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SUMMARY
This paper presents the basis of a mathematical model for
simulation of planar flexible-link manipulators, taking into
consideration the effect of higher stiffness zones at the link
tips. The proposed formulation is a variation of the finite
segment multi-body dynamics approach. The formulation
employs a consistent mass matrix in order to provide better
approximation than the traditional lumped masses often
encountered in the finite segment approach. The formulation
is implemented into a computational code and tested
through three examples; cantilever beam, rotating beam and
three-link manipulator. In these examples, the length of the
rigid tips at both sides of each link ranges from 0% to 6.25%
of the whole link length. The zones of higher stiffness at the
link tips are treated as short rigid zones. The effect of the
rigid zones is averaged along with some portions of the
flexible links, thereby allowing further simplification of the
dynamic equations of motion. The simulation results
demonstrate the effectiveness of the proposed modeling
technique and show the importance of not ignoring the
effect of the rigid tips.

KEYWORDS: Flexible manipulators modeling; Simulation algo-
rithms; Multi-body dynamics.

1. INTRODUCTION
Flexible manipulators are well known for their advantages
over rigid ones in having higher load to weight ratio, higher
speeds and lower power consumption. The control schemes
for flexible manipulators, which often present a challenge in
order to obtain good performance out of them have thus
become the target of extensive research.1–9 Having a good
tool for performance simulation is very useful in the
development of flexible manipulator controllers. However,
accurate simulation of flexible manipulators is not an easy
task since the dynamic equations of motion are highly
nonlinear and are often coupled. Furthermore, there is
seldom an analytical solution for such systems except in
very limited special cases.10,11 Making use of Flexible Multi-
body Dynamics techniques is a promising approach in
simulation of flexible manipulators.12–14 The most popular of
those techniques are the Floating Frame of Reference,15–17

Incremental Finite Element,15 Absolute Nodal Coordi-
nate,15,16,18 Large Rotation Vector15 and the Finite Segment
approach.15,19–22

In this paper, the mathematical formulation presented in
references [20,21] is modified to take into account the effect

of the short rigid parts at the beginning and end of each link
at the connections to joints (Figure 1). The proposed model
is used for simulating many examples22. Three of these
examples are presented in this paper: Cantilever beam,
Rotating beam and a Three-link manipulator. The results of
the frst two examples are compared with those obtained by
conventional formulations. The simulation results show that
ignoring the effect of the rigid tips may lead to incorrect
results. The studied examples also demonstrate the effec-
tiveness of the proposed technique in achieving results close
to the conventional ones through simpler programming
methodology. The third example is not compared with
conventional solutions, but is included as a demonstration of
the capability of the proposed formulation to simulate multi-
link manipulators.

2. MATHEMATICAL MODELING
A variation of the Finite Segment approach is used to
formulate the dynamic equations of motion. The finite
segment approach generally assumes a flexible body to be
composed of a number of discrete rigid segments that are
connected by springs and/or dampers. This makes the
treatment of a flexible link similar to the treatment of several
rigid bodies. Each link is broken into elements connected at
nodes (Figure 2). Revolute joints can be modeled as perfect
joints (Figure 3-a) which have no internal clearance and are
of infinite radial stiffness, or as flexible joints (Figure 3-b)
that permit relative radial motion between the end of one
link and the beginning of the next one. At any time instant,
the relative positions, orientations and velocities can be used
to compute the total stiffness and damping forces acting at
each node. Then, by applying the principles of rigid body
dynamics on each node the equations of motion are:

[M ] [ẍ]=[F ] (1)

Fig. 1. An actual flexible manipulator link.
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where [F ] is the total force vector representing the effect of
the forces due to stiffness, damping, actuators and external
loads, [ẍ] is the nodal acceleration vector and [M ] is the
manipulator mass matrix.

The generalized coordinates (Figure 4) are the global
position (xi, yi) and the angular orientation �i of the ith node
in the system. In the case of single open chain manipulators,
it is convenient to calculate the stiffness and damping forces
directly rather than first assemble the stiffness and damping
matrices and then multiply them by the deflections and
velocities respectively.

