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SUMMARY
In this paper, we propose a bioinspired path planning algorithm for finding a high-quality initial solu-
tion based on the pipeline of the Rapidly exploring Random Tree (RRT) method by modifying the
sampling process. The modification mainly includes controlling the sampling space and using the
probabilistic sampling with the two-dimensional Gaussian mixture model. Inspired by the tropism of
plants, we use a Gaussian mixture model to imitate the tree’s growth in nature. In a 2D environment,
we can get an approximate moving point’s probabilistic distribution, and the initial path can be found
much quickly guided by the probabilistic heuristic. At the same time, only a small number of nodes
are generated, which can reduce the memory usage. As a meta-algorithm, it can be applicable to other
RRT methods and the performance of underlying algorithm is improved dramatically. We also prove
that the probabilistic completeness and the asymptotic optimality depend on the original algorithm
(other RRTs). We demonstrate the application of our algorithm in different simulated 2D environ-
ments. On these scenarios, our algorithm outperforms the RRT and the RRT* methods on finding
the initial solution. When embedded into post-processing algorithms like the Informed RRT*, it also
promotes the convergence speed and saves the memory usage.

KEYWORDS: Path planning; Motion planning; Robotics; Mobile robot.

1. Introduction
Robot path planning1–3 is a basic research domain in robotics, which aims to finding a feasible
path for the robot in a given environment if it exists. Recently, growing interest has been placed on
finding high-quality paths. The quality of the path can be measured by several criteria according to
specific applications, such as the path length, the computational time of the corresponding planner,
the clearance to the obstacles, the smoothness of the generated path and the memory usage. In this
paper, we take the computational time and memory usage as main criteria. The path length is also
discussed on the problem of finding the initial solution.

In general, the artificial potential field (APF), the graph-based and the sampling-based algo-
rithms are usually used to solve path planning problems. The APF method4 directs the motion of
the robot through an APF defined by a function over the whole free configuration space. A feasi-
ble path is found by following the direction of the steepest decent of the potential. However, much
computational time is required and this method may end up in a local minimum.
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(a) (b) (c) (d)

Fig. 1. Experimental results on finding the initial solution in maze environments. The RRTJ and the RRT*J
represent improved RRT and RRT* with our meta-algorithm. The small triangle in the left represents the start
position, the big green circle in the right represents the goal region, the black rectangle represents the obstacle
and the red line represents the initial solution. Time is the execution time of the whole algorithm and Node is
the number of node of the tree at last. (a) and (b) show the results of the RRT and the RRTJ, while (c) and (d)
show the results of the RRT* and the RRT*J. The number of node can represent the memory usage because
different algorithms use almost the same memory usage in other places.

The graph-based algorithms, such as the A*5 and the D*,6 are resolution complete and resolution
optimal, meaning that they can always find the optimal solution if it exists. But these algorithms have
little clearance to obstacles and they do not perform well as the problem scale increases.

The sampling-based algorithms, such as the Rapidly exploring Random Tree (RRT)7 and the
Probabilistic Roadmap (PRM)8 methods, are very popular because they can avoid the local minimum
problem and scale well with problem size. The RRT method is probabilistic complete, which means
that the probability of finding a feasible solution approaches to one if it exists with the number of
iterations approaching to infinity. But solutions from the RRT algorithms are often far from optimal.
Recently, many variants of the RRT methods have been proposed to find the optimal or near-optimal
solutions efficiently. The sample biasing,9–13 the post-processing methods like the shortcutting,14, 15

and the path hybridization16–19 have been shown very effective at speeding up the convergence rate
and finding the optimal solution from a combination of the input paths.

In addition to aforementioned methods, meta-heuristic methods are also used in the path plan-
ning problem. Ant Colony algorithm (AC)20 and Genetic algorithm (GA)21 are usually applied into
the Traveling Salesman Problem, which is a task assignment problem based on the generated path.
Inspired by the AC and GA, particle swarm optimization (PSO)22 is another efficient method, which
can optimize the solution in an iterative manner with a swarm of particles. A modified version of
PSO23 is proposed to allow the robot to adjust its moving direction in terms of the movements of the
targets and obstacles in the dynamic environment.

Reinforcement learning method24 achieves the path planning by continuously optimizing the
action policy, which is an off-line method. By learning from the demonstrations, inverse reinforce-
ment learning25 is widely used in the social-aware path planning. They aim at learning different cost
functions in different scenarios.

However, to our best knowledge, few research efforts pay attention to the initial solution by using
sampling-based methods. In fact, the initial solution has a big impact on the algorithm implementa-
tion. A good initial solution can save much computational time and memory usage. The A*-RRT*16

and the Thete*-RRT17 methods are hybridization of the graph-based and the sampling-based algo-
rithms. However, like other graph-based algorithms, their scalability is weak on finding the initial
solution. Meanwhile, the smoothness is lacking and the clearance to the obstacles is little. More
post-processing work is needed to get a high-quality path.

In this paper, we propose a meta-algorithm (as shown in Fig. 1) through controlling the sampling
space and using the probabilistic sampling with the Gaussian mixture model. With such a proba-
bilistic heuristic, a feasible path can be found quickly with less memory usage. Our motivation is to
balance the exploration and the exploitation. Generally, the RRTs algorithms try to explore the whole
map to find an initial solution at first, then the exploitation process is implemented to optimize the
initial solution. In this way, the completeness can be probabilistically guaranteed. However, as the
exploration area expands, much time and the computational resources are required in the exploitation
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process. In many cases, such as the home or the environment where a solution is easy to find, uni-
formly exploring the whole map is not necessary. Motivated by this observation and inspired by the
tropism of plants (discussed in Section 3.2), we propose this meta-algorithm. Naturally, it is appli-
cable to the RRTs algorithms like the RRT,7 the RRT*,26 and Informed RRT*14 methods to further
improve their performance. Our contributions include:

• a meta-algorithm to find a high-quality initial solution for the RRTs algorithms;
• a tree coverage detection method for the probabilistic sampling process; and
• a probabilistic sampling method based on the Gaussian mixture model.

