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A 1993 result of Alon and Füredi gives a sharp upper bound on the number of zeros of a multivari-
ate polynomial over an integral domain in a finite grid, in terms of the degree of the polynomial.
This result was recently generalized to polynomials over an arbitrary commutative ring, assuming
a certain ‘Condition (D)’ on the grid which holds vacuously when the ring is a domain. In the first
half of this paper we give a further generalized Alon–Füredi theorem which provides a sharp upper
bound when the degrees of the polynomial in each variable are also taken into account. This yields
in particular a new proof of Alon–Füredi. We then discuss the relationship between Alon–Füredi
and results of DeMillo–Lipton, Schwartz and Zippel. A direct coding theoretic interpretation of
Alon–Füredi theorem and its generalization in terms of Reed–Muller-type affine variety codes is
shown, which gives us the minimum Hamming distance of these codes. Then we apply the Alon–
Füredi theorem to quickly recover – and sometimes strengthen – old and new results in finite
geometry, including the Jamison–Brouwer–Schrijver bound on affine blocking sets. We end with
a discussion of multiplicity enhancements.

2010 Mathematics subject classification: Primary 05E40
Secondary 11T06, 11T71, 51E20, 51E21

1. Introduction

1.1. Notation
We denote the positive integers by Z

+ and the non-negative integers by N. For n ∈ Z
+, we put

[n] = {1,2, . . . ,n}.
For us, rings are commutative with multiplicative identity. Throughout this paper R denotes a

ring and F denotes a field, each arbitrary unless otherwise specified.
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Following [12] and [32], a non-empty subset S ⊂ R is said to satisfy Condition (D) if, for
all x �= y ∈ S, the element x− y ∈ R is not a zero divisor. A finite grid is a subset A = ∏n

i=1 Ai

of Rn (for some n ∈ Z
+) with each Ai a finite, non-empty subset of R. We say that A satisfies

Condition (D) if each Ai does.
For A ⊂ Rn and f ∈ R[t] = R[t1, . . . , tn], we put

ZA( f ) = {x ∈ A | f (x) = 0} and UA( f ) = {x ∈ A | f (x) �= 0}.

1.2. The Alon–Füredi theorem
In [1] Alon and Füredi solved a problem posed by Bárány (based on a result of Komjath)
of finding the minimum number of hyperplanes required to cover all points of the hypercube
{0,1}n ⊆ Fn except one. One such covering is given by n hyperplanes defined by the zeros of
the polynomials t1 − 1, t2 − 1, . . ., tn − 1. Alon and Füredi proved that n is in fact the minimum
number. They then generalized this result to all finite grids A = ∏n

i=1 Ai ⊂ Fn, showing that the
minimum number of hyperplanes required to cover all points of A except one is ∑n

i=1(#Ai −1).
There is also a quantitative refinement: as we vary over families of d hyperplanes which do

not cover all points of A, what is the minimum number of points which are missed? To answer
this, Alon and Füredi proved the following result.

Theorem 1.1 (Alon–Füredi theorem [1, Theorem 5]). Let F be a field, let A = ∏n
i=1 Ai ⊂ Fn

be a finite grid, and let f ∈ F [t] = F [t1, . . . , tn] be a polynomial which does not vanish on all
points of A. Then f (x) �= 0 for at least min∏yi elements x ∈ A, where the minimum is taken over
all positive integers yi � #Ai with ∑n

i=1 yi = ∑n
i=1 #Ai −deg f . More concisely (see Section 2.1),

#UA( f ) � m

(
#A1, . . . ,#An;

n

∑
i=1

#Ai −deg f

)
.

The minimum referred to in Theorem 1.1 is known in all cases – see Lemma 2.1(a) – leading
to an explicit form of the bound.

Several proofs of Theorem 1.1 have been given. The original argument in [1] involves the
construction of auxiliary polynomial functions of low degree via linear algebra. A second proof
was given by Ball and Serra as an application of their punctured combinatorial Nullstellensatz
[3, 4]. Recently, López, Renterá-Márquez and Villarreal gave a proof of Alon–Füredi [27], in
its coding theoretic formulation (see Section 5). Geil had noticed that the minimum distance of
generalized Reed–Muller codes can be determined easily using the Gröbner basis theory [19,
Theorem 2]. This technique was then used by Carvalho to give another proof of Theorem 1.1
when F is a finite field [9, Proposition 2.3], which is in fact a special case of an earlier result by
Geil and Thomsen [20, Proposition 5] (take all weights equal to 1).

In [13], Clark generalized the Alon–Füredi theorem by replacing the field F with an arbitrary
ring R, under the assumption that the finite grid A satisfies Condition (D). This is a modest
generalization in that Condition (D) is exactly what is needed for polynomial functions on A to
behave as they do in the case of a field, and the proof adapts that of Ball and Serra.

Clark, Forrow and Schmitt [14] used Alon–Füredi to obtain a restricted variable generalization
of a theorem of Warning [34] giving a lower bound on the number of zeros of a system of
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polynomials over a finite field. (Alon–Füredi gives a lower bound on non-zeros, but over a finite
field Fq, we have Chevalley’s trick: f (x) = 0 ⇐⇒ 1− f (x)q−1 �= 0.) This work also gave several
combinatorial applications of this lower bound on restricted variable zero sets.

One of the main goals of this paper is to revisit the Alon–Füredi theorem and give direct com-
binatorial applications (i.e. not of Chevalley–Warning type). We begin by giving the following
generalization of the Alon–Füredi theorem.

Theorem 1.2 (generalized Alon–Füredi theorem). Let R be a ring and let A1, . . . ,An be non-
empty finite subsets of R that satisfy Condition (D). For i ∈ [n], let bi be an integer such that 1 �
bi � #Ai. Let f ∈ R[t1, . . . , tn] be a non-zero polynomial such that degti

f � #Ai −bi for all i ∈ [n].
Let UA( f ) = {x ∈ A | f (x) �= 0} where A = A1 ×·· ·×An ⊂ Rn. Then we have (see Section 2.1)

#UA( f ) � m

(
#A1, . . . ,#An;b1, . . . ,bn;

n

∑
i=1

#Ai −deg f

)
.

Moreover, this bound is sharp in all cases.

As we shall explain in Section 2.3, one recovers Theorem 1.1 from Theorem 1.2 by taking
b1 = · · · = bn = 1. Our argument specializes to give a new proof of Alon–Füredi.

In Section 4 we relate the generalized Alon–Füredi theorem to work of DeMillo–Lipton,
Schwartz and Zippel. We find in particular that Alon–Füredi implies the result which has be-
come known as the ‘Schwartz–Zippel lemma’. In fact, the original result of Zippel (and earlier,
DeMillo–Lipton) is a bit different and not implied by Alon–Füredi (see Example 4.7). However,
it is implied by generalized Alon–Füredi, and this was one of our motivations for strengthening
Alon–Füredi as we have.

The Alon–Füredi theorem has a natural coding theoretic interpretation (see Section 5) as it
computes the minimum Hamming distance of the affine grid code AGCd(A), an F-linear code
of length #A. In this way Alon–Füredi turns out to be the restricted variable generalization of a
much older result in the case Ai = F = Fq, the Kasami–Lin–Peterson theorem, which computes
the minimum Hamming distance of generalized Reed–Muller codes. We will show that the
generalized Alon–Füredi theorem is equivalent to computing the minimum Hamming distance of
a more general class of R-linear codes. These generalized affine grid codes have larger distance
(though also smaller dimension) than the standard ones, so they may turn out to be useful.

