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THE STRENGTH OF ABSTRACTION WITH PREDICATIVE
COMPREHENSION

SEAN WALSH

Abstract. Frege’s theorem says that second-order Peano arithmetic is interpretable in
Hume’s Principle and full impredicative comprehension. Hume’s Principle is one example of
an abstraction principle, while another paradigmatic example is Basic Law V from Frege’s
Grundgesetze. In this paper we study the strength of abstraction principles in the presence of
predicative restrictions on the comprehension schema, and in particular we study a predicative
Fregean theory which contains all the abstraction principles whose underlying equivalence
relations can be proven to be equivalence relations in a weak background second-order
logic. We show that this predicative Fregean theory interprets second-order Peano arithmetic
(cf. Theorem 3.2).

81. Introduction. The main result of this paperisa predicative analogue of
Frege’s Theorem (cf. Theorem 3.2). Roughly, Frege’s theorem says that one
can recover all of second-order Peano arithmetic using only the resources
of Hume’s Principle and second-order logic. This result was adumbrated in
Frege’s Grundlagen of 1884 ([10], [13]) and the contemporary interest in this
result is due to Wright’s 1983 book Frege’s Conception of Numbers as Objects
([34]). For more on the history of this theorem, see the careful discussion
and references in Heck [20] pp. 4-6 and Beth [1].

More formally, Frege’s theorem says that second-order Peano arithmetic
is interpretable in second-order logic plus the following axiom, wherein the
cardinality operator # is a type-lowering function from second-order entities
to first-order entities:

Hume’s Principle : ¥V X, Y (#X = #Y < I bijection /' : X — Y). (1.1)

Of course, one theory is said to be interpretable in another when the primi-
tives of the interpreted theory can be defined in terms of the resources of the
interpreting theory so that the translations of theorems of the interpreted
theory are theorems of the interpreting theory (cf. [30]§2 or [22] pp. 96-97 or
[17] pp. 148-149 or [27] §2.2). For a proof of Frege’s Theorem, see Chapter
4 of Wright’s book ([34]) or §2.2 pp. 1688 ff of [29].

The second-order logic used in the traditional proof of Frege’s Theorem
crucially includes impredicative instances of the comprehension schema.
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Intuitively, the comprehension schema says that every formula ¢ (x) in one
free first-order variable determines a second-order entity:

AF VY x (Fx < p(x)). (1.2)

The traditional proof of Frege’s Theorem uses instances of this comprehen-
sion schema in which some of the formulas in question contain higher-order
quantifiers (cf. [29] p. 1690 equations (44)—(45)). However, there is a long
tradition of predicative mathematics, in which one attempts to ascertain how
much one can accomplish without directly appealing to such instances of the
comprehension schema. This was the perspective of Weyl’s great book Das
Kontinuum ([33]) and has been further developed in the work of Feferman
([7]. [8]). Many of us today learn and know of this tradition due to its close
relation to the system ACA( of Friedman and Simpson’s project of reverse
mathematics ([15], [26]).

However, outside of the inherent interest in predicative mathematics, con-
siderations related to Frege’s philosophy of mathematics likewise suggest
adopting the predicative perspective. For, Wright and Hale ([18], cf. [4])
have emphasized that Hume’s Principle (1.1) is a special instance of the
following:

A[El: VY X.Y (0:(X)=0;(Y) < E(X.Y)), (1.3)

wherein E(X,Y) is a formula of second-order logic and 8¢ is a type-
lowering operator taking second-order entities and returning first-order
entities. These principles were called abstraction principles by Wright and
Hale, who pointed out that the following crucial fifth axiom of Frege’s
Grundgesetze of 1893 and 1903 ([11], [14]) was also an abstraction principle:

BasicLawV: VX, Y (0(X)=0(Y) = X =7Y). (1.4)

The operator 0 as governed by Basic Law V is called the extension opera-
tor and the first-order entities in its range are called extensions. Regrettably,
there is no standard notation for the extension operator, and so some authors
write §X in lieu of &(X). In what follows, the symbol 8 without any sub-
scripts will be reserved for the extension operator, whereas the subscripted
symbols 9 will serve as the notation for the type-lowering operators present
in arbitrary abstraction principles (1.3).

