully overlap. This distance and
its slope-normal equivalent D can be estimated using the similarity solution of Koh
(1966) (5.6), though it is unfortunately difficult to verify since D exceeds both the
depth of our numerical domain and the depth of the ocean. Moreover, for small slopes
the predicted D is proportional to the fourth power of the mean slope α0 and the third
power of the corrugation wavelength λ, so application to an ocean bottom with non-
periodic corrugations and an uncertain mean slope will necessarily involve significant
uncertainty. Nevertheless, (5.6) gives a physically relevant slope-normal length scale
that deserves further consideration, and suggests the effect of the boundary layer might
be felt over the full depth of the ocean.

Modelling results with a corrugated bottom also reveal two types of behaviour
qualitatively different from that predicted by the analytical solution of Phillips/Wunsch
for a constant slope. The constant-slope solution gives a reasonable approximation of
the boundary-layer behaviour for small-amplitude corrugations (figure 4a), but as the
corrugations get larger, we observe first spilling overflows (figure 4b), then reversing
boundary-layer flows (figure 4c). These behaviours occur in distinct ranges of the
dimensionless parameters λ/A and 1h/A (figure 11). The boundary between these
boundary-layer behaviours is predicted by the estimated bottom stress at the sill of
the corrugation. If it is positive, we expect the point of boundary-layer separation
to be downstream of the sill, giving an overflow. If it is negative, we expect the
separation point to be upstream of the sill, giving a reversing boundary layer. The
bottom stress can be estimated from the topography only (6.5).

These results are of potential oceanographic interest because observations of
abyssal canyons show characteristics in common with these types of diffusive
boundary layers, in particular bottom-intensified upslope flows, strong turbulence
and layers of reduced stratification along the topography. The basic dynamics of the
Phillips/Wunsch boundary layer provide a mechanism for upslope flow and reduced
stratification, while the overflows observed in our numerical models might contribute
to the strong turbulence. However, there are a number of complications to directly
applying our results to the ocean. One key issue is the boundary-layer thickness. Using
the parameter values from Thurnherr et al. (2005), the boundary-layer thickness δ
given in (2.2) is about 60–80 m. At the same time, ocean observations show a layer
of reduced stratification 300–600 m thick (see for example Thurnherr et al. 2005
and St. Laurent & Thurnherr 2007). Given the parameter ranges for overflows and
reversing boundary layers summarized in figure 11 and the scale of mid-ocean ridge
topography, the thinner estimate generally predicts a reversing boundary layer, while
the thicker estimate layer is likely to create an overflow. St. Laurent & Thurnherr
(2007) hypothesize that the thickness of the layer of reduced stratification is set by
the height of the sills (δ ∼ A), not the internal dynamics of the boundary layer. This
is consistent with our results, especially with the way that the boundary layer forces
exchanges with the ambient fluids (for example see the secondary circulations in the
troughs in figure 4c), but not a phenomenon we observed directly.

Our results therefore suggest that overflows at sills may be common in the deep
ocean, but do not demonstrate it conclusively. Unfortunately, no currently available
ocean data is high resolution enough on observe them, though we see suggestions
of overflows in Thurnherr & Speer (2003), Thurnherr et al. (2005) and St. Laurent &
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Thurnherr (2007). Numerous authors have discussed the dramatic increase in turbulent
dissipation found near deep overflows (see for example Polzin et al. 1996 and Bryden
& Nurser 2003). Though the overflows we modelled are much less energetic than
observed deep overflows, even a small increase in turbulence may be significant, as
there are O(104) sills in ridge-flank canyons in the deep ocean (Thurnherr et al. 2005).
This would produce a different distribution of deep ocean mixing in both space and
time than the more extensively studied internal wave mechanisms, which could affect
ocean circulation on the scale of the ocean basin.

Much work remains to be done if we are to understand the oceanographic
implications of diffusive boundary layers like those studied here. This study covered
only the most highly idealized version of the relationship between continuously
varying bottom topography and diffusive boundary layers. In order to constrain the
importance of these results for the deep ocean, future work will have to address the
effect of rotation, three-dimensional topography, and the interaction among internal
waves, turbulence and the boundary layer. Future work will also need to determine
more conclusively what is setting the boundary-layer thickness in the ocean and
how that affects boundary-layer flow. In addition, the authors note that the findings
presented here are suitable for testing in a laboratory.
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