In Section 6, we pursue applications to finite geometry. We begin by revisiting and slightly
sharpening the original result of Alon–Füredi on hyperplane coverings. This naturally leads us
to partial covers and blocking sets in affine and projective geometries over Fq. Applying Alon–
Füredi and projective duality we get a new upper bound, Theorem 6.6, on the number of hyper-
planes which do not meet a k-element subset of AG(n,q). From this result the classical theorems
of Jamison–Brouwer–Schrijver on affine blocking sets and Blokhuis–Brouwer on essential points
of projective blocking sets follow as corollaries. We are also able to strengthen a recent result of
Dodunekov, Storme and Van de Voorde.

Finally, in Section 7 we discuss multiplicity enhancements in the sense of [18]. The material
here is most closely related to that of Section 4, but we have placed it at the end because it has a
somewhat more technical character than the rest of the paper.
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2. Preliminaries

2.1. Balls in prefilled bins
Let a1, . . . ,an ∈ Z

+. Consider n bins A1, . . . ,An such that Ai can hold up to ai balls. For N ∈ Z
+

with n � N � ∑n
i=1 ai, we define a distribution of N balls in these n bins to be an n-tuple y =

(y1, . . . ,yn) ∈ (Z+)n with yi � ai for all i ∈ [n] and ∑n
i=1 yi = N. For a distribution y of N balls in n

bins, we put P(y) = ∏n
i=1 yi. For n � N � ∑n

i=1 ai we define m(a1, . . . ,an;N) to be the minimum
value of P(y) as y ranges over all such distributions of N balls in n bins. For N < n we define
m(a1, . . . ,an;N) = 1.

Without loss of generality we may – and shall – assume a1 � · · · � an. We define the greedy
distribution yG = (y1, . . . ,yn) as follows: first place one ball in each bin; then place the remaining
balls into bins from left to right, filling each bin completely before moving on to the next bin,
until we run out of balls.

Lemma 2.1. Let n ∈ Z
+, and let a1 � · · · � an be positive integers. Let N ∈ Z with n � N �

a1 + · · ·+an.

(a) We have

m(a1, . . . ,an;N) = P(yG) = y1 · · ·yn.

(b) Suppose a1 = · · · = an = a � 2. Then

m(a, . . . ,a;N) = (r +1)a	(N−n)/(a−1)
,

where r ≡ N −n (mod a−1) and 0 � r < a−1.
(c) For all non-negative integers k, we have

m(2, . . . ,2;2n− k) = 2n−k.

(d) Let n,a1, . . . ,an ∈ Z
+ with a1 � · · ·� an. Let N ∈ Z be such that N−n = ∑ j

i=1(ai −1)+ r for
some j ∈ {0, . . . ,n} and some r satisfying 0 � r < aj+1. Then
m(a1, . . . ,an;N) = (r +1)∏ j

i=1 ai.

Proof. Parts (a)–(c) are [14, Lemma 2.2]. (d) After placing one ball in each bin we are left with
N−n balls. The greedy distribution is achieved by filling the first j bins entirely and then putting
r balls in bin j +1.

In every distribution y = (y1, . . . ,yn) we need yi � 1 for all i∈ [n]; that is, we must place at least
one ball in each bin. So it is reasonable to think of the bins coming prefilled with one ball each,
and then our task is to distribute the N −n remaining balls so as to minimize P(y). The concept
of prefilled bins makes sense more generally: given any b1, . . . ,bn ∈ Z with 1 � bi � ai, we may
consider the scenario in which the ith bin comes prefilled with bi balls. If ∑n

i=1 bi � N � ∑n
i=1 ai,

we may restrict to distributions y = (y1, . . . ,yn) of N balls into bins of sizes a1, . . . ,an such that
bi � yi � ai for all i ∈ [n], and put

m(a1, . . . ,an;b1, . . . ,bn;N) = minP(y),
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where the minimum ranges over this restricted set of distributions. For N < ∑n
i=1 bi we define

m(a1, . . . ,an;b1, . . . ,bn;N) := ∏n
i=1 bi.

Lemma 2.2. We have

m(a1, . . . ,an;b1, . . . ,bn;N) =
n

∏
i=1

bi ⇐⇒ N �
n

∑
i=1

bi.

Proof. If N � ∑n
i=1 bi then

m(a1, . . . ,an;b1, . . . ,bn;N) =
n

∏
i=1

bi

by definition unless N = ∑n
i=1 bi, and this case is immediate: we have exactly enough balls to

perform the prefilling. If N > ∑n
i=1 bi, then m(a1, . . . ,an;b1, . . . ,bn;N) is the minimum over a set

of integers each of which is strictly greater than ∏n
i=1 bi.

In this prefilled context, the greedy distribution yG is defined by starting with the bins prefilled
with b1, . . . ,bn balls and then distributing the remaining balls from left to right, filling each bin
completely before moving on to the next bin. One sees – for example by adapting the argument
of [14, Lemma 2.2] – that

m(a1, . . . ,an;b1, . . . ,bn;N) = P(yG),

when we also have b1 � · · · � bn. But this may not hold in general, as the following example
shows.

Example 2.3. Let

n = 2, a1 = 4, a2 = 3, b1 = 1, b2 = 2, N = 4.

Then P(yG) = 4 but m(4,3;1,2;4) = 3 is achieved by the distribution (1,3).

In general we do not know a simple description of m(a1, . . . ,an;b1, . . . ,bn;N). In practice, it
can be computed using dynamic programming.

Lemma 2.4. Let a1, . . . ,an,b1, . . . ,bn ∈ Z
+ with 1 � bi � ai for all i ∈ [n]. Let k ∈ Z such that

bn � k � an. If

b1 + · · ·+bn−1 � N − k � a1 + · · ·+an−1

for some N ∈ Z, then

k ·m(a1, . . . ,an−1;b1, . . . ,bn−1;N − k) � m(a1, . . . ,an;b1, . . . ,bn;N).

Proof. Let y′ = (y1, . . . ,yn−1) be a distribution of N − k balls in the first n− 1 bins. Then y =
(y1, . . . ,yn−1,k) is a distribution of N balls in n bins with the last bin getting k balls. Therefore,

m(a1, . . . ,an;b1, . . . ,bn;N) � P(y) = k ·P(y′).

https://doi.org/10.1017/S0963548317000566 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000566


On Zeros of a Polynomial in a Finite Grid 315

Since this holds for all such distributions y′, we get

m(a1, . . . ,an;b1, . . . ,bn;N) � k ·m(a1, . . . ,an−1;b1, . . . ,bn−1;N − k).

2.2. Grid reduction and Condition (D)
For any finite grid A ⊂ Rn, evaluation of a polynomial f ∈ R[t] = R[t1, . . . , tn] at elements of A
gives a ring homomorphism,

EA : R[t] → RA, f �→ (x ∈ A �→ f (x)).

Let I(A) be the kernel of EA, that is, the set of polynomials which vanish identically on A. There
are some ‘obvious’ elements of I(A), namely

ϕi = ∏
xi∈Ai

(ti − xi), for all i ∈ [n].

Let Φ = 〈ϕ1, . . . ,ϕn〉 be the ideal generated by these elements. Then Φ ⊂ I(A).
We say a polynomial f ∈ R[t] is A-reduced if degti

( f ) < #Ai for all i ∈ [n]. The A-reduced
polynomials form an R-submodule RA of R[t] which is free of rank #A, and the composite map

RA ↪→ R[t] → R[t]/Φ

is an R-module isomorphism [12, Proposition 10], that is, every polynomial f ∈ R[t] differs from
a unique A-reduced polynomial rA( f ) by an element of Φ, and we have EA( f ) = EA(rA( f )). The
polynomial rA( f ) can be computed from f by dividing by ϕ1, then dividing the remainder by ϕ2,
and so on. It follows that degrA( f ) � deg f and degti

rA( f ) � degti
f for all i ∈ [n].

