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The classical Stokes’ problem describing the fluid motion due to a steadily moving
infinite wall is revisited in the context of dense granular flows of mono-dispersed
beads using the recently proposed µ(I)-rheology. In Newtonian fluids, molecular
diffusion brings about a self-similar velocity profile and the boundary layer in which
the fluid motion takes place increases indefinitely with time t as

√
νt, where ν is

the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the
local shear stress, when properly rescaled, exhibits self-similar behaviour at short time
scales and it then rapidly evolves towards a steady-state solution. The resulting shear
layer increases in thickness as

√
νgt analogous to a Newtonian fluid where νg is an

equivalent granular kinematic viscosity depending not only on the intrinsic properties
of the granular medium, such as grain diameter d, density ρ and friction coefficients,
but also on the applied pressure pw at the moving wall and the solid fraction φ
(constant). In addition, the µ(I)-rheology indicates that this growth continues until
reaching the steady-state boundary layer thickness δs = βw(pw/φρg), independent of
the grain size, at approximately a finite time proportional to β2

w(pw/ρgd)3/2
√

d/g,
where g is the acceleration due to gravity and βw = (τw − τs)/τs is the relative
surplus of the steady-state wall shear stress τw over the critical wall shear stress τs
(yield stress) that is needed to bring the granular medium into motion. For the case
of Stokes’ first problem when the wall shear stress τw is imposed externally, the
µ(I)-rheology suggests that the wall velocity simply grows as

√
t before saturating to

a constant value whereby the internal resistance of the granular medium balances out
the applied stresses. In contrast, for the case with an externally imposed wall speed
uw, the dense granular medium near the wall initially maintains a shear stress very
close to τd which is the maximum internal resistance via grain–grain contact friction
within the context of the µ(I)-rheology. Then the wall shear stress τw decreases
as 1/

√
t until ultimately saturating to a constant value so that it gives precisely

the same steady-state solution as for the imposed shear-stress case. Thereby, the
steady-state wall velocity, wall shear stress and the applied wall pressure are related
as uw ∼ (gδ2

s /νg)f (βw) where f (βw) is either O(1) if τw ∼ τs or logarithmically large
as τw approaches τd.
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1. Introduction

Flowing matter containing a dense collection of grains like sand, gravel, cereals,
sugar, etc. is ubiquitous in nature as well as in many industrial processes. Such
granular media exist in various states at any given common flow situation depending
strongly on the energy supplied by external deformation and/or shear stresses (Jaeger,
Nagel & Behringer 1996). And so, they show a very rich phenomenology (Liu &
Nagel 1998; Gray, Tai & Noelle 2003; Aranson & Tsimring 2006): a gaseous regime
wherein the flow is very rapid and dilute, and the particles interact by collision
(Jenkins & Savage 1983), and a quasi-static regime in which the material deformation
is extremely slow wherein frictional contacts between particles dominate the rheology,
as is often the case in soil mechanics (Hutter & Rajagopal 1994). Indeed, there exists
an intermediate regime in the presence of both collisions and friction that result in
huge dissipation. Here, a dense granular medium behaves like a viscoplastic liquid
(Forterre & Pouliquen 2008; Andreotti, Forterre & Pouliquen 2011). A decade ago,
generalising the scalar rheology of Midi (2004), Jop, Forterre & Pouliquen (2006)
proposed the so-called µ(I)-rheology to describe such a dense granular liquid state.
It has since been well exploited, often via direct numerical simulations, to study and
model many common flow configurations (Kamrin 2010; Cawthorn 2011; Lagrée,
Staron & Popinet 2011; Staron, Lagrée & Popinet 2012; Chauchat & Médale 2014;
Gray & Edwards 2014; Baker, Barker & Gray 2016).

However, recent works by Barker et al. (2015), Goddard & Lee (2017) and
Martin et al. (2017) illustrate that the governing equations of the µ(I)-rheology can
exhibit ill-posed behaviour in the parameter range corresponding to quasi-gaseous
and quasi-static regimes, respectively. Joseph & Saut (1990) showed that ill-posed
problems suffer from the so-called Hadamard instability and they characterised the
ill-posedness through a stability analysis that identifies exponential temporal growth
of short-wavelength perturbations. As a consequence, grid-dependent numerical results
may not converge as the spatial refinement is enhanced for these cases (see Joseph &
Saut 1990, p. 224). In particular, Barker et al. (2015) demonstrated both theoretically
and numerically the governing equations of the µ(I)-rheology are Hadamard unstable
even for the simple case of Bagnold flow. More recently, Martin et al. (2017) also
observed it in their numerical simulations for the case of granular column collapse on
inclined channels. Nonetheless novel attempts to regularise the governing equations
via a proper functional form of µ(I), at least in the quasi-static regime, have already
been proposed by Barker & Gray (2017) and Barker et al. (2017). They successfully
simulated granular roll waves in two dimensions and it now remains to see if their
regularisation is valid also in direct computations of other unsteady granular flows.

In this context, this work aims to determine, both numerically and theoretically, the
time evolution characteristics of the unsteady, non-uniform velocity and shear-stress
fields arising in the µ(I)-rheology for a canonical flow situation, namely, the so-called
Stokes’ first problem (Stokes 1851) of the fluid motion that is brought about by
impulsively starting an infinite wall. Unlike the classical case, the granular medium
is placed underneath the plate (see figure 1). It is the simplest unsteady parallel
flow in which some important features of fluid flows, such as transverse momentum
transfer and the resulting boundary layer development due to direct balance between
local fluid acceleration and the friction forces, can be treated. It is also known as the
dragged-plate problem in Andreotti et al. (2011) and Cawthorn (2011), where only
a steady-state analytical solution can so far been found. The objective of the present
work is to treat the transient solution and its characteristics.
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FIGURE 1. (Colour online) Schematic of the problem: an impulsively started, infinitely
long flat plate over a semi-infinite dense granular medium consisting of mono-dispersed
spherical grains.