While the Russell paradox shows that Basic Law V is inconsistent with
the full comprehension schema (1.2) (cf. [29] p. 1682), nevertheless Basic
Law V is consistent with predicative restrictions, as was shown by Parsons
([25]), Heck ([19]). and Ferreira-Wehmeier ([9]). This thus suggests the
project of understanding whether there is a version of Frege’s theorem cen-
tered around the consistent predicative fragments of the Grundgesetze. This
project has been pursued in the last decades by many authors such as Heck
([19]). Ganea ([16]), and Visser ([28]). Their results concerned the restric-
tion of the comprehension schema (1.2) to the case where no higher-order
quantifiers are permitted. One result from this body of work says that Basic
Law V (1.4) coupled with this restriction on the comprehension schema
is mutually interpretable with Robinson’s Q. Roughly, Robinson’s Q is the
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fragment of first-order Peano arithmetic obtained by removing all the induc-
tion axioms. (For a precise definition of Robinson’s Q. see [17] p. 28. [26]
p. 4.[29] p. 1680, [30] p. 106). Additional work by Visser allows for further
rounds of comprehension and results in systems mutually interpretable with
Robinson’s Q plus iterations of the consistency statement for this theory,
which are likewise known to be interpretable in other weak arithmetics ([28]
p. 147). In his 2005 book ([3]). Burgess surveys these kinds of developments,
and writes:

[...]1believe that no one working in the area seriously expects to get
very much further in the sequence Q,, while working in predicative
Fregean theories of whatever kind ([3] p. 145).

Here Q,, is the expansion of Robinson’s O by finitely many primitive recur-
sive function symbols and their defining equations along with induction for
bounded formulas ([3] pp. 60-63), so that Burgess records the prediction
that predicative Fregean theories will be interpretable in weak arithmetics.

The main result of this paper suggests that this prediction was wrong, and
that predicative Fregean theories can interpret strong theories of arithmetic
(cf. Theorem 3.2). While we turn presently to developing the definitions
needed to precisely state this result, let us say by way of anticipation that
part of the idea is to work both with (i) an expanded notion of a “Fregean
theory,” so that it includes several abstraction principles, such as Basic
Law V, in addition to Hume’s Principle, and (ii) an expanded notion of
“predicativity,” in which one allows some controlled instances of higher-
order quantifiers within the comprehension schema (1.2). Hence, of course,
it might be that Burgess and others had merely conjectured that predicative
Fregean theories in a more limited sense were comparatively weak.

This paper is part of a series of three papers, the other two being [31]
and [32]. These papers collectively constitute a sequel to our paper [29],
particularly as it concerns the methods and components related to Basic
Law V. In that earlier paper, we showed that Hume’s Principle (1.1) with
predicative comprehension did not interpret second-order Peano arithmetic
with predicative comprehension (cf. [29] p. 1704). Hence at the outset of
that paper, we said that “in this specific sense there is no predicative version
of Frege’s Theorem™ ([29] p. 1679). The main result of this present paper
(cf. Theorem 3.2) is that when we enlarge the theory to a more inclusive
class of abstraction principles containing Basic Law V, we do in fact succeed
in recovering arithmetic.

This paper depends on [31] only in that the consistency of the predicative
Fregean theory which we study here was established in that earlier paper
(cf. discussion at close of next section). In the paper [32], we focus on
embedding the system of the Grundgesetze into a system of intensional
logic. The alternative perspective of [32] then suggests viewing the consistent
fragments of the Grundgesetze as a species of intensional logic, as opposed
to an instance of an abstraction principle.

This paper is organized as follows. In §2 we set out the definitions of the
predicative Fregean theory. In §3 it is shown how this predicative Fregean
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theory can recover full second-order Peano arithmetic. In §4 it is noted that
some theories which are conceptually proximate to the predicative Fregean
theory are nonetheless inconsistent.

§2. Defining a theory of abstraction with predicative comprehension. The
predicative Fregean theory with which we work in this paper is devel-
oped within the framework of second-order logic. The language L, of the
background second-order logic is an w-sorted system with sorts for first-
order entities, unary second-order entities, binary second-order entities etc.
Further, following the Fregean tradition, the first-order entities are called
objects, the unary second-order entities are called concepts, and the n-ary
second-order entities for n > 1 are called n-ary concepts. Rather than
introducing any primitive notation for the different sorts, we rather employ
the convention of using distinctive variables for each sort: objects are writ-
ten with lower-case Roman letters x, y,z.a.b.c..., concepts are written
with upper-case Roman letters X, Y. Z 4.B.C,F. G, H, U,..., n-ary con-
cepts for n > 1 are written with the upper case Roman letters R. S, T,
and n-ary concepts are written with the Roman letters f, g, # when they are
graphs of functions.

Besides the sorts, the other basic primitive of the signature of the back-
ground second-order logic L are the predication relations. One writes Xa
to indicate that object a has property or concept X. Likewise, there are
predication relations for n-ary concepts, which we write as R(ay, ..., a,).
The final element of the signature L, of the background second-order
logic are the projection symbols. The basic idea is that one wants, prim-
itive in the signature L(, a way to move from the binary concept R and
the object a to its projection R[a] = {b : R(a.b)}. We assume that
the signature L, of the background second-order logic is equipped with
symbols (R.ay,....a,) — Rlai.....a,] from (m+n)-ary concepts R and
an m-tuple of objects (ay.....a,) to an n-ary concept Rlay.....a,] =
{(by,....by) : R(ay,....am.by.....b,)}. Further, typically in what fol-
lows we avail ourselves of the tuple notation @ = ay., ..., a, and thus write
predication and projection more succinctly as R(a@) and R[a], respectively.

