
Math. Struct. in Comp. Science (2015), vol. 25, pp. 320–360. c© Cambridge University Press 2014

doi:10.1017/S0960129513000625 First published online 10 November 2014

Hidden-Markov program algebra with iteration

ANNABELLE MCIVER†, LARISSA MEINICKE‡ and

CARROLL MORGAN§

†Dept Comp Sci, Macquarie University, NSW, Australia

Email: annabelle.mciver@mq.edu.au
‡Dept Comp Sci, Univ Queensland, Qld, Australia

Email: l.meinicke@uq.edu.au
§School Comp Sci and Eng, Univ NSW, NSW, Australia

Email: carrollm@cse.unsw.edu.au

Received January 2011; revised July 2013

We use hidden Markov models to motivate a quantitative compositional semantics for

noninterference-based security with iteration, including a refinement- or ‘implements’ relation

that compares two programs with respect to their information leakage; and we propose a

program algebra for source-level reasoning about such programs, in particular as a means of

establishing that an ‘implementation’ program leaks no more than its ‘specification’ program.

This joins two themes: we extend our earlier work, having iteration but only qualitative

(Morgan 2009), by making it quantitative; and we extend our earlier quantitative work

(McIver et al. 2010) by including iteration.

We advocate stepwise refinement and source-level program algebra – both as conceptual

reasoning tools and as targets for automated assistance. A selection of algebraic laws is

given to support this view in the case of quantitative noninterference; and it is demonstrated

on a simple iterated password-guessing attack.

1. Introduction: extant theory and practices

Hidden Markov models, or HMMs, extend Markov processes by supposing that the process

state is not directly visible: only certain observations of it can be made (Jurafsky and

Martin 2000). How HMMs motivate a quantitative noninterference-security program

semantics is our principal topic: the hidden state of the HMM has ‘high security’ and the

observations that the HMM allow have ‘low security.’

Program algebra is the manipulation of program texts themselves, i.e. as syntax and

according to algebraic rules laid down beforehand, with the aim of showing equivalence

or ordering with respect to a so-called ‘refinement’ relation (Section 2) between one

program and another. That requires a semantics, and proofs of the elementary rules wrt.

that semantics. Furthermore, these rules must be preserved by context in order for true

algebra to be possible: in programming semantics, that last is called compositionality. This

represents an ‘up front’ cost for reasoning about program behaviours. When that cost

has been paid however, just once, then the benefits accrue forever after – every time an

equality or refinement can be shown syntactically without ‘descending’ into the semantics.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 321

The significance of iteration is that its proper treatment, via suprema of chains,

makes interesting demands on the semantic machinery already set-up for straight-line,

quantitative noninterference programs (Aldini and Pierro 2004; McIver et al. 2010).

Our first specific contribution extends an existing (but recent (McIver et al. 2010))

compositional semantics for straight-line quantitative noninterference security, one with

a novel two-level ‘hyper-distribution’ semantics, by showing how hypers (for short) –

previously introduced without detailed motivation – are in fact directly suggested by the

mathematical machinery of HMMs (Section 3). Our second contribution adds iterating

programs to that (Section 6), requiring thus a treatment of nontermination and fixed

points: this would be straightforward were it not for the fact that supremum-completeness,

on which fixed-points’ existence usually relies, does not appear to hold.

Our third contribution (Section 7) is to show how, in spite of the incompleteness, we can

via a more-specialized ‘termination order’ retain discrete distributions for the treatment

of loops: that gives a simpler theory than (the more general) measures would require.

Nevertheless, our further goal of extending compositional-closure (McIver et al. 2010) to

iteration does seem to require measures: at that point, there is no escape (Section 12).

Our final contribution is a selection of algebraic laws (Section 9), and the treatment of

an example (Section 10) illustrating the style of reasoning we hope they will facilitate.

2. Program algebra and refinement

Algebra is powerful, and it is general; and it is especially useful in program verification

where algebra’s feature of compositionality allows the reuse that simplifies verification

tasks. Program algebra in particular provides equalities or refinements (see below) that,

although proved in isolation between program fragments, can then be reused freely

within arbitrary contexts, drastically simplifying correct-by-construction and/or post-hoc

verification arguments.

A refinement ordering between programs is weaker than equality: it defines the

relationship that must hold between specifications and their implementations in a given

application domain (Wirth 1971; Morgan 1994; Back and von Wright 1998). In special

applications, such as noninterference security, the refinement relation is adjusted – usually

made more restrictive – to take further aspects into account: here it will be the possible

release of high-level information. Thus secure refinement checks not only (non)termination,

but also compares programs to see which one releases more information about hidden,

high-security variables: it is more distinguishing than standard program refinement.

For example, take integer variables v, h and suppose that v is visible (low-security)

whereas h is hidden (high-security). Furthermore, assume an attacker with ‘perfect recall’,

i.e. one who remembers visible variables’ values even if they are subsequently overwritten.

(We explain this assumption in Sections 4.2 and 12 below.) Then we would expect the

refinement (v:= h÷2; v:= v÷2) � v:= h÷4 but, crucially, not the reverse. On the left,

observing the first assignment to v as well as the second (perfect recall) allows us to

distinguish h=1 from h=3; but on the right we cannot do that. The right-hand program

is a refinement of the left-hand one because it is more secure; with an appropriate

security-refinement algebra we would show this syntactically (Section 9.3).

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 322

X0 X1

Y1

incoming-state distribution outgoing-state distribution

distribution on observations

E

T

By a priori we mean that the distribution X1 is determined statically, from information

“already” available and in particular is not derived from an actual execution.

Fig. 1. A hidden Markov model, a priori view.

3. Hidden Markov models and hyper-distributions

3.1. Basic structure of HMMs

A HMM comprises a set X of states, a set Y of observations, and two stochastic matrices

T ,E (Jurafsky and Martin 2000): the transition probabilities T give for any two states

x{0,1}∈X the (conditional) probability T (x1|x0) that a transition will end in final state

x1 given that it began in initial state x0; and the emission probabilities give for any

state x0 and observation y1∈Y the probability E(y1|x0) that y1 will be emitted, and thus

observed, given the initial state x0. Typically an HMM is analysed over a number of

steps i = 0, 1, . . . from some initial distribution X0 over X , so that a succession of states

x1, x2, . . . and observations y1, y2, . . . occurs, where each xi related to xi+1 by T and to yi+1

by E .

We assume finitely many states in the state space, and thus use discrete distributions

throughout.†

We illustrate a single step in Figure 1. With X0 the distribution of incoming state

x0, the distribution X1 of outgoing states x1 is the multiplication of X0 as a row-

vector by T as a matrix, that is Pr(X1=x1) :=
∑

x0
Pr(X0=x0)T (x1|x0). Similarly, the

distribution Y1 of observations y1 is given by a (matrix) multiplication amounting to

Pr(Y1=y1) :=
∑

x0
Pr(X0=x0)E(y1|x0). The ‘hidden’ essence of the model is that though

we cannot see the incoming x0’s and the outgoing x1’s directly, still the observation of y1

tells us something about each if we do know the incoming state distribution X0 and the

matrices T ,E .

3.2. A priori and a posteriori distributions on the state-space X

The a priori distribution on the HMM’s input is X0, and the a posteriori distribution on

the input can be calculated from T ,E , and X0 in the usual way, via Bayes’ formula, once

we have observed y1.

† The countably infinite supports mentioned in the introduction occur, eventually, in spite of this finiteness

assumption (Section 8.4).

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 323

X0

incoming-state distribution

outgoing-state
conditional distributions

emitted-value distribution Y1

y1 y2 y3

1

2

3

corresponding to y1

corresponding to y2

corresponding to y3

The pair (yi,

i) occurs

so that X1 = i pi

i

X1

with probability pi
 = Y1.yi

T

E

By a posteriori we mean that the conditional distributions δ{1,2,3} are deduced after

observation of the emitted values y{1,2,3}, and represent a revision of the a priori

knowledge of the outgoing state as represented in the X1 of Fig. 1.

Fig. 2. A hidden Markov model, a posteriori view.

But we concentrate instead on the output. The a priori distribution of outgoing x1 is

X1 as calculated in Section 3.1 above. Its a posteriori distribution is conditioned on the

emitted y1 actually observed: it too is determined by the usual Bayes formula

Pr(X1=x1|Y1=y1) :=

∑
x0

Pr(X0=x0)E(y1|x0)T (x1|x0)∑
x0

Pr(X0=x0)E(y1|x0)
, (1)

that is the (joint) probability that x1, y1 both occurred divided by the overall (marginal)

probability that y1 occurred. Thus, before we observe any y1 we believe the distribution

of outgoing x1 to be X1, and after we observe y1 we believe that distribution to be as (1).

This view is illustrated in Figure 2.

3.3. The attacker’s point of view: an equivalent representation

Although the matrices T ,E determine the HMM completely, we suggest that from the

point of view of an attacker trying to determine the state of the HMM, it would be more

useful to consider a different (but equivalent) formulation: the effect of one step from

a known initial distribution X0 is a joint distribution over observations in Y and their

corresponding outgoing conditional distributions over X : this structure thus comprises

values Δ of type D(Y×DX), where we write DX and similar for the type of discrete

distributions over X , thus one-summing functions of type X→[0, 1]. That is, each Δ gives

for a pair (y1, δ1) in Y×DX the probability that an attacker will observe y1 and will

conclude from it that x1 has a posteriori distribution δ1.

We call such Δ-values hyper-distributions, or just hypers. Since Δ is a joint distribution

(jointly over Y and DX), we can speak of its left- and right-marginal distributions: the

left-marginal distribution
←
Δ is of type DY , and is in fact just Y1 from above. That is, the

distribution Y1 of emitted observations is recovered as
←
Δ.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 324

The right-marginal distribution
→
Δ of the hyper is more interesting: it is of type D2X

and, although it averages to the outgoing state distribution X1 (in the sense shown in

Figure 2), most of the popular (conditional) information-entropy measurements are likely

to decrease, becoming less than the entropy of X1 itself: that decrease quantifies the ‘leak’

that the emissions of Y1 represent. For example, the conditional Shannon entropy of Δ
→

,

defined
∑

δ:DX Δ
→

(δ)H(δ) over the possible a posteriori distributions δ, is no more than

H(X1), the Shannon entropy of the a priori outgoing distribution X1 itself.†

Thus, the denotational-style semantic representation we extract from HMM-theory is

the hyper-distribution of type D(Y×DX), a nesting of one distribution within another. As

we will see, this allows us to equip the semantic space with a ‘refinement’ partial order;

but it is security refinement, so that for hypers Δ{0,1} one can speak of whether Δ0 is more

or less secure than Δ1 or, if not, whether they are perhaps simply security-incomparable.

3.4. A probabilistic monad

A further benefit of conventional denotational techniques is our access to computa-

tional monads (Giry 1981; Moggi 1989; van Breugel 2005), simplifying the presentation

considerably.

From here on, we use a dot ‘.’ for function application, rather than parentheses (·),
writing thus f.x rather than f(x). For curried functions, we will usually have f.x.y rather

than e.g. either f(x, y) or f(x)(y).‡ As a result, given distribution X:DX the probability

it assigns to x:X is simply X.x, that is Pr(X=x) but written more compactly and taking

advantage of the fact that X is just a function (of type X→[0, 1]). The same economy

accrues for random variables.

The monad structure for computations (Moggi 1989) supposes a triple (K, η, μ) where

K is an endofunctor on a given category, and η, μ are natural transformations satisfying

certain coherence conditions. An example of this is the Giry monad (Giry 1981), typically

used for probabilistic computations; in its general form, its functor takes an object (Ω,BΩ)

comprising a set Ω and a sigma-algebra BΩ on it to the set of probability measures on

(Ω,BΩ), endowed with a suitable sigma-algebra of its own, induced from the given BΩ.

Working here with discrete measures, our use of the monad will be modest and we

will use suggestive names for its components, based on its specialization to discrete

distributions and functional programming. In particular,

functor D – Given set S write DS for the set of discrete distributions over S .

push-forward map – Given two sets X ,Y and a function f:X→Y write Df, the action of

the functor on the function, as map.f:DX→DY .§ In the probability literature this is

† For distribution X in DX such that Pr(X=xi) is pi, the Shannon entropy H(X) of X is given by −Σi pi ln pi.

As remarked, a number of other security-based definitions of entropy give the same inequality (Köpf and

Basin 2007).
‡ An advantage of this is that it distinguishes function application from the many other uses of parentheses, and

produces self-contained expressions thus of less clutter. In this respect we compare H.X = −Σx X.x ln(X.x)

with the conventional presentation of Shannon entropy in Footnote † with its indices i and temporary names

pi.
§ This is consistent with the definition of map in functional programming.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 325

state distribution

The actual (historical) values of Y are
not important; but their accumulation

effectively implements Perfect Recall.