This paper is organized as follows. We review related existing work in Section 2. Section 3 gives
a problem statement and our inspiration about this work. Section 4 introduces the framework of our
algorithm, the coverage detection method and the probabilistic sampling process. The probabilis-
tic completeness and the asymptotic optimality of our algorithm are also proved in this section. In
Section 5, we discuss our experiments and demonstrate the efficiency of our algorithm. Conclusions
and future work are discussed in Section 6.

2. Related Work
Many variants of the RRTs have been proposed in order to find high-quality solutions. These prior
related work mainly consists of the sample biasing, the post-processing methods, the hybridization
methods, the asymptotically optimal and near-optimal methods, and the anytime RRTs.

Compared to other work, our contributions lie in finding an initial solution efficiently with less
memory usage by using the sampling-biasing methods, and the proposed algorithm can be applicable
to post-processing, asymptotically optimal methods and other RRTs algorithms.

2.1. Sample biasing
Sample biasing makes use of the improved sampling strategies. Similar to the online optimiza-
tion, these strategies bias the search to find high-quality solutions during the whole planning
process. Urmson and Simmons9 utilize a heuristic quality function to guide the growth of an RRT.
Incorporating the cost of the path provides extra information to an RRT that allows it to operate
in more than an exploratory manner. A new sampling strategy based on an estimated feasibility
set, named the RG-RRT,10 is proposed to afford a big improvement in performance for differential
constrained systems. Alleviating the sensitivity of the random sampling to a metric that is used to
expand the tree, the result of the RG-RRT is a modified Voronoi bias focusing on the nodes that
probably promotes exploration given the system dynamics constraints. By using obstacle boundary
information, a variant of the RRT11 is proposed to sample more nodes near the obstacle that is more
likely to block the feasible path. The sampling process is biased and the time cost of the whole
planning process decreases. Additional methods include, among others, the f-biasing (a heuristic
based on the estimate of solution cost guides sparse sampling)12 and the multiple random restarts13

methods.

2.2. Post-processing methods
The shortcutting is a commonly used intuitive post-processing method. Generally, two nonconsec-
utive configurations are selected randomly along the original path. If they can be connected by a
straight line and the connection improves the path quality, the original path segments are replaced
by the straight line. Geraerts and Overmars15 report the partial shortcut method, which can remove
redundant motions and decrease the path length by interpolating one degree of freedom at a time.

Another effective post-processing method is the Informed RRT*14 method. It uses the subset of
the states that can improve a solution as a prolate hyperspheroid and uses an admissible ellipsoidal
heuristic in the sampling process. A quick convergence rate is reported.

2.3. Hybridization methods
The path hybridization, introduced in ref. [18], takes two or more initial solutions as the input and
constructs a higher quality path by comparing the quality of certain subpaths within each solution
and the quality of the entire path.
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The hybridization of the graph-based and the sampling-based algorithms, such as the A*-RRT*,16

the Thete*-RRT17 and the RRT#19 methods, takes advantage of the speed of the graph search and the
uniform distribution of the random sampling, and results in a better performance.

2.4. Asymptotically optimal and near-optimal methods
Karaman and Frazzoli26 show that the cost of the solution returned by the sampling-based algorithms
like the RRT and the PRM converges to a suboptimal value. By modifying the connection scheme
of a new node to the existing tree, they present the RRT* and the PRM*, which are shown to be
asymptotically optimal. As the number of iterations tends to infinity, the probability of finding an
optimal solution approaches to one. The fast marching tree (FMT*)27 is also asymptotically optimal.
It combines the features of both the single-query and the multiple-query algorithms and implements
a lazy dynamic recursion given a number of probabilistically drawn samples, so it outperforms the
RRT* and PRM* methods.

The concept of asymptotically near-optimal means that the current solution converges to within
an approximation factor of (1+ ε) of the optimal solution with probability of one as the number
of iterations approaches to infinity. By this relaxation, the algorithm performance gets improved.
The stable Sparse RRT (SST)28 is an typical example, which does not access the steering function,
maintains a sparse set of samples and converges fast to a high-quality path. The lower bound tree-
RRT (LBT-RRT)29 is another asymptotically near-optimal algorithm for fast and high-quality motion
planning by using the fast all-pairs r-nearest neighbors (NN) and the lower bound on the cost.

2.5. Anytime RRTs
Anytime path planning means that the algorithm may be terminated anytime, while the time to plan is
not known and no specified cost is predetermined. Namely, any solution should be found quickly and
a high-quality solution can be reached if time permits. Ferguson and Stentz30 present a non-uniform
search focusing on the area that can potentially improve the quality of the existing paths. It can be
combined with other sampling-based planners to perform like an anytime RRT. The RT-RRT*31 is
another variant of the anytime RRTs with an online tree rewiring strategy, which works well under
the dynamic differential constraints.