Note that there has been a steady interest in Stokes’ first problem for non-
Newtonian fluids, in particular, viscoelastic fluids (see Morrison 1956; Tanner 1962;
Preziosi & Joseph 1987; Devakar & Iyengar 2008, 2009). Similarly, Stokes’ second
problem (Panton 1968; Schlichting 1968), which considers the time evolution of the
velocity field due to a horizontally oscillating infinite flat plate, has recently been
studied for viscoelastic fluids by Devakar & Iyengar (2008). Its applications include
high-frequency microfluidics (Yakhot & Colosqui 2007; Ekinci, Karabacak & Yakhot
2008) for viscoelastic materials and rheometers for viscoplastic (Balmforth, Forterre &
Pouliquen 2009) and power law fluids (Pritchard, McArdle & Wilson 2011). Recent
literature also considers a third type of Stokes’ problem wherein a transient velocity
field is set up by suddenly applying a body force to a fluid that is initially at rest. In
fact, for a granular medium, Jop, Forterre & Pouliquen (2007) used this configuration
to numerically validate their proposed µ(I)-rheology. This was later referred to as
Stokes’ third problem by Ancey & Bates (2017) for a Herschel–Bulkley material and
interestingly, for the numerical resolution, the authors resorted to a Stefan problem,
with a moving interface (boundary condition) that separates the sheared and unsheared
regions.

The constitutive laws for many non-Newtonian fluids are often nonlinear but they
can be simplified in the case of Stokes’ problems. The yield stress of the granular
material varies in space since the µ(I)-rheology proposes a constitutive law for dense
granular flows wherein the medium behaves like a viscoplastic liquid with the local
viscosity nonlinearly related to the local strain rate as well as the local pressure.
Moreover, care should be taken to express a well-posed initial-value problem using
the µ(I)-rheology to avoid Hadamard instability. Finally, it is only recently that
dense granular flows have been successfully studied using a continuum model, so the
governing equations have so far been unexplored even for Stokes’ first problem. In
addition, apart from the simple case of steady Bagnold flow over an inclined plane,
the constant shear flow case, and the steady-state solution of Stokes’ first problem
(Andreotti et al. 2011; Cawthorn 2011), there exist only a few analytical results
describing unsteady dense granular flows (see the notable recent exception of Capart,
Hung & Stark (2015), who gave entrainment rates in the case of transient heap flows
from the depth-integrated layer dynamics assuming a local µ(I)-rheology). Therefore,
this brief note is aimed at bringing out the key features of this canonical problem as
predicted by the µ(I)-rheology.
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The article is structured as follows. Firstly, the governing equations are shown to
result in a single nonlinear shear-stress diffusion equation. Its numerical solution is
then computed for the case when the wall shear stress is imposed while letting the
wall velocity develop with time. Some approximate unsteady solutions are obtained
and compared with computations. Finally, a brief note on Stokes’ first problem with
imposed wall speed is given.

2. Governing equations
2.1. Constitutive laws: µ(I)-rheology

Analogous to Coulomb’s friction law, using dimensional arguments, experiments and
numerical simulations, Iordanoff & Khonsari (2004), Midi (2004) and Da Cruz et al.
(2005) demonstrated that the shear stress τ is proportional to the normal stress P for
two-dimensional (2-D) dense granular flows of rigid particles so that τ =µ(I)P where
the local friction coefficient µ is only a function of a dimensionless parameter called
the inertial number I = γ̇ d/

√
P/ρ. Here, γ̇ is the local shear rate which is related to

the macroscopic time scale of the granular flow and d
√
ρ/P is the microscopic time

scale corresponding to any local rearrangement of grains of diameter d and density ρ
subjected to a local normal stress P. Note that I is also the square root of the Savage
or the Coulomb number as used in Savage (1984) or Ancey, Coussot & Evesque
(1999), respectively. In general, the dimensionless local friction coefficient is given
by (Midi 2004; Jop et al. 2006)

µ(I)=µs +
µd −µs(
1+

I0

I

) , (2.1)

whereby µ saturates towards two fundamental constants for a dense granular medium
µs or µd depending respectively on the inertial number I � 1 (quasi-static regime)
or I� 1 (kinetic or gaseous regime). Jop et al. (2006) proposed a 3-D generalisation
of this scalar constitutive relation for a granular material by decomposing the Cauchy
stress tensor into an isotropic contribution from the local pressure p and a traceless
deviatoric stress tensor τij while assuming that τij is aligned with the strain rate tensor
γ̇ij= 1/2(∂iuj+ ∂jui) (where ui represent components of the velocity field). So, if x is
the position vector and t represents time, then the Cauchy stress tensor

σij(x, t)=−p(x, t)δij + τij(x, t), (2.2)

where δij is the Kronecker delta and τij(x, t) = η(x, t)γ̇ij(x, t) and the local granular
liquid viscosity

η=
µp
|γ̇ |
, (2.3)

is, thereby, a nonlinear function of the local pressure p and the local second invariant
of the strain rate tensor |γ̇ |=

√
1/2γ̇ijγ̇ij via the local friction coefficient given by (2.1)

and the inertial number for the 3-D case

I =
|γ̇ |d
√

p/ρ
. (2.4)

In addition, the solid volume fraction φ is also a linear function of I (see Andreotti
et al. 2011, p. 238) but, in general, it varies very little and so, for the sake of
simplicity, it is taken to be a constant in the following.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.250


Stokes’ problem in granular media 369

2.2. Stokes’ first problem and its steady-state solution
Consider an infinite rigid flat plate placed at rest (t=0) on top of a semi-infinite dense
granular medium. As illustrated in figure 1, the plate is set in motion impulsively at
t> 0 by applying a tangential shear stress τw (along the x-direction) in the presence
of a normal stress pw (along the y-direction). It is then natural to restrict the analysis
to two dimensions. In fact, the absence of any horizontal length scale implies that
the flow properties should depend only on y and t. Incompressibility and the initial
condition then imply that the vertical velocity is uniformly zero for all t > 0. And
so the only non-zero components of the strain rate tensor are γ̇xy = γ̇yx = (∂u/∂y)/2,
where u is the x-component of the velocity field. Therefore, the 2-D shear-stress tensor
is completely determined by a single scalar shear field τ = µp so that the x and y
momentum equations become, respectively,

φρ
∂u
∂t
=−

∂

∂y
(µp), (2.5)