All this in place, we can then formally define the signature L, of the
background second-order logic as follows:

DErINITION 2.1, The signature Ly of the background second-order logic
is a many-sorted signature which contains (i) a sort for objects and for each
n > 1 asort for n-ary concepts, (ii) foreachn > 1, an (n+1)-ary predication
relation symbol R(ay, ..., a,) which holds between an n-ary concept R and
an n-tuple of objects ay., ..., a,. and (iii) for each n,m > 1, an (m + 1)-
ary projection function symbol (R.ay,...,a,) — Rlai.....a,] from an
(m + n)-ary concept R and an m-tuple of objects (aj.....a,) to an n-ary
concept Rlay,....a,].

As is usual in many-sorted signatures, we adopt the convention that each
sort has its own identity symbol, so that technically cross-sortal identities
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are not well-formed. But we continue to write all identities with the usual
symbol “=" for the ease of readability.

The expansions of second-order logic with which we work are designed to
handle abstraction principles (1.3). Hence, suppose that L is an expansion of
L. Suppose that E(R, S) is an L-formula with two free n-ary relation vari-
ables for some n > 1, with all free variables of E (R, S) explicitly displayed.
Then we may expand L to a signature L[0f] which contains a new function
symbol 8z which takes n-ary concepts R and returns the object Oz (R). Then
the following axiom, called the abstraction principle associated to E., is an
L[Of]-sentence:

A[E]: VY R.S (8z(R) = 8;(S) <+ E(R.S)). (2.1)

This generalizes the notion of an abstraction principle (1.3) described in the
previous section in that the domain of the operator 9 can be n-ary concepts
for any specificn > 1.

This generalization is warranted by several key examples, such as that of
ordinals. Let R be a binary concept and let Field(R) be the unary concept
F such that Fx iff there is a y such that Rxy or Ryx. Then consider the
following formula E (R, S) on binary concepts:

[(Field(R), R) &= wo V (Field(S), S) E wo] — (2.2)
Jisomorphism f : (Field(R). R) — (Field(S).S).

In this, “wo” denotes the natural sentence in the signature of second-order
logic which says that a binary concept is a well-order, i.e., a linear order such
that every nonempty subconcept of its domain has a least element. It’s not
too difficult to see that E (R, S) is an equivalence relation on binary concepts,
and that two well-orders will be E-equivalent if and only if they are order-
isomorphic. Just as the Russell paradox shows that Basic Law V (1.4) is
inconsistent with the full comprehension schema, so one can use the Burali-
Forti paradox to show that A[E] for this E in equation (2.2) is inconsistent
with the full comprehension schema (cf. [21] p. 138 footnote, [2] pp. 214.
311). To handle these abstraction principles we need to adopt restrictions
on the comprehension schema, to which we presently turn.

There are three traditional predicative varieties of the comprehension
schema: the first-order comprehension schema, the Al-comprehension
schema, and the X}-choice schema (cf. [26] VIL.5-6, [29] Definition 5
p. 1683). However, to make the comparison with the full comprehension
schema (1.2) precise, we should restate it to include not only concepts but 7-
ary concepts for all » > 1 and to indicate its explicit dependence on a
signature:

DEerFINITION 2.2. Suppose that L is an expansion of Ly. Then the Full
Comprehension Schema for L-formulas consists of all axioms of the form
ARV a (Ra < ¢(a)). wherein ¢ (X) is an L-formula, perhaps with param-
eters, and X abbreviates (x;....,x,) and R is an n-ary concept variable
for n > 1 that does not appear free in ¢ (X).
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The most restrictive predicative version of the comprehension schema is then
the following, where the idea is that no higher-order quantifiers are allowed
in the formulas:

DErINITION 2.3. Suppose that L is an expansion of L. The First-Order
Comprehension Schema for L-formulas consists of all axioms of the form
dRVa (Ra < ¢(a)). wherein ¢(X) is an L-formula with no second-order

quantifiers but perhaps with parameters, and X abbreviates (xi,...,x,)
and R is an n-ary concept variable for n» > 1 that does not appear free
in o(x).

A more liberal version of the comprehension schema is the so-called A}-
comprehension schema. A El-formula (resp. IT}-formula) is one which
begins with a block of existential quantifiers (resp. universal quantifiers)
over n-ary concepts for various n > 1 and which contains no further
second-order quantifiers. One then defines:

DEFINITION 2.4. Suppose that L is an expansion of Lo. Then the Al-
Comprehension Schema for L-formulas consists of all axioms of the form

VX o) < w(x) -3IRVa (Ra <+ ¢(a)), (2.3)

wherein ¢ (X) is a Zl-formula in the signature of L and y(¥) is a ITi-
formula in the signature of L that may contain parameters, and X abbrevi-
ates (x1.....x,), and R is an n-ary concept variable for n > 1 that does not
appear free in ¢ (X) or y (X).