3. Preliminaries

3.1. Problem formulation
In this paper, we only consider the path planning problem in a 2D environment. Let X ⊂R

2 be
the state space. Let Xfree ⊂ X be the free space and Xobs = X \ Xfree be the obstacle space. Assume
the robot as a point whose path is represented by a curve φ(s) : [0, 1]→R

2. Here φ(s) means the
intermediate state in the whole path.

We call φ(s) a feasible path if the robot can move from a start point xinit to the goal region Xgoal

such that

φ(s) : [0, 1]→ Xfree, φ(0)= xinit, φ(1) ∈ Xgoal (1)

where Xgoal = {x ∈ Xfree

∣∣ ||x− xgoal|| ≤ r}.
Denote the set of all feasible paths by �. With a cost function c :�→R≥0, the optimal path

planning problem can be formulated as

φ∗ = arg min
φ∈�{c(φ)|φ(0)= xinit, φ(1) ∈ Xgoal,

∀s ∈ [0, 1], φ(s) ∈ Xfree}.
(2)

3.2. Inspiration: tropism of plants
Tropism of plants is a biological phenomenon, indicating the growth movement of a plant in response
to an environment stimulus. Phototropism, one of the main tropisms of plants, is defined as the impact
from light stimulus. Most shoots of plant exhibit positive phototropism and grow toward light. When
the obstacles block the sunlight, the tree will grow the branches laterally to bypass them. As a result,
the lateral growth space of the tree is expanded. When the tree touches the sunlight, it grows branches
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Fig. 2. Algorithm framework. The black box contains the main algorithm. The input is a given map, a two-
dimensional mean vector, a 2× 2 covariance matrix and a prior distribution. The output is the final result based
on the main algorithm and the post-process methods. In the main algorithm, probabilistic sampling represents
the sampling method according to the Gaussian mixture model, and the horizontal and vertical coordinates
(x1, x2) are selected, respectively. Coordinate transformation shows a transformation from the sampling coor-
dinate system to the world coordinate system with a matrix T . RRTs algorithm means that our algorithm can
be embedded into them as pre-process and post-process steps. If the goal is found in aforementioned steps,
the algorithm steps into post-process for further optimization. If not found, the algorithm implements cov-
erage detection. The red number and the red rectangular show that only the incremental area is calculated.
Update(pi, μi, �i) means the value of pi, μi and �i are updated according the result of coverage detection.

vertically and stops the expansion of the lateral growth space. The positive phototropism enables the
tree to obtain photosynthetic energy as much as possible and limits the lateral growth space as little
as possible.

We use a probabilistic sampling process based on Gaussian mixture model to imitate the pho-
totropism of plants, as shown in Fig. 2. We discuss the details of this probabilistic sampling process
in Section 4.2.

4. Algorithm
Figure 2 shows the frame of our algorithm. The input is an environment map, mean value vector
μ, covariance matrix � and prior distribution p. In the probabilistic sampling, we use a Gaussian
mixture model to generate nodes in the sampling coordinate system. By a matrix T , a transformation
from the sampling coordinate system to the world coordinate system is achieved. These nodes can
be directly used in the RRTs algorithms like the RRT and the RRT*, which are pipelines that our
algorithm relies on. In each iteration, the algorithm detects whether the goal is found or not. If not,
the coverage detection is implemented and μi, �i and pi are updated, then a new loop begins. Or
post-process methods will be used to generate the final result.

The reason why we use the Gaussian mixture model is that we hope the sampling process focuses
on the region which potentially contains a solution. As the tree grows, we select the treetop (a node
of the tree nearest to the goal position) as the sampling center. Sampling backward can promote
the exploitation (rewiring process of the RRTs algorithms) and sampling forward can accelerate
the exploration. A major concern of our method is the performance in some cases where a valid
path would need to pass close to the environment’s border or need to make some complex turns. In
fact, with the probabilistic sampling process in our algorithm, the performance is still better than
the RRT and the RRT* on finding the initial solution. Because, in our Gaussian mixture model, the
probability of sampling nodes in the boundary area of sampling space becomes larger according
to the change of pi in such scenarios. In other words, the probabilistic sampling is automatically
adjusted to different scenarios. In the experiment section, we use some challenging environments to
demonstrate the efficiency of our algorithm.

In order to implement the probabilistic sampling, we need two coordinate systems including world
coordinate system and sampling coordinate system. First, we sample candidate nodes under the sam-
pling coordinate system (shown in Fig. 2) with Gaussian mixture model. Then we transform the
coordinates of these nodes into the world coordinate system using T , where
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T =
(

cos θ sin θ

− sin θ cos θ

)
(3)

In the world coordinates, the x-axis is parallel to the line connecting the start and goal position, then
θ denotes the angle between the sampling coordinate system (denoted with black) and the world
coordinate system (denoted with blue), as shown in Fig. 2.

The Gaussian mixture model can be formulated with μ, � and p, which can be represented as

p(x)=
n∑

i=1

piN (μi, �i),

n∑
i=1

pi = 1 (4)

where N represents a two-dimensional Gaussian distribution and pi is a weight of ith component. x=
(x1, x2) is a two-dimensional vector (x1 and x2 corresponding to the horizontal and vertical directions,
respectively, in the sampling coordinate system), μi is a two-dimensional mean vector and �i is a
2× 2 covariance matrix.

For the covariance matrix � = [σ1 σ2; σ3 σ4], if σ2 and σ3 are not zero, the two-dimensional
Gaussian distribution will not symmetrically relative to the axes. For simplicity, we assume σ2 =
σ3 = 0. So � becomes

� =
(

σ1 0
0 σ2

)
(5)

σ1 and σ2 denote the standard deviation of the two-dimensional Gaussian distribution in horizon-
tal and vertical directions, respectively. For implementation, we split the two-dimensional Gaussian
mixture model in two one-dimensional models:

p(x1)=
n∑

i=1

miN (μ1i, σ1i),

n∑
i=1

mi = 1,

p(x2)=
n∑

i=1

niN (μ2i, σ2i),

n∑
i=1

ni = 1

(6)

which correspond to the horizontal and vertical coordinates of one node x, respectively. The initial
setting and the update of μi, �i and pi will be discussed in Section 4.2.

First, we apply our algorithm to the RRT* in Alg. 1 as an example. We construct a tree
T = (V, E) consisting of a vertex set V ⊂ Xfree and edges E⊆ V × V . The key changes are
CoverageDetection(μ, �) and ProbabilisticSampling(μ, �).

