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Bifurcation and multiple states in plane Couette
flow with spanwise rotation
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We present a derivation that begins with the Navier–Stokes equation and ends with a
prediction of multiple statistically stable states identical to those observed in a spanwise
rotating plane Couette flow. This derivation is able to explain the presence of multiple
states in fully developed turbulence and the selection of one state over another by
differently sized computational domains and different initial conditions. According to the
present derivation, two and only two statistically stable states are possible in an infinitely
large plane Couette flow with spanwise rotation, and that multiple states are not possible
at very slow or very rapid rotation speeds. We also show the existence of limit-cycle-like
behaviours near statistically stable states.
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1. Introduction

According to the classical theory, turbulence is ergodic when fully developed. That is,
a turbulent flow visits all viable states in the phase space, leading to a unique statistical
state irrelevant to the initial condition (Frisch 1995; Tsinober 2001; Galanti & Tsinober
2004). This ergodic assumption has profound influence on our thinking as well as how
we approach a turbulent flow. For example, turbulence scalings, e.g. the logarithmic mean
flow scaling in wall-bounded turbulence (Marusic et al. 2013; Xu & Yang 2018) and the
−5/3 scaling of the energy spectrum, are only valid if turbulence has one unique statistical
state.

However, ergodicity of a fully developed turbulence has been challenged by multiple
authors in the recent literature. They observed multiple states in von Kármán flow (Ravelet
et al. 2004; Ravelet, Chiffaudel & Daviaud 2008), Rayleigh–Bénard convection (Xi & Xia
2008; Ahlers, Funfschilling & Bodenschatz 2011; van der Poel, Stevens & Lohse 2011;
Weiss & Ahlers 2013; Xie, Ding & Xia 2018; Wang et al. 2020), rotating Rayleigh–Bénard
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convection (Stevens et al. 2009; Weiss et al. 2010; Wei, Weiss & Ahlers 2015; Wang
et al. 2018), Taylor–Couette flow (TCF) (Huisman et al. 2014; van der Veen et al. 2016;
Gul, Elsinga & Westerweel 2018), spherical Couette flow (Zimmerman, Triana & Lathrop
2011), spanwise rotating plane Couette flow (RPCF) (Xia et al. 2018; Huang et al. 2019a;
Xia et al. 2019), forced rotating turbulence (Yokoyama & Takaoka 2017) and double
diffusive convection turbulence (Yang et al. 2020b). In some cases, the flow transits
between different states (Xi & Xia 2008; Xie et al. 2018), while in other cases each of
the different states is stable, exhibiting hysteresis behaviours when control parameters
vary (Huisman et al. 2014; Yokoyama & Takaoka 2017; Huang et al. 2019a; Yang et al.
2020b). Here, we briefly review some of the observations. Huisman et al. (2014) showed
that different phase-space trajectories lead to different torques and velocity distributions
at the same flow condition in a TCF at Reynolds number Re ∼ 106. The result suggests
two possible states in a laboratory context. The existence of multiple states in TCF was
also reported by van der Veen et al. (2016). Those authors observed multiple states in two
experimental set-ups with different aspect ratios and for Taylor numbers covering almost
two decades. Their results suggest that multiple states in TCF are robust. Huang et al.
(2019a) reported hysteresis behaviours in RPCF. Those authors conducted two groups of
direct numerical simulations (DNSs) at Rew = 1300 (see the definition of Rew below) but
with the rotation number Ro varied in two opposite directions, mimicking the experiment
in Huisman et al. (2014).The authors found that the flow prefers a state with two pairs of
roll cells when Ro increases from 0.02 to 0.5 and it prefers the state with three pairs of roll
cells when Ro decreases from 0.5 to 0.02. In addition, they showed that the flow structures
and statistics lead to hysteresis loops.

These observations have inspired many interesting discussions; nonetheless, the
research is, by and large, phenomenological. Conclusions were drawn from data with
very little or no idea as to whether they could be applied to a different flow. Huisman
et al. (2014) conjectured that the selectability of large-scale coherent structures plays an
important role in the multiple states phenomenology and called for more in-depth research.
van der Veen et al. (2016) noted that a theoretical understanding of the rotation rate at
which the system starts to transit between different states remains elusive. Xia et al. (2019)
showed that the large-scale roll cells play an important role in RPCF multiple states,
but they did not answer the question about the origin of the multiple states. Many other
questions remain open, and we name a few here. First, it is not clear whether multiple
states exist at all rotation speeds. Second, it is not known if there could be more than two
statistically stable states at a given flow condition. Other unexplained observations include
the selection of one state over another by differently sized computational domains and the
selection of the states by initial conditions (Xia et al. 2019). All in all, a theoretical analysis
is required to help ininterpreting the experimental and computational observations. The
objective of this work is to fill this gap as much as we can.