Theorem 2.5 (CATS† lemma [12, Theorem 12]). The following are equivalent.

(i) The finite grid A satisfies Condition (D).
(ii) If f ∈RA and f (x) = 0 for all x ∈ A, then f = 0.

(iii) We have Φ = I(A).

Remark. These results can be directly used to solve the main problem studied by Alon and
Füredi. Let f be a polynomial that vanishes on all points of A except the point x = (x1, . . . ,xn).
Since the polynomial ∏n

i=1 ∏λ∈Ai\{xi}
(ti−λ ) is A-reduced and it vanishes everywhere on A except

at x, it must be equal to rA( f ). Thus,

deg f � degrA( f ) =
n

∑
i=1

(#Ai −1).

Now associate the set of hyperplanes that cover all points of A except one by the product of their
corresponding linear polynomials.

† CATS = Chevalley–Alon–Tarsi–Schauz [2, 10, 32].
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2.3. Generalized Alon–Füredi implies Alon–Füredi
Let A = ∏n

i=1 Ai ⊂ Rn be a finite grid satisfying Condition (D), and for i ∈ [n] put ai = #Ai.
Suppose f ∈ R[t] does not vanish identically on A. Let

UA( f ) = {x ∈ A | f (x) �= 0}.

Then the Alon–Füredi theorem is the assertion that

#UA( f ) � m

(
a1, . . . ,an;

n

∑
i=1

ai −deg f

)
.

The non-vanishing hypothesis on f is equivalent to rA( f ) �= 0. Then rA( f ) satisfies the hypotheses
of Theorem 1.2 with b1 = · · · = bn = 1. Since EA( f ) = EA(rA( f )), we have UA( f ) = UA(rA( f )),
and thus

#UA( f ) � m

(
a1, . . . ,an;1, . . . ,1;

n

∑
i=1

ai −degrA( f )
)

= m

(
a1, . . . ,an;

n

∑
i=1

ai −degrA( f )
)

� m

(
a1, . . . ,an;

n

∑
i=1

ai −deg f

)
.

3. Proof of the generalized Alon–Füredi theorem

3.1. A preliminary remark
If f satisfies the hypotheses of the generalized Alon–Füredi theorem, then

deg f �
n

∑
i=1

degti
f �

n

∑
i=1

(ai −bi),

so
n

∑
i=1

bi �
n

∑
i=1

ai −deg f �
n

∑
i=1

ai.

Thus, whereas the conventional Alon–Füredi setup allows the case in which we have too few
balls to fill the bins (in which case the result gives the trivial (but sharp!) bound #UA( f ) � 1), in
our setup we do not need to consider this case.

3.2. Proof of the generalized Alon–Füredi bound
For i ∈ [n], put ai = #Ai. We go by induction on n.

Base case. Let f ∈ R[t1] be a non-zero polynomial. Suppose f vanishes precisely at the distinct
elements x1, . . . ,xk of A1. Dividing f by t1 − x1 shows f = (t1 − x1) f1(t1), and (since A1 satisfies
Condition (D)) f1(xi) = 0 for 2 � i � k. Continuing in this way we get f = ∏k

i=1(t1 − xi) fk(t1),
and thus deg f � k. So

#UA( f ) = a1 − k � a1 −deg f ,

which is the conclusion of the generalized Alon–Füredi theorem in this case.
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Induction step. Suppose n � 2 and the result holds for n−1. Write

f (t1, . . . , tn) =
dn

∑
i=0

fi(t1, . . . , tn−1)t
i
n,

so that dn = degtn f is the largest index i such that fi �= 0. Moreover, we have deg fdn
� deg f −dn,

and for all i ∈ [n−1],degti
fdn

� degti
f � ai −bi.

Put A′ = ∏n−1
i=1 Ai. By the induction hypothesis, we have

#UA′( fdn
) � m

(
a1, . . . ,an−1;b1, . . . ,bn−1;

n−1

∑
i=1

ai −deg fdn

)

� m

(
a1, . . . ,an−1;b1, . . . ,bn−1;

n−1

∑
i=1

ai −deg f +dn

)
.

Let x′ = (x1, . . . ,xn−1)∈ UA′( fdn
). Then f (x′, tn) = ∑dn

i=0 fi(x
′)ti

n ∈ R[tn] has degree dn � 0 since its
leading term fdn

(x′)tdn is non-zero. Since An satisfies Condition (D), f (x′, tn) vanishes at no more
than dn points of An, so there are at least an−dn elements xn ∈ An such that (x′,xn)∈UA( f ). Thus

#UA( f ) � (an −dn)m
(

a1, . . . ,an−1;b1, . . . ,bn−1;
n−1

∑
i=1

ai −deg f +dn

)
.

Since

deg f �
n

∑
i=1

degti
f =

n−1

∑
i=1

degti
f +dn

and thus

n−1

∑
i=1

bi �
n−1

∑
i=1

(ai −degti
f ) �

n−1

∑
i=1

ai −deg f +dn �
n−1

∑
i=1

ai,

we may apply Lemma 2.4 with N = ∑n
i=1 ai −deg f and k = an −dn, getting

(an −dn)m
(

a1, . . . ,an−1;b1, . . . ,bn−1;
n−1

∑
i=1

ai −deg f +dn

)

� m

(
a1, . . . ,an;b1, . . . ,bn;

n

∑
i=1

ai −deg f

)
.

We deduce that

#UA( f ) � m

(
a1, . . . ,an;b1, . . . ,bn;

n

∑
i=1

ai −deg f

)
.

3.3. Sharpness of the generalized Alon–Füredi bound
For i ∈ [n], put ai = #Ai, and let d be an integer such that 0 � d � ∑n

i=1(ai −bi) (see Section 3.1).
For any distribution y = (y1, . . . ,yn) of ∑n

i=1 ai −d balls in n bins with bi � yi � ai, for all i ∈ [n]
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choose a subset Si ⊂ Ai of cardinality ai − yi, and put‡

f (t) =
n

∏
i=1

∏
xi∈Si

(ti − xi).

Then

deg f =
n

∑
i=1

(ai − yi) = d,

for all i ∈ [n], degti
f = ai − yi � ai −bi

and

#UA( f ) = P(y) =
n

∏
i=1

yi.

Thus, for all finite grids A = ∏n
i=1 Ai satisfying Condition (D) and all permissible values of

degt1
f , . . . ,degtn f and deg f , there are instances of equality in the generalized Alon–Füredi

bound. The case b1 = · · · = bn = 1 yields the (known) sharpness of the Alon–Füredi bound.

3.4. An equivalent formulation
Let us say that a polynomial f ∈ R[t] is polylinear (resp. simple polylinear) if it is a product
of factors (resp. distinct factors) of the form ti − x for x ∈ R. Petrov has observed (personal
communication) that the generalized Alon–Füredi theorem is equivalent to the statement that for
any non-zero A-reduced polynomial f ∈ R[t], there is a simple polylinear polynomial g ∈ R[t]
with degti

f = degti
g for all i ∈ [n], deg f = degg and such that #ZA( f ) � #ZA(g). Thus it is

possible to formulate the result without reference to balls in prefilled bins. However, as we will
see, having the result in this form is useful for applications.