X

Y

emitted-value distributions

Initial distribution over X. Final distribution over X.
E

T

Fig. 3. A hidden Markov model: iteration accumulates leakage.

called the push-forward, defined for any X:DX and y:Y in the discrete case as

map.f.X.y := X.(f−1.y) = (
∑

x:X | f.x=y · X.x).

multiplication avg – The multiplication (natural) transformation μ:D2X→DX averages

the distributions in its argument distribution-of-distributions, to give a distribution

again. We write that as avg for ‘average’ and in the discrete case for X :D2X it is

defined for any x:X as

avg.X.x := (
∑

X:DX · X.X×X.x).

Kleisli composition via lifting – For two functions f:X→DY and g:Y→DZ , the lift of g,

written g∗, is defined to be the functional composition avg ◦map.g of type DY→DZ
so that the Kleisli composition g after f is expressed g∗◦f in the usual way.

Similar definitions and notations apply for the monad D associated with the partial

distributions that sum to no more than one (Jones and Plotkin 1989; van Breugel 2005).

The immediate benefit from this monadic structure is the sequential composition of two

HMMs, written say H1;H2, so that the final a posteriori distribution takes the observations

from the first as well as the second HMM observables into account. If we take the type of

H{1,2} to be Y×DX → D(Y×DX), then we want our definition of H1;H2 to have similar

type, thus giving it the same features as a single HMM provided that the observations

from both of its components are considered: the general case is illustrated in Figure 3.

For our single composition H1;H2, the outgoing result of H1 is an a posteriori hyper

which is then presented ‘en bloc’ as input to H2. Via the type constructor, that intermediate

hyper is a partitioning of some flattened distribution of type Y×DX according to the

observables emitted by H1;
† each partition of that flattened distribution – itself of type

Y×DX – is separately input to H2, but after the final output is produced the partitioning is

† We call it a distribution simply to avoid a proliferation of names. In fact, it is isomorphically a distribution

of type D(Y×X) whose left marginal is a point distribution.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 326

‘reassembled’ in the final a posteriori distribution, thus neatly taking both the observations

from H{1,2} into account. Crucially this partitioning and reassembling is done according

to the original weightings, which is what allows us to use the monad:

Y×DX H1−→ D(Y×DX)
map.H2−→ D2(Y×DX)

avg
−→ D(Y×DX).

Here, the original input type Y×DX is transformed as we suggest by H1 to D(Y×DX),

which then in its partitioned form is passed to H2 and, via the map/avg construction,

that partition is reassembled after the action of H2 on its components. That supplies our

definition for H1;H2, thus also of type Y×DX → D(Y×DX). Note we do not need Y2 to

‘combine’ the observations of the two separate HMMs, an important advantage of this

presentation: in Section 4.2(2,4) this is explained further.

4. Quantitative noninterference security for programs

4.1. Noninterference via hidden and visible-variables; atomicity

Take a simple programming model comprising a finite set H of hidden states, ranged over

by (high-security) program variable(s) h, and a finite set V of visible states, ranged over

by (low-security) program variable(s) v. The state space overall is thus the product V×H,

and our program texts refer to variables v, h.†

Observers of the program’s execution can see v, but they cannot see h. Attackers of the

program try to learn about h’s final values, or at least their distribution, by observing v’s

values as execution of the program proceeds.

We begin with assignment statements as a basis: a simultaneous assignment is written

v, h:=V ,H , allowing both expressions V ,H to refer to the initial values of v, h without

worrying about which one is updated first: the two expressions V ,H may contain variables

of either kind, or both. We base the assignment on a probabilistic-choice syntax x:∈X
that means ‘choose the new value of x according to the distribution X ′, where X itself is

a distribution-valued expression that possibly depends on the initial value of x as well as

other variables.

To keep track of variables in the generic semantic definitions, we write the distribution-

valued expressions as explicit functions applied to them, so arriving at v, h:∈ E.v.h, T .v.h

as our basic simultaneous probabilistic assignment to the two variables; actual program

texts of course simply use expressions over v, h in which such functions might occur. Thus

E.v.h is a distribution, depending on the initial values of v, h, according to which v’s new

value is chosen. Similarly T .v.h is the distribution for the choice of h’s new value. The

statement is atomic in the sense that only its results are accessible, not how they were

computed.

† For simplicity we are assuming that multiple hidden or visible variables are collected separately within vectors

h or v, i.e. that v, h are the only variables present; but we won’t clutter the presentation with the ‘overhooks’

for that. The program texts can refer of course to individual elements of the vectors, which references are

interpreted as projections etc. in the usual way.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 327

Ordinary, non-probabilistic assignments can be written v, h:=E.v.h, T .v.h in which E,T

now give values rather than distributions; they are clearly the special case of the above

for point distributions, and so do not need a separate treatment.

4.2. Connecting HMMs and the programming model; perfect recall

The connection is made by identifying V with Y , and H with X . The visible v corresponds

to the emitted observations y, thus to a sort of ‘output buffer’; and the hidden h

corresponds to the state x, passed from one program fragment through sequential

composition to the next one.

A slight generalization is that the probabilistic choices can be influenced by the

immediately previous emitted value (by y from the previous step, whose value is the

initial value of v for this step), whereas in an HMM this is typically not done. This is only

a notational convenience, since clearly the HMM’s state spaces can be elaborated to allow

the same freedom; but such conveniences are a part of adapting the HMM framework

to programming practice.

Further elaborating the adaptation, we make the following remarks:

1. A typical sequential program will execute many individual atomic steps successively.

The outgoing state from one step will be both its final value of h, fed-in automatically

as the incoming state of the next step, and the last emitted observable value, found in v.

2. Although the observations emitted from each step will successively overwrite earlier

values in v, the conditioning observations of those earlier outputs caused is not lost:

it is preserved by the map/avg composition. Thus, the partitioning expressed by the

growing support-set of the outer D becomes finer on each step, so that deductions made

by an attacker’s having seen an earlier v are never forgotten. This is called perfect recall

(Halpern and O’Neill 2002).

3. The distribution E.v.h from which v’s final value is chosen corresponds to the stochastic

matrix E of the HMM. In effect, the h in E.v.h selects the row of E that gives the

distribution from which y, that is from which v is chosen. Similarly, the distribution

T .v.h from which h’s final value is chosen corresponds to the stochastic matrix T . The

programs’ access to v is why we include (Y×) in the state.

4. The a priori view of the program is the extent to which we can determine the distribution

of the final values of h by knowing the incoming distribution of v, h and the program

text. The a posteriori view reflects the extra information about h finally that we have

once we actually execute the program and note the successive emissions in v that occur

during that execution. However, the values of those emissions need not be remembered:

only the conditioning they induce is important. That is why we do not need ‘sequence

of Y ’ in our state, in spite of perfect recall: the recall is expressed in the outer D.

5. Refinement increases entropy compositionally

Our advocacy of stepwise refinement (Wirth 1971) for development of quantitatively

noninterference secure programs suggest comparisons of specifications S with implement-

ations I . Say that S is ‘Shannon-refined’ by I , writing S
se I , just when for every incoming

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 328

distribution of hidden values h the a posteriori conditional Shannon entropy produced by

I , for h, is at least that produced by S (as at 4. above). Stepwise refinement wrt. Shannon

entropy requires transitivity of (
se) obviously; but it also would require that S
se I

imply C(S)
se C(I) for any context C – that is, it should be compositional. And it is not,

in general.

Define analogously (
br) for comparing conditional Bayes Risk of outputs, in the same

way; it is not compositional either. †

The refinement relation (�) introduced earlier (McIver et al. 2010), and extended here

for iteration, in fact is compositional; and furthermore, it implies both (
se) and (
br).

(Counter-examples for compositionality of (
se) and (
br) are given in the extended

version of that work.) We now explain refinement.

5.1. Comparing hyper-distributions

We begin for simplicity with an entirely hidden state X (i.e. without Y) thus having hypers

D2X . We ask whether, for (each) fixed observation y1, one HMM ‘reveals more’ than the

other in a sense made precise as follows.

A hyper ΔS in D2X , produced say as the output of one HMM, is ‘refined by’ another

hyper ΔI , produced by another HMM of the same type, if two distributions δ
{1,2}
S :DX in

the support of ΔS can be merged to form a single distribution δI in what becomes ΔI . This

merging increases a variety of (conditional) entropies, including the two mentioned above.

We say that one HMM is entropy-refined by another when for corresponding inputs and

corresponding values of emitted observables their outgoing hypers are refinement-related.

For an example, we restrict to Booleans T, F and write {{x@p, y@q. . . . , z@r}} for the discrete

distribution assigning probabilities p, q, . . . , r to values x, y, . . . , z: it is partial or total

depending on whether p+q+ · · ·+r equals 1. Suppose the specification hyper ΔS contains

two distributions δ1
S := {{T@ 1

3 , F@ 2
3 }} and δ2

S := {{T@ 1
2 , F@ 1

2 }} with probabilities p1:= 1/4 and

p2:= 1/3 respectively: thus ΔS is partial and can itself be written {{δ1
S

@ 1
4 , δ2

S

@ 1
3 , . . .}}. We

first calculate a weighted merge as follows:

— Scale δ
{1,2}
S by their respective probabilities p{1,2} in ΔS to get partial distributions

{{T@ 1
12 , F@ 1

6 }} and {{T@ 1
6 , F@ 1

6 }}.
— Add those together pointwise to get {{T@ 1

4 , F@ 1
3 }}.

— Normalize to get δI := {{T@ 3
7 , F@ 4

7 }} with probability p:= 7/12 in ΔI .

Then, we refine ΔS by removing the two distributions δ
{1,2}
S (total weight 7/12) and

replacing them by their weighted merge, the single δI (of the same weight), to give ΔI . All

the other points in the support of ΔS would carry over unchanged into ΔI ; but of course

this process can be repeated, since refinement is to be transitive. We see at (2) below that

general entropy refinements are achieved by merges of more than two sources, having

multiple targets and by ‘pre-splitting’ sources proportionally to allow them to participate

in more than one merge: the essential idea is as given here.

† The Bayes risk is the largest guaranteed chance that one guess of h is incorrect.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 329

5.2. Preliminary definition of entropy refinement

Distributions over our states in X , i.e. in DX , are called inner distributions or just ‘inners’.

Distributions over inners, i.e. in DDX = D2X , are hypers, as we have seen. If we want

to concentrate on the ‘outer’ D of a hyper, we refer to that as the outer distribution, or

just ‘outer’. We will (briefly) need distributions of hypers D3X , called super distributions

or just ‘supers’.

Definition 5.1 (entropy refinement (preliminary definition)). Let the state-space be X , a

finite set and consider two hypers Δ{S,I}:D
2X . We say that ΔS is entropy refined by ΔI ,

written ΔS
ΔI , iff there is a super ·Δ:D3X such that

ΔS = avg. ·Δ and map.avg. ·Δ = ΔI .

We return to our example, hyper ΔS now with three inners δ1
S := {{T@ 1

3 , F@ 2
3 }} and

δ2
S := {{T@ 1

2 , F@ 1
2 }} and δ3

S := {{T@1}} with probabilities p1:= 1/4 and p2:= 1/3 and p3:= 5/12

respectively, where the third inner is chosen to bring the (outer’s) sum to 1, i.e. to make

it total.

Now to reach the entropy refinement of ΔS given by hyper ΔI , we merge the first two

inners and simply carry the third through. The mediating super ·Δ contains the two hypers

— hyper Δ1:= {{δ1
S

@ 3
7 , δ2

S

@ 4
7 }} with probability 7/12 in ·Δ and

— hyper Δ2:= {{δ3
S

@1}} with probability 5/12 in ·Δ,

so that ΔS = avg. ·Δ, for example because

avg. ·Δ.δ1
S = 3/7×7/12 = 1/4 = p1 = ΔS .δ

1
S .

From Definition 5.1 the hyper ΔI is therefore given by map.avg. ·Δ, that is

— inner distribution avg.Δ1 = avg.{{δ1
S

@ 3
7 , δ2

S

@ 4
7 }} = {{T@ 3

7 , F@ 4
7 }}

with probability 7/12 and

— inner distribution avg.Δ2 = avg.{{δ3
S

@1}} = δ3
S itself, carried through

with probability 5/12 as we expected.

A second example of entropy refinement is given at (2) below.

It can be shown (McIver et al. 2010) that refinement is indeed a partial order: reflexivity

is obvious, anti-symmetry follows from an entropy-based argument or alternatively from

‘colour mixing’ (Sonin 2008). Its transitivity can be shown using matrices, or by a

monadic approach using general properties of map and avg and specific properties of the

probabilistic functor.

6. Iteration, refinement chains and incompleteness

Iteration and entropy refinement taken together impose new demands on our semantic

space: the existence of a least program, and closure under limits. These demands are

imposed since iterations are usually defined via least fixed points whose existence is trivial

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 330

if the program space forms a cpo under the refinement ordering (Tarski 1955). Since

we have not yet introduced non-termination, the space (D2X ,
) has no least element.