Before proceeding to our derivation, we briefly review previous theoretical works. From
a fundamental standpoint, many of the ideas in the following sections are similar to those
expressed in the field of statistical state dynamics (Farrell & Ioannou 2007, 2019) and
related fields of research (Farrell, Gayme & Ioannou 2017; Taira et al. 2017). In particular,
statistical state dynamics recognizes that the dynamics of a turbulent statistical state is
time dependent, in which case the statistics obtained from many realizations would not
in general correspond to a representation of the statistical state at any time. While this
implies ‘multiple’ states, statistical state dynamics typically follows Kolmogorov’s theory
and assumes ergodicity, i.e. the statistical average of a turbulent system asymptotically
approaches a fixed point. From an operational standpoint, we apply truncated Galerkin
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projection of the Navier–Stokes (NS) equation to a predefined subspace. Truncated
Galerkin projection sees most use in dynamical systems (Majda & Timofeyev 2000;
Rapún & Vega 2010). A recent application of this methodology in turbulence research
can be found in Anderson (2019), which leads to non-periodic phase-space trajectories of
roughness-driven secondary flows in high-Reynolds-number boundary layers. It is worth
noting that stability analysis would be a more conventional approach to the problem of
multiple states. In fact, Huang et al. (2019b) applied stability analysis, but it was not
fruitful. According to the authors, while stability analysis works for transitional flows,
to apply stability analysis to fully turbulent flow is not straightforward; this is particularly
true for flows with multiple states, for which the choice for a base flow becomes highly
non-trivial.

The rest of the paper is organized as follows. A more in-depth summary of the multiple
states phenomenology in RPCF is presented in § 2. We use the described data to anchor
our derivation. We present our derivation in § 3. The results are presented in § 4, followed
by conclusions in § 5. We try to keep the derivation simple and analytically tractable. To
that end, discussion that involves numerical tools and tediously long algebra are moved to
the appendices.

2. Multiple states phenomenology in RPCF

In this section, we give a more in-depth summary of the multiple states phenomenology
in RPCF. Xia et al. (2018) reported two statistically stable states in a spanwise
rotating channel at Rew = Uwh/ν = 1300 and Ro = 2Ωh/Uw = 0.2. In their DNSs, a
Fourier–Chebyshev pseudospectral method was adopted to solve the governing equations
with periodic boundary conditions in wall-parallel directions. The adequacy of their
grid resolution is confirmed in a subsequent work by Huang et al. (2019b). In Xia
et al. (2018), the coordinate system is such that y is the wall-normal direction, which is
different from the coordinate system defined here. According to the coordinate system
here, the spanwise rotation is in the −y direction. The two statistically stable states in
Xia et al. (2018) feature two and three pairs of roll cells in a periodic domain of size
Lx × Ly × Lz = 10πh × 4πh × 2h, as shown in figure 1. Here, h is the half-channel height,
Uw is half of the velocity difference between the two plates, Ω is the angular velocity in
the spanwise direction, ν is the kinematic viscosity, x, y and z denote the streamwise,
spanwise and wall-normal directions and Lx, Ly and Lz are the domain sizes in the x, y and
z directions. Throughout the paper, the two states with two pairs and three pairs of roll
cells are referred to as R2 and R3, respectively. The data in Xia et al. (2018) suggested that
the roll cells in both R2 and R3 are nearly streamwise homogeneous. Moreover, while R2
and R3 lead to disparate dispersive stresses, the mean flows in R2 and R3 are very similar
(see figure 2). In a follow-up work, Huang et al. (2019a) performed two groups of DNSs
at a fixed Reynolds number Rew = 1300 but with Ro varied from 0.01 to 0.6 and from
0.6 to 0.01. They found that the flow is more likely to converge to R2 when the rotation
speed increases from Ro = 0.02 to Ro = 0.5 and more likely to converge to R3 when the
rotation speed decreases from Ro = 0.5 to Ro = 0.02. In addition, the authors found that,
at Ro = 0.5, the flow contains roll cells but no multiple states, and at Ro = 0.6, the flow
can no longer sustain roll cells. In another follow-up work, Xia et al. (2019) synthesized
a set of initial conditions by linearly interpolating between R2 and R3. There, the authors
found that the flow is more likely to converge to R2 if the interpolation is biased towards
R2 and vice versa.
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Figure 1. Temporally and streamwise averaged velocity field in RPCF at Ro = 0.2 and Rew = 1300, where the
statistically stable state features (a) two pairs of roll cells and (b) three pairs of roll cells. The vectors show the
in-plane motions, and the contours show the spatial variation of the streamwise velocity with the mean flow
subtracted, ū − U. Here, yellow represents high streamwise velocity, blue represents low velocity and green is
in between. The exact contour values are not important.
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Figure 2. Horizontally and time averaged streamwise velocity in RPCF at Ro = 0.2 and Rew = 1300.
Normalization is by Uw and h.

