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Abstract We investigate a system of singular–degenerate parabolic equations with non-local terms,
which can be regarded as a spatially heterogeneous competition model of Lotka–Volterra type. Applying
the Leray–Schauder fixed-point theorem, we establish the existence of coexistence periodic solutions to
the problem, which, together with the existing literature, gives a complete picture for such a system for
all parameters.
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1. Introduction

This paper is concerned with the system

Lm,p[u] = up−1
(

a(x, t) −
∫

Ω

K1(ξ, t)u2(ξ, t − τ1) dξ −
∫

Ω

K2(ξ, t)v2(ξ, t − τ2) dξ

)
,

Ln,q[v] = vq−1
(

b(x, t) −
∫

Ω

K3(ξ, t)u2(ξ, t − τ3) dξ −
∫

Ω

K4(ξ, t)v2(ξ, t − τ4) dξ

)
⎫⎪⎪⎬
⎪⎪⎭

(1.1)
in Q = Ω × R, under Dirichlet boundary conditions

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × R, (1.2)
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and periodic conditions

u(x, t + ω) = u(x, t), v(x, t + ω) = v(x, t), (x, t) ∈ Q, (1.3)

where Ω is a bounded domain in RN (N � 1) with smooth boundary ∂Ω, ω > 0, τi ∈
(0,∞), i = 1, . . . , 4, the functions Ki, a, b : Ω × R → R are ω-periodic with respect to
time t, p, q ∈ (1, 2), m > 1, n > 1, and Ls,r is the nonlinear operator defined by

Ls,r[w] =
∂w

∂t
− div(|∇ws|r−2∇ws).

The system (1.1), (1.2) models the interactions between two competition species, with
population densities u(x, t) and v(x, t), inhabiting the region Ω. We are therefore only
interested in non-negative solutions u � 0, v � 0. Moreover, we are assuming that Ω is
fully surrounded by a lethal environment, because both population densities are subject
to homogeneous Dirichlet boundary conditions. For a detailed description of the model,
we refer readers to [12] and the references therein.

In recent years, coexistence solutions, namely those solutions (u, v) with u � 0, v � 0,
have received considerable attention. Most of the works in the earlier literature were
devoted to studying the linear diffusion case: that is, m = n = 1, p = q = 2 (see, for
example, [1,7,13,16,20,21]). We also mention that, as a special case, the coexistence
steady state for biological community system has also been investigated in some refer-
ences: see [3,5,6,8,18]. The biological background makes it very interesting to study the
coexistence periodic solutions of a nonlinear diffusion system of the same type as (1.1).
In this respect, the case with double degeneracy, that is, m, n > 1, p, q > 2, has been dis-
cussed extensively: see [2,9–11,23] and the references therein. For the case with gradient
singularity, that is, 1 < p, q < 2, it was Fragnelli et al . who established the existence of
coexistence periodic solutions to the problem (1.1)–(1.3) in the case of m > p, n > q, by
applying the theory of Leray–Schauder degree (see [12]).

The aim of this paper is to supplement the existing results with the case with gradient
singularity. More specifically, concerning the existence of coexistence periodic solutions,
the results in [12] together with our results will give a complete picture of the system
(1.1)–(1.3) for all 1 < p, q < 2, m > 1, n > 1. In fact, the theory of topological degree
has been used to deal with the case 1 < p, q < 2, m > p, n > q in [12], but it is difficult
to apply this method to the general case due to the complicated, or even impossible,
calculation of the topological degree. Indeed, in order to obtain the topological degree of
semi-non-trivial solutions such as (u, 0) and (0, v) to the approximate problem of (1.1)–
(1.3), some estimates on the gradient of convenient powers of the solution are involved,
and the technical restriction m > p, n > q is therefore imposed in [12] (see Proposition 2.3
and Lemma 2.4 therein). To overcome these difficulties, we apply the Leray–Schauder
fixed-point theorem and propose a different approximate problem from which we are able
to obtain the crucial a priori lower-bound estimates.