Even more significant however, as we show below, is that not all of its non-empty

entropy-refinement chains have a supremum.

As a result, the usual technique of defining iterations via refinement-least fixed points

will not obviously apply – even after extending the space and its ordering to incorporate

non-terminating behaviours – and we will have to do something slightly different (Section

7.3).

6.1. An example of incompleteness

Define again X := {T, F}, and let δp be the inner {{T@p, F@1−p}}, alternatively written T p⊕F,

for any 0�p�1. Form the sequence of hypers

Δ1 := {{δ@ 1
2

0 , δ
@ 1

2

1 }}
Δ2 := {{δ@ 1

4

0 , δ
@ 1

2

1/2 , δ
@ 1

4

1 }}
Δ3 := {{δ@ 1

8

0 , δ
@ 1

4

1/4 , δ
@ 1

4

1/2 , δ
@ 1

4

3/4 , δ
@ 1

8

1 }}
. . .

(2)

in D2X whose pattern should be evident.

From Definition 5.1 we see that each of these hypers is an entropy refinement of the

preceding: for example to get from Δ2 to Δ3 we first ‘pre-split’ Δ2 into smaller pieces

{{δ@ 1
8

0 , δ
@ 1

8

0 , δ
@ 1

8

1/2 , δ
@ 1

4

1/2 , δ
@ 1

8

1/2 , δ
@ 1

8

1 , δ
@ 1

8

1 }}
↓ ︸ ︷︷ ︸

merge
↓ ︸ ︷︷ ︸

merge
↓

and then merge the selected inners as explained above, that is

δ
@ 1

8

0 + δ
@ 1

8

1/2 = δ
@ 1

4

1/4 and δ
@ 1

8

1/2 + δ
@ 1

8

1 = δ
@ 1

4

3/4

to give Δ3 when we allow the un-merged distributions simply to carry through.†

† Using our formal definition Definition 5.1 introduces a super ·Δ to mediate the entropy refinement Δ2
Δ3; it

is given by

Δ2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ
@ 1

4
0

δ
@ 1

2
1/2

δ
@ 1

4
1

avg
←−

normalize the columns

to give hypers of ·Δ

δ
@ 1

8
0 δ

@ 1
8

0

δ
@ 1

8
1/2

δ
@ 1

4
1/2

δ
@ 1

8
1/2

δ
@ 1

8
1 δ

@ 1
8

1

↓ ↓ ↓ ↓ ↓ map.avg

δ
@ 1

8
0 δ

@ 1
4

1/4
δ

@ 1
4

1/2
δ

@ 1
4

3/4
δ

@ 1
8

1

︸ ︷︷ ︸
Δ3

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 331

Now, by symmetry any hyper Δ that was a refinement-limit of the chain (2) would have

to be uniform (except possibly for the endpoints) but with a countably infinite support,

since the supports of the chains’ elements grow without bound – and uniform, infinite

and discrete distributions do not exist. The actual limit of that refinement chain is in fact

the measure over the distributions δp given by taking p uniformly from [0, 1], and that is

outside our space D2X . Writing M for ‘measure’ (informally, i.e. without being specific

about the sigma-algebra) we find our limit in MDX rather than D2X .

6.2. Dealing with the incompleteness: proper measures

Pursuing the MDX strategy suggested above would lead us through steps like these:

1. Define a metric over DX , i.e. provide a distance function between (discrete) distributions.

For reasons we explain in Section 12 we would choose the Kantorovich metric (Deng

and Du 2009) which is advocated for this kind of application anyway (van Breugel

2005).

2. Generate the Borel algebra from the Kantorovich metric.

3. Define refinement between hypers that are proper measures, a generalization of the

‘split/merge’ of Definition 5.1 and explained in our previous work (McIver et al. 2010)

for the discrete case.

4. Observe that the resulting, more general semantic space DX →MDX allows (still) a

monadic treatment of sequential composition.

5. Define the program semantics Section 8 in that more sophisticated space.

But we do not do that here. Instead, in this report we limit our extensions to just what

will suffice for the quantitative security of iterative programs, including making refinement-

based comparisons between them, as part of our general programme of expanding the

scope of this approach to deal with realistic situations. In fact, we will see that refinement

chains generated by the fixed-point definition of loops do have a refinement-sup in our

space – that is, ‘loop-approximant chains’ are a strict subset of all possible refinement

chains, and do not in particular contain examples like (2) above.

Thus we can remain within the space of discrete hypers D2H, which allows a drastic

simplification (compared with MDH) of the presentation. How this is done is the topic of

the next section: we will be using partial discrete distributions to represent nontermination,

thus concentrating on a space V×DH→D(V×DH) for denotations of programs.

7. Semantics for the HMM-interpretation of secure iterating programs

7.1. Denotations of programs

Here we give a precise construction of a semantic space, and the interpretation of a small

programming language in it. The language includes probability, visible versus hidden

variables and iteration.

The two merges of inners referred to in the main text occur in columns 2,4; the columns 1,3,5 are the inners

that carry through unchanged from Δ2 to Δ3.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 332

For noninterference we imagine a finite underlying state space of two parts, named V
and H where V is the ‘visible’ part of the state and H is its ‘hidden’ part. Because the

H part is hidden our underlying state space will not be simply the Cartesian product

of those two components, but rather the set S:=V×DH comprising the product of the

visible part V (as is) and the distributions DH over the hidden part.

For nontermination we consider program outputs to be of type DS , that is D(V×DH),

the partial distributions over S – this represents a slight generalization of the type

suggested above for programs in that the partiality (the one-deficit) is used to describe

the probability of the program’s failing to terminate (Jones and Plotkin 1989; He et al.

1997; Morgan et al. 1996; McIver and Morgan 2005). As before, we call elements of DS
hypers, referring if necessary to partial hypers when the distinction is important. Thus

S→DS , that is V×DH→D(V×DH) is the type we propose for programs: from an initial

state (v, δ) in S a program determines a partial distribution on S , i.e. a distribution whose

supports have structure (v′, δ′), as its final output.

Recall from Section 3.4 that we write function application as f.x, with ‘.’ associating

to the left. Operators without their operands are written between parentheses, as (
) for

example.†

7.2. The entropy refinement order between programs

As usual our orders on programs will be the pointwise orders on their results. Our first

order is the Entropy Refinement set out at Definition 5.1, adapted to deal with partial

hypers and to take the V portion of the state into account.

Definition 7.1 (entropy refinement (generalizing Definition 5.1)). Let the state space be

S = V×DH, with V ,H both finite, and define Q:S→D(V×H) with Q.(v, δ).(v′, h′) equal to

δ.h′ if v=v′, otherwise zero.‡

For two hypers Δ{S,I}:DS , we say that ΔS is entropy refined by ΔI , writing ΔS
ΔI , just

when map.Q.ΔS
 map.Q.ΔI according to our preliminary definition Definition 5.1 of

entropy refinement, but taking our V×H, here, all at once as just X there and generalizing

map, avg to partial distributions in the obvious way.

Like the preliminary definition, (
) defines a partial order on hypers. Note that a

consequence of this definition is that entropy refinement does not change the distribution

of the visible variables: that is if ΔS
ΔI , then in fact
←
ΔS=

←
ΔI where we recall that

←
Δ is the

† The latter (known as sections in functional programming) allows us easily to write expressions relating

operators themselves, such as the succinct (<) ⊆ (�) stating that less than is a subset of less-than-or-equals

as a relation. Thus, the former ‘dot’ convention distinguishes function application from sections as well.

As a further example (though not needed in this report), as part of the definition of the Giry monad one

defines evaluation functions EB that, given a measure μ as argument, return μ applied to the measurable

set B as the result. With sections and the ‘dot’ convention one writes directly (.B) for this function: the

well-established syntactical rules for sections then ensure that EB (μ) = (.B).μ = μ.B automatically. A separate

introduction, definition and explanation of the EB notation is not necessary.
‡ More succinctly, this is defining the product distribution Q.(v, δ):= {{v}}×δ.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 333

left-marginal distribution of the product distribution Δ:D(V×DH). Similarly, the a priori

distribution of h associated with each value of v is left unchanged.

We now address the incompleteness issue raised in Section 6.1.

7.3. The termination refinement order between programs

We follow an approach that allows us to distinguish between chains produced by iteration

and those produced by refinement more generally (Nelson 1989; Roscoe 1992): we use a

stronger order for which our space is complete.

For a partial hyper Δ:DS , the probability that it terminates is just its total weight,

written
∑

Δ; equivalently, the amount by which it fails to sum to 1 is its probability of

nontermination. We define a partial order that allows increase of termination only, as

follows:

Definition 7.2 (termination refinement). For Δ{S,I} in DS , we say that ΔS is termination-

refined by ΔI , written ΔS�ΔI , just when for all s = (v, δ) in S we have ΔS .s � ΔI .s. This

is simply the pointwise extension of (�) on the real-valued probabilities.

Our space has a least element, and is trivially closed under sup-chains in this termination

order, since the probabilities themselves are bounded above (by 1) and below (by 0). We

will in due course show that the fixed-point definition of iteration generates termination

chains, and so the completeness here will give us just the well definedness we need. That

is, we will rely on

Lemma 7.1 (termination completeness). Let Δ0�Δ1� · · · be a (�)-chain of hypers in DS .

Then the chain has a (�)-least upper bound
∨

i Δi in DS .

Proof. Completeness of [0, 1].

Note that everywhere-terminating programs are maximal in this cpo.

7.4. Secure refinement between programs

The primary order of interest on our space, secure refinement, allows both entropy

refinement and termination refinement:

Definition 7.3 (secure refinement). Given (partial) hypers Δ{S,I} in DS , we define Secure

Refinement as the composition of the two other orders: first termination refinement, and

then entropy refinement. We have ΔS�ΔI just when there is an intermediate hyper Δ such

that ΔS�Δ and Δ
ΔI .

Observe trivially that (�) is a strengthening of (�), by reflexivity of (
). Like termination

and entropy refinement, secure refinement is a partial order on hypers. Reflexivity holds

trivially from that of (�) and (
). The transitivity of (�) follows from transitivity of

the two other orders, plus the fact that (�) ⊇ (�)◦(
). For antisymmetry we reason that

if A � C and C � A then there must exist a B and D such that A � A+B
 C and

C � C+D
 A. From reflexivity of (�) and transitivity of (�) we then have that both

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 334

A+B � A and C+D � C , and thus both C and D must be zero since (�) cannot decrease

the overall weight of a hyper. From this we have that A
C and C
A, hence A = C by

antisymmetry of (
).

The definition of program refinement is the pointwise extension of the above, that is

Definition 7.4 (secure program refinement). Let S, I be programs’ meanings of type S→DS .

We say that S�I just when for all initial states s:S we have S.s � I.s according to

Definition 7.3.

7.5. Least fixed points in S→DS: getting around incompleteness

The normal approach to fixed-point semantics for loops would be to show that a loop

defines a (�)-continuous functional L over the program space S→DS , and then to take

the (�)-supremum of the chain � � L.� � L2. � · · · where � is the least program, the

one producing the output hyper of zero weight for all inputs.

Here instead we show that a loop defines a (�)-continuous functional L, and then take

the (�)-supremum of the chain � � L.� � L2. � Its well definedness follows from

Lemma 7.1; its relevance is justified by the following lemma.

Lemma 7.2 (equivalence of fixed points). Let partial orders (�) and (�) be defined over

some space X , and let L be an endofunction on X . Suppose further that (�) ⊆ (�), that

is that (�) implies (�).

If a (�)-least (resp. greatest) fixed point of L exists, then also a (�)-least (resp. greatest)

fixed point of L exists, and in fact they are equal.

Proof. Let x be the (�)-least fixed point of L. Then for any (other) fixed-point x′ of L
we have x�x′ and so – by assumption – also x�x′. Thus x is a (�)-lower-bound for all

fixed points; but it is a fixed point itself. Therefore it is the (�)-least fixed point as well.

(The same argument holds for greatest.)

In the next section, we will introduce our language to express and reason about secure

programming, extending our previous work with iteration. We use Definition 7.2 for the

semantics for loops, relying on Lemma 7.2 to ensure that it is also well defined as a least

fixed point in the security order; we do, of course, need to show that the assumption of

(�)-continuity is satisfied by the semantic definitions we give. In the conclusion, we shall

return to the question of (�)-limits more generally, i.e. those which are not restricted to

(�)-limits.

8. Programing language

Having tied-down the details of our semantic space, we can now give our programs’

denotations via structural induction; however there are two potential sources of complexity

in what we present. The first, conceptual, is the two-level structure that we motivated in the

sections above, the partial distributions that themselves are taken over other conditional,

or sometimes even a posteriori distributions.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 335

The second is notational: standard constructions like conditionals and push-forward

are now generated by program fragments that, as a rule, are expressions over free variables

(i.e. the variables of the program) rather than (pure) mathematical functions themselves.