3. Roll cell dynamics

The multiple states in RPCF are concerned with roll cell dynamics. In this section, we
extract from the NS equation two equations that govern roll cell dynamics.

3.1. Theoretical derivation
Turbulence has many degrees of freedom, which gives rise to a high-dimensional phase
space. Directly studying turbulent dynamics in a high-dimensional phase space is difficult
(if not impossible). In order to make progress, we must simplify the NS equation according
to the specific flow under consideration.

The NS equation for RPCF reads

Dui

Dt
= − 1

ρ

∂p
∂xi

+ 1
Rew

∂2ui

∂x2
k

− εi2k Ro uk, (3.1)
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where ui is the fluid velocity in the ith Cartesian direction, D/Dt is the total derivative
and i = 1, 2, 3 denote the streamwise, spanwise and wall-normal directions. We use x,
y, z interchangeably with xi; u, v, w interchangeably with ui; and ∂i interchangeably with
∂/∂xi, i = 1, 2, 3. Normalization is by half of the wall velocity difference Uw and the
half-channel height h. The bulk Reynolds number is Rew = Uwh/ν. In the main text, we
present derivations for plane Couette flow. Derivations for TCF (which is concerned with
surface curvature) are presented in appendix A.

First, we filter the NS equation in the streamwise direction at a scale ∼ O(h) to remove
the small scales and focus on the large-scale roll cells. The filtered streamwise velocity
equation reads

Dũ1

Dt
= − 1

ρ
∂1p̃ − ∂jT̃1j + 1

Rew
∂j∂jũ1 − Roũ3, (3.2)

where ·̃ denotes streamwise filtration and T̃1j is the turbulent stress. We define the filtered
vorticity ω̃i = εijk∂jũk. The streamwise vorticity equation reads

Dω̃1

Dt
= ω̃j∂jũ1 − ε1qi∂q∂jT̃ij + 1

Rew
∂j∂jω̃1 + Ro∂2ũ1. (3.3)

For a spanwise RPCF that features multiple statistically stable states, the flow is
approximately streamwise homogeneous, and we neglect the streamwise derivatives. To
focus on the dynamics of the large-scale roll cells, we invoke the eddy viscosity model.
It follows that the vortex stretching term ω̃j∂jũ1 is zero upon substitution of the vorticity,
ω̃j = εjpq∂pũq. Hence, (3.2) and (3.3) lead to

∂tũ1 + ũj∂jũ1 = ∂j

[(
1

Rew
+ νt

)
∂jũ1

]
− Roũ3 (3.4)

and

∂tω̃1 + ũj∂jω̃1 = ∂j

[(
1

Rew
+ νt

)
∂jω̃1

]
+ Ro∂2ũ1, (3.5)

where j = 2, 3, νt is the eddy viscosity and ∂jj = ∂22 + ∂33.
Second, we define a streamfunction ψ such that

ũ2 = ∂3ψ,

ũ3 = −∂2ψ.

}
(3.6)

It follows that ω̃1 = −∂j∂jψ . Plugging (3.6) into (3.4) and (3.5) leads to

∂tũ1 + ∂2ũ1∂3ψ − ∂3ũ1∂2ψ = ∂j

[
1
R
∂jũ1

]
+ Ro∂2ψ (3.7)

and

∂t∂j∂jψ + ∂2∂j∂jψ∂3ψ − ∂3∂j∂jψ∂2ψ = ∂j

[
1
R
∂j∂q∂qψ

]
− Ro∂2ũ1. (3.8)

In the above equations, we have invoked the effective Reynolds number R = 1/(1/Rew +
νt) following Anderson (2019). As the eddy viscosity is generally not a constant, invoking
the effective Reynolds number is a crude approximation. Nonetheless, in this context,
because the eddy viscosity in the bulk region of a spanwise rotating channel is in fact
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close to a constant (Yang et al. 2020a), invoking the effective Reynolds number here has
a somewhat sounder physical basis.

Third, we project (3.7) and (3.8) onto a statistically stable state:

ψ(x2, x3, t) = a(t)α(x2, x3),

ũ1(x2, x3, t) = b(t)β(x2, x3)+ U(x3),

}
(3.9)

where α and β represent roll cells of a given wavenumber and U(x3) is the mean flow. Here,
we assume that the mean flow does not depend on a particular state. This assumption is
consistent with the data and simplifies the analysis that follows. Relaxing this assumption
leads to more involved mathematics but essentially the same conclusions, as shown in
appendix B. Plugging (3.9) into (3.7) and (3.8) leads to

β
db
dt

+ ab∂2β∂3α − ab∂3β∂2α − a∂3U∂2α = 1
R

b∂j∂jβ + 1
R
∂3∂3U + Ro a∂2α (3.10)

and

∂j∂jα
da
dt

+ a2(∂2∂j∂jα∂3α − ∂3∂j∂jα∂2α) = 1
R

a
[
∂4

2α + 2∂2
2∂

2
3α + ∂4

3α
]

− Ro b∂2β.