∂p
∂y
= φρg, (2.6)

where g is the acceleration due to gravity. Initially the granular medium is at rest
(u(y, t = 0) = 0) but a static granular material can support a wide variety of shear-
stress and pressure distributions so long as the yield stress is not exceeded so that τ 6
µsp. Within the context of the µ(I)-rheology, the only possible configuration where
the granular liquid is at rest corresponds to the case τ =µsp. For all other static states,
the constitutive law τ = µp is violated, so the µ(I)-rheology is no longer applicable.
Therefore, in the following, the initial conditions correspond to a specific static state
wherein the shear stress equals the yield stress throughout the granular medium

τ(y, t= 0)=µsp, (2.7)

with p the hydrostatic pressure. Whereas the boundary conditions for all t> 0 are

p(y= 0, t)= pw, (2.8)

µ(y= 0, t)=
τw

pw
=µw, (2.9)

along with the condition that the grains sufficiently far from the plate remain static,
i.e. u(y = ∞, t) = 0, and so µ = µs at y = ∞. In contrast to the classical Stokes’
problem (Stokes 1851) for a Newtonian fluid, firstly, the frictional force (right-hand
side of equation (2.5)) is not only non-uniform due to the hydrostatic pressure p(y)=
pw + φρgy but also nonlinear since µ depends on both p(y) and ∂u/∂y via (2.1).
And secondly, there exists a non-trivial steady-state solution wherein the shear stress
is constant throughout the medium such that µp = τw = µwpw, as already shown in
Andreotti et al. (2011, pp. 254–256) and Cawthorn (2011, pp. 46–50). Since µ ∈
[µs, µd] and p(y) increases linearly with the depth y, it follows that

µ=
µw

1+ (φρgy/pw)
, (2.10)

for all y 6 δs and µ=µs otherwise; here, the critical depth δs is given by

δs = βw

(
pw

φρg

)
, (2.11)
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with βw = (µw/µs − 1). This denotes the depth beyond which the granular medium
does not flow y> δs. Note that the term βw represents the surplus in wall shear stress
over the yield criterion at the wall. The steady-state solution (2.10) can be used to
obtain the corresponding velocity profile. As previously shown by Cawthorn (2011,
pp. 46–50), the resulting relation between the wall velocity (if the no-slip condition is
allowed) and the shear layer thickness compares qualitatively well with the molecular
dynamic simulations of Thompson & Grest (1991).

2.3. Stokes’ first problem: shear-stress diffusion equation
Most numerical studies obtain the velocity field by solving the momentum equations
that account for the constitutive law (2.2). Note that the latter is coupled with the
expressions for the local friction coefficient (2.1) and the inertial number I. However,
it is possible to write a single equation for the shear stress in the case of Stokes’ first
problem within the context of the µ(I)-rheology. Since I = −(1/2)(∂u/∂y)

√
ρd2/p,

the local friction coefficient (2.1) can be rewritten as

∂u
∂y
=−2I0

√
p
ρd2

(
µ−µs

µd −µ

)
, (2.12)

which when differentiated with respect to time and using τ =µp yields

∂2u
∂t∂y
=−

21µI0

d

(
p
√

p
ρ

)
1

(µdp− τ)2
∂τ

∂t
, (2.13)

where 1µ=µd−µs> 0. By allowing ∂2u/∂y∂t= ∂2u/∂t∂y and then introducing (2.5)
in the above expression, this leads to a single nonlinear shear-stress diffusion equation

∂τ

∂t
=

(
d

2φ1µI0
√
ρ

)
(µdp− τ)2

p
√

p
∂2τ

∂y2
. (2.14)

Finally, by taking νg = (d/2φ1µI0)
√

pw/ρ as a proper diffusion coefficient and
the steady-state shear-layer thickness δs as the characteristic length scale, the
non-dimensional time and space coordinates are t̃ = νgt/δ2

s and ỹ= y/δs, respectively.
Thus, in terms of the normalised pressure p̃= p(y)/pw and shear stress τ̃ = τ(y, t)/τw,
the above equation becomes

∂τ̃

∂ t̃
=
(µdp̃−µwτ̃ )

2

p̃
√

p̃

∂2τ̃

∂ ỹ2
, (2.15)

with boundary conditions τ̃ (0, t̃)= τ̃ (1, t̃)=1 and an initial condition τ̃ (ỹ,0)=µsp̃/µw.
The steady-state solution for the non-dimensional shear stress is τ̃ = 1. Unlike the
steady-state local friction coefficient µ, the steady-state shear stress is a continuous
and infinitely differentiable function for all y > 0. So, it is expected that τ̃ remains
smooth also for the unsteady case. In fact, the term (µdp̃−µwτ̃ ) is positive–definite.
Hence, it is quite straightforward to homogenise the boundary conditions and
numerically solve the above equation using a second-order centred finite difference
scheme for spatial derivatives and a second-order Crank–Nicolson one for temporal
integration. The updated τ̃ is obtained by an iterative Richardson minimal residual
process.
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2.4. Well-posedness of the shear-stress diffusion equation
Barker et al. (2015) demonstrated that the µ(I)-rheology is well-posed for intermediate
values of inertial number I, but that it is ill-posed for both high and low inertial
numbers. In the present case, I� 1 in the neighbourhood of the wall when either the
applied wall shear τw is close to the critical wall shear τd =µdpw or when wall speed
uw is sufficiently large. In addition, there is always a zone where I� 1 (or µ∼ µs)
since the medium is slowly moving or stationary when y∼ δs. As already shown by
Barker et al. (2015) this should provoke Hadamard instability (Joseph & Saut 1990)
whereby infinitesimally small short-wave perturbations are amplified indefinitely. Thus,
numerical solutions may not converge as the grid is refined and so, before proceeding
any further, it is important to verify that the shear-stress diffusion (2.15) is indeed
well-posed for all values of the inertial number I.

In fact, this nonlinear diffusion equation (2.15) is one-dimensional and when it is
linearised about an arbitrary base state, as in Barker et al. (2015, see p. 799), the
resulting dispersion equation of the normal mode analysis in the high-wavenumber
limit should be

λ=−α2ξ 2
y , (2.16)

where λ is the complex frequency, ξy is the wavenumber in the ỹ-direction and α =
α(p̃0, τ̃ 0) is some function of the base state pressure p̃0 and shear stress τ̃ 0. Since
the real part of the complex frequency λ provides the perturbation growth rate, it is
straightforward to see that (2.15) is stable for short waves along the y-coordinate.