4.1. Coverage detection
The concept of the coverage detection is the key to our algorithm. As mentioned before, our algorithm
is based on controlling the sampling space and using the probabilistic sampling. An appropriate con-
trol of sampling space is good for finding an initial solution quickly and accelerating the optimization
speed, while a bad control slows the exploration speed and has a bad influence on the performance
of our algorithm. So the control criteria are essential.

Consider a tree in natural environment; if the nutrition is enough and other external factors do
not affect its growth (not blocked by other trees or obstacles), this tree will grow as high as it can.
Similar to the RRT, if there is no obstacle in a given sampling space, the tree will grow to the goal
region quickly. If not, current sampling space is limiting the growth of the tree and a larger sampling
space is needed. The key issue is when and how to adjust the sampling space. An intuitive idea is that
the sampling space should be adjusted when the nodes of the tree are too dense. But the detection
is hard. First, a criterion to effectively measure the density should be put forward, which needs to
consider the current growth of the tree, the size of sampling space and the obstacle area. Secondly,
the detection is required to be very fast and does not depend on much computational resource. Slow
detection affects the speed of the whole algorithm and using too much computational resource does
not scale well in a large map or high-dimensional environment.
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Algorithm 1: Alg(xinit, xgoal)

V← xinit, E←∅, T = (V, E), goal= false;
μ1 =μ2 = 0, σ1 = σ2 = 1;
GriddingProcess(map);
for i= 1...N do

if goal== false then
xrand = ProbabilisticSampling(μ, �);

else
xrand = RandomSampling();

xnearest = Nearest(T , xrand);
xnew = Steer(xnearest, xrand);
if Line(xnearest, xnew) ∈ Xfree then

if xnew ∈ Xgoal then
V← V ∪ {xnew};
E← E ∪ {(xnearest, xnew)};
return T ;

Xnear = NearestNeighbours(T , xnew);
xmin = xnearest;

cmin = Cost(xmin) + Dist(xmin, xnew);
for xnear ∈ Xnear do

cnew = Cost(xnear) + Dist(xnear, xnew);
if cnew < cmin then

if Line(xnear, xnew) ∈ Xfree then
cmin = cnew, xmin = xnear;

V← V ∪ {xnew}, E← E ∪ {(xmin, xnew)};
Rewire();
n = CalGrid(�);

if !goal && Mod(i, counters)== 0 then
CoverageDetection(μ, �);

return T ;

In terms of these two factors, we introduce the concept of the coverage detection and propose a
corresponding algorithm to measure the density effectively and quickly. GriddingProcess(map) and
CalGrid(�) are two pre-processing steps in our coverage detection algorithm.

GriddingProcess(map) means the map is gridded into squares with the side length of k, and

k= ε

2
(7)

where ε is the maximum distance between xnearest and xnew in Steer(xnearest, xrand). Using the grid
representation, the area of the tree and the sampling space can be compared in the same order of
magnitude.

Through hundreds of experiments in different environments, GriddingProcess(map) can be fin-
ished in 0.5–1 ms and takes up less than 1% in the whole computation time, which is negligible
compared with the time cost of the algorithm on finding the initial solution.

CalGrid(�) traverses an area, which is a rectangular bounding box of current tree, and returns
the number of current grids occupied by the tree nodes. We use a set N to represent the grid map.
The value of each grid is initially set to 0. If a grid is occupied or partly occupied by obstacles, the
value becomes −1. If a node is added to the tree and it is enclosed by a grid, then the value of this
grid is set to 1. One grid can enclose more than one node, but the maximum value of this grid is 1. If
the value of one grid is −1, it can become 1, and if the value of one grid is 1, it also can become −1
again when it is occupied by a moving obstacle. So the number of grids occupied by the tree is

n=Count(N, 1) (8)

The process of CalGrid(�) is very fast for two reasons. First, we use a rectangular as the bound-
ing box. We only store eight points consisting of maximum and minimum points in horizontal and
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Algorithm 2: CoverageDetection(μ, �)

Stree = CalGrid(�);
Sobs = CalObsArea(�);
TCR = nk2/(Stree − Sobs);
� = Expand(�);
μ = Update(μ);

vertical directions and their updates. The rectangular is not very suitable to be the contour of the
tree, but through a large number of experiments we find the density is usually very small and this
rectangular bounding box almost brings no influence. Second, it is implemented according to current
growth of the tree (shown in Fig. 2). Each time only the incremental area is calculated. It means
the incremental area of [rectangular 2–rectangular 1] and [rectangular 3–rectangular 2] will be con-
sidered instead of [rectangular 2] and [rectangular 3]. Therefore, the algorithm can be implemented
very fast.

In addition, we adopt a “black-box” collision checking algorithm. We do not need to know the
shape or position of the obstacles. CalGrid(�) is only a simple traversal process. Compared to
general RRTs algorithm, the further knowledge we need to acquire is that we use an array to store
the number of 0 and 1 of current sampling space.

Definition 1 (Node Area). In the square gridded sampling space, suppose the nodes of the tree
occupy n grids and the side length of each grid is k, then the node area Snode is defined as

Snode = nk2 (9)

Definition 2 (Tree Area). The area of the rectangle bounding box of the current tree is defined as
tree area Stree.

Definition 3 (Tree Coverage Rate). Suppose in the current tree area Stree, the area of the obstacle
space is Sobs, then we define the Tree Coverage Rate (TCR) as

TCR = Snode

Stree − Sobs
= nk2

Stree − Sobs
(10)

The area of Stree equals the area traversed by CalGrid(�). Sobs can be obtained through
CalObsArea(�). Actually, this process is implemented in CalGrid(�).

TCR represents the growth condition of the tree under the current two-dimensional Gaussian
mixture model. When the program runs for counters iterations and Xgoal is not found, it will call
CoverageDetection(μ, �). The value of μ and � will be updated in CoverageDetection(μ, �).
Update(μ) updates the value of μ1 and μ2 while Expand(�) updates the value of σ1 and σ2. The
details of the update process are provided in Section 4.2.

