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ABSTRACT

We study the propagation of uncertainty from a class of priors introduced by
Arias-Nicolás et al. [(2016) Bayesian Analysis, 11(4), 1107–1136] to the pre-
miums (both the collective and the Bayesian), for a wide family of premium
principles (specifically, those that preserve the likelihood ratio order). The
class under study reflects the prior uncertainty using distortion functions and
fulfills some desirable requirements: elicitation is easy, the prior uncertainty
can be measured by different metrics, and the range of quantities of interest
is easily obtained from the extremal members of the class. We illustrate the
methodology with several examples based on different claim counts models.
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1. INTRODUCTION AND MOTIVATION

Given a risk X , a premium principle is a functional H[X ] that maps X to
a non-negative real number, which is the premium charged to the policy-
holder to compensate the insurer for bearing the risk X . From the simplest
net premium (which is the expected claim amount) to other more sophisticated
ones based on utility and economic theories, such as the Esscher premium
principle (Bühlmann, 1980; Gerber, 1980) or the distortion premium princi-
ple (Denneberg, 1990; Wang, 1996), the actuarial literature offers a number
of premium principles that differ from each other by the properties that they
satisfy. For an overview on this topic, the reader is referred to Young (2004)
and Chapter 2 in Denuit et al. (2005).
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Let X be a risk with density function f (x|θ), where θ is a risk parame-
ter belonging to the parameter space �. Under the Bayesian approach, prior
beliefs about parameters are combined with sample information to update the
model and determine the future premium (see, e.g., Eichenauer et al., 1988;
Heilmann, 1989; Makov et al., 1996; Klugman et al., 1998). For example,
third-party liability motor insurance claims (which are rare events that occur
randomly) are often modeled as Poisson random variables. However, experi-
ence from data suggests that the expected claim frequency is not equal for all
policies in the same cell. Consequently, the actuary incorporates heterogene-
ity into the model using a prior distribution on the parameter to determine
the cell tariff. A similar procedure is often followed in other branches of
insurance.

In this framework, we first define, over the set of states �, a prior belief
or structure function π that incorporates our beliefs about the parameter θ .
Then we consider the conditional random variable [X |�= θ ], denoted by Xθ .
Finally, based on the experience from a sample x= (x1, . . . , xn), the marginal
density,m(x), and the likelihood function, l(θ |x), we obtain, via Bayes theorem,
the posterior belief density function πx, given by πx(θ)= l(θ |x)π(θ)/m(x). At
this point, we must distinguish the following three premiums. The first one
is H[Xθ ], which is known as the true individual premium or the risk premium
based onH. We will denoteH[Xθ ]=PR,H(π) to make explicit that the premium
depends on the prior belief. Since, from the Bayesian perspective, PR,H(π) is
again a random risk, given a premium principle H∗ (not necessarily equal to
H), we can consider the premiumH∗[PR,H(π)]=PC,H,H∗(π), which is called the
collective premium. A similar argument, using the posterior belief πx instead
of π , produces the Bayes or individual premium, denoted by H∗[PR,H(πx)]=
PB,H,H∗(πx) (see Gómez-Déniz, 2009, for further information). We remark that
H andH∗ are not necessarily equal: the collective and the Bayes premiums can
be computed using first, for example, the net premium,H, and then the Esscher
premium, H∗, or any other combination, such as Esscher–Esscher, Esscher–
net, exponential–net, etc.

A key issue in this approach is the elicitation of an appropriate prior distri-
bution for the parameter θ when there is not enough information to identify it
(see, e.g., Eichenauer et al., 1988). One possibility to avoid an arbitrary choice
is to use robust methods that involve an entire class or family of prior dis-
tributions rather than a single one. In the literature, these classes have been
specified taking the form of parametric families, contamination classes, densi-
ties with a few determined percentiles or distribution bands, among others. A
question of natural interest is to study the propagation of uncertainty from the
class of prior distributions to the premium. References on this topic include
Heilmann and Schroter (1987), Eichenauer et al. (1988), Makov (1995), Young
(1999), Gómez-Déniz et al. (1999, 2000, 2002), Schnieper (2004), Calderín and
Gómez-Déniz (2007), Chan et al. (2008), and Boratyńska (2017).