External loads and actuating torques are added to the total
force vector (Equation (1)) at the nodes upon which they
act. It should be noted that it is possible to simulate the
effect of a perfect actuator or to take the internal dynamics
of the actuator into account. The torque induced at any
instant by a perfect actuator acts on both links: the link on
which it is mounted (connected to its stator) and the one it
drives (connected to its rotor) by equal and opposite torque
values.23 On the other hand, an imperfect actuator can have
different torque values upon the two connected links due to
the effect of internal inertia, linear and nonlinear stiffness
and damping in the power transmission system. Simulation
of the effect of an imperfect actuator requires prior
identification of its characteristics and is beyond the scope
of the case studies provided in this paper.

Motion of the system is simulated by applying a
numerical time-step integration technique on Equation (1).
For that purpose, a fourth order Runge-Kutta24 was used in
all simulations presented in this paper.

2.1. Element mass matrix
In conventional Finite Segment approach, the mass matrix
would be a diagonal matrix whose elements are the
equivalent lumped masses at the nodes. Lumping ignores
the inertia coupling between the nodes. Inertia coupling is

characteristic of continuous systems.16 So, ignoring it often
results in lower accuracy of simulation even when a
relatively large number of elements per link are being
used.20 Inertia coupling is introduced to the system of
equations by assembling the element mass matrices
obtained from consistent mass formulation of a two-node
beam element.25

[m]=[R]T [m]e [R] (2)
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ci si 0 0 0 0
�si ci 0 0 0 0
0 0 1 0 0 0

[R]=
0 0 0 ci si 0
0 0 0 �si ci 0
0 0 0 0 0 1

(4)

where [m] is the element mass matrix, [R] is the rotation
matrix, � is the mass per unit length of the beam, Leo is the
element length, ci =cos(�i) and si =sin(�i).

The mass matrix in Equation (3) is obtained by ignoring
the centrifugal and Coriollis acceleration terms, which
allows treatment of a flexible link instantaneously as a
structural member. Hence, it is possible to calculate the

Fig. 2. Flexible manipulator model.

Fig. 3. (a) A perfect revolute joint. (b) A flexbile revolute joint.
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mass matrix using the beam-element shape functions given
in reference [25]:

N1 =1��, N2 =3(1��)2 �2(1��)3, N3 =�Leo(1��)2

N4 =�, N5 =3� 2 �2� 3, N6 =�Leo(1��)� 2 (5)

Where � is the fraction of the length of the beam, starting
from the first node.

It should be noted that although the centrifugal and
Coriollis inertia terms are ignored in this formulation, their
effect is generally minimal and decreases by increasing the
number of segments in the flexible link model.

2.2. Element stiffness forces
An element in a general configuration is shown in Figure 4.
The special formulation presented in this paper allows each
element in the mesh to have rigid parts at its right and left
ends. It is worth noting that in practical use of this
formulation in simulation purposes (where a link is meshed
using several elements), an element would either have its
left end with a rigid part (first element), right end with a
rigid part (last element) or no rigid parts at all (other
elements). The formulation presented allows having a two
rigid ends in the same element for the sake of generality.
Thus, the same formulation of the element can be used in all
cases by setting the length of the left rigid part (Lrle) or right
rigid part (Lrre) to zero in case of their absence.

Employing simple trigonometric manipulations (see Fig-
ure 4), deflection of the flexible part of the element from its
undeformed shape in the direction of the local element axes
ui and vi is given by:

�duf

dvf
�=� ci

�si

si

ci
��xj �xi �Lrre(cj �ci)

yj �yi �Lrre(sj �si)
���Leo

0 �
d�f =�j ��i

(6)

The deflections are used to compute the stiffness forces in
the direction of element axis as well as the stiffness
moment. The stiffness forces are then transformed to the
direction of the global axes in order to be assembled in the

total force vector (Equation (1)). The stiffness forces and
moment are given by:

Fkui =Kaduf

Fkvi =Kb1dvf �Kb2d�f

Mkzi =�Kb2dvf +Kb3d�f �FkviLrre

Mkzj =�Mkzi �Fkvi(Leo �Lrre) (7)

�Fkxi

Fkyi
�=�ci

si

�si

ci
��Fkui

Fkvi
� & �Fkxj

Fkyj
�=��Fkxi

�Fkyi
� (8)

Where the stiffness constants of the element are given by:

Ka =
EeAe

Lf

, Kb1 =
12EeIe

L3
f

, Kb2 =
6EeIe

L2
f

, Kb3 =
4EeIe

Lf

& Lf =(Leo �Lrle �Lrre) (9)

where Ee is the beam modulus of elasticity, Ae is its cross
sectional area, Ie is its second moment of area and Lf is the
length of the flexible part of the element.