The paper is organized as follows. In § 2 we introduce some necessary preliminaries and
give the statement of our main result. Section 3 is devoted to proofs of our main result.
More precisely, first we prove the existence of coexistence solution (uε, vε) for a suitable
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approximation of problem (1.1)–(1.3), which has a lower bound that is independent of ε,
by using the Leray–Schauder fixed-point theorem; and then, by applying the compactness
and monotonicity arguments, we perform some a priori estimates that allow us to pass
to the limit.

2. Preliminaries and our main result

Throughout this paper Cω(Q̄ω) denotes the set of functions that are continuous in Ω̄ × R

and are ω-periodic with respect to t, and BR is a ball centred at the origin with radius
R in L∞(Qω). We assume that a(x, t), b(x, t), Ki(x, t) ∈ Cω(Q̄ω), i = 1, . . . , 4, and

{
x ∈ Ω :

1
ω

∫ ω

0
a(x, t) dt > 0

}
�= ∅,

{
x ∈ Ω :

1
ω

∫ ω

0
b(x, t) dt > 0

}
�= ∅.

Observe that there is no loss of generality if we choose Ki � 0, i = 1, . . . , 4, which
corresponds to the competition case. In fact, all of our results can be easily extended to
the cooperative case of (1.1), provided that L2-estimates of the periodic solutions to a
cooperative model are available.

Due to the singularity or degeneracy of the equations in (1.1), problem (1.1)–(1.3)
might not have classical solutions in general. We therefore consider its weak solutions in
the following sense.

Definition 2.1. A pair of non-negative functions (u, v) defined in Ω × (0, ω) is called
a weak solution of problem (1.1)–(1.3) if u, v ∈ Cω(Q̄ω), um ∈ Lp((0, ω); W 1,p

0 (Ω)),
vn ∈ Lq((0, ω); W 1,q

0 (Ω)) and (u, v) satisfies

0 =
∫∫

Qω

(
−u

∂ϕ

∂t
+ |∇um|p−2∇um∇ϕ − aup−1ϕ

+ up−1ϕ

[ ∫
Ω

K1(ξ, t)u2(ξ, t − τ1) dξ +
∫

Ω

K2(ξ, t)v2(ξ, t − τ2) dξ

])
dxdt

and

0 =
∫∫

Qω

(
−v

∂ϕ

∂t
+ |∇vn|q−2∇vn∇ϕ − bvq−1ϕ

+ vq−1ϕ

[ ∫
Ω

K3(ξ, t)u2(ξ, t − τ3) dξ +
∫

Ω

K4(ξ, t)v2(ξ, t − τ4) dξ

])
dxdt

for any ϕ ∈ C1(Q̄ω) with ϕ(x, 0) = ϕ(x, ω) for x ∈ Ω and ϕ(x, t) = 0 for any (x, t) ∈
∂Ω × [0, ω].

In order to obtain the existence of coexistence solutions for the problem (1.1)–(1.3),
we add some viscosity terms to the degenerate parabolic equation and then consider the
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following regularized problem:

Lm,p
ε [u] = up−1

[
a(x, t) −

∫
Ω

K1(ξ, t)u2(ξ, t − τ1) dξ

−
∫

Ω

K2(ξ, t)v2(ξ, t − τ2) dξ

]
+ ε, (x, t) ∈ Qω,

Ln,q
ε [v] = vq−1

[
b(x, t) −

∫
Ω

K3(ξ, t)u2(ξ, t − τ3) dξ

−
∫

Ω

K4(ξ, t)v2(ξ, t − τ4) dξ

]
+ ε, (x, t) ∈ Qω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω],

u(x, 0) = u(x, ω), v(x, 0) = v(x, ω), x ∈ Ω,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where Lm,p
ε is the nonlinear operator defined by

Lm,p
ε [w] =

∂w

∂t
− ε div(|∇w|p−2∇w) − div(|∇wm|p−2∇wm)

with sufficiently small ε > 0, and Ln,q
ε can be similarly defined. The coexistence solution

(u, v) of problem (1.1)–(1.3) will be obtained as the limit point of the weak solution
(uε, vε) for the problem (2.1), which has a lower bound independent of ε.