4. Connections with the Schwartz–Zippel lemma

4.1. Schwartz–Zippel lemma
The material in this section is motivated by a blog post of Lipton [26] which discusses the history
of the ‘Schwartz–Zippel lemma’. We will further weigh in on the history of this circle of results,
discuss various improvements and give the connection to the Alon–Füredi theorem.

Theorem 4.1 (Schwartz–Zippel lemma). Let R be a domain and let S ⊂ R be finite and non-
empty. Let f ∈ R[t] = R[t1, . . . , tn] be a non-zero polynomial. Then

#ZSn( f ) � (deg f )(#S)n−1. (4.1)

Proof. Let s = #S. The statement is equivalent to

#USn( f ) � sn−1(s−deg f ).

‡ An empty product is understood to take the value 1.
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If deg f � s, then (4.1) asserts that f has no more zeros in Sn than the size of Sn: true. So the
non-trivial case is deg f < s. Then f is Sn-reduced, so

#USn( f ) � m(s, . . . ,s;ns−deg f ) = sn−1(s−deg f )

by Alon–Füredi and because the greedy distribution is (s, . . . ,s,s−deg f ).

The case of the Schwartz–Zippel lemma in which R = S = Fq is due to Ore [30]. Thus the
Schwartz–Zippel lemma may be viewed as a ‘restricted variable Ore theorem’, although it is not
the most general result along those lines. In fact, the same argument establishes the following.

Theorem 4.2 (generalized Schwartz–Zippel lemma). Let A = ∏n
i=1 Ai ⊂ Rn be a finite grid

satisfying Condition (D), and suppose #A1 � · · · � #An. Let f ∈ R[t] = R[t1, . . . , tn] be a non-zero
polynomial. Then

#ZA( f ) � (deg f )
n−1

∏
i=1

#Ai.

Indeed, the non-trivial case of this result is precisely the case #A1 � · · · � #An > deg f of
Alon–Füredi, and the greedy distribution is (#A1, . . . ,#An−1,#An −deg f ).

4.2. Schwartz’s theorem
The Schwartz–Zippel lemma appears in Schwartz’s 1980 paper as a corollary of a more general
upper bound on zeros of a polynomial over a domain [33, Corollary 1]. We give a version over
an arbitrary ring.

Theorem 4.3 (Schwartz theorem [33, Lemma 1]). Let f = fn ∈ R[t1, . . . , tn] be a non-zero
polynomial and let dn = degtn fn. Let fn−1 ∈ R[t1, . . . , tn−1] be the coefficient of tdn

n in fn. Let
dn−1 = degtn−1

fn−1, and let fn−2 ∈ R[t1, . . . , tn−2] be the coefficient of tdn−1
n−1

in fn−1. Continuing
in this manner we define for all 1 � i � n a polynomial fi ∈ R[t1, . . . , ti] with degti

fi = di. Let
A = ∏n

i=1 Ai be a finite grid satisfying Condition (D). Then

#ZA( f ) � #A
n

∑
i=1

di

#Ai
.

Proof. For i ∈ [n], put ai = #Ai. We go by induction on n. The base case is the same as that of
Theorem 1.2: essentially the root-factor phenomenon of high school algebra, used with some care
because R need not be a domain. Inductively we suppose the result holds for polynomials in n−1
variables and in particular for fn−1 ∈ R[t1, . . . , tn−1] and A′ = ∏n−1

i=1 Ai. Let x′ = (x1, . . . ,xn−1)∈ A′.
If fn−1(x

′) = 0, it may be the case that fn(x′,xn) = 0 for all xn ∈An. But if not, then fn(x′, tn)∈R[tn]
has at most dn zeros in An. Thus the number of zeros of f = fn in A is at most

#An ·#A′
(n−1

∑
i=1

di

ai

)
+dn#A′ = #A

n

∑
i=1

di

ai
.
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Proposition 4.4. Theorem 4.3 implies Theorem 4.2.

Proof. The coefficient of td1
1
· · · tdn

n in f is non-zero, so ∑n
i=1 di � deg f , and thus

#ZA( f ) � #A
n

∑
i=1

di

#Ai
� (#A1 · · ·#An−1)

n

∑
i=1

di � (deg f )
n−1

∏
i=1

#Ai.

4.3. DeMillo–Lipton and Zippel
The following result was proved by DeMillo and Lipton in [16] and then independently by
Zippel [35].

Theorem 4.5 (DeMillo–Lipton–Zippel theorem). Let R be a domain, let

f ∈ R[t] = R[t1, . . . , tn]

be a non-zero polynomial, and let d ∈ Z
+ be such that degti

f � d for all i ∈ [n]. Let S ⊂ R be a
non-empty set with more than d elements. Then

#ZSn( f ) � (#S)n − (#S−d)n.

Proof. Put s = #S. We go by induction on n, and the n = 1 case is by now familiar. Assume the
result for n−1. Since degtn f � d, we have

#{xn ∈ S | f (t1, . . . , tn−1,xn) = 0} � d,

so there are at least s− d values of xn such that g = f (t1, . . . , tn−1,xn) is a non-zero polynomial.
By induction, g has at most sn−1 − (s−d)n−1 zeros on Sn−1. So

#ZSn( f ) � dsn−1 +(s−d)(sn−1 − (s−d)n−1)

= dsn−1 + sn −dsn−1 − (s−d)n = sn − (s−d)n.

Just like the Schwartz–Zippel lemma, a stronger version of the DeMillo–Lipton–Zippel the-
orem can be proved with essentially the same argument. We leave the proof – or rather this proof
– to the reader.

Theorem 4.6 (generalized DeMillo–Lipton–Zippel theorem). Let R be a ring, let

f ∈ R[t1, . . . , tn]

be a non-zero polynomial, and for i∈ [n] put di = degti
f . Let A = ∏n

i=1 Ai be a finite grid satisfying
Condition (D). We suppose that 1 � di < ai for all i ∈ [n]. Then

#UA( f ) �
n

∏
i=1

(#Ai −di).

Now for a somewhat unsettling remark: the DeMillo–Lipton–Zippel theorem does not imply
the Schwartz–Zippel lemma nor is it implied by any of Schwartz’s results!
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Example 4.7. Let S be a finite subset of R containing 0, satisfying Condition (D), and of size
s � 3. Let f = t1t2 ∈ R[t1, t2]. Then we have

#ZS2( f ) = 2s−1.

DeMillo–Lipton–Zippel gives

#ZS2( f ) � s2 − (s−1)2 = 2s−1.

Schwartz’s theorem gives

#ZS2( f ) � s2

(
1
s

+
1
s

)
= 2s.

The Alon–Füredi theorem gives

#ZS2( f ) � s2 −m(s,s;2s−2) = s2 − s(s−2) = 2s.

Thus neither Alon–Füredi nor Schwartz implies DeMillo–Lipton–Zippel. For the other direction,
take f = t1 + t2. DeMillo–Lipton–Zippel gives #ZS2( f ) � s2 − (s−1)2 = 2s−1, while the other
results give #ZS2( f ) � s.

But we can still relate Schwartz–Zippel and DeMillo–Lipton–Zippel as follows.

Proposition. Generalized Alon–Füredi implies generalized DeMillo–Lipton–Zippel.