The aim of this paper is to study the propagation of uncertainty from a class
of priors recently introduced by Arias-Nicolás et al. (2016), called the distorted
band of priors, to the premiums (both the collective and the Bayesian). The
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distorted band of priors fulfills some desirable requirements: elicitation is easy,
the prior uncertainty can be measured by different metrics, and the range of
quantities of interest is easily obtained from the extremal members of the class.
Moreover, this class possesses a characteristic that makes it particularly inter-
esting for actuarial applications: it quantifies the prior uncertainty in terms
of distortion functions and stochastic orders, tools often used to evaluate and
compare risks. The research is conducted by considering the propagation of
uncertainty on a wide family of combinations of premium principles (unlike
other studies on the same topic1 that only consider a single premium principle).

The rest of the paper is structured as follows. Section 2 contains a back-
ground about some stochastic orders and metrics, distortion functions, and
the distorted band class of priors. Section 3 shows how the uncertainty of this
class of priors propagates to the premiums. Section 4 contains some actuarial
applications. Finally, Section 5 contains conclusions.

2. THE DISTORTED CLASS

We start by recalling the definition of the stochastic orders that appear in this
paper.

Definition 1. Let X and Y be two random variables with distribution functions
F and G, densities [discrete densities] fX and fY , and supports supp( fX ) and
supp( fY ), respectively.

(a) X is said to be smaller than Y in the stochastic order, the increasing con-
vex order, and the increasing concave order (denoted by X ≤st Y, X ≤icx Y
and X ≤icv Y, respectively), if E[φ(X )]≤E[φ(Y )], for all non-decreasing,
non-decreasing convex, and non-decreasing concave functions φ :R→R,
respectively, provided these expectations exist.

(b) X is said to be smaller than Y in the likelihood ratio order, denoted by X ≤lr

Y, if the ratio fY (t)/fX (t) increases over the union of the supports of X and
Y (here a/0 is taken to be equal to∞ whenever a> 0).

(c) X is said to be smaller than Y in the uniform conditional variability order,
denoted by X ≤uv Y, if supp( fX )⊆ supp( fY ) and the ratio fX (t)/fY (t), t ∈
supp( fY ), is unimodal (where the mode is a supremum) but fX and fY are not
stochastically ordered.

The following chains of implications are well known (see Whitt, 1985; Müller
and Stoyan, 2002; Shaked and Shanthikumar, 2007):

X ≤lr Y⇒ X ≤st Y ⇒X ≤icx Y⇒E[X ]≤E[Y ]
⇓

X ≤icv Y ⇒E[X ]≤E[Y ], (2.1)
X ≤uv Y and E[X ]≤E[Y ]⇒ X ≤icx Y ,
X ≤uv Y and E[X ]≥E[Y ]⇒ X ≥icv Y . (2.2)
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The class of priors considered in this paper is based on the notion of dis-
tortion function. A distortion function h is a non-decreasing continuous
function from [0, 1] to [0, 1] such that h(0)= 0 and h(1)= 1. Distortion func-
tions were introduced in actuarial science by Denneberg (1990) and have been
applied to a wide variety of insurance problems, in particular to construct pre-
mium principles and risk measures (see, e.g., Wang, 1996; Sordo et al., 2016,
2018).