(3.11)

Equations (3.10) and (3.11) govern the dynamics of roll cells. In (3.10) and (3.11), we have
left α and β as generic functions of y and z, and, importantly, we have retained nonlinearity.

Fourth, we need ansatzes for α and β in order to advance. The DNS solution is by itself
a good ansatz: it is a solution to the Reynolds-averaged NS equation, and it satisfies the
no-slip condition. However, the use of DNS data necessarily involves numerical tools in
the following derivations, and we will postpone the analysis to appendix C. Here, we use
the following analytical ansatz to approximate the multiple states:

α = − sin
(π

2
ky

)
cos

(π

2
z
)
,

β = − cos
(π

2
ky

)
[1 − cos (πz)] .

⎫⎪⎬
⎪⎭ (3.12)

The ansatz in (3.12) does not satisfy the no-slip condition at z/h = ±1. This is in fact a
common practice analysis (Chandra & Verma 2013; Wagner & Shishkina 2013; Chong
et al. 2018). For example, Anderson (2019) applied truncated Galerkin projection to study
the dynamics of the secondary flows above spanwise heterogeneous surface roughness,
and the ansatz used in his work does not satisfy the no-slip condition. Also, when
studying large-scale circulation reversal in Rayleigh–Bénard flows, Chen et al. (2019)
applied truncated Galerkin projection and projected the instantaneous flow field onto a few
Fourier modes, and these modes do not satisfy the no-slip condition on wall boundaries. In
general, when applying truncated Galerkin projection, the idea is to focus on the bulk flow
behaviour. Figure 3 shows the ansatz for k = 3/π, which corresponds to R3. As we can
see from figure 3, the ansatz compares well with the data, i.e. figure 1(b). Quantitatively,
our analytical ansatz (which contains but only one Fourier mode) contains about 55 % of
the energy in ũ and about 90 % of the energy in ṽ and w̃. The next most energetic Fourier
mode contains about 7 % of the energy in ũ and 1 % of the energy in ṽ and w̃. For R2, our
analytical ansatz contains about 60 % of the energy in ũ and about 85 % of the energy in
ṽ and w̃. The next most energetic Fourier mode contains about 7 % of the energy in ũ and
about 4 % of the energy in ṽ and w̃. One can, of course, obtain more realistic ansatzes by
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Figure 3. Equation (3.12) with k = 3/π. Contours are for u and vectors are for v and w. Again, the exact
contour values are not important.
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Figure 4. The energy contained in the ansatz as a function of n, where n is the number of terms in the ansatz.
The thick lines are for u. The thin lines are for ψ . The dashed lines are for R2. The solid lines are for R3.

including additional terms in (3.12). Figure 4 shows the energy contained in the ansatzes
as we include more Fourier modes. As one would expect, accuracy comes at the price
of brevity. In appendix C, we use the DNS solution as our ansatz, and we show that our
conclusions are not affected.

3.2. Dynamics of the stable states
Before we proceed with our derivation, we take a close look at the flow dynamics near the
two stable states in R2 and R3 so that we have in mind what to expect. Equations (3.10)
and (3.11) map the roll cell dynamics to two variables: a and b. We define the projection
operator as ∫ Ly

0

∫ 1

−1
f · α dz dy, (3.13)

where we project f onto α. We project the DNS data on the ansatzes in (3.12) and get a and
b. The two values can be understood as containing both the real and the imaginary parts
of the corresponding Fourier mode. In figure 5(a), we plot the trajectories of R2 and R3 in
the phase space of a and b. The two trajectories circle around their time means. Because
the two DNSs have reached statistically stationary states, a and b do not decay or increase.
For comparison, in figure 5(b), we plot the trajectory of the shell model, an ergodic model
for energy cascade, in the subphase space of two Fourier modes. The integral length of
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Figure 5. (a) Trajectories of R2 and R3 in the phase space of a and b. (b) Trajectory of the shell model for
isotropic turbulence in the subphase space of two Fourier modes û2 and û3. The x and y axes in both panels
span two decades.
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Figure 6. Zoomed view of the trajectories of (a) R2 and (b) R3 in the phase space of a′ and b′.

the corresponding isotropic flow is L. The two Fourier modes correspond to the length
scales of L/2 and L/8 (relatively large-scale modes). Details of the data in figure 5(b) are
presented in appendix D. Comparing figures 5(a) and 5(b), the trajectory in figure 5(b)
visits a large area in the phase space and is easily ergodic, but the two trajectories in
figure 5(a) are confined in two small regions, and the two regions do not overlap, thereby
leading to two statistically stable states.

