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Traditionally, on a great circle, the latitude or longitude of a waypoint is found by
inspection. In this paper, using an elementary knowledge of vector algebra including linear
combination of vectors and vector basis, we provide an easy method for finding the equation
of a great circle path as a parameterized curve. By use of this vector function of distance
travelled, the latitude and longitude of waypoints can be found based on the distance from
departure point along a great circle. The approach is intended to appeal to the navigator who
is interested in the mathematics of navigation and who, nowadays, solves his navigation
problems with a personal computer.
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1. INTRODUCTION. An equation for the geodesic on spherical surface,
namely the great circle equation [1] [5] [10], could be found in many textbooks of
variation calculus [4] [6] [11] and a well-known mathematics website [12]. Their
great circle equation is ingenious and creative. In some articles [5] [10], they discuss
the great circle equation determined by a given departure and destination and use
the results to find the waypoint on a great circle. Their results encourage us to
make an effort to discover a great circle equation. We give a concise method for
finding the equation of great circle paths (on spherical surface) as vector functions
of distance travelled.

Suppose one wishes to travel along the shortest path between two points on the
Earth’s surface with given latitude and longitude coordinates. What are the equations
governing this route and how are they derived? What are the applications of these
equations? The representations of the equations would dictate the complexity in the
applications of these equations. The aim of this paper is to propose an equation
of a great circle path as a parameterized curve so that the computation in various
applications is straightforward.
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Figure 1. Spherical Polar Co-ordinates.

2. THE GREAT CIRCLE SAILING. For centuries, navigators have been
interested in great circle paths because it is the shortest path between two points on
the surface of the Earth provided that the Earth is assumed to be a perfect sphere.
Given two points on the Earth, there are infinite planes containing these two points.
Each of these planes intersects with the Earth and results in an intersection with the
Earth as a circle. The great circle refers to the largest circle among these circles.
A straight line is the shortest distance between two points on a plane. However
when two points lie on the Earth’s surface, the shortest arc joining them is the
lesser arc on the great circle. The great circle has the greatest radius and the least
curvature [2] [9] [11].

A standard reference for great circles and their algebraic formulation is the classic
text by Bowditch [2] [7]. He teaches the concept of spherical navigation by using the
laws of spherical trigonometry. By definition, a great circle is the intersection of a
sphere with a plane that passes through the centre of the sphere. We assume that the
Earth is a perfect sphere, and the path cut between two non-antipodal points on the
surface of the Earth is the smaller portion of the great circle’s arc joining the two
points. Although a rigorous proof of the cut (shortest-distance) property follows
from the calculus of variation [4] [6], one can visualize this by imagining a part of
string along the great circle with its both ends attached at two ends. Then if the string
is to lie on a different path on the surface of the earth with same ends location, it must
be stretched.

3. THE VECTOR FUNCTION ON A SPHERE. The Earth’s coordinate
system can be replaced by a spherical coordinate. Therefore, the vector of a point
on the surface of the Earth can be represented by latitude ¢ and longitude 4 in
the Cartesian coordinate system as Equation (1). We supposed that the radius is
equal to 1 (Figure 1).

R E: cos ¢ cos A T
P=|y| =|cospsind| ,0<A<2n, —/2<p<m/2 (1)
z sin ¢
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In mathematics, parametric functions are a bit like functions. They allow someone
to fill in some variables, called parameters or independent variables, with any values
they wish. When this is done, the equations then tell the values of dependent
variables. A simple example is, in kinematics, filling in a time parameter to get the
position, velocity, and other facts about a moving object.

4. THE VECTOR FUNCTIONS OF A GREAT CIRCLE. There are
two scenarios for determining a great circle; (1) a great circle can be determined by
two points on the sphere, (2) a great circle can be determined by one point on the
sphere and the angle at this point between the great circle and its own meridian.