It should be noted that this manner of computing the
stiffness forces is analogous to multiplying the stiffness
matrix by the deflection vector in beam elements formulated
in traditional finite element.25 Thus, using the proposed
model in simulation will give almost exactly the same
results when simulating structural dynamics problems.
However, in traditional finite element, rigid body rotation of
the beam element does not result in zero strain, which limits
the use of the traditional beam element in solving problems
involving large rotations.15 Equation (7) however, permits
rigid body rotation with zero strain because element
deflections are calculated as the relative position of the
nodes with respect to the undeformed shape (Figure 4).

2.3. Element damping forces
Several traditional methods are used to express the damping
effect of structural members.25–28 One of the most popular
methods is known as Rayleigh damping, in which, an
equivalent viscous damping matrix is defined as a linear
combination of the mass and stiffness matrices. In this case,
the element damping forces26 will be:

[F ]c =[C ][ẋ]=[F ]cm +[F ]ck

[F ]cm =�[m] & [F ]ck =� [k] (10)

where [F ]c is the element damping force vector, [F ]cm and
[F ]ck are the mass and stiffness associated damping forces
respectively, [ẋ] is the nodal velocity vector, [C ], [m] and [k]
are the element damping, mass and stiffness matrices
respectively. � and � are the element damping constants.
These damping constants are not readily known as the
stiffness constants, experimental identification of them is
recommended for better accuracy of simulation.21

Fig. 4. An element in a general configuration.
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In the proposed formulation, the term [F ]cm is the same as
in Rayleigh damping. [F ]ck is to be calculated in a similar
manner as the stiffness forces through computing the
relative velocity between the nodes of the element in the
direction of the element axes then computing the stiffness
associated damping forces similar to Equation (8). The
relative velocities between the nodes are given by:

�du̇f

dv̇f
�=� ci

�si

si

ci
�� ẋj � ẋi +Lrre(sj�̇j �si�̇i)

ẏj � ẏi �Lrre(cj�̇j �ci�̇i)
�

��̇i�si

ci

�ci

si
��xj �xi �Lrre(cj �ci)

yj �yi �Lrre(sj �si)
�

d�̇f = �̇j ��̇i (11)

The damping forces and damping constants are given by:

Fcui =Cadu̇f

Fcvi =Cb1dv̇f �Cb2d�̇f

Mczi =�Cb2dv̇f +Cb3d�̇f �FcviLrre

Mczj =�Mczi �Fcvi(Leo �Lrre) (12)

�Fcxi

Fcyi
�=�ci

si

�si

ci
��Fcui

Fcvi
� & �Fcxj

Fcyj
�=��Fcxi

�Fcyi
� (13)

Ca =�Ka, Cb1 =�Kb1, Cb2 =�Kb2 & Cb3 =�Kb3 (14)

It should be noted that Equation (11) is the generalized form
of the similar equation given in references [20, 21].

3. APPLICATION EXAMPLES
The following examples are intended to assess the effective-
ness of the proposed formulation in simulating the motion
of flexible links that have rigid parts at their tips. The values
of the damping constants used in the examples are chosen
close to the values obtained in reference [21]. For more
accurate simulation of the true link behavior, experimentally
identified values of these constants should be performed.
The objective of these examples, however, is to compare
results using the proposed formulation and the conventional
one rather than performing a simulation of the true link
behavior.

3.1. Example #1: Vibrating cantilever beam
In order to assess the effectiveness of the proposed
formulation in simulating the motion of flexible manip-
ulators, first the transient state vibrations of a flexible
cantilever beam that has rigid parts at its beginning and free
tip due to a step force at the free tip is studied (Figure 5-a).
The beam data is given in Table I.

The conventional solution, which is taken as a reference
involves meshing only the flexible part of the beam (Figure
5-b). The force at the tip is transformed to the end-node in
addition to a moment. Inertia forces due to the mass of the
rigid part at the free tip are also added at the end-node.