Finally, traditionally one also includes amongst the predicative systems the
following choice principle:

DEFINITION 2.5. Suppose that L is an expansion of L. The X{-Choice
Schema for L-formulas consists of all axioms of the form

VX3 R o(R.%)] = 3 R [V o(R[X].%)]. (2.4)
wherein the L-formula ¢ (R’, X) is !, perhaps with parameters, and X abbre-
viates (x1.....x,,) and R is an (m + n)-ary concept variable for n,m > 1

that does not appear free in ¢ (R’, X) where R’ is an n-ary concept variable.

The X{-Choice Schema and the First-Order Comprehension Schema
together imply the Al-Comprehension Schema (cf. [26] Theorem V.8.3
pp. 205-206, [29] Proposition 6 p. 1683). Hence, even if one’s primary inter-
est is in the latter schema, typically theories are axiomatized with the two
former schemas since they are deductively stronger, and that is how we
proceed in this paper.

To the signature L of the weak background second-order logic, we want
to associate a certain weak background L(-theory. Some of the axioms of this
background theory axiomatize the behavior of the predication symbols and
the projection symbols. For each m > 1, one has the following extensionality
axiom, wherein R, S are m-ary concept variables and ¢ = ay,....a, are
object variables:

VR.S[R=S ¢ (Va (R@) < S(@))] (2.5)
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But it should be noted that some authors don’t explicitly include the identity
symbol for concepts or higher-order entities and simply take it as an abbre-
viation for coextensionality (cf. [26] pp. 2-3. [3] pp. 14-15). Second. for each
n,m > 1, one has the following projection axioms governing the behavior
of the projection symbols, wherein R is an (m+n)-ary concept variable and
a=ay.....an.b=D0b, ... b,areobject variables:

VY RV a.b [(R[a])(b) <> R(a.b)]. (2.6)

Finally, with all this in place, we can define the weak background theory of
second-order logic:

DEFINITION 2.6. The weak background theory of second-order logic £1-0S
is Lo-theory consisting of (i) the extensionality axioms (2.5) and the projec-
tion axioms (2.6) and (ii) the X!-Choice Schema for Ly-formulas (Defini-
tion 2.5) and (iii) the First-Order Comprehension Schema for Ly-formulas
(Definition 2.3).

In the theory £i-0S and its extensions, we use standard abbreviations for
various operations on concepts, for instance X N Y = {z : Xz & Yz} and
{x}={z:z=x}and X x Y ={(x,y) : Xx & Yy}and ) = {x : x # x}.
In general, we use {x : ®(x)} as an abbreviation for the concept F such that
Fx iff ®(x). assuming that ®(x) is a formula which falls under one of the
comprehension principles available in the theory in which we are working.

This weak background theory x1-08 of second-order logic is used to define
the following Fregean theory at issue in this paper. If E(R.S) is an Lo-
formula with two free ng-ary concept variables and no further free variables,
then we let Equiv(E) abbreviate the Lo-sentence expressive of E being an
equivalence relation on ng-ary concepts, i.e., the universal closure of the
following, wherein R, S, T are ng-ary concept variables:

[E(R.R) & (E(R.S) = E(S,R)) &
((E(R.S)& E(S.T)) - E(R.T))]. (2.7)

Then consider the following collection of Lj-formulas which consists of all
the Lo-formulas E(R,S) with two free ng-ary concept variables and no
further free variables such that £}-0S proves Equiv(E):

ProvEquiv(Ly) = {E(R. S) is an L, formula : £1-0S - Equiv(E)}. (2.8)
Then define the following expansion of L; of Ly:

DEFINITION 2.7. Let L; consist of the expansion of the signature L (2.1)
by a new function symbol 9 from ng-ary concepts to objects for each E
from ProvEquiv(L) (2.8).

Then we define the predicative theory as follows:

DerINITION 2.8. The predicative Fregean theory, abbreviated PFT, is the
L-theory consisting of (i) the extensionality axioms (2.5) and the projection
axioms (2.6) and (ii) the X}-Choice Schema for L;-formulas (Definition 2.5)

https://doi.org/10.1017/bsl.2015.39 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2015.39

112 SEAN WALSH

and (iii) the First-Order Comprehension Schema for L;-formulas (Defini-
tion 2.3), and (iv) the abstraction principle A[E] (2.1) for each E from
ProvEquiv(Lg) (2.8).

Hence. the theory PFT is a recursively enumerable theory in a recursively
enumerable signature L;. If one desired a recursive signature, one could
alternatively define L; to consist of function symbols 9 from ng-ary con-
cepts to objects for each Lo-formula E. regardless of whether it was in
ProvEquiv(Lgy) (2.8). This is because clause (iv) in Definition 2.8 only
includes the abstraction principle A[E] (2.1) when the formula E is in fact
in the set ProvEquiv(Lg) (2.8).