Note that this is a one-dimensional analysis since it takes into account only
plane waves along the ỹ-axis in order to analyse the well-posedness of (2.15)
for one-dimensional, time-dependent computations. For two-dimensional codes that
consider the granular Stokes’ problem as a test case, the situation is more complex.
In this case, as previously shown by Barker et al. (2015), the equations are still
ill-posed since oblique two-dimensional short waves are unstable in the region y∼ δs

(or close to the wall for µw ∼µd).

3. Unsteady solutions and their characteristics

Figure 2 presents the results of such numerical solutions (continuous lines) for three
typical values of applied wall shear stress when µs= tan 21◦ and µd = tan 33◦ (typical
values for spherical mono-dispersed glass beads as in Andreotti et al. 2011). Each
graphic (top) depicts the normalised shear stress τ̃ =µp̃/µw variation in the y-direction
at various times t̃=10−4,10−3,10−2,10−1,100,101 for typical values of the normalised
wall friction coefficient (µd − µw)/1µ (where, 1µ = µd − µs). In all cases, the
static initial condition τ̃ (0, ỹ)= µsp̃/µw (dashed line), wherein the local shear stress
is taken to be the yield criterion µsp, evolves continuously towards the steady-state
solution τ̃ = µp̃/µw = 1. The spatial variation of τ̃ shows that there exists a layer
in which τ̃ is greater than the yield stress, so the granular medium should flow in
this region. If the size of this shear layer, say δ(t̃), is defined as the region where
τ̃ = 0.999µsp̃/µw, figure 2 (bottom) clearly illustrates that δ(t̃) increases with time as
√

t̃ until t̃ ∼ O(1), after which it saturates to the steady-state limit. Therefore, it is
expected from these results that, for any general µd and µs, approximate solutions
to (2.15) can be obtained at both t̃� 1 and t̃� 1 by properly linearising it.
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FIGURE 2. (Colour online) Temporal evolution of the normalised shear stress τ̃ = τ/τw=

µp̃/µw (top) and shear layer thickness δ/δs (bottom) for typical values of the normalised
wall friction coefficient (µd − µw)/1µ (a) 0.9, (b) 0.5 and (c) 0.1 as computed directly
using (2.15) with initial condition τ̃ (0, ỹ) = µsp̃/µw corresponding to a no-flow regime
(shaded region). Note that 1µ=µd −µs.

3.1. Self-similarity at t̃� 1

When t̃� 1, the non-dimensional shear layer thickness δ/δs is small, as observed in
figure 2 (bottom). By taking the non-dimensional local pressure p̃= 1+ βwỹ and local
shear stress τ̃ =µ(1+ βwỹ)/µw, the diffusion equation (2.15) becomes

∂µ

∂ t̃
= (µd −µ)

2

(
2βw√

1+ βwỹ

∂µ

∂ ỹ
+

√
1+ βwỹ

∂2µ

∂ ỹ2

)
, (3.1)

with µ(ỹ, 0) = µs, µ(0, t̃) = µw and µ(1, t̃) = µs. Note that, in general, βw < 1 and
hence, for t̃� 1, the highest-order derivative of µ should dominate if ỹ6 δ/δs so that
µ∼µw − (µw −µs)y/δ. And in the outer region, µ∼µs. As the spatial variations of
the local friction coefficient µ are stronger inside the shear layer (i.e. when βwỹ� 1),
it is reasonable to simplify (3.1) to

∂µ

∂ t̃
=1µ2 ∂

2µ

∂ ỹ2
, (3.2)

at the leading order with the same boundary conditions as before. By taking ψ =

µ− (µw− (µw−µs)ỹ), the above equation admits a self-similar solution for ψ =ψ(η)
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FIGURE 3. (Colour online) Comparison between self-similar approximation (top) and the
long-time diffusion approximation (bottom) with the direct numerical solution (continuous
lines) for various normalised wall friction coefficients (µd − µw)/(µd − µs) (a) 0.9, (b)
0.5 and (c) 0.1.

with η = ỹ/(21µ
√

t̃) satisfying the initial and the boundary conditions for all t̃ > 0.
Thereby, the local friction coefficient is deduced to be

µ∼µs + (µw −µs)(1− ỹ) erfc
(

ỹ

21µ
√

t̃

)
, (3.3)

which implies that the shear layer thickness should grow as δ/δs ∼ 4.661µ
√

t̃.
The expression (3.3) is presented in figure 3 (top) where the time evolution

of the local friction coefficient is displayed as function of ỹ at different times
t̃=10−4,10−3,10−2,10−1,100,101 for the same values of (µd−µw)/1µ as in figure 2.
When compared with numerical solutions of µ (and also, δ) as seen in figure 3 (top)
(and figure 2, respectively), these approximations are very satisfactory for all t̃� 1.
Indeed, the expression (3.3) for the local friction coefficient, and especially the
estimations of the time evolution of the shear layer thickness δ/δs ∼ 4.661µ

√
t̃, are

reasonably good even when t̃ is of order 1.

3.2. Diffusion at t̃� 1

As soon as t̃∼O(1) the non-dimensional shear layer thickness is no longer small, and
hence a singular perturbation of (3.1) cannot be obtained with the present scaling for
the y-coordinate. However, by using the non-dimensional pressure p̃ as an equivalent
normalised spatial variable ŷ= 1+ βwỹ, it is possible to show that

∂τ̃

∂ t̃
= (βw(µd −µ))

2
√

ŷ
∂2τ̃

∂ ŷ2
, (3.4)
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which is singular if (βw1µ)
2 tends to zero. This is often true since (βw(µd −µ))

2 is
of the order of (βw1µ)

2 and ŷ∼O(1). Thus, taking βw(µd−µ)∼βw1µ at the leading
order in (3.4), it becomes linear and admits a WKB approximation in the ŷ-coordinate.
Thereby, the local shear stress τ̃ can be shown to be