4.1. Scenario 1. A great circle determined by two points on the sphere. If the
departure and the destination are given no antipodal point, by using the relative
longitude concept and replacing the Greenwich meridian by the meridian of depar-
ture point, the vector of the departure 4 and the destination B on a great circle can be
expressed as:

A=[cosp,,0, sing,] (2)
where ¢, denotes the latitude of the departure.
B=[cos ¢, cos Ay, cOS ¢ sin Ay, sin ¢ (3)

where ¢, denotes the latitude of the destination and 1,=4, — 4, denotes the longitude
difference between the departure and the destination.

The great circle distance (d) is the angle between the vector A and the vector B. The
inner product of the two vectors gives the angle between two vectors. Therefore

A-B=|A|-|B|cosd (4)
cos d=cos ¢, cos ¢, cos Ag+sin ¢, sin ¢, (5)

The two vectors 4 and B are linearly independent, so the two vectors form a basis
for the set of all vectors R* for the plane of the great circle. In the sense that every
Pe R containing the great circle is a linear combination of A and B with a real
coefficient.

The two decompositions of the vector P along a great circle are U and 1% (Figure 2)
respectlvely The vector U is parallel to A being from Bto the end of P and the vector
V lies in B being from origin point to intersection between Band P. Using triangular
sine formula gives Equation (6).

1 .
sin(d—s) sin(s) sin(2Qr—d)
where s is the distance travelled from departure along the great circle.
After manipulating Equation (6), we get
- sin(d—s) -
- -2 7
v sin(d ) M
— sin(s) -
V= sin(d) ®
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Figure 2. The linear combination of two vectors in a great circle.

The vector function P is the addition of the two vectors as Equation (9).

(9] sin(d—s) - sin(s)

};(s)z ys) | = e A+ sindB )
z(s)

Substituting equation (2) (3) into Equation (9) yields

~ cos ¢, sin(d—s) + cos ¢, cos 1,4 sin(s) g
P(s)= cos @, sin A4 sin(s) (10)
sin ¢, sin(d—s) + sin ¢, sin(s)

4.2. Scenario 2: A great circle determined by one point on the sphere and an angle at
this point between the great circle and the meridian. Take a departure point on the
Earth, along with an initial bearing course a, and then find the tangent vector 14
(velocity vector) of point 4 along great circle. However, navigational directions are
given in the terms of a bearing angle a measured clockwise in degrees from north
(Figure 3). If the departure point is 4, then define the orthonormal vectors as
Equation (11) and (12).

E=[0 1 0] (11)

N=[-sin¢, 0 cos¢,] (12)

At the departure, Eis tangent to the latltude line, and N is tangent to the longitude
line. Since the unit normal vector is 4 to the plane spanned by E and N, and follow
the definition of A given Equation (2), we have A-E=A4-N=0. (E>< N=4. ) [3]1 18]

Since the two normal vectors E and N can form an orthonormal basis for the set
of all vectors in the tangent plane at a point 4 on a sphere, we may present
velocity vector v by a linear combination of £ and N (Figure 4), which is shown in
Equation (13).

. T
. —sin¢g, cosa

V=sina-E+ cosa-N= sina (13)
cos ¢, cos a
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Figure 3. Latitude, longitude, and bearing angle.
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Figure 4. The linear combination of two orthonormal vectors.

Since the velocity vector V lies in the plane of the great circle, the vector ¥ can be
considered as the destination vector B and thus scenario 2 becomes scenario 1.

The vector V is orthogonal to A _and on the plane of the great circle, so the great
circle distance is d=m/2 between A and V. Substitute the identity sin(;r/2)=1 into
Equation (9) to obtain Equation (14).

P(s)= cos(s)- A + sin(s)- V (14)
Substituting equation (2) and (13) into equation (14) yields
cos ¢, cos(s) — sin ¢, cos a sin(s)

P(s)= sin a sin(s) (15)
sin ¢, cos(s) + cos ¢, cos a sin(s)
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Table 1. Longitude, latitude, and course — given distance to travel.