This leads to uncomfortable expositions like ‘Pr(D|E) where distribution D(x) is given

by · · · x · · · and predicate E(x) holds just when · · · x · · · ’. Although these are easy to

understand (being well-established notations), they are hard to manipulate algebraically

in specific cases where D,E are determined by some computer program.

We now introduce specialized notation to streamline our semantic definitions.

8.1. Distribution comprehensions

Recall that the support �δ� of distribution δ:DX is those elements x:X with δ.x�=0;

naturally for δ:DX we have �δ�⊆X . The weight of δ is written
∑

δ, defined (
∑

x:X · δ.x)

so that full distributions have weight 1. Distributions can be scaled and summed according

to the usual pointwise extension of multiplication and addition to real-valued functions,

provided the outcomes are again distributions.

Given a non-empty finite set X we write �X � for the uniform distribution over X , that

is the uniform distribution δ:DX such that �δ�=X .

8.1.1. Enumerated distributions and expected values. These are notations for enumerated

distributions, i.e. those in which the support is explicitly listed (cf. set enumerations that

list a set’s elements):

– empty. The empty, or zero subdistribution has empty support and assigns probability

zero to all elements: we write it {{}}.
– multiple. We write {{x@p, y@q, . . . , z@r}} for the distribution assigning probabilities

p, q, . . . , r to elements x, y, . . . , z respectively, with p+q+ · · ·+r � 1. Provided p, q, . . . , r >

0, the support is therefore the set {x, y, . . . , z}.
– point. The distribution concentrated on a single element x is written {{x}}, i.e. abbreviating

{{x@1}} whose support is {x}.
– uniform. When explicit probabilities are omitted they are implicitly uniform: thus

{{x, y, z}} is {{x@ 1
3 , y@ 1

3 , z@ 1
3 }}.

– binary, and distributed uniform. For a two-element distribution we write x p⊕ y for

{{x@p, y@1−p}}, and in the uniform case we can write x⊕y⊕ · · · ⊕z for {{x, y, . . . , z}}.
For expected values of random variables that are written as expressions, we have

– expected value. We write (E d: δ · E) for the expected value
∑

d: �δ�(δ.d×E) of expression

E, interpreted as a random variable in d, over distribution δ.

If E is Boolean, then it is taken to be 1 if E holds and 0 otherwise, so that the

expected value is then just the combined probability in δ of all elements d satisfying

E. If necessary for clarity we will write [E] to indicate E’s conversion from Boolean

to 0, 1; when possible, however, we omit it (to reduce proliferation of brackets).

8.1.2. Distribution comprehensions, conditioning and a posteriori values. As for set com-

prehensions, with distribution comprehensions we describe a distribution by giving a rule

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 336

for forming it, i.e. its supporting elements and the probabilities they have. Here are the

common cases:

– map, push-forward. When f in Section 3.4 is given as an expression E of type Y , with

free variable x say, then for the push-forward distribution map.f.δ we write the

comprehension {{x: δ · E}} where for y:Y we define

{{x: δ · E}}.y := (E x: δ · E=y).

Recall from above that the Boolean value E=y is to be converted implicitly to 0, 1 in

this case.

– conditional distribution. Given a distribution δ:DX and a Boolean expression R in free

variable x, we write {{x: δ | R}} for the distribution obtained by conditioning δ on the

set (the event) that R represents as a predicate in x. Thus for x′:X we have

{{x: δ | R}}.x′ := δ.x′×[R′] / (E x: δ · [R]), (3)

where R′ is R with x replaced by x′ and here, for clarity, with [·] we make the

conversions to 0, 1 explicit.

– a posteriori values. Finally, for Bayesian belief revision suppose δ is an a priori distri-

bution over some X and let expression R (not Boolean) in free variable x in X be the

probability of a certain observable result if that x is chosen. Then {{x: δ | R}} is the a

posteriori distribution (revising δ) when that result actually occurs. The definition is

as for (3) immediately above, but using just R rather than [R].

Note that R can be scaled without affecting the value of this expression, so wlog it can

be made one-summing as x varies: this makes it easier to interpret as a probabilistic

outcome that triggers Bayesian belief revision.

– general distribution comprehension. We can combine all the above possibilities by writing

{{x: δ | R · E}}, for distribution δ, real expression R (in x) and expression E (also in x)

to mean

(E x: δ · R×{{E}}) / (E x: δ · R) (4)

where, first, an expected value is formed in the numerator by scaling and adding

point-distribution {{E}} as a real-valued function: this gives another (sub-)distribution.

The scalar denominator then conditions on R.

A missing E is implicitly x itself. If R is omitted, then (R×) is removed from the

numerator, and the denominator is removed altogether. (When δ is a full distribution,

this happens automatically by assuming a missing R to be 1, or equivalently Boolean

true.)

As a concrete example we recall the puzzle

In families with two children of equally and independently distributed gender, if one child is a

boy what is the chance that the other is too?

Encoding boy, girl as Booleans T, F we write {{x, y: T⊕F | x∨y · x∧y}} for the distribution

of the pushed-forward function both boys (x∧y) over the iid gender joint-distribution of

the two children (x, y: T⊕F) conditioned on the event at least one boy (x∨y). It works out

as

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 337

{{x, y: T⊕F | x∨y · x∧y}}
= (E x, y: T⊕F · [x∨y]×{{x∧y}}) / (E x, y: T⊕F · [x∨y])
= (1×{{T}}/4 + 1×{{F}}/4 + 1×{{F}}/4 + 0×{{F}}/4) / (3/4)

= {{T@ 1
4 , F@ 1

2 }} / (3/4)

= T 1/3⊕ F,

that is (as we know) that the a posteriori probability of ‘both boys’ is 1/3. This is the kind

of calculation that specific programs’ semantics generate.

8.2. Program semantics for the HMM core: revelations

We recall from Section 3.1 that a HMM is determined by two stochastic kernels (matrices)

T ,E . In programming terms the T represents a probabilistic assignment to our hidden

variable h; we deal with that at Choose prob. hidden in Section 8.3 below.

The E on the other hand releases information (about h) in what we call a ‘revelation’ –

observables our attacker can see McIver and Morgan (2008). It has two forms, the second

a generalization of the first.

In the two definitions below, and further, we write E.v.h as an expression in which

program variables v, h might occur free. The same convention applies to D,G, p for

distributions, (Boolean) guards and probabilities resp.

Program type Program text P Semantics [[P]].(v, δ)

Reveal value reveal E.v.h {{h: δ · (v, {{h′: δ | E.v.h′=E.v.h}})}}
Expression E.v.h takes its value in some type X representing observations

an attacker can make. The command reveals a value x depending on v, h.

Neither v nor h is changed by this; but the outgoing distribution of the

hidden h is conditioned on the basis of the x revealed. Note that x is not

stored; but because of perfect recall an attacker can remember it.

Reveal choice reveal D.v.h {{h: δ; x:D.v.h · (v, {{h: δ | D.v.h.x}})}}
Expression D.v.h is now more generally of type DX , so that for x:X we

have D.v.h.x as a probability. The command calculates that distribution, and

then chooses some value x according to those probabilities; that value x is

then revealed. As before, variables v, h are not changed; but the distribution

of h is conditioned on the fact that x was revealed.

Reveal value is the special case reveal {{E.v.h}} of Reveal choice.

8.3. Semantics of syntactically atomic commands

Syntactically atomic commands are regarded as semantically atomic in the sense that the

only information they leak is what the final value of the visible v allows to be deduced

about the final value of h with knowledge of the program text. Thus for example v:= h

leaks everything about h, since v’s final value is evidently the same as h’s; yet v:= 0×h

reveals nothing, even though at some point in an internal register the value of h might

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 338

have been accessible. In this sense, the syntactic atoms are the atoms of observation also:

within them neither perfect recall nor implicit flow make sense.

We determine the semantics of these atomic commands systematically. Using ‘classical’,

i.e. without-noninterference probabilistic sequential semantics (Kozen 1985, etc.) gives a

straightforward meaning to atomic commands’ actions on a state space S as functions

of type S→DS taking an initial distribution to a (sub-)distribution of final states. If we

abstract from noninterference properties by considering v to be hidden (as well as h), and

set S:=V×H then we have a ready-made classical semantics for the syntactic atoms we

are dealing with here.

The initial ‘state’ will be a pair (v, δ) in V×DH. We therefore reuse ‘Q’ from Definition

7.1 to express this as the joint distribution {{v}}×δ of type D(V×H), that is DS . To apply

a command with semantics of type S→DS to that, we use lifting (Section 3.4) so that the

result of this classical interpretation is again of type D(V×H), and we convert this back

to the noninterference output-type D(V×DH) by analogy with ‘revealing v’ according to

the semantics above – since knowledge of v’s final value is all that escapes an atomic

command. Following Reveal value from above, we define

rv.Δ := {{ (v, h): Δ · (v, {{(v′, h′): Δ | v=v′ · h′}}) }}.† (5)

The result of the procedure above – convert incoming V×DH to D(V×H), then apply

lifted classical semantics; then apply rv to the result – is summarized below. Observe that

neither program abort, nor assertions are necessarily useful for writing specific programs,

but our focus is on reasoning about programs, in particular algebraically, and for that

these commands play a prominent role.

Program type‡ Program text P Semantics [[P]].(v, δ)

Least element abort {{}}
This is the program that simply fails to terminate: for every input it

produces the empty subdistribution as output. In our refinement order,

as a specification it allows all possible implementations (i.e. that abort � S

for all S) – essentially playing the role of ‘0’ in arithmetic.

Identity skip {{(v, δ)}}
The ‘do nothing’ command simply converts its input to a point-hyper on

output, i.e. reproduces its input with probability one.

Assertion {p.v.h} {{(v, {{h: δ | p.v.h}}) @(E h′: δ · p.v.h′)}}

† We justify (5) informally by noting that it is what results from replacing hidden h in the rhs of Reveal value

by the hidden pair (v, h) and considering the expression E.v.h to be simply v.
‡ The most general form of atomic assignment is the Simultaneous choice mentioned earlier, whose semantics

can be deduced as for the others from its classical behaviour. Since it is seldom needed, however, we omit its

definition for brevity.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 339

An assertion gives directly in p.v.h the probability of the command’s

termination. With probability 1−p the assertion behaves as abort.

When with probability p it does terminate, however, it conditions the hidden

value’s distribution δ on the fact it did so: that is δ is revised to reflect that

the abort did not occur. The visible variable v is unaffected in this case.

Assign to visible v:=E.v.h {{ h: δ · (E.v.h, {{h′: δ | E.v.h′=E.v.h}}) }}
The command’s effect is to assign the rhs-value to v but also to condition

the hidden distribution on the fact that h can produce the value observed to

have been put into v.

Assign to hidden h:=E.v.h {{ (v, {{h: δ · E.v.h}}) }}
The command does not change v, but maps the hidden incoming distribution

of h through E.v considered as a function of (incoming) h to produce the

resulting distribution on (outgoing) h.

Choose prob. visible v:∈D.v.h
{{ v′: (E h: δ · D.v.h) · (v′, {{h′: δ | D.v.h′.v′}}) }}

Expression D.v.h is a distribution on V , and the choice of v’s new value is

made according to it. It generalizes Assign to visible, since the latter can be

written v:∈ {{E.v.h}}.

Choose prob. hidden h:∈D.v.h {{ (v, (E h: δ · D.v.h)) }}
Expression D.v.h is now a distribution on H, and the choice of h’s new value

is made according to it. It generalizes Assign to hidden, since the latter can

be written h:∈ {{E.v.h}}.

As a syntactic convenience, when we are using the more general ‘choose’ form of either

command, but the rhs ’s distribution is written out using (⊕) rather than as a {{}}-style

comprehension, we use the conventional assignment symbol (:=) so that e.g. we can write

v:= T⊕F for flipping a fair Boolean coin.

As an example of the algebraic utility of Assertion, we note that distinguished commands

abort and skip are special cases of assertions, so that skip = {T} and abort = {F}. Further,

the semantics of Reveal choice can be given more compactly – assuming D.v.h has type

DX – as

[[reveal D.v.h]].(v, δ) = (
∑

x:X · [[{D.v.h.x}]].(v, δ)). (6)

That formulation makes it easy to reason about revelations in terms of more primitive

commands. We also have that assignments to visible variables that may depend on h may

be represented more simply in terms of those that do not:

[[v:∈D.v.h]].(v, δ) = (
∑

v′:V · [[{D.v.h.v′}; v:= v′]]). (7)

As we will see in the next section, assertions also play an important role in the specification

of probabilistic choice and conditionals.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 340

8.4. Semantics of compound commands: implicit flow

Compound commands are in fact the simplest to define, since they are treated almost

as they would be for classical semantics. The only adjustment is to insert conditioning

assertions on program branch-points to enforce implicit flow, that is that information

escapes by observation of the outcome of conditionals.