4.2. Probabilistic sampling
The probabilistic sampling process is implemented under the sampling coordinate system, with a
matrix T the transformation from the sampling coordinate system to the world coordinate system is
achieved.

The horizontal coordinate will be generated by μ1 and σ1.
For the value of σ1, we build a relationship between TCR and σ1. TCR represents the growth

condition of the tree under current two-dimensional Gaussian distribution. When TCR is large and
no feasible solution is found, it means that the growth of the tree is limited by obstacles around
it. So we consider expanding the value of σ1 to increase the probability of sampling nodes farther
away from the center, μ1, in horizontal direction. For finding the initial solution faster, σ1 should
be more sensitive to TCR at the beginning and become less sensitive to TCR as the probabilistic
sampling process goes on. Because on the initial condition, a large number of generated nodes lie on
the surrounding of the central line in horizontal direction, which is enough for finding one feasible
solution if it exists in such a probabilistic sampling process. In the following steps, we need to
control the area of the sampling space. If the area increases quickly, it affects the quality of the initial
feasible solution and the convergence speed of following post-process. So the function of σ1 and
TCR, f (TCR), should satisfy:

f ′(TCR) > 0, f ′′(TCR) < 0. (11)
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Many logarithmic and quadratic functions satisfy the above two properties. Here we use a
logarithmic function to construct the relationship between σ1 and TCR.

Initially, the value of μ1 is 0 for two reasons: (1) The shortest path is the line linking xinit and xgoal

directly as long as there is no obstacle around it, so we set the default value of μ1 as 0 at the beginning.
(2) In the horizontal direction, the probability of growing to different side of the tree should be equal
because the tree does not know which side is more beneficial for growing. So the value of μ1 is still
0. For the purpose of accelerating the exploration speed and escaping from current limited sampling
space, μ1 needs to change. When the current sampling space limits the tree’s growth, sampling in
the boundary of current space with a large probability is reasonable. Consider the maximum value
of horizontal coordinate of current tree is hmax and the minimum value is hmin. The value of μ1 will
change according to TCR. Most of the time, μ1 = 0 and μ1 = hmax or hmin when the growth of the
tree is limited severely. We define a new variable e−TCR. Usually TCR is a small number (≤ 0.1) and
TCR ∈ (0, 1], so e−TCR ∈ [ 1e , 1). In fact, e−TCR approaches to 1 as usual.

Therefore, the Gaussian mixture model in horizontal direction is formulated as

p(x1)=m1N (0, σ1)+m2N (hmax, σ1)+m3N (hmin, σ1) (12)

where m1 = e−TCR and m2 =m3 = 1−e−TCR

2 .
The vertical coordinate will be generated by μ2 and σ2. For the current tree, the vertical coordinate

of the node nearest to xgoal in the vertical direction is considered as nv (called treetop), which reflects
the growth condition to xgoal. So the value of nv is always changing until one feasible solution is
found or the tree reaches the bounder of the current map.

In order to avoid ending up in a local minimum and getting stuck in some extreme environments
(like the trap environment and the long corridor not leading to the goal region), sometimes the sam-
pling center in the vertical direction should be opposite to the growth tendency of current tree. At
this time, we have nvo = 2xinit.y− nv. y represents the vertical coordinate. For example, xinit.y is the
vertical coordinate of xinit. μ2 = nv or nvo.

For the value of σ2, it is a function about μ2. This function f (μ2) can be explicitly formulated as

f (μ2)= μ2 − xinit.y

3
(13)

It is obvious that f (μ2) is a monotonically increasing function and the maximum depends on the
map. The denominator 3 comes from the “3σ principle” in Gaussian distribution.

We still use e−TCR to guide the probabilistic process. When e−TCR is larger, it means current sam-
pling space limits the tree’s growth and the probability to sample in the opposite direction of the tree’s
growth tendency will increase. So the Gaussian mixture model in the vertical direction is formulated:

p(x2)= n1N (nv, σ2)+ n2N (nvo, σ2) (14)

where n1 = e−TCR and n2 = 1−e−TCR

2 .
Through μ2 and σ2, the probabilistic sampling process in the vertical direction depends on the

current growth condition of the tree in vertical direction. At most time, μ2 = nv. Naturally, sampling
nodes around the treetop are very beneficial for the growth of this tree. According to the property
of the Gaussian distribution, we know that 99.73% nodes will be located in the range (−3σ2, 3σ2).
The reason why we do that includes: (1) Sampling in the backward direction of μ2 solves the “False
Treetop” problem, which means that current treetop cannot continuously grow and the true treetop
does not grow faster than the false one at this moment. (2) Sampling in the forward direction of μ2

can make sure the treetop get enough space to grow. (3) Continuously increasing value of σ2 can help
find the initial feasible solution quickly.

4.3. Analysis of probabilistic completeness and asymptotic optimality
The probabilistic completeness is naturally guaranteed. According to the property of the Gaussian
distribution, each point can be selected with different probability in theory. The points close to center
are more likely to be selected, while the points far away from center are less likely to be selected.
In addition, as a meta-algorithm, when the initial solution is found, it does not have an effect on the
main algorithm any more. In the following process, the probabilistic completeness depends on the
algorithm that our meta-algorithm is embedded in.
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Fig. 3. Demonstration of experimental results in three scenarios with four algorithms. The RRTJ and the RRT*J
represent improved RRT and RRT* with our meta-algorithm. The small triangle in the left represents the start
position, the big circle in the right represents the goal region, the rectangle represents the obstacle and the bold
line represents the initial solution. The ENR means the effective node rate, reflecting the utilization of sampled
nodes. Time is the execution time of the whole algorithm and Node is the number of node of the tree at last.

Obviously, the asymptotic optimality depends on the algorithm that our meta-algorithm is
embedded in because our algorithm only aims to find a high-quality initial solution.