The essential difference in using the proposed formula-
tion presented in this paper is that the whole length of the
beam is meshed (Figure 5-c). The first and last elements
thus contain a rigid part (Figure 6) and are thus of higher
stiffness than the rest of the elements in the mesh. The
proposed formulation ensures that the stiffness and stiffness
associated damping forces are equivalent to those resulting
from the conventional method. However, the mass matrix of
the element is slightly different since the deflection line of
the rigid-flexible parts is slightly different from the
approximated deflection line of the element in the proposed
formulation. This slight difference causes a small error in
the simulation using the proposed formulation (about 4% in

Table I. Beam Data of Examples #1 and #2.

Link length (Lbm) 0.8 m
Length of Left Rigid Zone 0.00 to 0.05 m step 0.01 m
Length of Right Rigid Zone 0.00 to 0.05 m step 0.01 m
Modulus of Elasticity� Cross Sectional Area (EeAe) 1.8� 10 N
Modulus of Elasticity� Second Moment of Area (EeIe) 13.5 N . m2

Mass Associated Damping Constant (�) 0.1 (SI units)
Stiffness Associated Damping Constant (�) 1.6� 10–4 (SI units)
Mass per unit length 0.72 kg/m
Number of Elements per link 4
Plane of motion Horizontal Plane
Loading Unit Step Force at Free Tip
Simulation time 0.5 s

Fig. 5. A flexible cantilever beam with rigid tips.

Fig. 6. Approximation of a rigid and a flexible part in one
element.
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the presented examples). This error is further reduced when
the stiffness of the element is higher and thus the deflection
is lower as will be demonstrated. Despite this error, the
system dynamic equations are vastly simplified in them
since there is no need to add extra inertia forces as in the
conventional solution and more importantly, the constraint
equations of a revolute joint become far simpler as will be
demonstrated in the second example.

Results of conventional formulation: The transient
response of the beam for different values of the ength of the
rigid parts (0.0%, 1.25%, 2.5%, 3.75%, 5.0% and 6.25%) is
obtained using 4 elements per link mesh (Figure 7). A check
to confirm that 4 elements per link gives sufficient
simulation accuracy is performed by carrying out a
comparison with the solution obtained using 8 elements per
link. The two solutions are so closely matching that plotting
them on the same graph would reveal little. Instead, the
difference between the two solutions is given in Figure 8. It
is shown that the solution difference between 4 and 8
elements per link is pretty small, thus the solution using 4
elements per link is sufficiently accurate to be taken as a
reference. It is shown by Figure 7 that the response of the
no-rigid part beam (0.0%) can be pretty different than if the
beam contains rigid parts. Thus, ignoring the effect of the
rigid parts may lead to completely inaccurate simulation
results.

Results of proposed formulation: The solution obtained
using 4 elements per link is shown in Figure 9. The
difference between the proposed and conventional solutions
is given in Figures 10 and 11. Figure 10 shows the effect of
the ratio of the length of rigid part to that of the overall
length of the beam (solution obtained using 4 elements per

link). Figure 11 shows the effect of the ratio of length of the
rigid part to the length of the element in the proposed mesh
(solution obtained for Lrl/Lbm =Lrr/Lbm =6.25% using 4, 6 & 8
elements per link).

3.2. Example #2: Rotating flexible beam
Since it sometimes happens that a certain formulation of a
problem works well in some special cases but not so well in
others, the performance of the proposed formulation is also
tested on a rotating flexible arm (Figure 12). The beam
properties are the same as in the previous case study and are
given in Table I. Initial conditions are zero initial strain and
velocity with the manipulator arm aligned with the X-axis
(� is zero at all nodes). No forces or movement act at the
free tip, and a driving torque Thub given by Figure 13 acts
upon the hub. The revolute joint is assumed perfect.

Equivalent rigid system: It is also useful for the sake of
motion trend evaluation, to know the response of the
equivalent rigid body system. In the presence of damping,
Equation (10), which expresses the damping forces and
moments, is reduced and added to system equation of
motion of the rigid system. The equation of motion
becomes:

J�̈=Thub ��J�̇ (15)

where J is the polar moment of inertia about the joint. The
response of the rigid system both in the presence and
absence of damping is given in Figure 14.