Program type Program text P Semantics [[P]].(v, δ)

Composition P1;P2 [[P2]]
∗.([[P1]].(v, δ))

Sequential composition is interpreted as Kleisli composition (Section 3.4).

General prob. choice PL p.v.h⊕ PR

[[{p.v.h};PL]].(v, δ) + [[{1−p.v.h};PR]].(v, δ)

Expression p.v.h is evaluated to a probability of the command’s taking its left

branch; otherwise it takes the right. The attacker can observe which branch

was taken: this is reflected in the conditioning assertions at the beginning of

each branch.

Conditional choice if G.v.h then PT else PF fi

[[{G.v.h};PT]].(v, δ) + [[{¬G.v.h};PF]].(v, δ)

This is a specialization of the previous General probabilistic choice to the

case where the probability is always either 1 (go left) or 0 (go right). Again

the conditioning assertions guard each branch.

Iteration while p.v.h do P od the (�)-least fixed point of L,

applied to (v, δ), where L is the unique endofunction on the space S→DS of

programs’ meanings such that for any program L we have [[P ;Lp.v.h⊕skip]] =

L.[[L]].

As for Conditional choice, the loop guard is a probability determined by the

program variables v, h, with as a special case Booleans T, F interpreted as 1

(enter the loop) or 0 (terminate the loop).

For iteration we are taking the usual least-fixed-point approach except, for the reasons

explained above, we use a special termination order (�) for the chain of iterates. For this

we need the (usual) technical results of continuity of our program contexts.

Lemma 8.1 (continuity of program contexts). Any context C(·), constructed in the pro-

gramming language above, satisfies C(
∨

i Pi) =
∨

i C(Pi) for non-empty (�)-chains
∨

i Pi.

Proof. Because the termination order is so simple (unlike the entropy order), being

essentially pointwise less-than-or-equals, this result can be verified by structural induction

using the fact that scalar multiplication and countable addition are continuous over non-

empty �-chains in the real interval [0, 1]. For example, to show continuity of sequential

composition in its left argument, we can reason that if [[P]] =
∨

i[[PI]], then

(
∨

i[[Pi;R]]).(v, δ)

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 341

= (
∨

i[[Pi;R]].(v, δ)) “limits defined pointwise”

= (
∨

i(
∑

(v′, δ′): �[[R]].(v, δ)� · [[R]].(v, δ).(v′, δ′) ∗ [[Pi]].(v
′, δ′))) “composition”

=

(
∑

(v′, δ′): �[[R]].(v, δ)� · [[R]].(v, δ).(v′, δ′) ∗ (
∨

i[[Pi]].(v
′, δ′)))

“�-continuity of countable addition and scalar multiplication”

= (
∑

(v′, δ′): �[[R]].(v, δ)� · [[R]].(v, δ).(v′, δ′) ∗ ([[P]].(v′, δ′))) “[[P]] =
∨

i[[Pi]]”

= (
∨

i[[P ;R]]).(v, δ). “composition”

Continuity of probabilistic and conditional choices in either argument are equally

straightforward. To show that [[while p.v.h do P od]] =
∨

i[[while p.v.h do Pi od]] in

the case [[P]] =
∨

i[[Pi]], we reason that

[[while p.v.h do P od]] =
∨
j

fj .[[abort]] for f.[[X]]:= [[P ;X p.v.h⊕ skip]]

by continuity of function f (which follows inductively by continuity of sequential

composition and probabilistic choice and the fact that � is a cpo in our program

semantics). Subsequently it is enough to show by induction that each fj .[[abort]] is

continuous in P , and for this continuity of sequential composition and probabilistic

choice again suffices.

Importantly, each of our compound operators are monotonic with respect to their argu-

ments and the secure refinement order (�), meaning that we may reason compositionally

about the correctness of programs.

We note that the infinitary definition of loop semantics can produce a result hyper of

countably infinite support: an example is the program whose iteration has probability 1/2

of completing on every instance but, if it does not, releases another morsel of information

about hidden h. It is

hid h: {0, 1, 2};
h:= 0 ⊕ 1 ⊕ 2;

while 1/2 do reveal A h/2⊕ B od,

where A,B are arbitrary distinct constants.

Theorem 8.1 (monotonicity of compound commands). Each of the commands listed above

is monotonic with respect to their program arguments and the refinement order.

8.5. Local and multiple variables; hidden correlations

To this point we have had just two variables, visible v and hidden h, and have been

assuming for simplicity that they are all the variables in the program. In practice however

each of V ,H will each comprise many variables, represented in the usual Cartesian way.

Thus, if we have variables a:A, b:B, c: C, d:D with the first two a, b visible and the last

two c, d hidden, then V is A×B and H is C×D so that the state space is A×B×D(C×D).

Assignments and projections are handled as normal.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 342

Thus we allow local variables, both visible and hidden, which extend the state as

described above: within the scope of a visible local-variable declaration ‖[vis x:X · · ·]‖,

the Vlocal used is X×Vglobal. Hidden variables are similar.†

Note however that because for simplicity we have been assuming that v, h are in fact

all the variables in the program, i.e. that they stand for vectors of variables implicitly,

our semantics above establishes the equality of the two fragments v:= h; v, h:= 0, 0 and

v, h:= 0, 0, reflecting our deliberate concentration on h’s final value (Morgan 2006, 2009)

in order to extend conventional refinement (Morgan 1994; Back and von Wright 1998)

that does the same. In this case h’s initial value’s being revealed on the left has no bearing

on our knowledge or ignorance of its final value and so does not introduce a difference

in meaning between the two fragments shown.

If however there are other hidden variables, not mentioned but still in scope as might

happen within a local block or within the context of extra declarations, then our semantics

must be slightly more general, in particular recognizing that the v or h appearing on the

left of an assignment is just one component of a vector of visible resp. hidden variables.

Technically this is handled by extending our hidden distribution to type DH2, which

tracks correlations with initial values. For simplicity we do not do that here, since in fact

any program in which hiddens are not assigned-to (as in our examples and case studies)

can be treated with the simpler DH-style semantics.

9. Algebra of HMM-style programs

The programming language introduced in Section 8, interpreted over the hyper-based

semantics, admits a program algebra allowing the proof of general refinements between

programs. In this section we present some of the foundational laws of this program

algebra, which are then illustrated in Sections 9.8 and 10, via an example based on

password guessing.

9.1. General principles and scoping laws; referential transparency

As for classical programs, it is possible to replace expressions by other expressions of

equal value in context so that, for example, referential transparency gives

v:=E.v.h; {T} = v:=E.v.h; {v=E.v.h}.

It is also possible to move program fragments in and out of local scopes provided variable

bindings are respected. Since empty scopes are equivalent to skip, i.e.

skip = ‖[vis v′:V]‖ = ‖[hid h′:H]‖, (8)

it is possible to introduce fresh variables of any constant type. We may also introduce

assignments to scope-terminated variables as long as they do not reveal information about

† Implicitly local variables are assumed to be initialized by a uniform choice over their finite state space. In

our examples however, we always initialize local variables explicitly, to avoid confusion.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 343

the hidden state:

‖[vis v′:V; · · ·]‖ = ‖[vis v′:V; · · · ; v′:∈D.v.v′]‖, (9)

‖[hid h′:H; · · ·]‖ = ‖[hid h′:H; · · · ; h′:∈D.v.h.h′]‖. (10)

As an example of the interaction of local scopes and visibility we have

[[reveal D.v.h]]

= (
∑

v′:X · [[{D.v.h.v′}]]) “represent revelation using assertions (6)”

= (
∑

v′:X · [[‖[vis v′:X ; {D.v.h.v′}; v′:= v′]‖]]) “introduce fresh variable

terminated by a secure assignment”

= [[‖[vis v′:X ; v′:∈D.v.h]‖]], “shift scope and represent

visible assignment using assertions (7)”

i.e. that a revelation is effectively an assignment to a temporary visible variable: because

of perfect recall, the revealed value is not forgotten; but because the temporary variable

is declared within a block, it is effectively erased.

9.2. Assertions

We present here some basic properties of assertions that will be used to justify algebraic

laws for more complex statements such as revelations and probabilistic choices. First, we

have that assertions satisfy the following equivalence,

{p1.v.h}; {p2.v.h} = {p1.v.h× p2.v.h} = {p2.v.h}; {p1.v.h} (11)

and are thus commutative under sequential composition. Constant assertions also com-

mute over arbitrary programs, so that

{p}; S = S; {p}. (12)

Since assertions referring to h may condition the hidden state, from the definition of

secure refinement (Definition 7.3) we have

(
∑

n · [[{pn.v.h}]]) � [[{
∑

n · pn.v.h}]], (13)

for (
∑

n · pn.v.h) � 1. Using this we can calculate that skip p.v.h⊕ skip � skip since from

implicit flow the lhs reveals p.v.h but the rhs reveals nothing.

On the other hand, additions of assertions that refer only to the visible state reveal

nothing, and thus (13) can be strengthened to equality, giving

(
∑

n · [[{pn.v}]]) = [[{
∑

n · pn.v}]], (14)

whence skip p.v⊕ skip = skip.

Using this algebra of assertions for Booleans G{1,2}.v.h we have

{G1.v.h}; {G2.v.h} = {G1.v.h ∧ G2.v.h}, (15)

and so the Boolean assertions are idempotent, that is {G.v.h}; {G.v.h} = {G.v.h}, and

complements under composition so that {G.v.h}; {¬G.v.h} = abort. When all Boolean

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 344

Gn.v.h are disjoint we also have

(
∑

n: [1..N] · {Gn.v.h}) � {
∨
n: [1..N] · Gn.v.h}, (16)

(
∑

n: [1..N] · {Gn.v}) = {
∨
n: [1..N] · Gn.v}. (17)

9.3. Basic laws for revelations

A single reveal releases information but changes no variable. Using refinement we can

with reveal D1 � reveal D2 express that revealing D2 leaks no more information than

revealing D1 would have. The refinement between programs means this statement applies

for any incoming distribution.

We write reveal (E1, E2) for the release of two pieces of information, one defined by

expression E1 and the other defined by expression E2. For example reveal (hmod2, hmod3)

releases information about both h’s divisibility by 2 and 3: this is more informative than

releasing just one, giving the refinement

reveal (h mod 2, h mod 3) � reveal h mod 2. (18)

As we shall see, this and a number of other laws can be derived from a single general

refinement rule which effectively states that any released information can be concealed

somewhat by distributing it stochastically.

Lemma 9.1 (basic reveal refinement). Let D.v.h be a distribution over some X and F be

a stochastic matrix (which can depend on v) giving for each element of X a distribution

over some other type Y . Then we have

reveal D.v.h � reveal D.v.h⊗ F.v,

where (⊗) is defined by (D.v.h⊗ F.v).y := (
∑

x:X · D.v.h.x× F.v.x.y).†

Proof. We reason as follows:

[[reveal D.v.h]]

= (
∑

x:X · [[{D.v.h.x}]]) “define revelation using assertions (6)”

= (
∑

x:X · [[{D.v.h.x}; {(
∑

y:Y · F.v.x.y)}]]) “distribution F.v is full;

{1} = skip is unit of composition (33)”

= (
∑

x, y:X ,Y · [[{D.v.h.x}; {F.v.x.y}]]) “(14); Kleisli composition

distributes over addition”

= (
∑

x, y:X ,Y · [[{D.v.h.x× F.v.x.y}]]) “(11)”

� (
∑

y:Y · [[{(
∑

x:X · D.v.h.x× F.v.x.y)}]]) “(13)”

= [[reveal D.v.h⊗ F.v]]. “define revelation using assertions (6)”

† If D.v.h and F.v are expressed as matrices then (⊗) is matrix multiplication.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 345

As an example of Lemma 9.1 we suppose h is Boolean, and that we have a revelation

behaving as follows. If h is T then T is emitted with probability 1/4 and F with probability

3/4; if h is F then F is emitted unconditionally. We write this reveal D.h (omitting the .v

in this simple case) via the D-matrix

T F ← emitted value

h=T
(

1/4 3/4

0 1

)
h=F

(19)

Now we can condition on the emitted value, so defining a partition on any incoming

state: for example if the incoming state s is (v, {{T@ 1
2 , F@ 1

2 }}) then [[reveal D.h]].s =

{{(v, {{T}})@ 1
8 , (v, {{T@ 3

7 , F@ 4
7 }})@ 7

8 }} expressing the fact that T is emitted only if h is T thus

completely revealing h in this case; however this happens only 1/8 of the time; the

remaining 7/8 of the time h is only partly revealed, with the a posteriori distribution’s

being merely F-skewed.