τ̃ ∼ 1+ ŷ−1/8
∞∑

m=1

[
Λm exp (−λ2

m t̃) sin
(

mπ
ŷ3/4
− 1

(µw/µs)3/4 − 1

)]
, (3.5)

where

Λm = 2
∫ µw/µs

1
ŷ1/8

(
µs

µw
ŷ− 1

)
sin
(

mπ
ŷ3/4
− 1

(µw/µs)3/4 − 1

)
dŷ, (3.6)

λm =
3
4

mπβw1µ

(µw/µs)3/4 − 1
. (3.7)

Note that it is possible to solve the linearised version of (3.4) directly by separation
of variables as well. In that case, the general solution is an infinite sum of Bessel
functions in the ŷ-direction. But it is advantageous to work with the approximate
solution (3.5) when m is large. Nevertheless, the comparison between the WKB
approximation (3.5) (dot-dash lines in figure 3) and the numerical solution for the
local friction coefficient is good. In particular, the agreement is excellent when the
applied friction coefficient µw is close to yield friction coefficient µs.

3.3. Velocity field development
It is now possible to compute the temporal evolution of the velocity field using local
shear stress τ = µp. By rewriting (2.5) in terms of t̃ and ỹ, a natural normalisation
for the velocity u can be shown to be

u= ũ
(

gδ2
s

βwνg

)
, (3.8)

where δs is the steady-state shear layer thickness (2.11), βw = (µw −µs)/µs and νg =

(d/φ1µI0)
√

pw/ρ is the diffusion coefficient which appears in the granular Stokes’
equation (2.14). Using this normalisation and by taking

µ̃=
µd −µ

1µ
, (3.9)

the equation for the shear rate (2.12) becomes

∂ ũ
∂ ỹ
=−

√
p̃

1µ

(
1
µ̃
− 1
)
, (3.10)

which can then be integrated to study the velocity field. In the following, the no-slip
condition is assumed so that the wall speed and the velocity of the granular medium
right next to it (ỹ= 0) are equal.

Figure 4 compares the normalised wall velocity ũw = ũ(ỹ = 0, t̃) when obtained
from the numerical solution of (2.15) (filled circles), the self-similar solution (3.3)
(@) and the long-time approximate solution (3.5) (+) for a given boundary condition
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FIGURE 4. (Colour online) Normalised wall velocity as a function of the non-dimensional
time t̃ for various applied wall shear stresses: (µd − µw)/(µd − µs) (a) 0.9, (b) 0.5
and (c) 0.1. The different symbols denote calculations from the numerical solution
using (2.15) (filled circles), the self-similar solution (3.3) (@) and the long-time
approximate solution (3.5) (+).

at the wall. Each panel shows the temporal evolution of ũw when the wall friction
coefficient is taken as (µd −µw)/(µd −µs) (a) 0.9, (b) 0.5 and (c) 0.1. In all cases,
the wall velocity grows monotonically by following a power law in t̃ as long as
t̃ 6 1 and then it saturates at the steady-state value ũ∞w = ũ(ỹ = 0, t̃ = ∞). Firstly,
the self-similar solution (3.3) gives good qualitative agreement with the numerical
results, and also, it matches well with the power law ũw(t̃) ∼

√
t̃. The long-time

WKB approximation (3.5) matches very well with the numerical solution at all
times t̃ > 1. Secondly, it is observed that the steady-state wall velocity ũ∞w depends
largely on the imposed wall shear via µ̃w = (µd − µw)/1µ as already shown by
previous works (Andreotti et al. 2011; Cawthorn 2011). In fact, for the steady-state
solution, Cawthorn (2011, p. 49) had already given an asymptotic solution for the
wall speed ũ∞w when the applied shear stress is just above the yield shear, i.e. when
µ(ỹ = 0, t̃) approaches µs from above (or µ̃w ∼ 1). However, it is also possible to
obtain expressions for ũ∞w for a wide range of µ̃w via the self-similar solution (3.3)
since, as suggested by figure 4, this gives a good approximation to the steady-state
wall speed. In the limit when t̃�1, the approximate solution (3.3) becomes a function
only of ỹ, and so, in terms of the normalised friction coefficient (3.9), it is given by
µ̃∼ µ̃w + (1− µ̃w)ỹ. Using this expression in (3.10), it reads

ũ∞w ∼
∫ 1

0

√
1+ βwỹ
1µ

(
1

µ̃w + (1− µ̃w)ỹ
− 1
)

dỹ, (3.11)

and since βw = (µw/µs − 1) < 1, it could be further developed to obtain a simple
expression for the steady-state wall velocity

ũ∞w ∼−
1
1µ

[
1+

log µ̃w

(1− µ̃w)

]
+O(βw). (3.12)

Noting that µ̃w = 1− µsβw/1µ, it is straightforward to see that the first term in the
above expression cancels out when µ̃w ∼ 1 (or βw = (µw/µs − 1)� 1), and thereby,
it gives ũ∞w ∼O(βw). In this case, as already deduced by Cawthorn (2011, p. 49), the
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FIGURE 5. (Colour online) Comparison between direct computations and approximate
expressions of the steady-state wall speed ũ∞w = ũ(ỹ = 0, t̃ � 1) as a function for the
entire range of normalised wall friction coefficient µ̃w= (µd−µw)/(µd−µs). Black circles
denote the numerical solution using (2.15). The continuous line (blue) and the dashed line
(red) are obtained using the expressions (3.12) and (3.13), respectively. The latter gives a
good match when the applied shear stress is just above the yield shear stress µ̃w ∼ 1 (or
µw ∼µs), whereas the former captures the trend for all values of µ̃w ∈ [0, 1].

above integral leads to

ũ∞w ∼
µs

21µ2

(
βw −

5
2
β2

w +O(β3
w)

)
. (3.13)

For the case when µ̃w tends to zero (or µ→ µd), the integral (3.11) will exhibit
a logarithmic singularity at ỹ = 0, and so ũ∞w ∼ −log µ̃w/1µ. For the sake of
completeness, it is pointed out that, even when βw is not smaller than one, an
expression similar to (3.12) could be developed at µ̃w � 1 by exploiting the
logarithmic singularity in the integral (3.11).