Figure 6 shows a zoom-in view of the trajectories in the phase space of a′ and b′, where
the superscript ′ denotes temporal fluctuations. Limit-cycle-like trajectories are found in
both R2 and R3. The time elapse of the data is 1000h/Uw (Xia et al. 2018). Xia et al.
could not rule out the possibility of state exchange because it was not clear how 1000h/Uw
compares to the turnover time of a roll cell. For example, if the eddy turnover time of
a roll cell is 10h/Uw, the simulation time 1000h/Uw would be sufficient to rule out the
possibility of state exchange, but if the eddy turnover of a roll cell is 10 000h/Uw, the
simulation time 1000h/Uw would not be sufficient. Figure 6 addresses the above question.
The time it takes to do a circle in the phase space is a good approximation of a roll cell’s
turnover time. Here, the flow is not able to escape after many cycles, and therefore we can
safely conclude that R2 and R3 are stable multiple states. For reasons that will be clear
in the next subsection, we fit da′/dt and db′/dt to the linear dynamics c1a′ + c2b′, where
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Figure 7. The time evolution of (a) a′ and (b) b′ in R2 and fits to linear dynamics.
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Figure 8. The time evolution of (a) a′ and (b) b′ in R3 and fits to linear dynamics.

c1 and c2 are constants. In figures 7 and 8, the data are compared to the linear dynamics,
and the two are remarkably similar, suggesting that the flow near the two stable states is
governed by linear dynamics. Ergodicity relies on sufficiently large fluctuations, and in a
turbulent flow system, large fluctuations are often results of nonlinear interactions. The fact
that the evolution of a′ and b′ follows linear dynamics explains, from a phenomenological
standpoint, why the flow is trapped within a stable state. The challenge remains as to
whether we could theoretically show that a and b follow linear dynamics.

3.3. Truncated Galerkin projection and bifurcation analysis
We proceed with our derivation. In § 3.1, we were at step four. In § 3.2, we saw that the data
suggest linear dynamics near a stable state. In this section, we see if our derivation gives
rise to the observed linear dynamics. The fifth step is to plug (3.12) into (3.10) and (3.11)
and project the two equations onto the ansatzes in (3.12). Projection is defined in (3.13).

913 A49-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.45


X. I. A. Yang and Z. Xia

After some (long) algebra, we arrive at

db
dt

=
[

4k
9

Ro + kπ
3

∫ 1

−1
sin2

(π

2
z
)

cos
(π

2
z
) dU

dz
dz

]
a −

(
k2 + 4

3

)
1
R

(π

2

)2
b (3.14)

and
da
dt

= − 1
R
(k2 + 1)(π/2)2a − 4

3
k

k2 + 1
Ro(π/2)−2b, (3.15)

which is indeed linear dynamics. In arriving at the above two equations, we invoke
sin(π/2kLy) = 0 since there can only be integer pairs of roll cells in the domain. It is worth
noting that truncated Galerkin projection does not preclude nonlinearity. The integral in
(3.14) is∫ 1

−1
sin2

(π

2
z
)

cos
(π

2
z
) dU

dz
dz = −

∫ 1

−1
U

π

2
sin

(π

2
z
) [

2 − 3 sin2
(π

2
z
)]

dz ≈ 0.27

(3.16)

for both R2 and R3. Although it is somewhat trivial, we note that according to (3.16), the
integral is concerned with U not its derivative.

We are now at the last step. Sixth, we conduct bifurcation analysis of the ordinary
differential equations in (3.14) and (3.15). If multiple statistically stable states exist,
da/dt = 0 and db/dt = 0 must have multiple non-trivial solutions. Hence, if multiple
states exist, the eigenvalues of the ordinary differential equations in (3.14) and (3.15) must
be such that

λ1,2 = 0, (3.17)

for non-trivial a and b. This necessarily leads to

(k2 + 1)2(k2 + 4/3)− Ck2 = 0, C ≈ −
(

0.039Ro2 + 0.025Ro
)

R2. (3.18a,b)

Equation (3.18a,b) is a cubic equation of k2 (note that Ro < 0 and C > 0). For certain C,
i.e. for certain flow condition, there are two physically viable roots:

k2
1 = h1/3 + gh−1/3 − 10/9,

k2
2 = −i

√
3/4 × (h1/3 − gh−1/3)− 1/2 × (h1/3 + gh−1/3)− 10/9,

}
(3.19)

where f = 5C/9 + 1/729, g = C/3 + 1/81, h = ( f 2 − g3)1/2 − f , i = √−1, i1/3 =
exp(i · π/6), (−i)1/3 = exp(−i · π/6). Here, k2

2 is real and is positive despite the
appearance of the unit imaginary number i. Hydrodynamic stability does not allow for
very slim or very fat roll cells (Drazin & Reid 2004). Determining the limits of roll cell
aspect ratio falls out of the scope of this paper. Here, we arbitrarily cut off at k = 0.5 and
k = 2, constraining that the roll cell heights to be no more than twice their widths and no
less than half their widths. Figure 9 shows the bifurcation diagram, where we plot k1 and
k2 as a function of C. We conclude our derivation here.