While this definition is technically precise, the niceties ought not obscure
the intuitiveness of the motivating idea. For, the idea behind this predica-
tive Fregean theory is that it conjoins traditional predicative constraints on
comprehension together with the idea that abstraction principles associated
to certain Ly-formulae are always available. More capaciously: if we start
from weak background theory of second-order logic £}-08 and if we can
prove in this theory that an Lo-formula E(R,S) in the signature of this
weak background logic is an equivalence relation on ng-ary concepts for
some ng > 1, then the predicative Fregean theory PFT includes the abstrac-
tion principle A[E] (2.1) associated to E. Hence the theory PFT includes the
abstraction principles associated to number, extension, and ordinal, namely
Hume’s Principle (1.1), Basic Law V (1.4) and the abstraction principle
associated to ordinals (cf. (2.2) above).

One of the aims of the earlier paper [31] was to establish the following:

THEOREM 2.9. The theory PFT is consistent.

ProoF. Let Ey,....E,, ... enumerate the elements of the collection
ProvEquiv(L,) from equation (2.8). By compactness, it suffices to estab-
lish, for each n > 1, the consistency of the subsystem of PFT which is formed
by restricting part (iv) of the Definition of PFT to the abstraction principles
A[E1], ..., A[E,]. But then this theory is a subtheory of the theory which, in
the paper [31], we called £} —[E;, ..., E,]A 4+ SO + GC. The consistency of this
theory was established in the Joint Consistency Theorem of that paper. -

§3. Interpreting second-order arithmetic in the theory. While the pred-
icative Fregean Theory only explicitly includes predicative instances of the
comprehension schema for Ly-formulas, surprisingly it is able to deductively
recover all instances of the Full Comprehension Schema for L-formulas.

THEOREM 3.1. PFT proves each instance of the Full Comprehension Schema
for Lo-formulas.

Proor. Let ®(x, G) be an Lo-formula with all free variables displayed,
wherein x is an object variable and G is a unary concept variable. Let us
first show that PFT proves the following instance of the Full Comprehension
Schema for Ly-formulas (Definition 2.2):

YGIFVYx (Fx < 0 G)). (3.1)

https://doi.org/10.1017/bsl.2015.39 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2015.39

THE STRENGTH OF ABSTRACTION WITH PREDICATIVE COMPREHENSION 113

After we finish the proof of this instance, we’ll comment on how to establish
the general case.

First consider the following Lo-formulas u(R.S).v(R.S) with all free
variables displayed, where R, S are binary concept variables:

(R, S)=[3!'x,GwithR={x} x G] &[I! y. H with S = {y} x H]
&V x,G.y. H[(R={x}xG &S ={y} xH)
= (®(x. G) < @(y. H))].
V(R,S)=-[3!x,GwithR={x} x Gl & —[3!y, H with S = {y} x H].

In this, the identity R = {x} x G is an abbreviation for the claim that
Vab (R(ab) < ((a =x) & Gb)). (3.2)

Hence, u(R, S) expresses that R can be written uniquely as {x } x G for some
x, G, while S can be written uniquely as {y} x H for some y, H, and that
®(x, G) +» ®©(y, H). The circumstance in which a binary relation R can be
written as {x} x G but not uniquely so is when G is empty, since in this case
{x} x G = {x'} x G for any objects x, x". Finally, consider the following
Lo-formula E(R,S) where again R, S are binary concept variables and all
free variables are displayed:

E(R.S) = (u(R.S) Vv(R.S)). (3.3)

The weak background theory £}-0S proves that E(R, S) is an equivalence
relation on binary concepts. For reflexivity, either R can be written uniquely
as {x} x G for some x, G, or not. If so, then one trivially has ®(x, G) +
®(x, G). This then implies u(R, R) and so E(R. R). If not. then of course
v(R, R) and so E (R, R). For symmetry, it simply suffices to note that both u
and v are symmetric in that (R, S) implies #(S. R) and likewise for v. For
transitivity, suppose that E(R.S) and E(S. T'). Because of the disjunctive
definition of E in (3.3), there are three cases to consider. First suppose
that (R, S) and (S, T'). Then we may uniquely write R = {x} x G, S =
{y}xH, T ={z}xI,andfrom®(x, G) <> ©(y, H)and ©(y, H) <> O(z, 1)
we may conclude that ®(x, G) <+ ®(z.I). Hence we then have u(R.T)
and thus E(R, T). Second suppose that v(R,S) and v(S, T'). These two
assumptions imply that we can’t write any of R, S, T uniquely as the product
of a singleton and a unary concept, and hence that v(R, T) and E(R, T).
Finally, suppose that #(R, S) and v(S. T') (or vice-versa). But this case leads
to a contradiction, since u(R, S) implies that we can write S uniquely as
the product of a singleton and a unary concept, while v(S, T') says that we
can’t. Hence E(R, S) is indeed an equivalence relation on binary concepts,
and provably so in the weak background theory xi-0S.