Proof. For i ∈ [n], put ai = #Ai and bi = ai −di, so 1 � bi � ai for all i ∈ [n]. Moreover, deg f �
∑n

i=1 di, so the generalized Alon–Füredi theorem gives

#UA � m

(
a1, . . . ,an;b1, . . . ,bn;

n

∑
i=1

ai −deg f

)
� m

(
a1 . . . ,an;b1, . . . ,bn;

n

∑
i=1

(ai −di)
)

= m

(
a1, . . . ,an;b1, . . . ,bn;

n

∑
i=1

bi

)
=

n

∏
i=1

bi =
n

∏
i=1

(ai −di).

Generalized DeMillo–Lipton–Zippel is equivalent to the case deg f = ∑n
i=1 degti

f of general-
ized Alon–Füredi. In particular, the bound is sharp in every case.

5. Connections with coding theory

In this section we make use of some terminology (only) from coding theory. Definitions can be
found in [25, Chapter 3], for example.

Consider the polynomial ring Fq[t] = Fq[t1, . . . , tn]. Since Fq is finite, we can take F
n
q itself as

a finite grid, and in fact many aspects of the theory presented here were worked out in this case
in the early part of the twentieth century. In particular, we say a polynomial is reduced if it is
F

n
q-reduced, and this notion was introduced by Chevalley in his seminal work [10] on polynomial

systems of low degree. We denote the the set of reduced polynomials by P(n,q); it is an Fq-vector
space of dimension qn. The evaluation map gives an Fq-linear isomorphism

E : P(n,q) → F
F

n
q

q , f �→ (x ∈ F
n
q �→ f (x)).
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Fixing an ordering α1, . . . ,αqn of F
n
q, this isomorphism allows us to identify each f ∈ P(n,q)

with its value table ( f (α1), . . . , f (αqn)). For d ∈ N we let Pd(n,q) denote the set of all reduced
polynomials of degree at most d.

Definition. The set of all value tables of all polynomials in Pd(n,q) is called the dth-order
generalized Reed–Muller code of length qn, denoted by GRMd(n,q).

For q = 2, these codes were introduced and studied by Muller [29] and Reed [31]. An explicit
formula for minimum distance of the generalized Reed–Muller codes was given by Kasami, Lin
and Peterson [24], which we will recover using Alon–Füredi. A systematic study of these codes
in terms of the polynomial formulation was conducted by Delsarte, Goethals and MacWilliams
in [15], where they also classified all the minimum weight codewords.

Theorem 5.1 (Kasami, Lin and Peterson). The minimum weight of the dth-order generalized
Reed–Muller code GRMd(n,q) is equal to (q−b)qn−a−1, where d = a(q−1)+b with 0 < b �
q−1.

Proof. The minimum weight of GRMd(n,q) is equal to the least number of non-zero val-
ues taken by a non-zero reduced polynomial of degree at most d, which by Alon–Füredi is
m(q, . . . ,q;nq−d). Moreover, we have

(nq−d)−n = n(q−1)−a(q−1)−b = (n−a−1)(q−1)+q−1−b,

and

0 � q−1−b < q−1,

so by Lemma 2.1 we have

m(q, . . . ,q;nq−d) = (q−b)qn−a−1.

The generalized Alon–Füredi theorem can also be stated in terms of coding theory. Let A =
∏n

i=1 Ai be a finite grid in a ring Rn satisfying Condition (D), with ai = #Ai for i ∈ [n]. Given
positive integers bi � ai for all i ∈ [n], and a natural number d � ∑n

i=1(ai − bi), we define the
generalized affine grid code GAGCd(A;b1, . . . ,bn) as the set of value tables of all polynomials
f ∈ R[t] with degti

f � ai −bi for all i ∈ [n] and deg f � d evaluated on A. We put

AGCd(A) = GAGCd(A;1, . . . ,1)

and speak of affine grid codes.

Theorem 5.2. The minimum weight of GAGCd(A;b1, . . . ,bn) is

m

(
a1, . . . ,an;b1, . . . ,bn;

n

∑
i=1

ai −d

)
.

https://doi.org/10.1017/S0963548317000566 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000566


On Zeros of a Polynomial in a Finite Grid 323

Affine grid codes were studied in [27] (under the name of affine Cartesian codes) where they
proved the following result.

Theorem 5.3 ([27, Theorem 3.8]). Let F be a field and A = ∏n
i=1 Ai ⊂ Fn a finite grid with

#A1 � · · · � #An � 1. Then the minimum weight of AGCd(A) is{
#A1 · · ·#Ak−1(#Ak − �) if d � ∑n

i=1(#Ai −1)−1,

1 if d � ∑n
i=1(#Ai −1),

where k, � ∈ Z are such that d = ∑n
i=k+1(#Ai −1)+ �, k ∈ [n] and � ∈ [#Ak −1].

Proof. The minimum weight of AGCd(A) is

m

(
#A1, . . . ,#An;

n

∑
i=1

#Ai −d

)
.

So the result follows from Lemma 2.1, as the greedy distribution of

n

∑
i=1

#Ai −d =
k−1

∑
i=1

(#Ai −1)+(#Ak −1− �)+n

balls is (#A1, . . . ,#Ak−1,#Ak − �,1, . . . ,1).

Remark.

(a) The paper [27] makes no mention of Alon–Füredi. Their proof of Theorem 5.3 is self-
contained and thus gives a proof of Alon–Füredi with the balls in bins constant replaced by
its explicit value P(yG). On the other hand it is longer than the other proofs of Alon–Füredi
appearing in the literature.

(b) Our proof of Theorem 5.3 works for a grid A ⊂ Rn satisfying Condition (D).
(c) When b1 � · · ·� bn, the greedy algorithm computes m(a1, . . . ,an;b1, . . . ,bn;N), and we could

give a similarly explicit description of GAGCd(A1;b1, . . . ,bn).
(d) While (binary) Reed–Muller codes are mentioned in [1] under Corollary 1, the connection

between the Alon–Füredi theorem and generalized Reed–Muller codes is not explored.

6. Applications to finite geometry

6.1. Partial coverings of grids by hyperplanes
By a hyperplane in Rn we mean a polynomial H = c1t1 + · · ·+ cntn + r ∈ R[t] for which at least
one ci is not a zero-divisor. (Referring to the polynomial itself rather than its zero locus in Rn will
make the discussion cleaner.) A family H = {Hi}d

i=1 covers x ∈ Rn if Hi(x) = 0 for some i ∈ [n];
H covers a subset S ⊂ Rn if it covers every point of S, and H partially covers S otherwise. For a
family H = {Hi}d

i=1 of hyperplane in Rn, put

fH =
d

∏
i=1

Hi.

Thus fH is a polynomial of degree d. If H covers A, then f vanishes identically on A. If R is a
domain the converse holds, and thus H covers A if and only if fH ∈ 〈ϕ1, . . . ,ϕn〉. We now revisit
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the original combinatorial problem studied by Alon and Füredi, which is part (c) of the following
theorem. However, our proof is via Theorem 1.1 instead of the approach used in [1].

Theorem 6.1. Let R be a domain, let A = ∏n
i=1 Ai ⊂ Rn be a finite grid, and let H = {Hi}d

i=1 be
family of hyperplanes in Rn.

(a) If H partially covers A, then H fails to cover at least m
(
#A1, . . . ,#An;∑n

i=1 #Ai − d
)

points
of A.

(b) For all d ∈ Z
+, there is a family of hyperplanes {Hi = t ji

− xi}d
i=1 with ji ∈ [n] and xi ∈ Ai

which covers all but exactly m
(
#A1, . . . ,#An;∑n

i=1 #Ai −d
)

points of A.
(c) If H covers all but exactly one point of A, then d � ∑n

i=1(#Ai −1).

Proof.