To our purposes, given a prior belief π with distribution function Fπ and a
distortion function h, the transformation of Fπ , given by

Fπh(x)= h ◦ Fπ (x)= h [Fπ (x)], (2.3)

represents a perturbation of the accumulated probability that is used to quan-
tify the uncertainty about the specification of the prior belief (a similar idea
was used in Furman and Landsman (2006) in the context of some tail-based
risk measures). Note that Fπh(x) is again a distribution function for a particu-
lar distorted random variable, denoted by Xπh , with density function πh. The
following lemma, given in Arias-Nicolás et al. (2016), formalizes the idea, in
terms of the likelihood ratio order, thatXπh gives more weight to higher (lower)
risk events when h is convex (respectively, concave). The result is also a refor-
mulation of Theorem 1 of Blazej (2008), which is a more general result stated
in terms of weighted distributions for absolutely continuous distributions.

Lemma 2. Let π be a specific prior belief with distribution function Fπ (abso-
lutely continuous or discrete) and let h be a convex (concave) distortion function
in [0, 1]. Then π ≤lr (≥lr )πh.

Now suppose that, instead of requiring a complete specification of the
prior belief, the actuary assumes that any distribution close enough to π is
a good representation of it. One possibility to perturbate π , giving more (or
less) weight to extreme events, is to consider two distortion functions: one con-
cave, h1, and one convex, h2. From Lemma 2, we have πh1 ≤lr π ≤lr πh2 . This led
Arias-Nicolás et al. (2016) to define the following class of priors.

Definition 3. Given a concave distortion function h1 and a convex distortion func-
tion h2, the distorted band associated with a specific prior π , denoted by �h1,h2,π ,
is defined as

�h1,h2,π =
{
π ′ : πh1 ≤lr π

′ ≤lr πh2
}
. (2.4)

Since π ∈ �h1,h2,π , the distorted band can be seen as a particular “neighbor-
hood” band of π , where the lower and upper bounds are its distortions by h1
and h2, respectively. Examples of distortion functions that can be used to define
the band include the power families:

h1(x)= 1− (1− x)α1 and h2(x)= xα2 , αi > 1, i= 1, 2.
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By making αi = n ∈N, n> 1, i= 1, 2, then Fπh1 (θ)= 1− (1− Fπ (θ))n and
Fπh2 (θ)= (Fπ (θ))n correspond to the distribution functions of the minimum
and the maximum, respectively, of an i.i.d. random sample of size n from the
baseline prior distribution π , which seem to be reasonable bounds for the con-
fidence band. Other examples are given in Arias-Nicolás et al. (2016) where
distortions plays different roles. The distorted band satisfies some nice proper-
ties (see Arias-Nicolás et al., 2016). For example, (1− ε)π + επ ′ ∈ �h1,h2,π , for
all π ′ ∈ �h1,h2,π and for all 0≤ ε ≤ 1 (which is related to the ε-contamination
classes). Additionally, posterior distributions inherit the likelihood ratio order,
that is, for all π ′ ∈ �h1,h2,π we obtain that

πh1,x ≤lr π
′
x ≤lr πh2,x. (2.5)

Another good property of the distorted band is that the prior uncertainty can
be measured by the Kantorovich (or Wasserstein) metric. Given two random
variables X and Y , this metric is defined by

KW (X ,Y )=
∫ ∞
−∞
|FX (x)− FY (x)|dx. (2.6)

The tractability of Kantorovich metric between a distribution function F
and its distortion Fh has been used to study the variability of F (López-
Díaz et al., 2012). As pointed out in Arias-Nicolás et al. (2016), if πh1 ≤lr πh2 ,
the Kantorovich metric between πh1 and πh2 is simply the difference of their
expectations, that is,

KW (πh1 , πh2 ) = Eπh2 (θ)−Eπh1 (θ),
KW (π , πh1 ) = Eπ (θ)−Eπh1 (θ),
KW (π , πh2 ) = Eπh2 (θ)−Eπ (θ),

KW (πx, πh1,x) = Eπx(θ)−Eπh1,x(θ),
KW (πx, πh2,x) = Eπh2,x(θ)−Eπx(θ),

KW (πh1,x, πh2,x) = Eπh2,x(θ)−Eπh1,x(θ). (2.7)

Given two distortions h1 and h2, since KW (πh1 , πh2 )=KW (π , πh2 )+
KW (π , πh1 ), we can study which one contributes more to the uncertainty
measure.