Now, suppose that the process is overlaid by another process F (again omitting .v) which

obscures the information emitted by reveal D.h by changing the values stochastically:

T F ← new emitted value

emission from D.h was T
(

1 0

1/2 1/2

)
emission from D.h was F

(20)

Overall, the value actually emitted by the combination is determined by the product of

the matrices in (19) and (20), that is(
1/4 3/4

0 1

)
×

(
1 0

1/2 1/2

)
=

(
5/8 3/8

1/2 1/2

)

which for the chosen incoming distribution gives that [[reveal D.h⊗ F]].s is

{{(v, {{T@ 5
9 , F@ 4

9 }})@ 9
16 , (v, {{T@ 3

7 , F@ 4
7 }})@ 7

16 }}, leaking less than [[reveal D.h]].s.

Now Lemma 9.1 justifies (18) with F as the projection function onto the first component.

Other rules can be derived similarly:

Lemma 9.2 (simple reveal rules).

reveal k = skip (21)

reveal D.v.h � skip (22)

reveal h � reveal D.v.h (23)

reveal G.v.h = reveal ¬G.v.h (24)

reveal (E1.v.h, E2.v.h) � reveal E1.v.h (25)

reveal (E.v.h, E.v.h) = reveal E.v.h (26)

Proof. The first is a consequence of the equivalent definition of revelations in terms of

assertions and the rest are consequences of it and Lemma 9.1. For example (22) follows

by defining F.v to be constant; and (23) follows by defining F.v in Lemma 9.1 to be

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 346

D.v.h; (24) follows by defining F.v to swap the values T and F. Finally (25, 26) follow by

defining F.v to be the projection function.

With the apparatus so far, the example in Section 2 could be sketched†

v:= h÷2; v:= v÷2

= ‖[vis v′; v′:= h÷2; v:= v′÷2]‖ “classical reasoning with visibles and scopes”

= ‖[vis v′; v′:= h÷2; v:= (h÷2)÷2]‖ “referential transparency Section 9.1”

= ‖[vis v′; v′:= h÷2]‖; v:= h÷4 “shrink scope; arithmetic”

= reveal h÷2; v:= h÷4 “revelation equivalence Section 9.1”

� v:= h÷4. “(22), that reveal h÷2 � skip”

9.4. Reveals in sequence

When two or more HMM’s are executed sequentially, where the outputs from one are

‘fed into’ another, an observer is able to preserve information from earlier executions to

add to information learned by observing later executions. The basic rule expressing the

total amount of information leaked is set out next.

Lemma 9.3 (sequential reveals). Let D1.v.h and D2.v.h be distributions over some X and

Y respectively. Then we have

reveal D1.v.h; reveal D2.v.h = reveal (D1×D2).v.h,

where (D1×D2).v.h is the joint distribution over ordered pairs of X × Y , defined as usual

so that (D1×D2).v.h.(x, y) is D1.v.h.x× D2.v.h.y.

Proof. This follows directly from the definition of reveal D.v.h and sequential compos-

ition:

[[reveal D1.v.h; reveal D2.v.h]]

= (
∑

x, y:X ,Y · [[{D1.v.h.x}; {D2.v.h.y}]]) “revelations as summations (6)

composition distributes addition”

= (
∑

x, y:X ,Y · [[{D1.v.h.x× D2.v.h.y}]]) “(11)”

= [[reveal (D1×D2).v.h]]. “represent assertion summation as revelation (6)”

This rule says that we can simplify two successive reveals into a single reveal where

the external values are gathered together and the residual probabilities aggregated as

expected, so that overall the result is as though a single HMM had been executed, albeit

with a modified stochastic matrix. Using this basic rule we can prove the following:

† With only a selection of laws, sometimes we must omit details in the calculations.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 347

Lemma 9.4 (simple sequential rules).

reveal D1.v.h; reveal D2.v.h = reveal D2.v.h; reveal D1.v.h (27)

reveal E1.v.h; reveal E2.v.h = reveal (E1.v.h, E2.v.h) (28)

reveal h; reveal D.v.h = reveal h (29)

Proof. Using Lemma 9.3, equation (27) follows from the underlying commutativity, and

(28) follows from the fact that reveal E.v.h equals reveal {{E.v.h}}. For (29) we have from

(22) and (33) that reveal h; reveal D.v.h � reveal h. For refinement in the other direction

we reason

reveal h

= reveal (h, h) “(26)”

= reveal h; reveal h “(28)”

� reveal h; reveal D.v.h. “(22)”

The rules in Lemma 9.4 formalize our intuition about successive reveals. For example

(27) says that the information can be revealed in any order, that revealing two different

expressions in succession is the same as revealing a pair containing both expressions (28),

and that once h has been revealed entirely then there is nothing more to reveal (29).

The following lemma lists further properties explaining how assertions and revelations

interact via sequential composition.

Lemma 9.5 (assertions and revelations in sequence).

{p.v.h}; reveal D.v.h = reveal D.v.h; {p.v.h} (30)

{G.v.h} = {G.v.h}; reveal G.v.h (31)

Proof: The first equivalence is shown using a similar proof to that of Lemma 9.3. For

(31) we show

[[{G.v.h}]]
= [[{G.v.h}]] + [[{F}]] “abort is zero of program addition”

= [[{G.v.h}; {G.v.h}]] + [[{G.v.h}; {¬G.v.h}]] “separate Boolean assertions (15)”

= [[{G.v.h}; reveal G.v.h]]. “composition over addition; (6)”

The first (30) states that revelations and assertions commute, while the second (31) says

that after asserting predicate G.v.h, no more information can be leaked by revealing the

value of G.v.h.

9.5. Reveals in choice

In a probabilistic choice between two reveal statements, an observer may witness both

which revelation was executed as well as the outcome of that statement. We can combine

such a choice into a single reveal statement.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 348

Lemma 9.6 (choices between reveals). Let DL.v.h and DR.v.h be distributions over X and

p.v.h be a probability; let

X2:= Lft X + Rgt X
be the discriminated union of two copies of X , with injection functions therefore of type

Lft,Rgt:X→X2. We have that

reveal DL.v.h

p.v.h⊕ reveal DR.v.h
=

reveal map.Lft.(DL.v.h)

p.v.h⊕ map.Rgt.(DR.v.h),

where the injection-functions’ ‘tagging’ of the two distributions has effectively given them

disjoint supports.

Proof. Let D′L.v.h, D
′
R.v.h be respectively map.Lft.(DL.v.h),map.Rgt.(DR.v.h). We have

then

[[reveal DL.v.h p.v.h⊕ reveal DR.v.h]]

= [[reveal D′L.v.h p.v.h⊕ reveal D′R.v.h]] “Lemma 9.1”

= [[{p.v.h}; reveal D′L.v.h]]

+ [[{1−p.v.h}; reveal D′R.v.h]]

“probabilistic choice”

=
∑

x:X
[[{p.v.h}; {D′L.v.h.(Lft.x)}]]

+ [[{1−p.v.h}; {D′R.v.h.(Rgt.x)}]]

“revelations are additions of assertions (6);

additive distributivity

of Kleisli composition”

= (
∑

x2:X2 · [[{(D′L.v.h p.v.h⊕ D′R.v.h).x2}]]) “(11); and D′L.v.h.(Rgt.x),

D′R.v.h.(Lft.x) both zero”

= [[reveal D′L.v.h p.v.h⊕ D′R.v.h]]. “addition of assertions as revelation (6)”

From this lemma we may derive the following laws concerning revelations and

probabilistic choice.

Lemma 9.7 (simple choice rules). For probability p.v.h and distributions D1.v.h and D2.v.h

we have that

(reveal DL.v.h p.v.h⊕ reveal DR.v.h) � reveal (DL.v.h p.v.h⊕ DR.v.h).

However if the support of DL.v.h and DR.v.h are disjoint, then the refinement relation is

an equality.

Proof: This follows from Lemmas 9.1 and 9.6.

From (21) and Lemma 9.7 we have, for example, that

skip p.v.h⊕ skip = (reveal T p.v.h⊕ reveal F) = reveal (T p.v.h⊕ F),

thus illustrating the information leakage due to implicit flow.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 349

9.6. Composition, probabilistic choice and conditionals

As well as being monotonic in both their program arguments (Theorem 8.1), sequential

composition and probabilistic choice – of which conditional choice is a special case –

satisfy the following basic laws corresponding to classical probabilistic equalities (McIver

and Morgan 2005).

Lemma 9.8 (basic composition and choice laws). For all programs S , T and R and

probabilities p.v.h we have the following properties hold.

S; (T ;R) = (S;T);R (32)

skip; S = S; skip = S (33)

abort; S = S; abort = abort (34)

(S p.v.h⊕ T) = (T 1−p.v.h⊕ S) (35)

(S p.v.h⊕ T);R = (S;R p.v.h⊕ T ;R) (36)

(S 1⊕ T) = S (37)

Additionally, for any R satisfying both R; {p.v.h} = {p.v.h};R and R; {1−p.v.h} =

{1−p.v.h};R we have that R distributes from the left into a choice with probability

p.v.h:

R; (S p.v.h⊕ T) = (R; S p.v.h⊕ R;T). (38)

Since both assertions (11) and reveals (30) commute over assertions, Equation (38) gives

us that they distribute to the right over arbitrary probabilistic (and conditional) choices.

Additionally, commutativity of constant assertions over all statements (12) means that all

programs distribute over choices in which the probability is constant. We can also derive,

for example, the following properties:

S p.v.h⊕ S � S (39)

S p.v⊕ S = S (40)

if G then S else T = reveal G; if G then S else T (41)

The first two follow from left distributivity (21),(33),(36) and Lemma 9.7. The last follows

from (31) and (38).

9.7. Rules for general iteration

Recall that we write while p.v.h do S od for a general iteration of S , with probability p.v.h

of exiting the loop on each iteration. From Theorem 8.1 we have that such loops are

monotonic on their program argument. Additionally, from its least-fixed-point semantics

we have

Lemma 9.9 (fixed point rule). If (S;W) p.v.h⊕ skip = W then we have the refinement

(while p.v.h do S od) � W .

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 350

Proof. From the Tarski fixed-point theorem (Tarski 1955) wrt the order (�), and that

the loop is a least fixed point, we have immediately

(S;W) p.v.h⊕ skip � W implies (while p.v.h do S od) � W. (42)

The result then follows immediately from the two inclusions (=) ⊆ (�) ⊆ (�).

In a specification task, however, the goal is typically to implement a specification by an

iteration, i.e. to establish a refinement in the opposite direction. For terminating iterations

we have this rule:

Corollary 9.1 (termination iteration). If while p.v.h do S od terminates with probability

one, and (S;W) p.v.h⊕ skip = W , then while p.v.h do S od = W .

Proof. We adapt the proof of Lemma 9.9, noting that if the loop terminates it is

(�)-maximal and hence the rhs (�) in (42) must in fact be an equality.

Termination is usually shown by exhibiting a probabilistic variant over the state (Hart

et al. 1983; Morgan 1996; McIver and Morgan 2005); a straightforward simple case is

when the loop’s exit probability is bounded away from zero, in particular while k do · · ·
for any constant k < 1.

9.8. Small example: one guess at a password

We have a hidden password p chosen from three possibilities P:= {p1, p2, p2}. This

fragment describes an attacker’s single guess, uniformly chosen:

‖[vis g; g:∈ {{p1, p2, p3}}; reveal g=p]‖.

Local visible value g is chosen from the uniform distribution {{p1, p2, p3}}, and then it is

used as a guess. Note that if the guess is correct, then T is revealed which – in itself –

does not reveal the password’s value: that latter is then learned by deduction, from the

program’s code and the fact that g is visible. If g had been hidden, we would know only

that the guess had succeeded, but still not the value of p.

We now show how algebra can be used to convert ‘operational’ descriptions like the

above into less obvious but more calculationally convenient forms, in this case a single

reveal statement; and in Section 10 we will see how useful this equivalence turns out to

be. For now, we reason

‖[vis g; g:∈ {{p1, p2, p3}}; reveal g=p]‖

= ‖[vis g;

g:= p1 ⊕ g:= p2 ⊕ g:= p3;

reveal g=p

]‖

“split visible choice using (7);

note choices (⊕) are uniform

by convention, i.e. (1/3⊕)

in this case”

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 351

= ‖[vis g;

g:= p1; reveal g=p;

⊕ g:= p2; reveal g=p;

⊕ g:= p3; reveal g=p

]‖

“left distributivity (36)”

= ‖[vis g;

g:= p1; reveal p1=p;

⊕ g:= p2; reveal p2=p;

⊕ g:= p3; reveal p3=p

]‖

“replace expressions by those of equal value (Section 9.1);

e.g. in the first branch g:= p1 establishes

that p1=g, so that g can be

replaced by p1 in the reveal”

= ‖[vis g; g:= p1]‖; reveal p1=p

⊕ ‖[vis g; g:= p2]‖; reveal p2=p

⊕ ‖[vis g; g:= p3]‖; reveal p3=p

“shift scope (Section 9.1), since g is

no longer free in the reveal’s”

= reveal p1=p ⊕ reveal p2=p ⊕ reveal p3=p “(9), (8) and (33)”

= reveal (p1, p1=p) ⊕ reveal (p2, p2=p) ⊕ reveal (p3, p3=p) “Lemma 9.1”

= reveal (p1, p1=p) ⊕ (p2, p2=p) ⊕ (p3, p3=p), “Lemma 9.7”

giving a single reveal whose expression part we manipulate further, at (46) below. Note

that it is the appeal to (7) that relies on g’s being visible: if it were not, then the implicit

flow introduced by the first step would represent a leak, invalidating the equality.