Before we proceed to predictions, we make two observations. First, truncated Galerkin
projection preserves nonlinearity in the equation; however, the application of truncated
Galerkin projection to this particular problem leads to linear dynamics. Second, (3.18a,b)
is, strictly speaking, a sextic polynomial, which, in principle, has six roots. Nonetheless, it
turns out that if one regards k2 as the unknown, the equation reduces to a cubic one; and
it also happens that one of the three roots of the cubic equation is always negative, leaving
us only two physically viable roots.
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Figure 9. Bifurcation diagram. According to (3.18a,b), C ≈ −(0.039Ro2 + 0.025Ro)R2. For the condition
considered here, i.e. near Ro = −0.2, C is an increasing function of the rotation speed |Ro|. We explain the
arrows in § 4.1.

4. Predictions of the model

4.1. Multiple states in an infinitely large domain
According to figure 9, for small values of Ro, the flow is in the red zone, and there is no
physically viable root to (3.18a,b). It follows that, for a non-rotating plane Couette flow,
multiple states that feature roll cells with different wavenumbers are not possible. For a
flow that is in the green zone, i.e. for a moderate rotation number, (3.18a,b) has two roots
between 0.5 and 2, leading to multiple states. This is evidenced by the multiple states
in Xia et al. (2018). In the yellow zone, i.e. at high rotation speeds, (3.18a,b) has one
root between 0.5 and 2. This means that while roll cells could still be found, they could
only be found at one wavenumber. The existence of this regime is confirmed in Huang
et al. (2019a): the authors increased Ro from a small value to Ro = 0.5 and found that the
spanwise domain always contains four roll cells irrespective of the initial condition (i.e.
there is only one stable state). Last, in the blue zone, i.e. at high rotation speeds, (3.18a,b)
does not have a root between 0.5 and 2, and no roll cells could be found. The existence of
this regime is also confirmed in Huang et al. (2019a): the authors increased the rotation
speed to 0.6, and the flow could no longer sustain the roll cells. For C that gives rise to
multiple states, e.g. C = 9, we plot the residual of the cubic equation (3.18a,b) in figure 10.
The two statistically stable states, denoted as k′

1 and k′
2, yield 0. The residual measures the

distance of a state from the equilibrium and therefore can be interpreted as a measure of
the energy level. From figure 10, we can conclude that the large energy barrier between the
two stable states locks the flow at one state, leading to non-ergodicity. The system would
have been ergodic if the energy barrier is low or if the flow has enough energy to go from
one state to the other. Figure 10 also has implications on the flow dynamics. For instance,
if the flow is at k = 0.7, i.e. a high-energy state, it will migrate to k′

1, i.e. a low-energy
state. Visualizing the migration of every state in the k space leads to the phase lines in
figure 10, and visualizing these phase lines at all C values leads to the arrows in figure 9.
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Figure 10. Residual of (3.18a,b) for C = 9. States k′

1 and k′
2 correspond to two states that yield 0 residual.

4.2. Multiple states in a finite domain
A finite domain admits only a few discrete wavenumbers. For a domain that extends
Ly = 4π in the spanwise direction, the wavenumber k can only take values 1/π, 2/π,
3/π, . . . n/π, where n is an integer. Xia et al. (2018) observed bistability for k = 2/π
and k = 3/π. However, according to (3.18a,b), the two wavenumbers k = 2/π and 3/π
correspond to two different values of C, i.e. C1 and C2. Because of this, according to
figure 9, bistability of k = 2/π and 3/π would not be possible at a given flow condition (for
a given C) in an infinite domain. In the following, we explain why bistability of k = 2/π
and 3/π is possible in a finite domain of size Ly = 4π.

First, we pick two flow conditions, i.e. two C values, C′ and C′′, such that C1 < C′ <
C′′ < C2. Figure 11(b) plots the energy of all possible states, i.e. k, for the two conditions
C′ and C′′. For an infinite domain, condition C′ will result in bistability at s′

1 and s′
2 and

condition C′′ will result in bistability at s′′
1 and s′′

2. However, for a domain of size Ly = 4π

and at the condition C′, k takes values of 1/π, 2/π, 3/π, . . . n/π only. Among those
values, k = 2/π and k = 3/π are at the lowest energy. Now, supposing the flow is at state
k = 2/π, the energy barriers (the bumps in figure 11b) will keep the flow at k = 2/π; and
if the flow is at state k = 3/π, the energy barriers will keep the flow at k = 3/π: making
bistability of k = 2/π and k = 3/π possible at both conditions C′ and C′′. This explains
why R2 and R3 can be observed for a range of rotation numbers in a finite domain (Huang
et al. 2019a) and in general why the same multiple states can be observed within a range
of flow conditions.