3. THE MAIN CONTRIBUTIONS

Let X be a random variable such that the conditional random variable Xθ =
[X |�= θ ] represents a random risk depending on a parameter θ . Let π be a
prior belief in the parameter space �. We are interested in situations where
the risk is a non-decreasing function of the parameter θ . For example, when
the number of claims is modeled by a Poisson distribution, the risk is an
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increasing function of the parameter, which is the expected number of claims.
This motivates the following definition.

Definition 4. Given a premium principle H, we say that Xθ is increasing in risk
for H, in short IRH, if the risk premium PR,H(θ) is non-decreasing in θ ∈�.

Premium principles are usually required to preserve some stochastic order-
ings, such as the usual stochastic order and the increasing convex order (see
Young, 2004). Given X and Y two random risks, we denote by Hst and Hicx

the classes of premium principles preserving these orders, respectively,

Hst = {H : If X ≤st Y , then H[X ]≤H[Y ]}
and

Hicx = {H : If X ≤icx Y , then H[X ]≤H[Y ]}.
As a direct consequence of the implications in Equation (2.1), a wider class of
premium principles can be defined in terms of the likelihood ratio order:

Hlr = {H : If X ≤lr Y , then H[X ]≤H[Y ]}.
It is apparent that Hicx ⊂Hst ⊂Hlr. A remarkable example of a class of pre-
mium principles that belongs to Hlr and possesses some members that do not
belong to the other two classes is the family of weighted premium principles,
which includes, among others, the Esscher premium, the modified variance
premium, and the Kamp premium (see Bartoszewicz and Skolimowska, 2006;
Furman and Zitikis, 2008, for the relation between weighted distributions
and the likelihood ratio order). As pointed out in Young (2004), the Esscher
premium does not belong toHst.

The following Lemma is immediate.

Lemma 5. Given θ1 < θ2, if Xθ1 ≤∗ Xθ2 (where ∗ means icx, st or lr), then Xθ is
IRH for all H ∈H∗.

Example 6. Let suppose that the number of claims (risk) follows a binomial
distribution with success probability parameter p and a fixed and known number
of clients n, denoted by Xp ∼B(n, p). From Table 2.5 in Belzunce et al. (2016),
fixed n, the binomial distribution is ordered in the likelihood ratio order, that is,
if p1 < p2 we obtain that B(n, p1)≤lr B(n, p2). Then, using Lemma 5, the random
risk Xp is IRH for all H ∈Hlr.

Now we present the main result. Theorem 7 allows us to quantify and inter-
pret the uncertainty induced by the partial knowledge of the prior for a large
number of premium principles. Note that the range of quantities of interest
can be computed just looking for the extremal distributions generating the
distorted class.
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Theorem 7. Let Xθ be a random risk depending on a parameter θ and let π be a
prior belief in the parameter space�. Let �h1,h2,π be the distorted band associated
with π based on the concave and convex distortions h1 and h2, respectively. Then

(a) PC,H,H∗(πh1 )≤PC,H,H∗(π ′)≤PC,H,H∗(πh2 ),
(b) PB,H,H∗(πh1,x)≤PB,H,H∗(π ′x)≤PB,H,H∗(πh2,x),

for all premium principle H such that Xθ is IRH, for all H∗ ∈Hlr and for all
π ′ ∈ �h1,h2,π .