Results of conventional formulation: The conventional
solution is achieved by using the same element mesh as in

Fig. 7. Beam transient response – conventional formulation.
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the previous case study. The constraint equations on node #1
due to the presence of the revolute joint are:

x1 =Lrl cos(�1)

y1 =Lrl sin(�1)
(16)

The constraint equations represented by Equation (14) are
nonlinear algebraic equations. The process of solving a
system containing both differential and algebraic equations
involves differentiating the algebraic equations and using
them to reduce the number of differential equations. A
numeric technique for this purpose is presented in reference

Fig. 8. Difference in simulation using 4 and 8 elements.

Fig. 9. Beam transient response – proposed formulation.
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[29], the equation reduction in this example however, was
symbolically accomplished.

The conventional solution using 4 elements per link for
different values of the ratio between the length of rigid part
and the arm length shows only little differences, which can

only be observed through magnification of parts of the time
response (Figure 15). While this may be a justification for
the approximation of ignoring the rigid tips, which is often
done in the literature, this approximation is not applicable in
all cases as demonstrated in the previous case study.

Fig. 10. Effect of rigid part w.r.t beam length.

Fig. 11. Effect of rigid part w.r.t element length.
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Results of proposed formulation: The obtained results are
shown in Figures 16 and 17. The constraint equations for the
meshing in this are given as:

x1 =x0 =0

y1 =y0 =0
(17)

It is known that numerical solution of ordinary differential
equations is a far simpler and numerically more efficient
task than solving nonlinear differential algebraic equations.
When employing the proposed formulation for approximat-
ing the short rigid zones, the resulting constraint equations
are linear equality constraints as in Equation (17). The
linear equality constraints can be readily used to reduce the
total number of differential equations, while maintaining a
set of ordinary differential equations. In case of conven-
tional formulations for the rigid zones, the resulting
constraint equations are irreducible nonlinear equations
(Equation (16)), which means a differential algebraic solver
is necessary (except for trivially simple cases). Thus, the
advantage of employing the proposed model is established.

3.3. Example #3: Flexible three-link manipulator
In order to demonstrate the capability of the proposed
technique, the motion of a three-link manipulator (Figure

18) moving in a horizontal plane is simulated. Manipulator
main data is given in Table II.

To the best of the authors’ knowledge, no analytical
solution exists for such a problem. Moreover, solutions
using conventional finite element or multi-body dynamics
techniques will include complicated nonlinear algebraic
constraint equations along with the differential equations of
motion. This case study presents the solution obtained using
only the proposed technique. It is mainly directed to
showing that the effect of the rigid (or higher stiffness)
zones at the connections between links and joints should not
be ignored.

Results of proposed formulation: Each of the manipulator
revolute joint actuators rise 45° in a parabolic motion
(Figure 19) within 2.8 seconds, then maintain their position.
An animated display of the manipulator motion within the
first 3 seconds is shown in Figure 20. The motion of the
flexible-link manipulator generally follows that of the
equivalent rigid-link manipulator while oscillating about it.
Figure 21 gives the position of the manipulator end
effector.

4. REMARKS AND DISCUSSION
It is observed that increasing the length of the rigid parts
with respect to the total beam length has the general effect
of increasing the error in the proposed formulation. On the
other hand, increasing the ratio of the rigid part to that of the
element length decreases the error in the proposed formula-
tion since it significantly increases the stiffness of the
element containing the rigid part. On the whole however, the
error level in the proposed formulation is low enough for the
solution obtained using the proposed formulation to be also
considered sufficiently accurate.

Fig. 12. Rotating flexible beam.

Fig. 13. Driving torque at the hub.
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Fig. 14. (a) Orientation at the hub. (b) Orientation at the free tip. (c) X – Position of free tip. (d) Y – Position of free tip.
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As it may seem, the theoretical limit of the feasibility of
using the proposed formulation is that the length of the rigid
part must be less than that of the element length. Otherwise,
the length of flexible part of the element (Figure 6) will be
zero and thus its stiffness would be infinite causing fatal
errors for the numerical solver. Practically however, the
limitation on the use of the proposed formulation is merely
convenience, which in turn, depends on several factors such

as the time stepping technique used for the solution of the
system differential equations and the speed of the computer
used.