The expressions (3.12) and (3.13) for ũ∞w can now be verified by plotting the
steady-state wall speed with respect to the normalised wall friction coefficient µ̃w as
in figure 5. Here, the exact wall speed (open circles) is computed by substituting the
steady-state solution (2.10) in (3.10) and integrating it numerically. The asymptotic
results (3.12) and (3.13) are displayed as continuous (blue) and dashed (red) lines,
respectively. The normalised wall velocity varies slowly with the normalised friction
coefficient µ̃w as long as 1 − µ̃w is small (or µw ∼ µs). Thus, for a given normal
stress pw at the wall, ũw varies linearly with the applied shear stress τw = µwpw

if the latter is sufficiently close to the yield shear stress τs = µspw. Then the wall
velocity increases rapidly with 1 − µ̃w and it becomes logarithmically large as µw

approaches µd. This is not surprising since when τw approaches µdpw, the inertial
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FIGURE 6. (Colour online) Velocity profile at different times t̃= 10−3, 10−2, 10−1, 100, 101

in the shear layer for various normalised wall friction coefficients µ̃w = 0.9 (a), µ̃w = 0.5
(b) and µ̃w = 0.1 (c). The thick dashed line represents the steady-state solution. These
data are obtained by directly integrating the numerical solution of the non-dimensional
shear-stress equation (2.15). The data collapse features in the second and third rows imply
that the ũ(ỹ, t̃)∼ ũ∞w

√
t̃f (ỹ/21µ

√
t̃), where ũ∞w is given by the expression (3.12).

number satisfies I� 1 in such a manner that frictional grain–grain contacts become
less dominant compared to grain–grain collisions, as internal grain rearrangements are
very frequent compared to the local deformation rate (Andreotti et al. 2011). Thus,
a highly agitated flow can occur near the wall. Indeed, beyond this critical value,
there is no longer an equilibrium between the applied shear stress and the internal
resistance via frictional contacts as previously pointed out by Cawthorn (2011). A
more relevant description is given by models inspired by the kinetic theory of gases
(Jenkins & Savage 1983; Goldhirsch 2003). Furthermore, figure 5 indicates that
the expression (3.13) provides a very good approximation to the steady-state wall
speed when the applied shear stress is just above the yield stress τs = µspw and the
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expression (3.12) remarkably captures the wall speed variation for all applied shear
stresses τw =µwpw ∈ [µspw, µdpw].

The above result that the wall speed ũw(t̃)∝
√

t̃ along with the fact that ũw(t̃� 1)
follows a universal trend (3.12) suggests that the velocity profile can be approximately
deduced from the short-time asymptotic solution (3.3). This hypothesis is explored
in figure 6, which shows three different normalisations of the velocity field as a
function of time. Each column corresponds to specific wall boundary conditions
corresponding to µ̃w = 0.9 (a), µ̃w = 0.5 (b) and µ̃w = 0.1 (c). The steady-state
solution is displayed as a thick dashed line only in the first row but it is left out in
the rest of the graphs for the sake of clarity. In this row, all figures present the time
development of the velocity ũ(ỹ, t̃) as computed by numerically integrating (3.10)
at each t̃ = 10−3, 10−2, 10−1, 100, 101. As seen before in figure 4, it can be readily
observed that the wall velocity ũ(ỹ= 0, t̃) increases in time and attains a steady-state
value which in turn depends on the applied wall shear stress. The numerical solution
at t̃ = 101 is already superimposed on the steady-state solution (dashed line) for all
the cases of µ̃w shown here. The second and the third rows in figure 6 display the
same data when the velocity field is normalised with the wall speed ũw(t̃)= ũ(ỹ= 0, t̃)
and ũ∞w

√
t̃, respectively, as a function of ỹ/21µ

√
t̃. Note that ũ∞w is taken from the

expression (3.12). Irrespective of the velocity normalisation, all the velocity profiles
collapse onto a unique curve except for the cases when t̃ > O(1), as expected from
the previous results. However, the collapse is only marginally good when µ̃w = 0.1
when t̃ ∼ O(1) or greater. This implies that this observation may apply at shorter
and shorter times as µw tends towards µd. Nonetheless, as long as t̃ 6 O(1), the
velocity field should be given by ũ(ỹ, t̃)∼ ũ∞w

√
t̃f (ỹ/21µ

√
t̃), where ũ∞w is given by

the expression (3.12).

3.4. Stokes’ first problem with imposed wall velocity
So far in this article Stokes’ first problem has been considered for the case when the
wall shear stress τw is imposed externally. Therefore, the wall velocity developed with
time and, as the internal resistance of the granular medium balances out the applied
stresses, it saturated to a constant value uw. In contrast, it should be possible to set the
granular medium in motion by imposing the wall speed uw. Here, the resulting shear
stress experienced by the wall should vary temporally as the internal resistance of the
granular medium develops with time. However, it should also ultimately saturate to a
constant value τw so that it gives precisely the same steady-state solution as for the
imposed shear-stress case. In this subsection, a brief note on this variant of Stokes’
first problem is presented.

As already seen in figure 5, in the steady-state solution, for each wall friction
coefficient there exists one and only one wall velocity. Therefore, it is reasonable to
leave the normalised variables of the previous sections as such. Now by using the
normalised local friction coefficient µ̃= (µd −µ)/1µ, (3.1) can be rewritten as

∂µ̃

∂ t̃
=1µ2µ̃2

(
2βw√

1+ βwỹ

∂µ̃

∂ ỹ
+

√
1+ βwỹ

∂2µ̃

∂ ỹ2

)
, (3.14)

which for the case of Stokes’ first problem with imposed wall velocity should satisfy
the initial condition µ̃(ỹ, t̃= 0)= 1 (or µ=µs) along with the boundary conditions

ũw =

∫ 1

0

√
p̃

1µ

(
1
µ̃
− 1
)

dỹ, (3.15)
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FIGURE 7. (Colour online) Numerical results for Stokes’ first problem with imposed wall
velocity showing the evolution of the velocity ũ(ỹ, t̃) (top) and the normalised friction
coefficient µ̃(ỹ, t̃) (bottom) at different times t̃ = 10−3, 10−2, 10−1, 100, 101 for various
imposed wall speeds ũw. These data are obtained by directly integrating the numerical
solution of the non-dimensional shear-stress equation (3.14) with the wall boundary
condition (3.15). The thick dashed line represents the steady-state solution. The imposed
wall speed ũw was chosen to match with the steady-state wall speed in figure 6.

and µ̃(ỹ = 1, t̃) = 1. Here, the initial and lower boundary conditions are chosen so
as to satisfy ũ = 0, which is possible only when µ = µs in the µ(I)-rheology. The
integral condition imposes the wall velocity on the choice of the vertical distribution
of the normalised local friction coefficient µ̃. In particular, note that the parameter
βw = φρgδs/pw as in (2.11) since the steady-state solution (2.10) for Stokes’ first
problem with applied shear stress should also apply to this case where the wall speed
is externally imposed. Thus βw=µ

∞

w /µs−1, where µ∞w is the steady-state wall friction
coefficient that is needed to sustain the applied wall speed uw.