To elaborate, whether a state is statistically stable depends on whether the flow can
migrate to a lower-energy state. A state will be statistically unstable if the flow can migrate
to a lower-energy state, and a state will be statistically stable if the flow cannot migrate to
a lower-energy state. A domain of size Lz = 4π admits k = 1/π, 2/π, . . . , n/π, where n
is an integer. All these states have a residual. Among these states, the two states k = 2/π
and k = 3/π have the smallest residual, i.e. lowest energy. Because the two states cannot
migrate from one to the other (due to the energy barrier) and because other states are at
higher energy levels, the two states k = 2/π and k = 3/π are statistically stable, leading
to bistability of these two states in a finite domain. Following the above discussion, we can
now more precisely define ‘bistability’. Bistability does not necessarily refer to two states
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Figure 11. (a) States R2 (k = 2/π) and R3 (k = 3/π) and the corresponding C values. State R2 corresponds
to C1 and R3 corresponds to C2. Here, C1 < C′ < C′′ < C2. (b) Residual/energy for C′ and C′′. Here s′

1, s′
2 are

at res = 0 for C′; s′′
1, s′′

2 are at res = 0 for C′′.

that have 0 residual; it refers to two states that do not migrate from one to the other nor
migrate to other states.

5. Conclusions

We present an analytically tractable derivation that gives rise to multiple states in rotating
flows. We show that non-ergodicity in a spanwise rotating channel is because the flow
does not have the energy to escape a statistically stable state. According to this derivation,
spanwise RPCF in an infinitely large domain can have two and only two statistically stable
states. If the initial state corresponds to an unstable state, the flow will migrate to a
stable state. Finite domains (albeit with periodic boundary conditions in the horizontal
directions) admit wavenumbers at a few discrete values. This gives rise to the observed
selection of certain statistically stable states by differently sized domains and different
initial conditions. A few straightforward extensions of our theory are presented in the
appendices. They involve either the use of numerical tools, which enable us to handle
more degrees of freedom, or long mathematical derivations. Refining this derivation to a
point where it could make more quantitative predictions, like the exact rotation number
from which we can observe multiple states, is tantalizingly out of reach at this moment
and will be the focus of future research.
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Appendix A. Taylor–Couette flow

Figure 12 is a sketch of a TCF, where θ is the ‘streamwise’ direction, z is the ‘spanwise’
direction and r is the ‘wall-normal’ direction. Without loss of generality, the radius
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Figure 12. A sketch of TCF.

of the outer cylinder is r = r0 + 1 and the radius of the inner cylinder is r = r0 − 1.
The azimuthal filtered flow is approximately homogeneous in the θ direction. Repeating
the first step but for TCF, we get two equations that govern the dynamics of ũθ and ω̃θ :

∂ ũθ
∂t

+ ũr
∂ ũθ
∂r

+ ũrũθ
r

+ ũz
∂ ũθ
∂z

= 1
R

[
1
r
∂

∂r

(
r
∂ ũθ
∂r

)
− ũθ

r2 + ∂2ũθ
∂z2

]
− Roũr,

∂ω̃θ

∂t
+ ũr

∂ω̃θ

∂r
+ ũz

∂ω̃θ

∂z
= 1

R

[
∂2ω̃θ

∂r2 + 1
r
∂ω̃θ

∂r
+ ∂2ω̃θ

∂z2

]
+ Ro

∂ ũθ
∂z
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A1)

Observe that for r0 � 1, (A1) reduces to (3.4) and (3.5) (upon a coordinate transformation
that maps θ to x, z to y and r to z). A streamline function ψ could be defined:

ũr = −1
r
∂ψ

∂z
,

ũz = 1
r
∂ψ

∂r
,

⎫⎪⎪⎬
⎪⎪⎭ (A2)

and it follows that the vorticity in the θ direction is

ω̃θ = −1
r

[
∂2ψ

∂z2 + ∂2ψ

∂r2 − 1
r
∂ψ

∂r

]
. (A3)

Repeating step two and plugging (A2) and (A3) into (A1) leads to two equations for ũθ
and ψ , similar to (3.7) and (3.8).

Further advancements will require ansatzes for the roll cells. Without loss of generality,
a possible ansatz is

ψ = a(t)α(r, z), α(r, z) = −r0 sin
(π

2
kz

)
cos

(π

2
r
)

;

ũθ = b(t)β(r, z)+ U(r), β(r, z) = − cos
(π

2
kz

)
(1 − cos (πr)) .

⎫⎪⎬
⎪⎭ (A4)

Proceeding to step five will lead to two ordinary differential equations for a(t) and b(t),
whose non-trivial nodes give the statistically stable states. However, such analysis involves
integrals that could not be evaluated analytically. Also, considering that we do not have
access to the TCF data, we will not pursue this analysis in this paper.
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Figure 13. (a) One pair of roll cells in R2 and (b) one pair of roll cells in R3 at Ro = 0.2 and Rew = 1300.
Legends are the same as in figure 1. The y axis is scaled such that ky is from 0 to 4. Again, the exact value of
the contour is not relevant.