Time(hrs) Distance(nm) Longitude Latitude Course
0 0 121-0000E 35-0000N 477716
24 600 130-8603E 41-3352N 53-8835
48 1200 142-6537E 46:6590N 62:0993
72 1800 156:6252E 50-5341N 72:6076
96 2400 172-4178E 52:4918N 850014
120 3000 171-1785W 52:2255N 980238
144 3600 1557350W 49-7801N 1100577
1646853 4117133 144-0000W 46:2000N 1187950

Now, a parameterized curve on the earth is represented by the vector function.

x(s) cos g cosi
P(s)=X(s)= | y(s) | = | cos¢sinA (16)
z(s) sin ¢

To obtain longitude and latitude from Equation (10) or (15) for a given distance
along the great circle, where the support is 0 <s<27.

tan™" (y/x),x>0,y>0
AMs)=<tant (y/x)+m,x<0 (17)
tan™ (y/x),x>0,y<0

@(s)=sin"'(2) (18)

Further expansion of Equation (13) into trigonometric terms is unnecessary for
computer evaluation.

In conclusion, we remark that in Scenario 1, if the two points are antipodal,
then there are infinitely many great circles through them. In order to choose a
particular one, it is necessary to specify (as in Scenario 2) an initial direction at one
of the points.

5. ILLUSTRATIVE EXAMPLE FOR VALIDATION. A ship is about
to depart from one position to another. The navigator wishes to use the great circle
sailing from A, latitude 35°00-0'N, longitude 121°00-0'E to B, latitude 46°12-0'N,
longitude 144°00-0'W at 25 knots. Find the position of the ship on the great circle
every 24 hours.

The longitudes, latitudes, and courses of waypoints from 4 with successive distance
of 0 miles, 600 miles, 1200 miles, ..., 3600 miles, and 4117-133 miles are found and are
shown in Table 1.

6. CONCLUSION. In this paper, we have provided an easy method for
finding the vector function of a great circle on a spherical surface as parameterized.
The method uses some basic vector analysis. The latitudes and longitudes along
a great circle are directly calculated without recourse for the rules of spherical
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trigonometry. The parametric vector function is developed to calculate the latitude
and longitude of the waypoints along a great circle path after sailing for some
distance. The results have been verified for their correctness. For those proficient
in computer programming languages, the expressions presented lend themselves
readily to any particular discipline.
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We were amused by the Cross Track Distance at Mid-Longitude problem posed by Paul
Hickley in The Journal of Navigation 57, 320. Two professors, John Ponsonby and Peter
Hoare, replied to the invitations immediately. Both their solutions to the original article give
superb accuracy. The two solutions are certainly ingenious and creative and encouraged us to
develop new formula for building the Mid-Longitude Equation on great circle. Regrettably,
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the original author doesn’t think that the two were the solution that ATPL examiners were
looking for. I also think that the two solutions would be beyond the capacity of the average
undergraduate. Our method gives a good understanding logically and easily to be mnemonic,
and the derivation process is found without any need to appeal to any formula of spherical
trigonometry.

KEY WORDS
4. Great Circle Sailing. 5. Mid-Longitude Equation.

I. INTRODUCTION. Using the properties of the great circle to construct
the mid-longitude equation can provide the navigator and students with a more
comprehensive and mnemonic formula. The final formula is that the sum of the
tangents of two latitudes divided by the double cosine of mid-longitude is equal to
the tangent of latitude at mid-longitude, that is:

tan ¢, +tan ¢,

tan ¢, =
P 2 cos A,

This is a smart mid-longitude equation! The equation is similar to an arithmetical
average but additionally divided by the cosine of mid-longitude. An equation for
the geodesic on spherical surface, namely ‘““the great circle equation”, could be
found in many textbooks of variation calculus [2] [3] [4] and some well-known
mathematics websites [§8]. But the proofs of the great circle equation are all rigorous
and would be beyond the capacity of the average student. We apply the funda-
mental knowledge of junior high school mathematics and the concepts of spherical
and Cartesian coordinates to construct the great circle equation easily. Our
proposed method gives a good logical understanding so the formula is easily re-
membered, and the derivation is found without any need for spherical trigonometry
formulae.