In order to apply Leray–Schauder’s fixed-point theorem to obtain the existence of the
coexistence solutions for the problem (2.1), we introduce a map Gε : [0, 1] × Cω(Q̄ω) ×
Cω(Q̄ω) → Cω(Q̄ω) × Cω(Q̄ω) as follows:

(σ, f, g) �→ (uε, vε) = Gε(σ, f, g),

where (uε, vε) is the solution of the following uncoupled periodic problem:

Lm,p
ε [u] = σf, (x, t) ∈ Qω,

Ln,q
ε [v] = σg, (x, t) ∈ Qω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω],

u(x, 0) = u(x, ω), v(x, 0) = v(x, ω), x ∈ Ω.

As pointed out in [12], the operator A : X = Lp(0, ω; W 1,p
0 (Ω) ∩ L2(Ω)) �→ X ′,

Au = ε div(|∇u|p−2∇u) + div(|∇um|p−2∇um)

is hemi-continuous, strictly monotone (and hence pseudo-monotone), coercive and
bounded. The map Gε is therefore well defined (see [26, Theorem 32.D]). Furthermore,
by applying similar methods from [12,27] and the classical regularity results from [14],
one can infer that the map Gε(σ, f, g) is a compact continuous map. Now let

f(u, v) =
[
a(x, t) −

∫
Ω

K1(ξ, t)u2(ξ, t − τ1) dξ −
∫

Ω

K2(ξ, t)v2(ξ, t − τ2) dξ

]
up−1

+ + ε
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and

g(u, v) =
[
b(x, t) −

∫
Ω

K3(ξ, t)u2(ξ, t − τ3) dξ −
∫

Ω

K4(ξ, t)v2(ξ, t − τ4) dξ

]
vq−1
+ + ε,

where u+ = max{u, 0}, v+ = max{v, 0}. It is then observed that if the non-negative
functions uε, vε satisfy (uε, vε) = Gε(1, f(uε, vε), g(uε, vε)), then (uε, vε) is also a non-
negative solution of problem (2.1). The existence of non-negative solutions of problem
(2.1) is therefore equivalent to the existence of the fixed point (uε, vε) of the map (u, v) �→
Gε(1, f(u, v), g(u, v)) with u, v � 0.

Let μk(k = p, q) be the Poincaré constant such that μk‖ϕ‖k
Lk(Ω) � ‖∇ϕ‖k

Lk(Ω) for any
ϕ ∈ W 1,k

0 (Ω). The existence result can then be stated as follows.

Theorem 2.2. Assume that Ki(x, t) � 0 (i = 1, . . . , 4) and Ki(x, t) � ki (i = 2, 3)
for some constants ki > 0. If

{
x ∈ Ω :

1
ω

∫ ω

0
a(x, t) dt − k2|Ω|

(‖b‖L∞(Qω)

μq

)2/((n−1)(q−1))

> 0
}

�= ∅ (2.2)

and
{

x ∈ Ω :
1
ω

∫ ω

0
b(x, t) dt − k3|Ω|

(‖a‖L∞(Qω)

μp

)2/((m−1)(p−1))

> 0
}

�= ∅, (2.3)

then problem (1.1)–(1.3) admits a coexistence solution (u, v) ∈ Cω(Q̄ω) × Cω(Q̄ω).

Comparing this with the related results in [13], conditions (2.2) and (2.3) are both local
in space, which means that the nonlinear diffusion can efficiently improve the coexistence
ability of the biological populations.

3. Proof of the main result

First, we want to prove the existence of a periodic solution (uε, vε) for the regularized
problem (2.1), where (uε, vε) ∈ Cω(Q̄ω) × Cω(Q̄ω), uε, vε > 0 in Qω and ε > 0 is small
enough. To do this, we will apply the fixed-point theorem to obtain the positive fixed
points of the map (u, v) �→ Gε(1, f(u, v), g(u, v)). As necessary preparation for the proof
of Theorem 2.2, we list the following two results.

Lemma 3.1 (Fragnelli et al . [12, Proposition 2.1]). If the non-trivial pair (uε, vε)
solves

(uε, vε) = Gε(σ, f(uε, vε), g(uε, vε))

for some σ ∈ [0, 1], then

uε(x, t) � 0, vε(x, t) � 0 for any (x, t) ∈ Qω.