(a) As above, H covers x ∈ Rn if and only if fH(x) = 0. Apply Alon–Füredi.
(b) The sharpness construction of Section 3.3 is precisely of this form.
(c) If H covers all points of A except one, then

1 = #UA(H1 · · ·Hd) � m

(
#A1, . . . ,#An;

n

∑
i=1

#Ai −d

)
,

so Lemma 2.2 gives ∑n
i=1 #Ai −d � n, that is, d � ∑n

i=1(#Ai −1).

We complement Theorem 6.1 by computing the minimum cardinality of a hyperplane covering
of a finite grid (not necessarily specifying Condition (D)) over a ring R.

Theorem 6.2. Let A = ∏n
i=1 Ai ⊂ Rn be a finite grid, and let H = {Hi}d

i=1 be a hyperplane
covering of A. Then d � min#Ai.

Proof. First we observe that if A satisfies Condition (D) then the result is almost immediate:
going by contraposition, if d � #Ai − 1 for all i ∈ [n] then fH is non-zero and A-reduced, so it
cannot vanish identically on A.

Now we give a non-polynomial method proof in the general case. Without loss of generality
assume #A1 � · · · � · · · � #An. We claim that any hyperplane H = ∑n

i=1 citi + g covers at most
∏n−1

i=1 #Ai points of A: this suffices, for then d � #An.

Proof of claim. Fix i ∈ [n] such that ci is not a zero-divisor in R. Let π : Rn → Rn−1 be the
projection (x1, . . . ,xn) �→ (x1, . . . ,xi−1,xi+1, . . . ,xn). Then

A =
∏

x′=(x1,...,xi−1,xi+1,...,xn)∈π(A)
{x1}× · · ·×{xi−1}×Ai ×{xi+1}× · · ·×{xn}

is a partition of A into #π(A) = ∏ j �=i #Aj non-empty subsets, each one of which meets H in at
most one point. So*********

#(Z(H)∩A) � ∏
j �=i

#Aj �
n−1

∏
i=1

#Ai.
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Conjecture 6.3. Let R be a ring, and let A1, . . . ,An ⊂ R be non-empty (but possibly infinite).
Let H = {Hj} j∈J be a covering of the grid A = ∏n

i=1 Ai by hyperplanes. Then #J � minn
i=1 #Ai.

Remark.

(a) For i ∈ [n], let Bi ⊂ Ai ⊂ R. Then we need at least as many hyperplanes to cover ∏n
i=1 Ai as we

do to cover ∏n
i=1 Bi. Together with Theorem 6.2 it follows that in the setting of Conjecture 6.3

we need at least min(#Ai,ℵ0) hyperplanes. Thus Conjecture 6.3 holds when R is countable.
(b) When R is a field and A = Rn, Conjecture 6.3 is a case of [11, Theorem 3].

6.2. Partial covers and blocking sets in finite geometries
The same ideas can be used to prove old and new results about Desarguesian projective and affine
spaces over finite fields.

Let PG(n,q) denote the n-dimensional projective space over Fq (the same object would in
some other circles be denoted by P

n(Fq)) and let AG(n,q) denote the n-dimensional affine space
over Fq (resp. A

n(Fq)). The set AG(n,q) comes equipped with a sharply transitive action of
the additive group of F

n
q and thus a choice of a point x ∈ AG(n,q) induces an isomorphism

AG(n,q) ∼= F
n
q. We will make such identifications without further comment.

A partial cover of PG(n,q) is a set of hyperplanes that do not cover all the points. The points
missed by a partial cover are called holes.

Theorem 6.4. Let H be a partial cover of PG(n,q) of size k ∈ Z
+. Then H has at least

m(q, . . . ,q;nq− k +1) holes.

Proof. Let H ∈ H. Then PG(n,q) \H ∼= AG(n,q) so H\H is a partial cover of F
n
q by k− 1

hyperplanes. As above, there are at least m(q, . . . ,q;nq− (k−1)) points not covered by H.

Corollary 6.5. If 0 � a < q, a partial cover of PG(n,q) of size q+a has at least qn−1 −aqn−2

holes.

Proof. By Theorem 6.4 there are at least m(q, . . . ,q;(n−1)q−a + 1) holes. Since 0 � a < q,
the greedy distribution is (q, . . . ,q,q−a,1), and the result follows.

Dodunekov, Storme and Van de Voorde have shown that a partial cover of PG(n,q) of size
q+a has at least qn−1 −aqn−2 holes if 0 � a < (q−2)/3 [17, Theorem 17]. Corollary 6.5 gives
an improvement in that the restriction on a is relaxed. They also show that if a < (q−2)/3 and
the number of holes are at most qn−1, then they are all contained in a single hyperplane. We
cannot make any such conclusions from our arguments.

Projective duality yields a dual form of Theorem 6.4: k points in PG(n,q) which do not meet
all hyperplanes must miss at least m(q, . . . ,q;nq− k +1) of them.

Theorem 6.6. Let S be a set of k points in AG(n,q). Then there are at least m(q, . . . ,q;nq−
k +1)−1 hyperplanes of AG(n,q) which do not meet S.
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Proof. Add a hyperplane at infinity to get to the setting of PG(n,q) and then apply the dual
form of Theorem 6.4.

The general problem of the number of linear subspaces missed by a given set of points in
PG(n,q) is studied by Metsch in [28]. We wish to note that Theorem 6.6 gives the same bounds
as part (a) of [28, Theorem 1.2] for the specific case when the linear subspaces are hyperplanes.

A blocking set in AG(n,q) or PG(n,q) is a set of points that meets every hyperplane. The
union of the coordinate axes in F

n
q yields a blocking set in AG(n,q) of size n(q−1)+1. Doyen

conjectured in a 1976 Oberwolfach lecture that n(q−1)+1 is the least possible size of a blocking
set in AG(n,q). A year later two independent proofs appeared, by Jamison [23], and then a
(simpler) proof by Brouwer and Schrijver [8]. We are in a position to give another proof.

Corollary 6.7 (Jamison–Brouwer–Schrijver). The minimum size of a blocking set in
AG(n,q) is n(q−1)+1.

Proof. Let B ⊂AG(n,q) be a blocking set of cardinality at most n(q−1). By Theorem 6.6 and
Lemma 2.2 there are at least

m(q, . . . ,q;nq−n(q−1)+1)−1 = m(q, . . . ,q;n+1)−1 � 1

hyperplanes which do not meet B.

Turning now to PG(n,q), every line is a blocking set. But classifying blocking sets that do not
contain any line is one of the major open problems in finite geometry. For a survey on blocking
sets in finite projective spaces, see [7, Chapter 3].

If B ⊂ PG(n,q), x ∈ B and H is a hyperplane in PG(n,q), then H is a tangent to B through x
if H ∩B = {x}. An essential point of a blocking set B in PG(n,q) is a point x such that B\{x}
is not a blocking set. A point x of B is essential if and only if there is a tangent hyperplane to B
through x.

Theorem 6.8. Let B be a blocking set in PG(n,q) and let x be an essential point of B. There
are at least m(q, . . . ,q;nq−#B+2) tangent hyperplanes to B through x.

Proof. Let H be a tangent hyperplane to B through x. Then B′ = B \ {x} ⊂ PG(n,q) \H ∼=
AG(n,q). By Theorem 6.6 there are at least m(q, . . . ,q;nq−#B+2)−1 hyperplanes in AG(n,q)
that do not meet B′. Since B is a blocking set, all of these hyperplanes, when seen in PG(n,q),
must meet x. Thus there are at least m(q, . . . ,q;nq−#B+2) tangent hyperplanes to B through x.