Figure 7 presents the velocity ũ(ỹ, t̃) (top) and the normalised friction coefficient
µ̃(ỹ, t̃) (bottom) profiles that are obtained by numerically solving (3.14) for µ̃
satisfying the imposed wall velocity condition as given by (3.15). Each continuous
line represents a different time as indicated in the figure (t̃=10−3,10−2,10−1,100,101)
and the thick dashed line represents the steady-state solution. Note that particular wall
speeds ((a) ũw = 0.198, (b) ũw = 1.334 and (c) ũw = 4.629) were chosen so that the
resulting steady-state velocity and local friction coefficient profiles are the same as
that obtained in figure 6 for the case when wall shear stress is imposed. As expected,
in all figures, the velocity profile (top) and the related boundary layer develops with
time in such a way that the velocity at the wall is equal to the applied wall speed ũw
at all times, and the size of the mobile layer increases until approximately t̃ ∼ O(1).
This is true for the normalised wall friction coefficient (bottom) as well. Also, both
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FIGURE 8. (Colour online) Temporal evolution of the shear layer thickness δ/δs for
the profiles presented in figure 7. Different symbols correspond to various imposed wall
velocities (@, ũw = 0.198; E, ũw = 1.334; 6, ũw = 4.629). As already seen in figure 2
(bottom) for the case when the wall shear stress is imposed, the shear layer grows as

√
t̃

until approximately t̃∼O(1).

ũ(ỹ, t̃) and µ̃(ỹ, t̃) match with their respective steady-state profiles (thick dashed line)
for sufficiently large time t̃>O(1).

With these data, it is then possible to calculate the size of the mobile layer, say
δ(t̃), where the local shear stress is just above the threshold shear τs =µsp. Figure 8
illustrates that δ(t̃) increases with time as

√
t̃ until t̃ ∼ O(1), after which it saturates

to the steady-state limit. Even though this is similar to what was observed previously
for the case of Stokes’ problem when the wall shear is imposed, as seen in figure 2
(bottom), the evolution of the wall friction coefficient µw(t̃) takes place in two stages
(see figure 9). It is observed that µw(t̃) is close to µd for sufficiently small times, say
up to when t̃6 t̃µd. Then it decreases as 1/

√
t̃ until it attains the steady state at t̃∼ t̃µw.

Thus, the corresponding wall shear stress τw(t̃)=µw(t̃)pw initially remains sufficiently
close to the critical shear stress µdpw before decreasing monotonically towards the
wall shear stress that is needed to sustain the applied wall velocity ũw. It suggests
that the time at which these two stages occur should depend on ũw and these time
scales are different from δ2

s /νg.
For t̃µd 6 t̃ 6 t̃µw, an order of magnitude analysis of (2.5) gives uw/t ∼ (µw(t) −

µs)pw/δ(t). In terms of the non-dimensional time t̃ and wall velocity ũw, this can be
rewritten as

µw(t̃)−µs ∼
ũw

3.661µ
√

t
, (3.16)

since δ∼ 3.661µ
√

t̃ as shown by figure 8. Since when t̃∼ t̃µd, µw(t̃)−µs≈1µ, this
implies that the wall friction coefficient should be around µd until some time

t̃µd ∝ ũ2
w. (3.17)
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FIGURE 9. (Colour online) Evolution of the wall friction coefficient µ(ỹ= 0, t̃)= µw(t̃)
for various imposed wall velocities (@, ũw= 0.198;E, ũw= 1.334;6, ũw= 4.629). Figures
on the right display the same data as a function of two different normalisations of the
time variable based on the scaling laws (3.17) and (3.18).

Thus, according to µ(I)-rheology, in order to sustain an applied wall speed ũw with
the no-slip condition, the granular medium develops a strong shear stress (about µdpw)
near the wall for all times t̃ 6 t̃µd. From this point onwards, the wall shear stress
should decrease monotonically as 1/

√
t̃ until the local friction coefficient (or the local

shear stress) distribution has reached the steady-state solution to give µw(t̃� 1)=µ∞w .
Here, µ∞w is a function of the applied wall speed and it can be either estimated directly
by integrating the steady-state profile (2.10) or approximately via the expression (3.12).
Using (3.16), it is seen that the wall friction coefficient, and hence the wall shear
stress, should attain a steady-state value at some time

t̃µw ∝

(
ũw

µ∞w −µs

)2

. (3.18)

These two time scales can be verified by plotting the data from figure 9(a) as a
function of properly rescaled time with respect to the relations (3.17) and (3.18). This
is done in figure 9 (see plots b,c) where the data collapse indicates a good agreement
with the above scaling laws.

Finally, an approximate expression can now be elaborated for µ(ỹ, t̃) due to the fact
that the shear layer δ̃ is small up to t̃∼O(1). As done before in § 3.1, (3.14) becomes

∂µ̃

∂ t̃
= (1µ2µ̃2)

∂2µ̃

∂ ỹ2
, (3.19)

at short time t̃. This equation is singular near the wall region ỹ� 1 since µ̃ ∼ 0 at
least until t̃µd (see figure 9). Nonetheless, the chosen initial condition τ(y, t= 0)=µsp
implies that there exists a zone where µ∼µs (or µ̃∼ 1) away from the wall until the
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FIGURE 10. (Colour online) The same data as in figure 7 (bottom) for different times
t̃=10−3,10−2,10−1,100,101 but plotted here against the self-similar variable η= ỹ/21µ

√
t̃.