5. Experiments and Results
In this paper, we adopt Windows 10.0 on an Intel i5-4590 with 8GB of RAM as our experimental plat-
form. We use Visual Studio 2015 with openFrameworks as the Integrated Development Environment
(IDE). As shown in Fig. 3, the goal region is a circle with the radius of 35 pixels. The home envi-
ronment (shown in Fig. 3) is designed according to some general house floor plans. We intend to
see the performance of our algorithm in such a practical environment. Different start and goal posi-
tions (Scenario A→ B, Scenario C→D and Scenario E→ F) are selected to test the efficiency and
robustness (the performance under different configurations). In scenario A→ B, the tree needs to
make a complex turn and grows backward when approaching the goal region. In scenario C→D,
the tree needs to make simple turns at the beginning and at the end. In scenario E→ F, the tree is
required to grow backward to escape from a small trap at first. The maze environment (shown in
Fig. 1) is used to test the generality of our algorithm.

Except for the aforementioned evaluations, we further analyze the algorithm based on the funda-
mental tasks that a path planner is required to do: exploration and exploitation. The RRTs algorithms
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Fig. 4. Experimental results on finding the initial solution. The RRTJ and the RRT*J represent improved RRT
and RRT* with our meta-algorithm. (d) and (h) show the results on maze environment, and the others show the
results in the home environment with different configurations. For any scenario, the time cost and the number
of node are provided. In each figure, we use a box plot to describe the distribution of the experimental results.

sample many nodes in the exploration process, some of which make up the initial solution in the
exploitation process. However, many nodes contribute a little or nothing to the solution. It is a key
issue to balance the exploration and the exploitation. In order to explain this issue more clearly, we
define a new evaluation metric, Effective Node Rate, notated as ENR.

Definition 4 (Effective Node Rate) When an initial solution is found, suppose the tree contains
M nodes in total and the initial solution is composed of m nodes, the ENR is defined as

ENR = m

M
(15)

The ENR can reflect the utilization of nodes sampled in the exploration process. If a large number
of nodes are sampled and the initial solution only contains a few nodes, we can say that the utiliza-
tion is very low. Herein, we use the ENR to measure the balance between the exploration and the
exploitation. Obviously, a large value of the ENR means a good balance between the exploration and
the exploitation.

We validate our algorithms incorporating with the RRT, the RRT* and the Informed RRT* meth-
ods in simulation environments. First, we compare our algorithm with the RRT and the RRT* on
finding the initial solution in terms of the time cost, the memory usage and the ENR. Second, we apply
our algorithm into the Informed RRT* to see the influence of our proposed algorithm in convergence
rate of finding the optimal solution.

In addition, we also test our algorithm in maze environments where a feasible solution is in a
narrow aisle and with some complex turns. The experiments in the dynamic environment are also
provided.

5.1. Finding the initial solution
In each experiment, we create a map with the size of 800× 800 pixels. We run each path planning
problem 50 times and use box plot (including maximum, the first quartile, median, the third quartile
and minimum) to graphically depict the distribution of experimental data.

The RRT* and the Informed RRT* both use the same sampling method to find an initial solution.
This sampling method may cost much time and memory usage. Our algorithm is also able to find the
initial solution if it exists and can reduce the time cost and the memory usage using the probabilistic
sampling.

Figure 4 shows the experiment results on finding the initial solution, where the RRTJ and
the RRT*J mean that our algorithm, as a meta-algorithm, is applied to the RRT and the RRT*,
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Table I. ENR in four different scenarios.

RRT RRTJ RRT* RRT*J

A→ B 0.030 0.041 0.013 0.019
C→D 0.044 0.107 0.017 0.047
E→ F 0.066 0.126 0.022 0.049

respectively. In home environment (Scenarios A→ B, C→D and E→ F), incorporating with our
algorithm can save 34% and 51% in the time cost, and 49% and 54% in the memory usage on aver-
age compared with the RRT and the RRT*. Here the memory usage is equivalent to the number of
nodes because two pre-processing steps, GriddingProcess(map) and CalGrid(�), only use a very
small number of memory at the beginning and other steps in our algorithm do not use the memory
any more. In addition, in the box plot, the box of the RRTJ and the RRT*J is much smaller than that
of the RRT and the RRT*, especially in Scenarios C→D and E→ F, which means the results from
the RRTJ and the RRT*J have smaller standard deviation and good stability.

The key of our algorithm is that the algorithm can automatically choose the most potentially
beneficial space for the tree’s growth. The “potential” is measured by the probability. Because in
our algorithm, the search process first will focus on the straight line linking xinit and xgoal. When the
growth of the tree is limited by the obstacles between xinit and xgoal, the probabilistic sampling space
will be expanded in the horizontal direction to bypass the obstacles. And in the vertical direction, the
probabilistic sampling space moves with the treetop. Compared to the global sampling of the RRT*,
the probabilistic sampling method can avoid many invalid nodes and shrink the search space, so it
can find a high-quality path using less time cost and less memory usage. Even for some complicated
environments, the probabilistic sampling method can expand the sampling space to the whole map
gradually if the initial solution is hard to be found. The length of the initial solution obtained by
two algorithms is similar because we do a tradeoff between the exploration and the exploitation.
If the probabilistic sampling space expands slowly, the exploration is limited and the probabilistic
completeness is not guaranteed at the beginning stage. So we want to speed the exploration and make
the most of explored space in the exploitation process at the same time. As a result, the sampling
space containing the initial solution is overlarge and the length of the initial solution obtained by our
algorithm is similar to that of the RRT*.

As for Scenario A→ B, the performances of the RRTJ and the RRT*J are not improved signif-
icantly compared with the RRT and the RRT* in the time cost and the memory usage. Because
Scenario A→ B is challenging for our algorithm, where the tree needs a backward growth when
approaching the goal region. However, the probabilistic sampling provides forward and backward
sampling in the vertical direction and the results are still better than that of the RRT and the RRT*.
In our future work, we intend to develop some methods for heuristically biasing the RRT growth9 to
further improve the performance of our algorithm in such challenging environments.