2. METHODOLOGY. The earth coordinate system can be replaced by
spherical coordinates. Therefore, the vector of a point on the surface of the earth
can be represented by latitude ¢ and longitude 4 in the Cartesian coordinate system
as Equation (1) (Figure 1) [5], and we assumed the spherical earth of radius unity
(radius=1).

Lo x cos ¢ cos A
P=|y| =|cospsind | , 0<A<2m, —m/2<p<m/2 (1)
z Sin ¢

By definition, a great circle is the intersection of a sphere with a plane that passes
through the centre of the sphere. We assume that the earth is a perfect sphere, and the
cut path between two non-antipodal points on the surface of the earth is the smaller
portion of the great circle’s arc joining the two points [1] [6] [7].

If the departure point and the destination point are given, the unit vector of
the departure WP1 (A4), the destination point WP2 (B) on the great circle can be
expressed as follows. By using the relative longitude concept replace the Greenwich
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Figure 1. Spherical Coordinates.
meridian as the meridian of departure point.
cos @, cos ¢, cos dA
A= 0 B= | cos¢,sindd (2)

sin g, sin ¢,

where ¢, ¢p, and d =1, — A, denotes the latitude of the departure, the latitude of the
destination, and the longitude difference between the departure and the destination,
respectively.

We propose two methods that can determine the equation of mid-longitude, which
are (1) derived by the equation of the plane determined by the two points and the
centre of the sphere, (2) derived by the equation of straight line on the Polar
Gnomonic.

2.1. Method 1. The equation of the plane determined by the two points and the centre
of the sphere. By definition, a great circle is the intersection of a sphere with a plane
that passes through the centre of the sphere [1] [6] [7]. We assume that the earth is a
perfect sphere, and the cut path between two non-antipodal points on the surface
of the earth is the smaller portion of the great circle’s arc joining the two points [7].
If given two points on the sphere, the equation of the plane determined by the two
points and the centre of the sphere (Figure 2). The equation of the plane AOAB that
passes through the centre of the sphere can be represented in Equation (3)

z=ax+by 3)

Converting spherical coordinates to Cartesian coordinates, substituting point
P into Equation (3) yields:

singp =acosAcos ¢ +bsinicos ¢ 4)
Rearranging Equation (4) yields:
tang=acosA+bsinl (5)

The equation includes the two points 4 and B, substituting the spherical
coordinates of 4 and B yields the simultaneous equations as follows:

{tangba:acoso +bsin0 ©)

tan ¢, =acos di+bsin dl
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Figure 2. Plane determined by the two points and the centre of the sphere.
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Figure 3. The vertex latitude presented by normal vector of the great circle.

The solutions of Equation (6) is given in Equation (7).

a=tang,
tan ¢, — tan ¢, cos di (7
b= -
sin di
The normal vector of the plane of great circle can be determined by those
coefficients in Equation (3).

ii=(a,b, —1) (8)

Additionally, by using Equation (8) we can find a concise way to give the points of
vertex in the great circle. The latitude of vertex is 90 degrees minus the angle between
the altitude of the normal vector, the meaning is shown in Figure 3, it yields:

tan ¢, =Vva®+b? 9)

2.2. Method 2. The equation of straight line along the Polar Gnomonic. The Polar
Gnomonic is the simplest of all projects to construct and understand. On this
projection great circles are straight lines and at the pole, angles are correct. The
accompanying Figure 4 illustrates the equation of straight line, namely the great
circle equation, on Polar Gnomonic.
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cosdAcot g, —cotPa
sindAcot ¢,

©,cotd,) A\l\\
y

(sindAcot ¢,.cos dAcot @)

Y- cotg =X

Figure 4. The straight line equation of great circle on the Polar Gnomonic.