Corollary 6.9 (Blokhuis–Brouwer [6]). Let B be a blocking set in PG(2,q) of size 2q− s.
There are at least s+1 tangent lines through each essential point of B.

Proof. By Theorem 6.8, each essential point of B has at least

m(q,q;2q− (2q− s)+2) = m(q,q;s+2)
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tangent lines. Since #B = 2q− s < q2 + q + 1 = #PG(2,q), there exists x ∈ PG(2,q)\B. There
are q + 1 lines through x, so 2q− s = #B � q + 1. Thus s + 1 � q, so the greedy distribution is
(s+1,1) and m(q,q;s+2) = s+1.

Corollary 6.10 (Theorem 7 of [17]). If 0 � a < q, there are at least qn−1 − aqn−2 tangent
hyperplanes through each essential point of a blocking set of size q+a+1 in PG(n,q).

Proof. By Theorem 6.8 and the proof of Corollary 6.5, each essential point of B has at least
m(q, . . . ,q;nq− (q+a+1)+2) = qn−1 −aqn−2 tangent hyperplanes.

7. Multiplicity enhancements

That one can assign to a zero of a polynomial a positive integer called multiplicity is a familiar
concept in the univariate case. The definition of the multiplicity m( f ,x) of a multivariate poly-
nomial f ∈ R[t] at a point x ∈ Rn (see Section 7.2) may be less familiar, but the concept is no less
useful. All of the main results considered thus far are upper bounds on #ZA( f ), the number of
zeros of a polynomial f on a finite grid. By a multiplicity enhancement we mean the replacement
of #ZA( f ) by ∑x∈A m( f ,x) in such an upper bound. The prototypical example: for a non-zero
univariate polynomial f over a field F we have ∑x∈F m( f ,x) � deg f .

Recently, multiplicity enhancements have become part of the polynomial method toolkit. In
[18] Dvir, Kopparty, Saraf and Sudan gave a multiplicity enhancement of the Schwartz–Zippel
lemma. This was a true breakthrough with important applications in both combinatorics and
theoretical computer science. In Section 4 we saw that the original work of Schwartz, DeMillo–
Lipton and Zippel consists of more than the Schwartz–Zippel lemma, and gave some extensions
of this work, in particular working over an arbitrary ring. So it is natural to consider multiplicity
enhancements of these results. We do so here, giving a multiplicity enhancement of Theorem 4.3
and thus also of Theorem 4.2. On the other hand the Alon–Füredi theorem does not allow for
a multiplicity enhancement (at least not in the precise sense described above), as we will see in
Example 7.11.

This is a situation where working over a ring under Condition (D) makes things a bit harder.
Lemma 7.7 pushes through the single variable root-factor phenomenon under Condition (D).

In places our treatment closely follows that of [18]. We need to set things up over a ring,
whereas they work over a field. Nevertheless, their work carries over verbatim much of the time,
and when this is the case we state the result in the form we need it, cite the analogous result in
[18] and omit the proof.

7.1. Hasse derivatives
Let R[t] = R[t1, . . . , tn]. For I = (i1, . . . , in) ∈ N

n, put

tI = ti1
1
· · · tin

n

and |I| = ∑n
j=1 i j = deg tI . Thus, {tI}I∈Nn is an R-basis for R[t]. We put(

I
J

)
=

n

∏
k=1

(
ik
jk

)
,

taking
( i

j

)
= 0 if j > i.
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For J ∈ N
n, let DJ : R[t] → R[t] be the unique R-linear map such that

DJ(tI) =
(

I
J

)
tI−J.

We have DJ(tI) = 0, unless J � I. Repeated application of the identity

tn = (t − x+ x)n =
n

∑
j=0

(
n
j

)
xn− j(t − x) j

leads to the Taylor expansion: for f ∈ R[t] and x ∈ Rn,

f (t) = ∑
J

DJ( f )(x)(t − x)J. (7.1)

Applying the automorphism t �→ t + x gives the alternate form

f (t + x) = ∑
J

DJ( f )(x)tJ.

These DJ( f ) were defined in [22] and are now called Hasse derivatives.

Proposition 7.1 ([18, Proposition 2.3]). Let f ∈ R[t], and let I,J ∈ N
n.

(a) If f is homogeneous of degree d and DI( f ) is non-zero, then DI( f ) is homogeneous of degree
d −|I|.

(b) We have

DJ(DI( f )) =
(

I + J
I

)
DI+J( f ).

Lemma 7.2 (Leibniz rule). Let n = 1, i ∈ N and g,h ∈ R[t]. Then we have

Di(gh) =
i

∑
j=0

Dj(g)Di− j(h). (7.2)

Proof. Step 1. Recall Vandermonde’s identity: for m,n,r ∈ N, we have(
m+n

i

)
=

i

∑
j=0

(
m
j

)(
n

i− j

)
.

(If we have a set consisting of m red balls and n blue balls, then for 0 � j � i, the number of i
element subsets containing exactly j red balls is

(m
j

)( n
i− j

)
, so ∑i

j=0

(m
j

)( n
i− j

)
is the total number

of i element subsets of an m+n element set.)

Step 2. Using Vandermonde’s identity, we get

Di(tmtn) =
(

m+n
i

)
tm+n−i =

i

∑
j=0

(
m
j

)(
n

i− j

)
tm+n−i =

i

∑
j=0

Dj(tm)Di− j(tm+n−i).

By R-linearity of the Hasse derivatives, this establishes (7.2).
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7.2. Multiplicities
Let f ∈ R[t] be non-zero and x ∈ Rn. The multiplicity of f at x, denoted m( f ,x), is the natural
number m such that DJ( f )(x) = 0 for all J with |J| < m and DJ( f )(x) �= 0 for some J with
|J| = m. We put m(0,x) = ∞ for all x ∈ Rn.

Lemma 7.3 ([18, Lemma 2.4]). For f ∈ R[t], x ∈ Rn and I ∈ N
n, we have

m(DI( f ),x) � m( f ,x)−|I|.

Given a vector f = ( f1, . . . , fk) ∈ R[t]k, we put m( f ,x) = min1� j�k m( f j,a).

Proposition 7.4 ([18, Proposition 2.5]). Let X1, . . . ,Xn,Y1, . . . ,Y� be independent indeterm-
inates. Let f = ( f1, . . . , fk) ∈ R[X1, . . . ,Xn]k and let g = (g1, . . . ,gn) ∈ R[Y1, . . . ,Y�]

n. We define
f ◦g ∈ R[Y1, . . . ,Y�]

k to be f (g1, . . . ,gn).

(a) For any a ∈ R� we have

m( f ◦g,a) � m( f ,g(a))m(g−g(a),a).

(b) We have

m( f ◦g,a) � m( f ,g(a)).

Corollary 7.5 ([18, Corollary 2.6]). Let f ∈ R[t] and let a,b ∈ Rn. Then for all c ∈ R we have

m( f (a+ tb),c) � m( f ,a+ cb).

Lemma 7.6. Let f ,g,h ∈ R[t] be non-zero polynomials such that f = gh, and let x ∈ R. If g(x)
is not a zero divisor, then m( f ,x) = m(h,x).

Proof. Let m := m( f ,x) � 1 (for m = 0 the result is easily proved). By Lemma 7.2, for all i ∈N

we have

Di( f ) = D0(g)Di(h)+ · · ·+Di(g)D0(h).