Table I shows the ENR of the RRT, the RRTJ, the RRT* and the RRT*J in three scenarios. In each
scenario, the RRTJ and the RRT*J have a higher ENR than the RRT and the RRT*. As we all know,
the RRT and the RRT* may sample many unnecessary nodes due to their randomness, and these
nodes contribute a little to the initial solution and take much computational resource and memory
usage. So a high ENR indicates that the algorithm maintains a better balance between the exploration
and the exploitation, and more information from the exploration is utilized by the exploitation. Under
this condition, the algorithm’s performance is improved naturally. In other words, the high ENR of
the RRTJ and the RRT*J proves that our probabilistic sampling method is effective in balancing the
exploration and the exploitation, which are two fundamental work in path planning algorithms.

As mentioned before, we also test our algorithm in maze environments, as shown in Fig. 1. In
such maze environments, an initial solution is hard to be found in that it needs to pass through the
environment’s border, grow backward and make some complex turns.

We first compare the RRTJ with the RRT, and two examples are shown in Fig. 1(a) and (b).
Without any rewiring process, the initial solutions obtained by the RRT and the RRTJ, red line in
Fig. 1(a) and (b) linking the start position and the goal region, both seem far from optimal. The
statistical experimental results in Fig. 4(d) and (h) show that the RRTJ can save 31% in the time
cost and 39% in the memory usage compared with the RRT. By observing the data distribution,
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Table II. The experimental results of the IRRT* and the IRRT*J.

Scenario Planner Time (s) Node Length

IRRT* 0.890± 0.231 5483± 1041 986± 12
A→ B IRRT*J 0.700 ± 0.223 4718 ± 1174 990 ± 9

IRRT* 0.521± 0.157 3486± 695 795± 3
C→D IRRT*J 0.314 ± 0.067 2208 ± 281 795 ± 4

IRRT* 0.425± 0.080 2958± 554 710± 8
E→ F IRRT*J 0.378 ± 0.165 2475 ± 1015 701 ± 16

(a) (b) (c) (d)

Fig. 5. Demonstration of RT-RRT* and RT-RRT*J. The triangle in the left top denotes a holonomic robot, the
big green disk denotes the goal region and the small yellow disk denotes dynamic obstacle moving from right
to left with the velocity v= 2 pixel/frame. The red and blue path represent the initial path founded by the path
planner and the final path which the robot goes through, respectively.

we see that the mean value in the number of node of the RRTJ is much smaller than that of the
RRT. Probabilistic sampling focuses on the “potential” region containing a feasible solution and this
advantage is more obvious in complex environments like the maze environment. In fact, after so
many iterations (14,122 iterations for the RRTJ and 16,237 iterations for the RRT on average), the
area used for CoverageDetection(μ, �) is nearly equal to the whole map and the execution speed of
our algorithm is still fast. It proves that our algorithm scales well even in complex environments.

Secondly, we compare the RRT* with the RRT*J, and two examples are shown in Fig. 1(c) and
(d). The biggest difference between the RRT* and the RRT is that the RRT* has a rewiring process,
and we see the initial solutions in Fig. 1(c) and (d) from the RRT* and the RRT*J are better than
that from the RRT and the RRTJ shown in Fig. 1(a) and (b). However, the time cost of the RRT*
and the RRT*J is higher, as shown in Fig. 4(d). As illustrated in Fig. 4(d) and (h), compared with the
RRT*, the RRT*J can save 57% in the time cost and 45% in the memory usage. This improvement
is larger than the improvement from the RRT to the RRTJ. It is worth mentioning that the standard
deviations of the RRT*J both in the time cost and in the memory usage are much smaller than that of
the RRT*. This is because the probabilistic sampling of our algorithm does not change too much for
the same map and the results of different experiments are close. It further proves that our algorithm
can help those algorithms with the property of asymptotic optimality improve much better. To test
the generality, we apply our algorithm to another state-of-art algorithm, the Informed RRT*, to see
the performance in the following section.

5.2. Applied to the informed RRT*
In each experiment, we create a map with the size of 800× 800 pixels. We run each path planning
problem 50 times and use a data table to show the experimental results.

As a meta-algorithm to find a high-quality initial path, our algorithm can be embedded into the
post-processing methods like the Informed RRT*. Table II shows the experimental results of the
Informed RRT* (notated as IRRT*) and the Informed RRT* incorporating our algorithm (notated
as IRRT*J). In the home environment, the IRRT*J can save 24% in the time cost and 22% in the
memory usage on average.
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Table III. The experimental results of the RT-RRT* and the RT-RRT*J.

Scenario Planner Time (s) Node Length

RT-RRT* 20226± 932 2776± 219 932± 21
RT-RRT*J 14358 ± 1476 2153 ± 111 903 ± 7
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Fig. 6. Time cost on finding the initial solution in home environments with four different sizes. The RRTJ and
the RRT*J represent improved RRT and RRT* with our meta-algorithm. In each figure, the time cost varies with
the size of map, and the mean value and the standard deviation of corresponding statistics data are provided.

Through these experiments, we see that a high-quality initial solution has a big impact on the
final optimal solution. Using our algorithm to search the initial solution, the planner has a priority to
search the potential area that contains the solutions. Due to a focused exploration in these potential
areas, the following exploitation process can be improved intuitively because it pays more attention
to the aforementioned potential areas instead of treating any place of the map equally.

5.3. Simulation experiments in the dynamic environment
In the dynamic environment, a famous variant of the RRTs algorithm is Real-time RRT* (RT-
RRT*).31 The RT-RRT* uses the RRT* to find the initial solution. On the basis of the RT-RRT*,
the RT-RRT*J uses our proposed algorithm to find the initial solution and other settings are the same
with the RT-RRT*. Then, we carry on two sets of experiments with respect to moving obstacles in
the dynamic environment to evaluate the performance of our algorithm. For each algorithm, 50 trials
are conducted.