Then the Lo-formula E(R,S) is in the set ProvEquiv(Lg) (2.8). Hence
the theory PFT contains the abstraction principle A[E] (2.1). Before we
verify (3.1), let us introduce another abstraction principle. Consider the
following Lo-formulas x'(X. Y).v'(X, Y) with all free variables displayed.
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where X, Y are unary concept variables:
WX Y)=3x3y X ={x} &Y ={y} & (®(x.0) < O(».0)).
VX ¥) =@ x X ={x}) &3y ¥ = {}).

Then consider the following Lo-formula E’(X.Y) where again X, Y are
unary concept variables and all free variables are displayed:

E'X,Y)=W(X. Y)VV(X.Y)). (3.4)

By the same argument as the previous paragraph, £1-0S proves that E/(X, )
is an equivalence relation unary concepts. So the theory PFT contains the
abstraction principle A[E’] (2.1)

Now, working in PFT, let us verify (3.1). There are three cases. First
suppose that there is no xo with ®(xo, G). Then to establish (3.1) one can
take F = ().

As a second case, suppose that there is a xq with ®(x, G) and that G is
nonempty. Then observe that the graph of the function f (x) = 0 ({x} x G)
has both a £!- and a IT}-definition:

f(x)=y < 3IR(NVabR(ab) (a=x&Gb) &0 (R)=1y
<VRWNabR(a.b)+ (a=x&Gh)) = 0g(R)=1y. (3.5)

These are equivalent because we can use the First-Order Comprehension
Schema for L;-formulas to secure that the binary relation R = {x} X
G exists. Hence by the Al-Comprehension Schema for L;-formulas, the
equivalence in (3.5) implies that the graph of f exists as a binary concept.
Then by First-Order Comprehension Schema for L;-formulas, the following
unary concept exists:

F={x:f(x)=08({x}xG)}. (3.6)

Now let’s argue that F = {x : ®(x, G)}. First suppose that Fx. Then
f(x) = 0g({x0} x G) and hence 8 ({x} x G) = d({xo} x G). Then
E({x} x G,{x0} x G) and since G is nonempty we have u({x} x G, {xo} x
G). Then ®(x.G) < ®(xg. G). Since we're assuming that ®(xy. G), we
then conclude that ®(x, G), which is what we wanted to show. For the
converse, suppose that ®(x, G). Since we’re assuming that ®(xy. G) and
that G is nonempty we may conclude that u({x} x G,{x¢} x G) and thus
E({x} x G, {x0} x G) and O ({x} x G) = O ({xo} x G). By the definition
of f, we then have f(x) = 0r({xo} x G) which by the definition of F
implies that Fx, which is what we wanted to show.

As a third case, suppose that there is an xo with ®(xo, G) but that G itself
is empty. Then we argue as before that the graph of g(x) = 9g/({x}) exists
as a binary concept, that F = {x : g(x) = 9 ({x0})} exists as a unary
concept, and that F = {x : ®(x, G)}.

This finishes the proof of (3.1) in PFT. The proof of the general case of
the Full Comprehension Schema for Lo-formulas (Definition 2.2) differs
only in that unary concept variable F from (3.1) might instead be an n-ary
concept variable and there may be more than one concept parameter G,
as well as some additional object parameters. But the proof of this general
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case is directly analogous to the proof of (3.1). The only difference is that
the number of abstraction principles used in the proof will increase with the
number of concept parameters. In general if there are m-concept parameters
Gi...., Gy, then there will be 2" different abstraction principles used in the
proof, since one must consider a case corresponding to the finite binary
sequence (ij....,i,). wherein i, = 0 indicates that G, is empty, and i; = 1
indicates that Gy is nonempty. -

Before turning to the proof that PFT interprets second-order Peano arith-
metic, let’s briefly note that in the consistency proof from [31] invoked in
the proof of Theorem 2.9, we explicitly verified the Full Comprehension
Schema for Lo-formulas. (In the language of that paper, these were part of
the theory S0. and the interested reader may consult the proof of the Joint
Consistency Theorem in that paper).

While the theory PFT only explicitly includes some instances of the Full
Comprehension Schema for Lo-formulas in its definition (cf. Definition 2.8),
the previous theorem says that it proves all of them. However, even in this
predicative setting, the Russell paradox can be used to show that there is
no concept consisting of the extensions, i.e., the range of the extension
operator 0 from Basic Law V (1.4). For a proof, see [29] Proposition 29 p.
1692. Now the formula rng(9) is definable by a X!-formula of the signature
Ly[0]. Further Ly[0] is included in the signature L; of PFT. Hence, since
the L;-theory PFT is consistent by Theorem 2.9, it follows that PFT does not
prove all instances of the Full Comprehension Schema for L;-formulas.