10. Extended example: iterative reasoning

We now demonstrate our treatment of iteration, reusing the simple password-guessing

attack within a loop.

10.1. A password attack: specification

We assume a set of passwords P and a hidden variable p:P containing the (current)

password; let PNP be the set of all size-N subsets of P . A typical attack would be to

choose one of those sets of potential passwords, and then to try them all in a ‘bulk attack’

as in the program fragment

‖[vis G; G:∈�PNP�; reveal {p}∩G]‖. (43)

(We omit the typing G:P P , to reduce clutter.) The statement G:∈�PNP� makes a uniform

choice of size-N subset of P , assigning it to G. We are assuming that N is strictly less

than the size P of P .

The reveal {p}∩G reveals either {p}, if the attack succeeds, or the empty set � if it does

not. That is, the outcome of fragment (43) above is either to say ‘the hidden password is

p’ (a successful attack, revealing {p}) or ‘the hidden password is not in G’ (an unsuccessful

attack, revealing �) since, in the latter case we do know the visible attack-set G even

though the attack failed. As a specification, it abstracts from precisely how the passwords

are tried, in what order, or whether possibly repeated: it says only that they are tried.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 352

Now suppose the incoming distribution of p is some π:DP; then the program fragment

above produces an output hyper Π:D2P comprising a distribution of distributions over

P . (Note that the output hyper contains no G component, because G is local.) If we

calculated this with our semantics (although we omit the calculations here), we would

find two kinds of inners in its support, namely

success. A p-indexed family of point inner distributions {{p}} each itself with outer

probability N(π.p)/P , the probability π.p that p was the password, but multiplied

by the probability N/P that it was in the uniformly chosen attack-set G of size N.

failure. A G-indexed set of inner distributions of support-size P−N, each such distribution

derived by conditioning π on not being in the set G and having outer probability

(1−π.G)/CP
N , the probability that this particular G was chosen for the attack-set

multiplied by the probability that the password was not in it.

As a check, we note that the outer probabilities sum to one, as they should since the

specification program is terminating: we have∑
pN(π.p)/P +

∑
G(1−π.G)/CP

N∑
pN(π.p)/P +

∑
G1/CP

N −
∑

Gπ.G/C
P
N

= N/P + CP
N/C

P
N −

∑
pC

P−1
N−1(π.p)/C

P
N

= 1.

Finally, if for example we assume that the incoming distribution π is uniform over P ,

then the Bayes Risk before the attack is 1−1/P and, after the attack, it has been reduced

to the conditional Risk P×N(π.p)/P×0 + CP
N×((1−N/P)/CP

N)×(1 − 1/(P−N)), that is

reduced to 1− (N+1)/P .

10.2. A password attack: implementation

We suppose a simple-minded actual attacker who chooses single passwords uniformly at

random, possibly with repetition and, after each attack, has some fixed probability c of

giving up. This would be described by the fragment

while c do

‖[vis g; g:∈P; reveal g=p]‖
od.

(44)

A complete analysis of (44) is combinatorially complex, having an output hyper

comprising inner distributions over subsets of P of all possible sizes and – as such –

would be difficult to reason about within a larger system. More practical would be to

determine, once and for all, whether (44) is an implementation of (43), i.e. that it is at

least as secure as (43) and then ever after to use the simpler (43) in larger analyses. Since

(44) is parametrized by c, we might in fact ask

What is the largest value of probability c for which (43) � (44)?

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 353

10.3. Example refinement analysis: the simplest case

To illustrate the approach, we address the above question in the very simple case where

P={p1, p2, p3} is of size 3, and our specification describes a ‘bulk attack’ of size N=1. †

Thus, we are asking for the largest c that achieves the refinement

‖[vis g; g:∈P; reveal g=p]‖ � while c do

‖[vis g; g:∈P; reveal g=p]‖
od.

(45)

We do this in two stages: the first is to hypothesize a parametrized straight-line equivalent

for the loop, then synthesizing a condition on the parameters that makes it satisfy the

fixed-point equation of Corollary 9.1.

As in Lemma 9.6, we introduce a discriminated union P? := is P + isn’t P + nix which,

used in reveal commands, will allow us to reveal what p is, what it is not, and – for

algebraic convenience – to reveal nothing at all.

In our simple case here of P having just three elements, therefore P? has seven. Further

exploiting P ’s size of three, for any p in P we write p+ for one of the values p is not, and

p− for the other. With this approach we can express lhs (45) without its local block and

the guess variable g: for that, we return to our example calculation of Section 9.8 giving

reveal (p1, p1=p) ⊕ (p2, p2=p) ⊕ (p3, p3=p). We can recode this directly using Lemma 9.1:

it becomes just

reveal {{is p, isn’t p+, isn’t p−}}. (46)

We return to the synthesis of the loop’s straight-line equivalent, supposing it has the

form

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}} (47)

for some probabilities x+y+z = 1 that we have to determine. This reveals what p is with

probability x, what p is not with probability y/2+y/2 = y; and with probability z it

reveals nothing at all.

Our synthesizing equality is then given by Corollary 9.1, because the loop with its

constant c terminates; that is we require

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}
}
← (47)

= reveal {{is p, isn’t p+, isn’t p−}}; ←− loop body

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}
}
← (47)

c⊕ skip, ←− loop exit

† In this simple case a bulk attack of size N=2 is uninteresting, because it would reveal everything: either what

the password is (if p∈G) or two values that it is not (if p/∈G). In the latter case we would deduce p’s value

anyway, by elimination.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 354

whose right-hand side we can simplify with the revelation laws from Section 9, in particular

Lemmas 9.1, 9.3 and 9.7. That gives

reveal {{ is p @ c(x + 2y/3 + z/3),

isn’t p+ @ c(y/6 + z/3),

isn’t p− @ c(y/6 + z/3),

nix @ 1−c }},

and that should be equal to the left-hand side, the original (47). Since z = 1−c trivially,

we concentrate p+ case to obtain y/2 = c(y/6 + 2(1−c)/3), so that y = 2c(1−c)/(3−c),
whence x = c−y = c(1+c)/(3−c).†

10.4. Establishing the c-optimal refinement: the second stage

We now want to find the largest value of c that allows

‖[vis g; g:∈P; reveal g=p]‖
� reveal {{is p@x, isn’t p+

@ y
2 , isn’t p−

@ y
2 , nix@z}}

where x, y, z have the c-determined values calculated above: we recall the remark above

at (46) about formulating our specification as a simple revelation, without needing a local

variable g. That gives the equivalent goal

reveal {{is p@ 1
3 , isn’t p+

@ 1
3 , isn’t p−

@ 1
3 }}

� reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}

† Working through this and extracting the arithmetic results in the following table:

↓ effective joint revelation

is p, is p with prob. x/3 equivalent to revealing just is p

is p, isn’t p+ with prob. y/6 equivalent to revealing just is p

is p, isn’t p− with prob. y/6 equivalent to revealing just is p

is p, nix with prob. z/3 equivalent to revealing just is p

isn’t p+, is p with prob. x/3 equivalent to revealing just is p

isn’t p+, isn’t p+ with prob. y/6 equivalent to revealing just isn’t p+

isn’t p+, isn’t p− with prob. y/6 equivalent to revealing just is p

isn’t p+, nix with prob. z/3 equivalent to revealing just isn’t p+

isn’t p−, is p with prob. x/3 equivalent to revealing just is p

isn’t p−, isn’t p+ with prob. y/6 equivalent to revealing just is p

isn’t p−, isn’t p− with prob. y/6 equivalent to revealing just isn’t p−
isn’t p−, nix with prob. z/3 equivalent to revealing just isn’t p− .

The probabilities in the text come from adding the final column in groups.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 355

For this we refer to Lemma 9.1, whose D is effectively the lhs above: written as a

matrix, it would be

is p1 isn’t p1 is p2 isn’t p2 is p3 isn’t p3 nix

p1 1/3 0 0 1/3 0 1/3 0

p2 0 1/3 1/3 0 0 1/3 0

p3 0 1/3 0 1/3 1/3 0 0 .

(48)

We need a 7×7 stochastic matrix F , that is a function P?→DP? which, when multiplied

after D, gives the rhs above, that is

is p1 isn’t p1 is p2 isn’t p2 is p3 isn’t p3 nix

p1 x 0 0 y/2 0 y/2 z

p2 0 y/2 x 0 0 y/2 z

p3 0 y/2 0 y/2 x 0 z .

The columns of the latter must be interpolations of columns of the former, thus the first

rhs column [x, 0, 0] cannot contain non-zero contributions from any other than the first

lhs column [1/3, 0, 0].† Hence x�1/3 and, since we are trying to maximize c we maximize

x also by setting x:= 1/3. ‡ Similar reasoning then establishes that the second rhs column

[0, y/2, y/2] must be obtained by taking proportion 3y/2 of the second lhs column; and

then the last rhs column is made by combining proportions 1− 3y/2 of each of columns

1,3,5 on the lhs.

Since x=1/3 entails c(1+c)/(3−c)=1/3, that is c ≈ 0.53, we have established our desired

(45) with c taking that value (or less), independently of the distribution with which the

hidden p might have been chosen.

11. Related work

11.1. HMMs, algebra and noninterference

HMMs (Jurafsky and Martin 2000) have a long history and many practical applications;

their conceptual connection to noninterference suggests that their algorithmic methods

might be of use here. That is, extant HMM techniques could be used for efficient numerical

calculation of whether some T S ,ES , a specification, was secure enough for our purposes:

once that was done, the refinement relation established via program-algebra could ensure

that an implementation T I ,EI was at least as secure as that without requiring a second

numerical calculation. The advantage of this is that the first calculation, over a smaller

and more abstract system, is likely to be much simpler than the second would have been.

† We write transposed columns horizontally as rows between brackets [·] instead of parentheses.
‡ The function x:= c(1+c)/(3−c) is monotonic for 0 � c� 1.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 356

There are techniques based on the manipulation of ‘graphical models’ to represent

Bayesian networks in alternate equivalent ways: these are similar in spirit to our algebraic

manipulations (Bishop 2006), although there the motivation is usually to find more

efficient algorithms.

The application of HMMs to noninterference security is recent: originally, noninterfer-

ence was qualitative (Goguen and Meseguer 1984). Probabilistic noninterference (Smith

2003; Chatzikokolakis et al. 2007) is a generalization of that idea to provide weaker

statements concerning an attacker’s ability to guess high security state by observing the

behaviour and pattern of observables. Variations of the idea have been studied extensively

for concurrent systems (Sabelfeld and Sands 2000; Volpano and Smith 1998) and taking

computational issues into account (Backes and Pfitzmann 2002).

The definition of our space D(V×DH) and its refinement order draws inspiration

from constructions and techniques already present in the literature. The monad is

Giry/Kantorovich (Giry 1981; van Breugel 2005), and the refinement order is related

to the theory of inhomogeneous Markov Chains (Cohn 1974).

11.2. Compositionality, information theory and assorted entropies

A compelling approach to quantitative security is to use information-theoretic measures

to compare the (e.g. Shannon) entropy of the hidden variables’ a priori distribution (e.g.

their incoming values) and their a posteriori distribution once the program has executed

(Chatzikokolakis and Palamidessi 2007; Chatzikokolakis et al. 2007; Alvim et al. 2010);

recently this has been applied to iterating programs as well (Malacaria 2010; Mu and

Clark 2009). But compositionality is crucial: given that one program is more secure than

another according to some entropy-based criterion, how do we know that inequality is

preserved in a larger context?

We have shown earlier (McIver et al. 2010) that refinement has two key properties for

compositional entropy-based reasoning: it is preserved by contexts; and it implies non-

decrease for an assortment of entropies, including Shannon entropy, guessing entropy,

Bayes risk and marginal guesswork. Perhaps it applies to others (Braun et al. 2009).

Thus, our work here is part of a larger program to unite earlier work in quantitative

information flow (or escape) (Alvim et al. 2010; Köpf and Basin 2007) in channels, as

models of computation, with a denotational presentation of program semantics based on

HMMs including a compositional refinement relation that compares these quantitative

measures between programs, specifically between specifications and their purported

implementations. By considering iterations, we are extending our own earlier work (McIver

et al. 2010) in a way that relates to others’ work on quantitative information flow from

iterations (Malacaria 2010; Mu and Clark 2009) much as in the way described above.