The map size is 800× 800 pixels. The maximum velocity of the robot is 3 pixel/frame. As shown
in Fig. 5, when the robot begins to move, its position changes and the path planner needs to update
the path simultaneously. We use the time cost, the number of node and final path length as the metric
to evaluate the performance of each algorithm, as shown in Table III.
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Fig. 7. The number of node on finding the initial solution in home environments with four different sizes. The
RRTJ and the RRT*J represent improved RRT and RRT* with our meta-algorithm. In each figure, the number
of node varies with the size of map, and the mean value and the standard deviation of corresponding statistics
data are provided.

In the time cost, the number of node and final path length, the RT-RRT*J has a significant improve-
ment compared with the RT-RRT*. Meanwhile, the RT-RRT*J has a smaller standard deviation,
which shows the stability of the RT-RRT*J. Therefore, we can say that the RT-RRT*J achieves a
better performance in the dynamic environment than the RT-RRT*.

5.4. Discussion
To further analyze the performance on finding the initial solution of our algorithm and test its scal-
ability and generality, we implement our algorithm in the home environments of four different sizes
(600 × 600, 800 × 800, 1000 × 1000 and 1200 × 1200 pixels). In each scenario, the algorithm
is repeatedly implemented for 50 times. In the home environment, three scenarios represent three
different path planning conditions.

For the experimental settings in the home environments, the size of the obstacle scales with the
size of the map, while other parameters, such as the step size in Steer(xnearest, xrand), the rewire radius
in rewire process and so on, remain unchanged. We apply our algorithm to the RRT and the RRT* to
see the performance including the time cost, the memory usage and the ENR.

Figures 6 and 7 show the experimental results in the four maps with different sizes. In general,
first, the time cost and the number of node increase gradually as the map size increases. It is easily
understood for the increment of the computation on a larger map. Secondly, the time cost of the RRT
is usually less than that of the RRT* while the number of the node of the RRT* is usually less than
that of the RRT, since the RRT* uses NearestNeighbours(T , xnew) instead of a single nearest node
in each iteration and adds a rewiring process to optimize the whole tree. These two processes need
extra time cost and cut off many unnecessary nodes.

In Fig. 6, we see that the time cost of the RRTJ and the RRT*J is always less than that of the RRT
and the RRT*, especially in Scenario C→D shown in Fig. 6(b) and (e), and the standard deviation
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Fig. 8. ENR on finding the initial solution in home environments with four different sizes. The RRTJ and the
RRT*J represent improved RRT and RRT* with our meta-algorithm. In each figure, the ENR varies with the
size of map, and the mean value of corresponding statistics data is provided.

of the RRTJ and the RRT*J is also much smaller in most cases. Further more, as we all know, the
RRT and the RRT* scale well with the map size. By comparison, the RRTJ and the RRT*J also scale
well with the map size, which means that the execution speed of our algorithm does not decrease too
much as the map size increases gradually.

In Fig. 7, the number of node used by the RRTJ and the RRT*J is obviously smaller than that
of the RRT and the RRT*, and the standard deviation of the RRTJ and the RRT*J is still smaller.
Compared to the RRT and the RRT*, the memory usage of the RRTJ and the RRT*J increases more
smoothly and seems less sensitive to the map size.

From the experimental results in different map sizes, we see that the time cost and the number of
nodes both scale well with the map size. This shows that our algorithm can perform better than the
RRT and the RRT* and scale well with the map size when finding the initial solution under different
scenarios. In short, our algorithm has good scalability and generality.

Figure 8 shows the ENR of the RRT, the RRTJ, the RRT* and the RRT*J in three scenarios. In
each scenario, RRTJ and RRT*J have a higher ENR than the RRT and the RRT*, which means that
our algorithm achieves a better balance between the exploration and the exploitation. As the map size
increases, the ENR of the RRTJ and the RRT*J changes a little. Again it shows that our algorithm has
good scalability and generality. Due to the good balance between the exploration and the exploitation,
our algorithm obtains an improved performance in the time cost, the memory usage and the ENR.

6. Conclusions and Future Work
In this paper, a bioinspired path planning algorithm is proposed to find a high-quality initial solution
for the RRTs algorithm on the basis of the RRT method. We modify the sampling process through
controlling the sampling space and using the probabilistic sampling with the two-dimensional
Gaussian mixture model. Using the Gaussian mixture model to imitate the trees’ growth, we can
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quickly obtain an initial path with a small number of nodes. We apply our algorithm to two fun-
damental sampling-based algorithms, the RRT and the RRT*, to see the improvement. We test our
algorithm in different environments, and the experimental results show that our algorithm brings a
significant improvement in the time cost, the memory usage and the ENR. In addition, we implement
our algorithm on the same map with different sizes. The results show that our algorithm scales and
generalizes well. As a meta-algorithm, we apply our algorithm to the Informed-RRT*, and the results
show that the convergence rate is promoted further and much memory usage is saved.

A limitation of our algorithm is that it only applies to 2D environments. In our future work, we
will improve our algorithm to apply 3D or high-dimensional environments. We have verified that
our algorithm scales well in 2D environments (the coverage detection and the probabilistic sampling
are little affected by the problem size), and its variant is also very promising to be applied well in
high-dimensional environments. In fact, the sampling-based path planning algorithms compose of
two primitive operations: the collision detection (CD) and the NN search.32 The CD33 and the NN34

are also considered as the main bottleneck. To an extent, our algorithm improves the NN search by
controlling the sampling space and using the probabilistic sampling. In our future work, we will work
on the further adjustment on the NN to improve the sampling-based algorithms.
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