Appendix B. Accounting for interactions between the mean flow and the roll cells

We add an additional term c(t)γ (x3) to the ansatz of ũ1 in order to account for the
interactions between the mean flow and the roll cells:

ψ(x2, x3, t) = a(t)α(x2, x3),

ũ1(x2, x3, t) = b(t)β(x2, x3)+ c(t)γ (x3)+ U(x3).

}
(B1)

Repeating step three and plugging (B1) into (3.7) lead to

β
db
dt

+ γ
dc
dt

+ ab∂2β∂3α − ab∂3β∂2α − a∂3U∂2α − ac∂3γ ∂2α

= b
R
∂j∂jβ + 1

R
∂3∂3U + c

R
∂3∂3γ + Ro a∂2α, (B2)

and plugging (B1) into (3.8) leads to (3.11). Next, we repeat step four using the same ansatz
in (3.12) for α and β and the following ansatz for γ :

γ = − sin(πz). (B3)

Repeating step five and projecting (B2) onto β and γ leads to

db
dt

=
[

4k
9

Ro + 0.14πk
3

]
a −

(
k2 + 4

3

)
1
R

(π

2

)2
b + 4πk

45
ac,

dc
dt

= −π2

R
c − 2πk

15
ab.

⎫⎪⎪⎬
⎪⎪⎭ (B4)

Projecting (3.11) onto α leads to (3.15). Equations (B4) and (3.15) govern the roll cell
dynamics. The ordinary differential equations in (B4) and (3.15), however, have the same
non-trivial node as (3.14) and (3.15) with c = 0 (keeping the leading-order term in the c
equation).

Appendix C. Data-based ansatz for roll cells

In this appendix, we use the DNS solution as our ansatz.
Figures 13(a) and 13(b) show one pair of rescaled roll cells in R2 and R3, respectively, at

Ro = 0.2 and Rew = 1300. We see from figure 13 that, after rescaling, the DNS solutions
for R2 and R3 are very similar. This further justifies the use of (3.12) for both R2 and R3 in
the main part of the paper. The following calculation will use the roll cell solution in R2.
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Figure 14. Bifurcation diagram of the system in (C2).

The velocities u, v and w in R2 are related to the ansatz as follows:

u ∼ β, v ∼ ∂zα, w ∼ −(2/π)∂kyα. (C1a–c)

Repeating step five and plugging α and β into (3.10) and (3.11) and projecting (3.10) and
(3.11) on α and β, we have

db
dt

= (0.15 + 0.85 Ro)ka − (7.4k2 + 14)
b
R
,

da
dt

= − 1
R
(2.4k2 + 2.4)− 0.31k

k2 + 1
Ro b.

⎫⎪⎪⎬
⎪⎪⎭ (C2)

Taking fourth-order derivative, e.g. ∂4
2 , ∂4

3 , lends the solution near the domain boundaries
to significant numerical errors. To avoid such errors, all integrations are limited to
wall-normal regions outside the viscous sublayer. In arriving at (C2), we have also
neglected terms that are significantly smaller than the retained ones.

The presence of multiple states requires (C2) to have two or more non-trivial nodes,
which in turn requires the following cubic equation of k2 to have two physically viable
roots:

(k2 + 1)2(k2 + 14/7.8)− Ck2 = 0. (C3)

Figure 14 shows the bifurcation diagram, which leads to the same conclusions.

Appendix D. Shell model

The shell model of energy cascades in an isotropic turbulent flow reads(
d
dt

+ νk2
n

)
un = i

(
knu∗

n+2u∗
n+1 − bkn−1u∗

n+1u∗
n−1 − ckn−2u∗

n−1u∗
n−2

) + fn. (D1)

It models the time evolution of a velocity fluctuation un(t) over a wavelength kn = k0λ
n,

with λ, the intershell ratio, usually set to 2. The nonlinear coupling conserves the energy
with b = 1/2 and c = −(1 − b). A equilibrium condition is obtained by forcing the flow at
the large scale, i.e. fn = δ1n. Despite its simple form, the shell model yields flow statistics
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Figure 15. Premultiplied shell model energy spectrum. The second and the fourth modes, whose trajectory is
plotted in figure 5, are coloured black.

that are nearly identical to those from an isotropic turbulent flow. Further details of the
shell model can be found in the review by Biferale (2003). The trajectory in figure 5(b) is a
plot in the phase space of |u2| and |u4|. For our calculation, the number of shells is N = 21,
the wavenumber of the first shell is k1 = 0.05, the molecular viscosity is ν = 5 × 10−6 and
the forcing term is f1 = 0.1(1 + 1j). Figure 15 shows the premultiplied shell model energy
spectrum, kEuu. We see that kEuu follows k−2/3 closely.
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