Time stepping techniques generally have a minimum time
step value if an acceptable solution is to be obtained.30 The
minimum time step value is dependent both on the used
technique and the stiffness of system. The higher the
stiffness, the smaller the required time step. Table III

Fig. 15. Response for different rigid part length.

Fig. 16. Effect of rigid part w.r.t element length.
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Fig. 17. (a) Orientation at the hub. (b) X – Position of free tip. (c) Y – Position of free tip. (d) Orientation at the free tip.
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compares the minimum time step values for different
solution conditions of example #1 using the proposed
formulation when using fourth order Runge-Kutta for
numerical integration of the system differential equations.
The minimum time step values in the table were obtained

using trial & error, thus they are not very accurate, but they
serve only for qualitative comparison. It is observed that at
very high rigid part to element length ratio (such as 75%),
there is a violent decrease in the minimum time step value,
which renders the use of the proposed formulation in such
cases impractical.

Also for comparing trends of motion, the response of the
no-rigid parts manipulator arm of example #2 is given in
Figure 14 when there is no damping, only stiffness
associated damping and mass and stiffness associated
damping. Although not the main objective of this paper,
Figure 14 provides insight to the effect of the different
damping forms. Mass associated damping dampens the

Fig. 18. Case study #3 – three link manipulator.

Table II. Data of Example #3.

All Links are Identical, No End-Effector Payload
Link length (Lbm) 0.8 m
Length of Left Rigid Zone 0.05 m
Length of Right Rigid Zone 0.05 m
Modulus of Elasticity� Cross Sectional Area (EeAe 1.8� 10 N
Modulus of Elasticity� Second Moment of Area (EeIe) 13.5 N . m2

Mass Associated Damping Constant (�) 0.0
Stiffness Associated Damping Constant (�) 0.0
Mass per unit length 0.72 kg/m
Number of Elements per link 4
Plane of motion Horizontal Plane
Loading No loading
Simulation time 6.0 s

Fig. 19. Case study #3 – actuator’s motion.
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gross motion of the body, while stiffness associated
damping affects most of the high frequency ripples of the
flexible body and has no effect on the gross motion.

In case of a multi-link manipulator, the equation reduc-
tion necessary for the conventional solution is complicated
if it is to be symbolically done, therefore a numerical
technique such as that presented in reference [29] would be
necessary. On the other hand, the constraint equations for

the meshing in proposed formulation are far simpler
(Equation (15)) and reduction of the differential equations is
straightforward, thus the same time stepping numerical
techniques can be applied to a multi-link manipulator.

It is also noticed that the deviation between the flexible-
link manipulator and the equivalent rigid-link manipulator
is more evident in the cases of multi-link manipulators than
in the case of single-link manipulators. Also the deviation

Fig. 20. Case study #3 – animated display.
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Fig. 21. (a) X – Position of end effector. (b) Y – Position of end effector. (c) Y – Orientation of end effector.
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between the simulated motion taking into consideration the
effect of rigid zones and the simulation ignoring it is more
evident.

Extension of this approach to three dimensional manip-
ulators would be pursued in future work. The main expected
challenges would be the selection of rotational coordinates
and derivation of the appropriate mass matrix. Extending
the rigid-zone approximation to three dimensional analysis
is a straight forward task because all stiffness forces are
calculated in the local coordinate systems of the elements.

5. CONCLUSIONS
Treatment of link flexibility in the literature often ignores
the practical side that rigid or higher stiffness regions exist
at the connections to joints. Numerical simulation shows
that ignoring the rigid parts at connections may, in some
cases, lead to large errors. A proposed flexible multi-body
dynamics technique is used to include the effect of the rigid
tips in numerical simulation. The proposed technique
involves beam elements that can be part rigid and part
flexible, which leads to simplification of the constraint
equations imposed by the existence of revolute joints. The
effectiveness of the proposed technique in simplifying the
dynamic equations of the system is demonstrated by two
case studies. A third case study is included in order to
demonstrate the technique capability in simulating multi-
link manipulators. Accuracy of the proposed technique is
good over a wide range of system parameter values.The
main limitation to using the technique is that the element
containing a rigid part must also contain a sufficient flexible
portion.
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