Compositionality ‘within’ a program addresses the question of whether security estab-

lished for a component is preserved when embedded in a larger context (Braun et al.

2008). Compositionality ‘between’ programs, as we do here, addresses the question of

whether two programs’ relative security is preserved when they are both placed in the

same context: this latter is less common.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 357

A representative example of others’ doing so is recent work by Yasuoka and Terauchi

(2010) in which computational hardness is analysed. They consider deterministic sequential

straight-line programs i.e. without probabilistic or demonic choice and without loops,

but that nevertheless operate in a quantitative context (i.e. having input distributions

rather than simply input values). Since the programs have no probabilistic choices,

those authors are able to reduce the (analogue of) the secure-refinement relation to the

qualitative noninterference comparison of the programs. This is a special case of our

general conjecture concerning the promotion of qualitative results to quantitative results

provided demonic choice is replaced by uniform choice (McIver et al. 2010, Section 8.1): if

there is no demonic choice, there is nothing to replace and so the program is unchanged.

These authors look for a relation guaranteeing the correct entropy ordering (for all

incoming distributions) wrt a selection of entropies, as we do, and they address the

computational hardness of validating that relationship in particular cases. We address

with compositional closure the additional question of how weak such a relation can be

(McIver et al. 2010).

12. Summary, conclusions, prospects

Earlier we built the core of a programming algebra for probability and noninterference:

here we have extended it to include iteration and nontermination; and we solved the

technical problem of incompleteness, that arose in the process, by introducing a simpler

‘termination’ order that allowed us to remain with discrete distributions. Further, we

have shown how the semantics is related to HMMs, an existing consensus of how such

application domain should be handled and analysed.

The formalist rigour of program semantics, however, can make unusual demands on

traditional mathematical presentations: a programming language is interpreted inductively

in a structured space equipped with operators corresponding to the constructors of that

language. In particular, sequential programs with any kind of nondeterminism (whether

demonic, probabilistic or some other) are often interpreted as functions of type S→KS
where S is the state space and K is some type constructor (or functor) expressing the

nondeterminism. Thus, our first contribution in detail was to (re-)interpret HMMs in this

style (in Section 3), where S was V×DH and K became D (in Section 3.4). We made

some small programming-motivated extensions to the HMM model, in particular adding

visible variables to the state so that the most recent observation is carried forward into

the next operation. The second extension was allowing iterations and hence, potentially,

computations that might not terminate (thus D rather than D).

In constructing the semantic operations we built-in perfect recall and implicit flow, which

are security assumptions about the power of the attacker. This can be controversial: in

general one can choose to impose these or not. We did impose them because we have

argued extensively elsewhere (Morgan 2006, 2009) that a compositional definition of

program refinement is not possible otherwise†. Perfect recall in particular, however, does

seem a good fit for HMMs independently of the refinement argument, since the knowledge

† We did not have space to repeat those arguments here.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 358

gained from observations, once emitted from the output-side of an HMM, cannot be

expunged from the attacker’s repertoire by any kind of overwriting subsequently.

Our second contribution was to work-around (�)-incompleteness by using an altern-

ative, more specialised order (�), showing that a program algebra including iteration is

feasible (Section 9); and our third contribution was to argue by example that the resulting

source-level reasoning is promising (Section 10).

There are two immediate prospects for further work. One that in practice we would

like to answer questions like the one posed in Section 10.2 for general guesses of size

N and large password spaces P , and many other similar. For this we would need tool

support both for the semantics (i.e. given a program, determine its meaning) and for

establishing refinement (i.e. whether this meaning refined by that one) in a probabilistic

setting (Katoen et al. 2010; McIver et al. 2009).

The other prospect is to complete our semantic space to proper measures, in fact to

follow the approach outlined in Section 6.2. Beyond compositionality of (�) we want its

compositional closure, already achieved for straight-line programs, guaranteeing that the

refinement relation is not unnecessarily strong; but that argument required (analytical)

closure/compactness of a set of finite, discrete probability distributions in a metric space

(McIver et al. 2010); and to do that here, with the extra feature of iterations that generate

chains of approximants, seems to make the move to measures inevitable.

Finally, our longer-term aim is to add demonic choice to the model for e.g. demonic

scheduling that takes into account what the adversary can, and cannot see Alvim et al.

(2010). We have done this for qualitative systems (Morgan 2006, 2009) and we have earlier

combined demonic and probabilistic choice without hiding (He et al. 1997; Morgan et

al. 1996; McIver and Morgan 2005). The technique of convex closure, useful for that,

generates uncountably many interpolated distributions: it is a second reason we are likely

to need measures, and so we hope to exploit the structures developed for this paper at

that later point.

References

Wikipedia (2011) en.wikipedia.org.

Aldini, A. and Pierro, A. D. (2004) A quantitative approach to noninterference for probabilistic

systems. Electronic Notes in Theoretical Computer Science 99 155–182.

Alvim, M., Andres, M. and Palamidessi, C. (2010) Information flow in interactive systems. In:

Proceedings 21st CONCUR. Springer Lecture Notes in Computer Science 6269 102–116.

Ash, R. B. (1972) Real Analysis and Probability, Academic Press.

Back, R. J. and von Wright, J. (1998) Refinement Calculus: A Systematic Introduction, Springer.

Backes, M. and Pfitzmann, B. (2002), Computational probabilistic non-interference. In: 7th European

Symposium on Research in Computer Security. Lecture Notes in Computer Science 2502 1–23.

Bishop, C. (2006) Pattern Recognition and Machine Learning, Information Science and Statistics,

Springer.

Braun, C., Chatzikokolakis, K. and Palamidessi, C. (2008) Compositional methods for information-

hiding. In: Proceeding FOSSACS’08. Springer Lecture Notes in Computer Science 4962 443–457.

Braun, C., Chatzikokolakis, K. and Palamidessi, C. (2009) Quantitative notions of leakage for

one-try attacks. In: Proceedings MFPS. Electronic Notes in Theoretical Computer Science 249

75–91.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

Hidden-Markov program algebra with iteration 359

Chatzikokolakis, K. and Palamidessi, C. (2007) A framework for analyzing probabilistic protocols

and its application to the partial secrets exchange. Theoretical Computer Science 389 (3) 512–27.

Chatzikokolakis, K., Palamidessi, C. and Panangaden, P. (2007) Probability of error in information-

hiding protocols. In: Proceedings CSF, IEEE Computer Society 341–354.

Cohn, H. (1974) A ratio limit theorem for the finite nonhomogeneous markov chains. Israel Journal

of Mathematics 19 329–334.

Deng, Y. and Du, W. (2009) Kantorovich metric in computer science: A brief survey. Electronic

Notes in Theoretical Computer Science 253 (3) 119–133.

Dudley, R. (2002) Real Analysis and Probability, Cambridge University Press.

Giry, M. (1981) A categorical approach to probability theory. In: Categorical Aspects of Topology

and Analysis. Springer Lecture Notes in Mathematics 915 68–85.

Goguen, J. and Meseguer, J. (1984) Unwinding and inference control. In: Proceedings IEEE

Symposium on Security and Privacy, IEEE Computer Society 75–86.

Halmos, P. (1973) The legend of von Neumann. The American Mathematical Monthly 80 (4) 382–394.

Halpern, J. and O’Neill, K. (2002) Secrecy in multiagent systems. In: Proceedings 15th IEEE

Computer Security Foundations Workshop 32–46.

Hart, S., Sharir, M. and Pnueli, A. (1983) Termination of probabilistic concurrent programs, ACM

Transactions on Programming Language and Systems 5 356–380.

He, J., Seidel, K. and McIver, A. (1997) Probabilistic models for the guarded command language.

Science of Computer Programming 28 171–192.

Jones, C. and Plotkin, G. (1989) A probabilistic powerdomain of evaluations. In: Proceedings of

the IEEE 4th Annual Symposium on Logic in Computer Science, Los Alamitos, Calif. Computer

Society Press 186–195.

Jurafsky, D. and Martin, J. (2000) Speech and Language Processing, Prentice Hall International.

Katoen, J. P., McIver, A. K., Meinicke, L. A. and Morgan, C. C. (2010) Linear-invariant generation

for probabilistic programs: Automated support for proof-based methods. In: Proceedings Static

Analysis Symposium, Springer 390–406.

Köpf, B. and Basin, D. (2007) An information-theoretic model for adaptive side-channel attacks.

In: Proceedings 14th ACM Conference Computer and Communications Security.

Kozen, D. (1985) A probabilistic PDL. Journal of Computer and System Sciences 30 (2) 162–178.

Malacaria, P. (2010) Risk assessment of security threats for looping constructs. Journal of Computer

Security 18 (2) 191–228.

McIver, A., Gonzalia, C. and Morgan, C. (2009) Probabilistic affirmation and refutation: Case

studies. In: Proceedings Automatic Program Verification.

McIver, A., Meinicke, L. and Morgan, C. (2010) Compositional closure for Bayes risk in probabilistic

noninterference. In: Abramsky S. et al., (eds.) Proceedings ICALP 2010. Lecture Notes in Computer

Science 6199 223–235. Extended abstract.

McIver, A. and Morgan, C. (2005) Abstraction, Refinement and Proof for Probabilistic Systems,

Monographs in Computer Science, Springer, New York.

McIver, A. and Morgan, C. (2008) A calculus of revelations. Presented at VSTTE Theories

Workshop. Available at www.cs.york.ac.uk/vstte08/.

McShane, E. (1937) Jensen’s inequality. Bulletin of the American Mathematical Society 43 (8) 521–527.

Moggi, E. (1989) Computational lambda-calculus and monads. In: Proceedings 4th Symposium LiCS

14–23.

Morgan, C. (1994) Programming from Specifications, 2nd edition, Prentice-Hall. Available at

web.comlab.ox.ac.uk/oucl/publications/books/PfS/.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

A. McIver, L. Meinicke and C. Morgan 360

Morgan, C. (1996) Proof rules for probabilistic loops. In: Jifeng, H., Cooke, J. and Wallis, P. (eds.)

Proceedings BCS-FACS 7th Refinement Workshop, Workshops in Computing, Springer. Available

at ewic.bcs.org/conferences/1996/refinement/papers/paper10.htm.

Morgan, C. (2005) Of probabilistic wp and CSP. In: Abdallah, A., Jones, C. and Sanders, J., (eds.)

Communicating Sequential Processes: The First 25 Years, Springer.

Morgan, C. (2006) The shadow knows: Refinement of ignorance in sequential programs. In:

Uustalu, T. (ed.) Mathematics of Program Construction, 4014 359–378. Springer. (Treats Dining

Cryptographers.)

Morgan, C. (2009) The shadow knows: Refinement of ignorance in sequential programs. Science of

Computer Programming 74 (8) 629–653. (Treats Oblivious Transfer.)

Morgan, C. (2010) Compositional noninterference from first principles. Formal Aspects of Computing

1–24.

Morgan, C., McIver, A. and Seidel, K. (1996) Probabilistic predicate transformers. ACM Transactions

on Programming Language and Systems 18 (3) 325–353.

doi.acm.org/10.1145/229542.229547.

Mu, C. and Clark, D. (2009) Quantitative analysis of secure information flow via probabilistic

semantics. In: Proceedings ARES’09, IEEE 49–57.

Nelson, G. (1989) A generalization of Dijkstra’s calculus. ACM Transactions on Programming

Language and Systems 11 (4) 517–561.

Roscoe, A. (1992) An alternative order for the failures model. Journal of Logic Computation 2 (5)

557–577.

Sabelfeld, A. and Sands, D. (2000) Probabilistic noninterference for multi-threaded programs. In:

13th IEEE Computer Security Foundations Workshop (CSFW’00), 200–214.

Smith, G. (2003) Probabilistic noninterference through weak probabilistic bisimulation. In: 16th

IEEE Computer Security Foundations Workshop (CSFW’03).

Sonin, I. (2008) The decomposition-separation theorem for finite nonhomogeneous markov chains

and related problems. In: Markov Processes and Related Topics: A Festschrift for Thomas G Kurtz,

volume 4, IMS 1–15.

Tarski, A. (1955) A lattice-theoretic fixpoint theorem and its applications. Pacific Journal of

Mathematics 5 285–309.

van Breugel, F. (2005) The metric monad for probabilistic nondeterminism. Draft available at

http://www.cse.yorku.ca/∼franck/research/drafts/monad.pdf.
Volpano, D. and Smith, G. (1998) Probabilistic noninterference in a concurrent language. In: 11th

IEEE Computer Security Foundations Workshop (CSFW’98), 34–43.

Wirth, N. (1971) Program development by stepwise refinement. Communications of the ACM 14 (4)

221–227.

Worrell, J. (2010) Private communication.

Yasuoka, H. and Terauchi, T. (2010) Quantitative information flow – verification hardness and

possibilities. In: Proceedings 23rd IEEE CSF Symposium, 15–27.

https://doi.org/10.1017/S0960129513000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000625