Moreover, if uε �= 0 or vε �= 0, then uε > 0 or vε > 0 in Qω, respectively.
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Lemma 3.2 (Cirmi and Porzio [4, Lemma 2.2]; Wu et al . [24, Lemma 4.1.1]).
Let ϕ(t) be a non-negative and non-increasing function on [k0, +∞), satisfying

ϕ(h) �
(

M

h − k

)α

[ϕ(k)]β for any h > k � k0

with some constants M > 0, α > 0, β > 1. Then ϕ(k0 + d) = 0 with d =
2β/(β−1)M [ϕ(k0)](β−1)/α.

In order to use the Leray–Schauder fixed-point theorem, we next give an a priori
L∞-estimate on the fixed point of the map Gε(σ, f(·), g(·)) for all σ ∈ [0, 1]. The main
tool is De Giorgi’s iteration, which is different from that in [12].

Lemma 3.3. If (uε, vε) is the solution of (uε, vε) = Gε(σ, f(uε, vε), g(uε, vε)) for some
σ ∈ [0, 1], then there exists a positive constant R independent of σ and ε such that

max{‖uε‖L∞(Qω), ‖vε‖L∞(Qω)} � R. (3.1)

Proof. From Lemma 3.1 it follows that uε � 0, vε � 0. Multiplying the equation

Lm,p
ε [uε] = σup−1

+

[
a(x, t) −

∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1) dξ −

∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2) dξ

]
+ σε

(3.2)
by um

ε and then integrating it over Ω, we have

1
m + 1

d
dt

‖uε(t)‖m+1
m+1 + ‖∇um

ε (t)‖p
p � ‖a‖L∞(Qω)‖uε(t)‖m+p−1

m+p−1 + ε‖uε(t)‖m
m.

By using the Poincaré inequality and the Young inequality, we get

1
m + 1

d
dt

‖uε(t)‖m+1
m+1 + μp|Ω|(1−m(p−1))/(m+1)‖uε(t)‖mp

m+1

� ‖a‖L∞(Qω)|Ω|(2−p)/(m+1)‖uε(t)‖m+p−1
m+1 + ε|Ω|1/(m+1)‖uε(t)‖m

m+1.

Due to the periodicity of uε with respect to time t, there is a t0 ∈ [0, ω] such that
∫

Ω

um+1
ε (t0) dx = sup

t∈[0,ω]
‖uε(t)‖m+1

m+1,

and thus

sup
t∈[0,ω]

‖uε(t)‖m+1 �
(‖a‖L∞(Qω)

μp

)1/((m−1)(p−1))

|Ω|1/(m+1) + h(ε),

where the function h(ε) satisfies limε→0 h(ε) = 0. In particular, we have

sup
t∈[0,ω]

‖uε(t)‖2 �
(‖a‖L∞(Qω)

μp

)1/((m−1)(p−1))

|Ω|1/2 + h(ε)|Ω|(m−1)/(2(m+1)). (3.3)
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By exploiting the similar methods in [12,22], we can easily conclude that for any r > 0
there exists a constant Cr depending only on r, m, p and ‖a‖L∞(Qω) such that

sup
t∈[0,ω]

‖uε(t)‖r � Cr.

Next, we can employ De Giorgi’s iteration to prove (3.1). In fact, multiplying (3.2) by
(uε − k)r

+χ[t1,t2](t) for any k � 1, where χ[t1,t2](t) is the characteristic function of the
interval [t1, t2], and integrating the result over Qω, we have

1
r + 1

∫ t2

t1

d
dt

∫
Ω

(uε − k)r+1
+ dxdt + rmp−1

∫ t2

t1

∫
Ω

(uε − k)r−1
+ |∇u|p dxdt

� ‖a‖L∞(Qω)

∫ t2

t1

∫
Ω

up−1
ε (uε − k)r

+ dxdt + ε

∫ t2

t1

∫
Ω

(uε − k)r
+ dxdt.