This kind of situation is of course not entirely unfamiliar. For instance,
Presburger arithmetic yields a complete axiomatization of the structure
(Z.0,1+4, <) (cf. Marker [24] pp. 82 fT). So this axiomatization proves each
instance of the following induction schema in the signature L = {0, 1, +, <}:

[p(0) &V x >0 (¢(x) = p(x +1)))] = [Vx = 0p(0)]. (3.7)

Consider a nonstandard model G = (G, 0. 1, +, <) of Presburger arithmetic,
and extend L to L’ by adding a new unary predicate Z which is interpreted
on G as the integers Z. Then of course the axioms of Presburger arithmetic
do not imply all instances of the schema (3.7) in the expanded signature
L’. So of course it’s consistent for there to be a schema and an L’-theory
and a subsignature L of L’ such that the theory proves all instances of the
L-schema but not every instance of the L’-schema.

Now let’s show that PFT interprets second-order Peano arithmetic PA”.
These axioms are the natural set of axioms used to describe the standard
model of second-order arithmetic; see [26] p. 4 or [29] p. 1680 or [30] p. 106
for an explicit list of these axioms.

THEOREM 3.2. The predicative Fregean theory PFT interprets second-order
Peano arithmetic PA.

Proor. First note that the predicative Fregean theory PFT proves the
existence of the graph of the function s(x) = d({x}) (cf. [29] Proposi-
tion 27 p. 1691), where this is the abstraction operator associated to Basic
Law V (1.4). For, note that in PFT, for all objects x, y, one has that the
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following =!-condition and IT}-conditions are equivalent:
BXX={x}&0X)=y)|< VX (X ={x}—>0X=y)]. (3.8)

By the Al-Comprehension Schema for L;-formulas, there is then a binary
relation which holds of objects x, y iff either the E}-condition holds or the
I1}-condition holds. And this binary relation is obviously the graph of the
function s(x) = d({x}).

Let M be {x : x = x}, which exists by Full Comprehension for Lg-
formulas, and let 0 = A(0). Then one has that the triple (M, 0, s) satisfies
the first two axioms of Robinson’s Q:

Vxs(x)#0, Vx.y(s(x)=s(y) = x=y). (3.9)

For, suppose that s(x) = 0. Then 8({x}) = () and then by Basic
Law V (1.4) one has that {x} = (. a contradiction. Similarly, suppose
that s(x) = s(»). Then 8({x}) = 8({y}) and so by Basic Law V (1.4) one
has that {x} = {y} and hence x = y. Thus (3.9) follows immediately from
Basic Law V (1.4).

But then standard arguments allow one to interpret second-order Peano
arithmetic PA? by taking the natural numbers N to be the sub-concept of M
consisting of all those subconcepts of M which are “inductive,” that is which
contain zero and closed under successor. Here of course for the existence of
N and the verification of the other axioms of arithmetic, one appeals to the
Full Comprehension Schema for Ly-formulas, using M, 0, s as parameters
(cf. [29] Theorem 16 p. 1688). =

84. The fragility of abstraction with predicative comprehension. However,
in spite of its technical strength, the conceptual basis of the predicative
Fregean theory PFT is rather fragile. For, the Li-theory PFT was formed by
adding the abstraction principle A[ E] associated to the Ly-formulas E (R, S)
when this formula could be proven to be an equivalence relation in the
background second-order logic £1-0S. But one cannot successively iterate
this idea. For, suppose that in analogue to ProvEquiv(Lg) in equation (2.8).
one defines:

ProvEquiv(L;) = {E(R, S)isan L formula : PFT I Equiv(E)}. (4.1)

And further suppose that one defines L, to be the expansion of L; by
the addition of a function symbol 9z from ng-ary concepts to objects for
each L|-formula E(R.S) in ProvEquiv(L,). Finally, suppose one defines
the following iteration of PFT (cf. Definition 2.8):

DerFINITION 4.1. The theory PFT, is the L,-theory consisting of (i)
the extensionality axioms (2.5) and the projection axioms (2.6) and (ii)
the =l-Choice Schema for L,-formulas (Definition 2.5) and (iii) the
First-Order Comprehension Schema for L,-formulas (Definition 2.3),
and (iv) the abstraction principle A[E] (2.1) for each E which is from
ProvEquiv(Lg) (2.8) or from ProvEquiv(L;) (4.1).