Proof. We only prove part (b) (part (a) follows a similar argument). By
hypothesis, the risk premium PR,H(θ) is a non-decreasing function of θ . From
(2.5) and using that the likelihood ratio order is preserved by non-decreasing
functions (see Belzunce et al., 2016), we obtain that

PR,H(πh1,x)≤lr PR,H(π ′x)≤lr PR,H(πh2,x),

for all π ′ ∈ �h1,h2,π . The proof follows using that H∗ ∈Hlr. �

Remark 8. We know, from Remark 4 in Arias-Nicolás et al. (2016), that all
priors of the form πε = (1− ε)πhα1 + επhα2 (obtained as a mixture of πhα1 and
πhα2) belong to the class �h1,h2,π , for all 0≤ ε ≤ 1. Since �h1,h2,π is a convex class of
distributions and πε is continuous (see Lemma 3.1 in Ríos et al., 1995), it follows
that any value in the interval

[
PB,H,H∗(πhα1 ,x),PB,H,H∗(πhα2 ,x)

]
can be expressed as

PB,H,H∗(πε,x) for some ε. In particular, the posterior regret Bayesian premium (see
Ríos et al., 1995; Gómez-Déniz, 2009) given by

1
2

[
PB,H,H∗(πhα1 ,x)+PB,H,H∗(πhα2 ,x)

]

is also a Bayes action (premium).

To end this section, we provide a result that connects the prior and pos-
terior distributions using the uniform conditional variability order given in
Definition 1. Proposition 9 will help to interpret the premiums in a bonus–malus
system.

Proposition 9. Let Xθ be a random risk depending on a parameter θ and let π
be a prior belief in the parameter space �. Let πx be the corresponding posterior
distribution. If the likelihood function l(θ |x), θ ∈ supp(πx) is unimodal, where the
mode is a supremum, then

(a) If E[πx]≤E[π ], then πx ≤icx π ,
(b) If E[πx]≥E[π ], then πx ≥icv π .

Proof. Since supp(πx)⊆ supp(π), it is easy to see that πx(θ)/π(θ)=
l(θ |x)/m(x). Then, from the unimodality of l(θ |x), it follows πx ≤uv π . The rest
of the proof follows directly from the chain of implications given in Equation
(2.2). �
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Remark 10. When l(θ |x) is strictly decreasing (respectively, increasing), then the
supremum is reached at the minimum (or the maximum) of the union of the sup-
ports of π and πx. In this case, πx ≤lr π (respectively, πx ≥lr π) and the relation
πx ≤icx π (respectively, πx ≥icv π) follows directly from the chain of implications
given in Equation (2.1).

4. APPLICATIONS

This section illustrates, with three examples, the methods described in this
paper. In the three examples, uncertainty about the prior is incorporated by
means of a distorted band class based on the power distortion functions hα1 (x)
(concave) and hα2 (x) (convex), given by

hα1 (x)= 1− (1− x)α1 and hα2 (x)= xα2 , αi > 1, i= 1, 2. (4.1)

The aim is to study the propagation of the uncertainty to the Bayesian
premiums. We focus on the case where the likelihood belongs to the expo-
nential family of distributions, that is, it can be expressed as l(θ |x)= a(x) exp
(− θx)/c(θ) for the continuous or discrete case and the natural conjugate
prior density is given by π(θ)= [c(θ)]−n0 exp (− x0θ)/d(n0, x0) (see Jewell, 1974,
for details). From Equations (2.3) and (4.1), the prior distorted densities are
given by

πhα1 (θ)=
d
dθ

{
1− [1− Fπ (θ)]α1

}
,

πhα2 (θ)=
d
dθ

[Fπ (θ)]
α2 .

In the first two examples, we consider a distorted class such that the collec-
tive premiums associated with the priors in the band are close among them
according to the epsilon distance. In the third one, uncertainty is induced
directly from the baseline prior.