Therefore, as in the proof of Theorem 2.2 in [25], by using the Sobolev embedding
theorem, the Young inequality and Lemma 3.2, we can conclude that ‖uε‖L∞(Qω) � R

for some R independent of ε and σ. Analogously, ‖vε‖L∞(Qω) � R, and the proof of this
lemma is therefore complete. �

Corollary 3.4. The map (u, v) �→ Gε(1, f(u, v), g(u, v)) admits at least one fixed
point (uε, vε) with uε, vε � 0.

Proof. It follows from Lemma 3.3 that there exists a positive constant R independent
of σ and ε such that

max{‖uε‖L∞(Qω), ‖vε‖L∞(Qω)} � R,

where (uε, vε) satisfies

(u, v) = Gε(σ, f(u, v), g(u, v)) for some σ ∈ [0, 1].

On the other hand, it is obvious that Gε(0, f(u, v), g(u, v)) = (0, 0). Therefore, by
applying the Leray–Schauder fixed-point theorem, we can get a fixed point of the map
(u, v) �→ Gε(1, f(u, v), g(u, v)). The proof is complete. �

Next, we prove that (uε, vε) obtained in the above corollary has a uniform lower bound
in L∞(Qω) × L∞(Qω), provided that ε is small enough.

Lemma 3.5. Let the assumptions (2.2) and (2.3) in Theorem 2.2 hold. There then
exist positive constants ε0 and r0 such that

‖uε‖L∞(Qω) � r0, ‖vε‖L∞(Qω) � r0

for any fixed point (uε, vε) of the map (u, v) �→ Gε(1, f(u, v), g(u, v)) with ε < ε0.
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Proof. If the lemma were not true, we could without loss of generality assume that
there existed a pair of functions (uε, vε) such that (u, v) = Gε(1, f(u, v), g(u, v)) with
‖vε‖L∞(Qω) < r0. From Lemma 3.1, we have uε(x, t) > 0, vε(x, t) > 0. Moreover, from
inequality (3.3) it follows that

sup
t∈[0,ω]

‖uε(t)‖2
2 � A + H(ε),

where

A =
(‖a‖L∞(Qω)

μp

)2/((m−1)(p−1))

|Ω|

and the non-negative function H(ε) satisfies limε→0 H(ε) = 0.
By the assumption (2.3) in Theorem 2.2, there exist x0 ∈ Ω, δ > 0 and b0 ∈ (0, 1) such

that
1
ω

∫ ω

0
b(x, t) dt − k3A > b0

for all x ∈ Bδ(x0) ⊂ Ω.
For any given φ(x) ∈ C2

0 (Bδ(x0)), we can choose φq/vq−1
ε as a test function. Multiplying

the equation

Ln,q
ε (vε) = vq−1

ε

(
b(x, t) −

∫
Ω

K3(ξ, t)u2
ε(ξ, t − τ3) dξ −

∫
Ω

K4(ξ, t)v2
ε(ξ, t − τ4) dξ

)
+ ε

by φq/vq−1
ε and integrating it over Q∗

ω = Bδ(x0) × (0, ω), we obtain

∫∫
Q∗

ω

φq

vq−1
ε

∂vε

∂t
dt dx +

∫∫
Q∗

ω

(nq−1v(n−1)(q−1)
ε + ε)|∇vε|q−2∇vε∇

(
φq

vq−1
ε

)
dt dx

�
∫∫

Q∗
ω

(
b(x, t) − k3 sup

t∈(0,ω)
‖uε(t)‖2

2 − max
(x,t)∈Qω

K4(x, t)‖vε‖2
L∞(Qω)

)
φq(x) dt dx. (3.4)

By the periodicity of vε, the first term on the left-hand side in (3.4) satisfies

∫∫
Q∗

ω

φq

vq−1
ε

∂vε

∂t
dt dx =

1
2 − q

∫
Bδ(x0)

φq

∫ ω

0

∂(v2−q
ε )
∂t

dt dx = 0. (3.5)