Then the same argument as in the proof of Theorem 3.1 establishes that PFT,
proves each instance of the Full Comprehension Schema for L-formulas.
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But then PFT, is inconsistent, since on pain of the Russell paradox there
is no concept of all extensions (cf. [29] Proposition 29 p. 1692). where
again the extensions are the range of the abstraction operator 9 associated
to Basic Law V (1.4). Hence, while the predicative Fregean theory PFT is
consistent, when one tries to iterate its underlying idea of adding abstraction
principles when their equivalence relations can be proven to be equivalence
relations, one again runs up against the Russell paradox. This indicates that
the resource of abstraction principles in the predicative setting is unlike that
of typed theories of truth or second-order logic, which we may consistently
add to any consistent theory.

This point is underscored when one observes that the same considera-
tions show the inconsistency of an axiom-based analogue of the rule-based
predicative Fregean theory PFT. In particular, suppose that we recursively
defined a signature L* extending Lg so that if E(R,S) is an L*-formula in
exactly two free ng-ary concept variables then L* also contains a function
symbol 0 which takes ng-ary concepts to objects and which does not occur
in E£. One could then define the following L*-theory:

DEFINITION 4.2. The theory PFT* is the L*-theory consisting of (i) the
extensionality axioms (2.5) and the projection axioms (2.6) and (ii) the Z}-
Choice Schema for L*-formulas (Definition 2.5) and (iii) the First-Order
Comprehension Schema for L*-formulas (Definition 2.3), and (iv) the
axiom Equiv(E) — A[E] for each L*-formula E.

In this, Equiv(E) is the sentence which says that E is an equivalence relation
(cf. (2.7)) and A[E] is the abstraction principle (2.1), so that the axiom
Equiv(E) — A[E] says that if E is an equivalence relation, then A[E]holds.
The considerations of the previous paragraphs can be replicated in this
theory PFT*, showing it to be inconsistent. However, the conceptual distance
between the inconsistent L*-theory PFT* and the consistent L;-theory PFT is
rather slim. The difference is merely a difference between a rule and an axiom:
whereas the rule-based PFT only includes an abstraction principle when the
underlying equivalence relation is expressible in the weak background logic
and is provably an equivalence relation there, the axiom-based PFT* includes
a commitment to either the truth of the abstraction principle or the falsity
of its underlying formula being an equivalence relation.

In response to this, one might try to restrain the predicative Fregean
theory PFT so that the analogously defined iterated version of it and the
analogously defined axiom-based version of it were consistent. For instance,
one might consider restricting the abstraction principles added to the theory
PFT to those whose underlying equivalence relation was expressible both
as a Xi-formula and a I1}-formula in the background second-order logic.
This, it might be suggested, would be a genuinely predicative theory of
abstraction principles. Such a move would block the proof of Theorem 3.1.
For, the equivalence relation E (R, S) (3.3) used in that proofis not obviously
expressible in such a way. However, it is unknown to us how much arithmetic
this more austerely predicative theory could interpret, and it is not obvious
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to us whether the analogously defined iterated version of it (or axiom-based
version of it) is consistent.

Another way forward might be to find some principled way to focus atten-
tion on abstraction principles which are somehow more like the paradigmatic
Basic Law V (1.4) and Hume’s Principle (1.1) and the abstraction principle
associated to ordinals (2.2), and somehow less like the seemingly ad-hoc
abstraction principles constructed in the proof of Theorem 3.1. But to do so
would be to lose some of the original motivation for focusing on predicative
abstraction principles. For, part of the attraction was supposed to be that
more abstraction principles became consistent and jointly consistent. And
indeed, as the predicative Fregean Theory PFT attests, a good deal of joint
consistency is available in this setting. Hence in the earlier paper [31] we
said that we had resolved an analogue of the joint consistency problem.
But as we have seen in this section, when we try to iterate the underlying
idea of abstraction principles in the predicative setting, we again run into
inconsistency and seem back in the situation of trying to discern ways to
weed out the acceptable from the unacceptable abstraction principles. For
an overview of the various candidates for acceptable abstraction principles
in the general impredicative setting, see [23] or [5].

Perhaps another way forward might be to give up on the idea of abstrac-
tion principles altogether and find principled reasons for studying systems
centered around either Basic Law V (1.4) itself or Hume’s Principle (1.1)
itself or the abstraction principle associated to ordinals (2.2) all by itself.
With respect to Basic Law V (1.4), this is the perspective of [32]. where the
idea is to work within an intensional logic and see the extension operator
as selecting a sense for each concept, just like we might select a specific
Turing machine index for each computable function. But much remains
unknown about the individual abstraction principles at the predicative level.
For instance, it is to our knowledge unknown whether Basic Law V (1.4)
or the abstraction principle associated to ordinals (2.2), equipped with the
X!-choice schema and the First-Order Comprehension Schema, interprets
the analogous predicative versions of arithmetic (cf. [29] p. 1707). In this
paper, the idea for interpreting arithmetic was to collect together all the
predicative abstraction principles so that they could effect the interpretation
together, and it is in general unclear to us what happens when one focuses
on the abstraction principles one by one.
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