Remark 11. In the exponential family, a reparametrization often leads to obtain
PR,H(θ)= θ , for H the net premium. If H∗ is also the net premium, in the contin-
uous case we have PC,H,H∗(πhα1 )=

∫
[1− Fπ (θ)]1/p dθ . This is simply the premium

based on the risk-adjusted premium, where p= 1/α1 < 1 is the risk index (see
Drozdenko, 2008, for details about the risk-adjusted premium). This transfor-
mation gives more weight to large claims (sizes) and reduces the probability of
obtaining small claims (sizes). Similar arguments apply when the prior is πhα2 (θ),
which gives more weight to small claims (sizes) and reduces, therefore, the prob-
ability of obtaining large claims (sizes). Therefore, the prior distribution in the
band acts as a mechanism to balance the collective and Bayes premiums based on
the initial prior distribution, giving more prominence to small or large claims.

https://doi.org/10.1017/asb.2018.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.36


DERIVING ROBUST BAYESIAN PREMIUMS 155

TABLE 1

FITTED DATA TO A PORTFOLIO OF AUTOMOBILE INSURANCE IN GERMANY (1969).

No. of claims Observed Geometric fitted

0 20,592 20,615.80
1 2651 2598.46
2 297 327.51
3 41 41.28
4 7 5.20
5 0 0.65
6 1 0.08

Total 23,589 23,589

4.1. Example 1 [real data set]

We consider a portfolio of automobile insurance policies fromGermany (1960)
(see Table 1 and Willmot, 1987, for details)). The number of claims is sup-
posed to follow a Poisson distribution with parameter θ > 0, denoted by Xθ ∼
P(θ), and π is supposed to be an exponential distribution with rate param-
eter b> 0, that is, the baseline prior density is given by π(θ)= b exp (− bθ).
The corresponding posterior distribution is a gamma distribution with shape
parameter equal to nx̄+ 1 and rate parameter equal to b+ n, denoted by
πx ∼G(nx̄+ 1, b+ n).

We compute H and H∗ using the net premiums. It is easy to see that the
individual, collective, and Bayesian premiums are given by

PR,H(θ)= θ , PC,H,H∗(π)= 1
b
, and PB,H,H∗(πx)= nx̄+ 1

b+ n . (4.2)

The marginal (unconditional) distribution of the risk X is a geometric distribu-
tion with parameter b/(b+ 1). Using this distribution, the maximum likelihood
(ml) estimate of b is b̂= 6.934 with a standard error of 0.127.

Now, we introduce a perturbation scheme on the prior distribution by con-
sidering the distorted band �hα1 ,hα2 ,π , where hα1 and hα2 are defined by Equation
(4.1). Then,

πhα1 (θ) = α1b exp (− α1bθ),
πhα2 (θ) = α2b exp (− bθ)(1− exp (− bθ))α2−1. (4.3)

It is easy to see that Poisson distributions are ordered in the likelihood ratio
order in terms of their parameters. Specifically, θ1 < θ2 implies P(θ1)≤lr P(θ2).
Hence, using Lemma 5, Xθ =P(θ) is IRH for all H ∈Hlr. In particular, Xθ =
P(θ) is IRH when H is the net premium.
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After some computations we get

PC,H,H∗(πhα1 ) = (α1b)−1,

PC,H,H∗(πhα2 ) =
Hα2

b
, (4.4)

where Hz represents the zth harmonic number. From Theorem 7 (a) it follows
that

PC,H,H∗(πhα1 )≤PC,H,H∗(π)≤PC,H,H∗(πhα2 ). (4.5)

A natural question is how to choose the distortion parameters α1 and α2. One
possibility is to require that the resulting collective premiums are close enough
to the premium associated to the prior distribution π . This can be done taking
α1 and α2 such that

PC,H,H∗(πhα1 )+ ε =PC,H,H∗(π)=PC,H,H∗(πhα2 )− ε (4.6)

for some ε > 0 small enough (a similar argument has been used in Eichenauer
et al. (1988) and Gómez-Déniz et al. (2002)). Combining Equations (4.2), (4.4),
and (4.6) and replacing b by b̂, we get

(α1̂b)−1 + ε = 1

b̂
,

Hα2

b̂
− ε = 1

b̂
. (4.7)

The equations system (4.7) has been solved numerically using Wolfram
Mathematica software for ε= 0.05, 0.1, and 0.14. The solutions for α1 and α2
are 1.53067, 3.26143, 34.1772, and 1.63976, 2.53965, and 3.51876, respectively.