Moreover, since

∇
(

φq

vq−1
ε

)
= qvε

(
φ

vε

)q−1

∇
(

φ

vε

)
+

(
φ

vε

)q

∇vε

= q
vε

φ

(
φ

vε

)q−1[
φ

vε
∇φ −

(
φ

vε

)2

∇vε

]
+

(
φ

vε

)q

∇vε

= q

(
φ

vε

)q−1

∇φ − (q − 1)
(

φ

vε

)q

∇vε,
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we have

|∇vε|q−2∇vε∇
(

φq

vq−1
ε

)
� q

(
φ

vε
|∇vε|

)q−1

|∇φ| − (q − 1)
(

φ

vε

)q

|∇vε|q

=
(

φ

vε

)q

|∇vε|q + q

(
φ

vε
|∇vε|

)q−1(
|∇φ| − φ

vε
|∇vε|

)

� |∇φ|q (3.6)

by the convexity of function |ξ|q for ξ ∈ R.
Combining (3.4) with (3.5) and (3.6) yields
∫∫

Q∗
ω

(
b(x, t) − k3 sup

t∈(0,ω)
‖uε(t)‖2

2 − max
(x,t)∈Qω

K4(x, t)‖vε‖2
L∞(Qω)

)
φq(x) dt dx

�
∫∫

Q∗
ω

(nq−1v(n−1)(q−1)
ε + ε)|∇φ|q dt dx

� ω(nq−1r
(n−1)(q−1)
0 + ε)

∫
Bδ(x0)

|∇φ|q dx. (3.7)

Now, by an approximating process we can let φ = φq, where φq is the eigenfunction
corresponding to the first eigenvalue μ̃q for the eigenvalue problem

− div(|∇φ|q−2∇φ) = μ|φ|q−2φ, x ∈ Bδ(x0),

φ = 0, x ∈ ∂Bδ(x0),

with ‖φq‖Lq(Bδ(x0)) = 1 [15], and (3.7) then becomes

∫∫
Q∗

ω

(
b(x, t) − k3 sup

t∈(0,ω)
‖uε(t)‖2

2 − max
(x,t)∈Qω

K4(x, t)‖vε‖2
L∞(Qω)

)
φq

q(x) dt dx

� ωμ̃q(nq−1r
(n−1)(q−1)
0 + ε).

Therefore, we have

b0 � μ̃q(nq−1r
(n−1)(q−1)
0 + ε) + max

(x,t)∈Qω

K4(x, t)r2
0 + k3H(ε).

Since there is some ε0 > 0 such that μ̃qε + k3H(ε) � 1
2b0 for ε � ε0, we get

1
2b0 � μ̃qn

q−1r
(n−1)(q−1)
0 + max

(x,t)∈Qω

K4(x, t)r2
0,

and thus a contradiction follows provided that the constant r0 is sufficiently small. The
proof of the lemma is complete. �

Now we are ready to prove the main result of our paper.
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Proof of Theorem 2.2. From the results above it follows that (2.1) admits the
coexistence solution (uε, vε) with r0 � ‖uε‖L∞(Qω), ‖vε‖L∞(Qω) � R, where positive
constants r0, R are independent of ε (� ε0). Therefore, due to the periodicity of uε and
vε, applying a rather standard argument similar to that in [11,19], we obtain

∫∫
Qω

|∇um
ε |p dxdt � C,

∫∫
Qω

∣∣∣∣∂um
ε

∂t

∣∣∣∣
2

dxdt � C,

∫∫
Qω

|∇vn
ε |q dxdt � C,

∫∫
Qω

∣∣∣∣∂vn
ε

∂t

∣∣∣∣
2

dxdt � C,

where C is a constant independent of ε. Moreover, by using the regularity results in
[14,17], it follows that there exists a continuous and non-decreasing map g : [0,∞) →
[0,∞), g(0) = 0, such that

|uε(t2, x2) − uε(t1, x1)| � g(|x2 − x1| + |t2 − t1|1/p),

where the map g can be determined in terms of R and is independent of ε. The same
inequality holds for vε. Therefore, using an argument similar to that in [11,12,19], we can
obtain the coexistence solution (u, v) ∈ Cω(Q̄ω)× ∈ Cω(Q̄ω) for the problem (1.1)–(1.3)
as a limit function of (uε, vε). �
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17. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear
degenerate parabolic equations, J. Diff. Eqns 103 (1993), 146–178.
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