Thus Di( f )(x) = 0 for all i < m(h,x) and m( f ,x) � m(h,x).
We now show that Di(h)(x) = 0 for all i < m, which will give m(h,x) � m( f ,x) and complete

the proof. For i = 0, we have 0 = f (x) = g(x)h(x), and since g(x) is not a zero divisor, we must
have h(x) = D0(h)(x) = 0. Now

D1( f )(x) = D0(g)(x)D1(h)(x)+D1(g)(x)D0(h)(x) = g(x)D1(h)(x).

Again, since g(x) is not a zero divisor, D1( f )(x) = 0 if and only if D1(h)(x) = 0. Continuing in
this way, at the ith step we have Dj(h)(x) = 0 for all j < i and thus Di( f )(x) = g(x)Di(h)(x).
Since g(x) is not a zero divisor and i < m, we see that Di(h)(x) = 0.

https://doi.org/10.1017/S0963548317000566 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000566


330 A. Bishnoi, P. L. Clark, A. Potukuchi and J. R. Schmitt

Lemma 7.7. Let R be a ring, and let f ∈ R[t] be a polynomial of degree d � 1. Let A =
{x1, . . . ,xn} ⊆ R be a finite set satisfying Condition (D). Then

∑
x∈A

m( f ,x) � d.

Proof. We will prove this by induction on n. For n = 1, we have that (t − x1)
m( f ,x1) divides

f and hence deg f � m( f ,x1). So suppose n � 2. Write f = (t − xn)m( f ,xn)g. Since A satisfies
Condition (D), the element (xi −xn)m( f ,xi) of R is not a zero divisor for any i ∈ [n−1]. Therefore,
by Lemma 7.6 we have m( f ,xi) = m(g,xi) for all i ∈ [n−1]. By the induction hypothesis we get

n−1

∑
i=1

m( f ,xi) =
n−1

∑
i=1

m(g,xi) � degg = deg f −m( f,xn),

from which the result follows.

Remark. An earlier draft of this work contained a different proof of Lemma 7.7. In place of
Lemma 7.6, we used the following: if f = ∏m

i=1(t − xi), g = ∏m
j=1(t − y j) ∈ R[t] and xi − y j ∈

R× for all i and j, then f and g generate the unit ideal of R[t]. This was proved using some
commutative algebra (localization and Nakayama’s lemma) and was thus a bit of a departure
from the rest of the paper. The interested reader can find the details in the arXiv version of this
paper [5].

Lemma 7.8 (DKSS lemma). Let A = ∏n
i=1 Ai ⊂ Rn be a finite subset satisfying Condition (D).

Let f ∈ R[t], and write

f =
dn

∑
j=0

f j(t1, . . . , tn−1)t
j
n

with fdn
�= 0. Put A′ = ∏n−1

i=1 Ai. For all x′ = (x1, . . . ,xn−1) ∈ A′, we have

∑
x∈An

m( f ,(x′,x)) � (#An)m( fdn
,x′)+dn.

Proof. Choose I′ ∈ N
n−1 such that |I′| = m( fdn

,x′) and DI( fdn
)(x′) �= 0. Put I = I′ ×{0} ∈ N

n.
Then

DI( f ) =
dn

∑
j=0

DI′( f j)t
j
n ,

so DI f �= 0. By Lemma 7.3, we have

m( f ,(x′,x)) � |I|+m(DI( f ),(x′,x)) = m( fdn
,x′)+m(DI( f ),(x′,x)).

Apply Corollary 7.5 to DI( f ) with a = (x′,0), b = (0,1) and c = x: we get

m(DI( f ),(x′,x)) � m(DI( f )(x′, tn),x).
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Summing over x ∈ An gives

∑
x∈An

m( f ,(x′,x)) � (#An)m( fdn
,x′)+ ∑

x∈An

m(DI( f )(x′, tn),x).

Since I = I′ ×{0}, DI( f )(x′, tn) has degree dn and thus Lemma 7.7 gives

∑
x∈An

m(DI( f )(x′, tn),x) � dn.

The result follows.

Remark. The case of Lemma 7.8 in which R is a field and A1 = · · · = An is due to Dvir, Kop-
party, Saraf and Sudan [18, pp. 8–9]. Our proof follows theirs very closely, but uses Lemma 7.7
in place of the root-factor phenomenon.

7.3. Multiplicity enhanced Schwartz theorem
Theorem 7.9 (multiplicity enhanced Schwartz theorem). Let R be a ring, let A = ∏n

i=1 Ai ⊂
Rn be finite, non-empty and satisfy Condition (D), and let f = fn ∈ F [t1, . . . , tn] be a non-zero
polynomial. Let dn = degtn f , and let fn−1 ∈ R[t1, . . . , tn−1] be the coefficient of tdn

n in fn. Let
dn−1 = degtn−1

fn−1, and let fn−2 ∈ R[t1, . . . , tn−2] be the coefficient of tdn−2
n−2

in fn−2. Continuing in
this manner we define for all 1 � i � n a polynomial fi ∈ R[ti, . . . , tn] with degti

fi = di. Then

∑
x∈A

m( f ,x) � #A
n

∑
i=1

di

#Ai
.

Proof. We use induction on n. The case n = 1 is Lemma 7.7. Suppose the result holds for
polynomials in n− 1 variables. Let A′ = ∏n−1

i=1 Ai. Applying Lemma 7.8 and then the induction
hypothesis, we get

∑
x∈A

m( f ,x) = ∑
x′∈A′

∑
x∈An

m( f ,(x′,x)) � #An ∑
x′∈A′

m( fn−1,x
′)+#A′dn

� #An#A′
n−1

∑
i=1

di

#Ai
+#A

dn

#An
= #A

n

∑
i=1

di

#Ai
.

Theorem 7.10 (multiplicity enhanced generalized Schwartz–Zippel). Let A = ∏n
i=1 Ai ⊂ Rn

be a finite grid satisfying Condition (D), and suppose #A1 � · · ·� #An. Let f ∈ R[t] = R[t1, . . . , tn]
be a non-zero polynomial. Then

∑
x∈A

m( f ,x) � deg f
n−1

∏
i=1

#Ai.

Proof. This follows from Theorem 7.9 as Theorem 4.2 does from Theorem 4.3.

Remark.

(a) When R is a field, Theorem 7.9 was proved by Geil and Thomsen [20, Theorem 5]. They
also build closely on [18].
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(b) Recent work of Geil and Thomsen [21, Prop. 17] shows that equality holds in Theorem 7.11
when R is a field and f is polylinear (see Section 3.4).

7.4. A counterexample
It is natural to ask whether Alon–Füredi holds in multiplicity enhanced form, that is, whether the
bound

#ZA( f ) � #A−m

(
#A1, . . . ,#An;

n

∑
i=1

#Ai −deg f

)

could be improved to

∑
x∈A

m( f ,x) � #A−m

(
#A1, . . . ,#An;

n

∑
i=1

#Ai −deg f

)
.

The following example shows that such an improvement does not always hold.

Example 7.11. Let n = 2 and R = A1 = A2 = Fq. Let d1,d2 ∈ Z
+ be such that d1,d2 < q �

d1 +d2 +1. Then f = td1
1

td2
2

is A-reduced, and we have

∑
x∈A

m( f ,x) = qd1 +qd2 > q2 −2q+d1 +d2 +1 = q2 −m(q,q;2q−d1 −d2).

Notice that the polynomial f = td1
1

td2
2

is polylinear (see Section 3.4). As far as we know it
may be true that ∑x∈A m( f ,x) is maximized among all polynomials of fixed degree when f is a
polylinear polynomial. We leave this as an open problem.
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