A reasonably good collapse is observed.

shear layer is completely developed, i.e. for all t̃6O(1). In this outer zone 1µµ̃∼1µ
and hence the above equation reduces to a simple diffusion equation wherein the outer
solution should be µ=µs+A erfc (ỹ/21

√
t). Here A is an arbitrary constant that could

be deduced by matching this solution to the inner region where the friction coefficient
µ̃∼ 0. Here, µ∼µw(t̃) and therefore

µ(ỹ, t̃)=µs + (µw(t̃)−µs) erfc
(

ỹ

21µ
√

t̃

)
(3.20)

is obtained as an approximate expression for the friction coefficient µ(ỹ, t̃) as long as
t̃ is sufficiently small. When this expression is compared with the numerical results
(see figure 10) a reasonable fit is observed for all t̃6O(1). As previously shown from
computational data in figure 9, it is pointed out here that µw(t̃) − µs ∼ 1µ for all
t̃ 6 t̃µd and µw(t̃)−µs ∼ ũw/1µ

√
t̃ when t̃µd 6 t̃ 6 t̃µw.

4. Conclusion

Using the µ(I)-rheology, the so-called Stokes’ first problem on the motion of a
granular liquid set up by an impulsively started flat plate is studied both numerically
and theoretically. The problem is first well-posed in terms of a nonlinear diffusion
equation for the local shear stress with proper initial and boundary conditions in order
to avoid the Hadamard instability. Numerical solutions are then obtained for both
externally imposed wall stress and speed. Approximate solutions at short and long
times are also illustrated to capture the main features of the numerical results.

For the case when the dense granular flow is brought about by applying constant
shear stress τw at t>0, if τw is greater than the yield stress at the wall µspw (where pw

is the applied pressure at the wall) then the µ(I)-rheology implies that it is diffused
into the granular medium until the shear stress is uniform throughout the medium
such that, at any time t, the applied shear stress reaches a depth proportional to

√
νgt

where νg = (d/2φ1µI0)
√

pw/ρ denotes the diffusion coefficient for the local shear
stress. A steady state, wherein a finite zone of grains (of thickness, say, δs) yield,
and hence flow, due to the applied shear, is thus shown to occur at a finite time of
the approximate order δ2

s /νg. Here, if βw = (µw − µs)/µs, the shear layer depth δs is
βwpw/φρg as already obtained by Andreotti et al. (2011) and Cawthorn (2011). If the
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no-slip condition is allowed, the wall velocity develops in time as u∞w
√
νgt/δs until

approximately a time t∼O(δ2
s /νg).

If the dense granular flow is set up by suddenly imparting a constant speed uw on
the wall at t>0, the internal resistance of the medium develops in a small region close
to the wall and later it is diffused into the shear layer. As a result, the µ(I)-rheology
suggests that, initially when the wall is set in motion, the shear stress experienced
by the granular medium in the neighbourhood of the velocity-driven wall should be
sufficiently close to the critical shear stress τd=µdpw until some time tµd proportional
to νg(uw/gδs)

2. Thereafter, the wall shear stress τw decreases with time as a power
law 1/

√
t before reaching its steady-state value necessary to support the externally

imposed wall speed uw. At this stage the shear stress becomes uniform in the bulk of
the mobile layer.

In both variants of Stokes’ problem in granular media, a properly rescaled friction
coefficient (or the shear stress) is illustrated to be approximately self-similar with
respect to the variable y/1µ

√
νgt. Moreover, the steady-state wall speed, wall shear

stress and the applied wall pressure are related by a simple approximate expression
(3.12) which in terms of dimensional parameters can be given as uw ∼ (gδ2

s /νg)f (βw),
where f (βw) is a function of the surplus steady-state wall shear stress βw = (τw −

µspw)/µspw such that it is either O(1) when the wall shear stress is just above the
yield stress τw ∼ τs or logarithmically large as τw approaches τd.

Note that when the local friction coefficient µ approaches µd, the local inertial
number, which compares the time scale of grain–grain rearrangements with that
arising from the macroscopic deformation of the medium, should be very large
(I � 1). Therefore, the aforementioned result that, for t 6 tµd, the local shear stress
τ =µp tends towards τd =µdp in the immediate vicinity of the region where velocity
is imposed, suggests that a highly agitated granular flow could occur in this zone. A
viscoplastic description of the µ(I)-rheology might, in fact, not be suitable in such
zones as the local shear stress therein cannot be supported by internal grain–grain
frictional resistance alone. Here, a proper model for rapid granular flows (Jenkins &
Savage 1983; Goldhirsch 2003) should be more pertinent. Furthermore, if the applied
wall speed uw is much larger than νg/gδ2

s so that tµd becomes sufficiently large, the
resulting unsteady granular flow as computed from the µ(I)-rheology may even be
incorrect.

It is expected that this study will motivate investigations of the further validity of
the µ(I)-rheology for unsteady dense granular flows using simple experiments. These
results should also be helpful to better understand shear layers, effective viscosity, drag
force and characteristic diffusion time scales in future studies with the µ(I)-rheology.
Especially in the context of the ill-posedness of the µ(I)-rheology as an initial-value
problem, it might be essential to identify what features predicted by this rheology are
still meaningful. It will be of some interest to include the spatio-temporal variation
of the solid fraction φ as well – via, for example, a linear function of the inertial
number I as in Jop et al. (2006). Non-local effects by which a granular medium can
yield even if the local shear stress is below the yield criterion are omitted in the
present short note for the sake of simplicity, but they might play an important role
under common experimental conditions. Finally, it is pointed out that Stokes’ second
problem with an oscillating wall boundary condition remains a very interesting open
problem, as it might shed light on how static and dynamic zones can simultaneously
appear and move around in unsteady flow fields predicted by the µ(I)-rheology
of dense granular flows. However, the µ(I)-rheology can neither account for the
history of the shear stress in the bulk of the medium nor consider other static initial
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conditions that are different from the yield criterion. It is nonetheless important to
study these configurations using the µ(I)-rheology to further advance knowledge
about continuum models for unsteady dense granular flows.
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