The positions of the two points 4, B on the earth projected onto the Polar
Gnomonic are:

A'=(0, cotg,) (10)
B'=(sindAcot ¢, cosdAcot p,) (11)
The equation of straight line 4’B’ is:

cosdicot g, — cot g,
sin dA cot ¢,

Y—cotgp,=X (12)

Any point P on the earth projects onto Polar Gnomonic, the coordinate of
positions is:

P’'=(sinAcot ¢, cosAcot¢) (13)
Substituting Equation (13) into Equation (12) gives us:
cosdicotg, — cot g,

cosAcotp— cotgp,=sinlcot¢ Sindicol g (14)
b
Rearranging Equation (14) yields:
tan = cosA  sindcosdl N sin (15)
~ \cotgp, cote,sindd = sindicotg,
Rearranging Equation (15) gives:
te — te /AN
tan ¢ =tan ¢, cosA+ ( an gy Si::r;f" cos ) sin 16)
=acosA+bsini
where:
a=tang,
tan ¢, — tan ¢, cos di (17)
b= .
sin dA

The result of equation (16) is the same as equation (7).
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3. MID-LONGITUDE EQUATION ON GREAT CIRCLE. We turn

to the mid-longitude equation, in which the equation can govern the latitude at mid-

longitude averaged the two longitudes of two points on the great circle determined

by the two points. By definition, substituting equation (7) into equation (5) yields:

tan ¢, — tan ¢, cos di
sin dA

where dA=24,, is the mid-longitude of the departure and destination.

Now, we can apply the two circular functions in (19) into Equation (18) as
follows,

tan(¢) = tan(¢,) cos i, +

sin/,, (18)

Sin(24,,) =2 sin A, €08 A, €08(24,) = cos? A,, — sin® A, (19)
Substituting the two circular functions into Equation (18) gives

2tan(¢,) cos® A, + tan ¢, — tan ¢, ( cos? A, — sin® 4,

2cos A, (20)

tan(¢) =

Rearranging Equation (20) yields:

tan(¢a) + tan ¢b
2¢co8 A,

tan(¢) = (21)

4. NUMERICAL EXAMPLE. Now, we wish to respond the following ques-
tion proposed by Paul Hickey in his article on “Great Circle Versus Rhumb Line
Cross-Track Distance at Mid-Longitude” in the May 2004 Journal of Navigation.

Waypoint One is 60N 30W. Waypoint Two is 60N 20W. Your autopilot is coupled to
the INS and you are steering from WPI to WP2. What will be your latitude on passing
25 W?

This question is merely a special case which is included in equation (21). Write
¢,=¢, and rearrange equation (21) to obtain:

tan =" (22)

In this specified condition, we also can use the formula of vertex Equation (9), and
then get the same result in Equation (22).

tan g,
cos i,

tang, =+ (23)
Substituting the numerical latitude and mid-longitude into Equation (22) gives us
the results as follows:

1 V3 1
t: = t: R —— =
an ¢ = tan 60 cos(25°—20°) 2 X T 738667

tan™! <f§s652 ) — 60°05-66991562303997"
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5. CONCLUSION. We give a neater and elegant solution without using
spherical trigonometry. We use only the concept of converting spherical co-
ordinates to Cartesian coordinates, fundamental simultancous equations, and circu-
lar functions give us the mid-longitude equation. The scope of this knowledge can
be learned from the mathematics of senior high school. Even if students lack this
knowledge, the instructor can quickly give them a comprehensive understanding
using our proposed processing steps.

The function of mid-longitude is a very easy mnemonic for those average ATPL
candidates. Surely, the undergraduate candidates have to possess a fundamental
knowledge of linear algebra; if not their qualifications have to be challenged.
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