From Theorem 7 (b), the Bayes premiums satisfy

PB,H,H∗(πhα1 ,x)≤PB,H,H∗(π ′x)≤PB,H,H∗(πhα2 ,x), ∀π ′ ∈ �hα1 ,hα2 ,π .
Since the posterior distorted distributions do not have closed-form expres-
sions, the bounds in these inequalities have been computed numerically by
using Wolfram Mathematica software. Figure 1 shows the effect of the distor-
tion functions on the Bayesian premiums combining some values of the sample
mean, x̄ (with sample sizes n= 1, n= 5, and n= 10). At first glance, as usual,
uncertainty decreases when the sample size increases.

As expected, the range of Bayesian premiums is larger when the uncer-
tainty about the baseline prior π increases, that is, when α1 and α2 increase.
Moreover, the range decreases when the sample size increases and/or the sam-
ple mean of the number of claims is close to 1/b̂= 0.1442. It is also worth
mentioning that the contribution to uncertainty of concave (respectively, con-
vex) distortions is bigger when the sample mean of the number of claims is
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FIGURE 1: Range of the Bayesian premiums based on the net premium against x̄, for ε= 0.05, 0.1, and 0.14,
α1 = 1.53067, 3.26143, and 34.1772, α2 = 1.63976, 2.53965, and 3.51876, and n= 1, 5, and 10, for the

Poisson–exponential model.

smaller (respectively, larger) than 1/b̂= 0.1442. This is coherent with the fact
that the likelihood, given by

l(θ |x)= enθ θ
∑n

i=1 xi∏n
i=1 xi

, θ ∈ (0,∞),
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is unimodal and the supremum is achieved at the maximum likelihood esti-
mator (mls) of θ , given by the sample mean θ̂mls = x̄. From Proposition 9,
we see that πx ≤icx (≥icv)π if and only if E[πx]≤ (≥)E[π ] or equivalently if
and only if x̄≤ (≥)1/b. Therefore, the Bayesian premiums PB,H,H∗(πhα1 ,x) and
PB,H,H∗(πhα2 ,x) can be seen as a competitive value of the premium and a prudent
one, respectively, in a bonus–malus system.

Finally, note that since the Kantorovich metric between the lower and
upper distorted priors is given by KW (πhα1 , πhα2)= 2ε, the uncertainty induced
in the collective premium increases with the “size” of the distorted band.

4.1.1. Connections with credibility theory.
From Equation (4.3), it is apparent that the Bayesian premium associated with
the lower bound of the distorted band can be rewritten as

PB,H,H∗(πhα1 ,x)=
nx̄+ 1
α1b+ n =Z

α1
h1
(n)x̄+ (1−Zα1

h1
(n)
)
PC,H,H∗(πhα1),

that is, as a credibility expression, where

Zα1
h1
(n)= n

α1b+ n (4.8)

is the credibility factor varying between 0 and 1. Straightforward com-
putations provide that this credibility factor obeys the expression of the
classical Bühlmann credibility factor. That is, Z= n/(n+K), where K =
Eπα1 [Var[Xθ ]]/Varπα1 [E[Xθ ]] (see Bühlmann, 1967; Bühlmann and Gisler, 2005,
for further details).

On the other hand, given α2 a positive integer and making use of the
Newton binomial, the density of the upper bound of the distorted band can
be rewritten as

πhα2 (θ)= α2b exp (− bθ)
α2−1∑
j=0

(− 1)α2−1−j
(
α2 − 1
j

)
exp [−bθ(α2 − 1− j)].

Therefore, the posterior distribution can be expressed as a convex sum of α
terms of gamma random variables:

πhα2 ,x =d
1∑α−1

j=0 κ( j)

α−1∑
j=0

κ( j)G(nx̄+ 1, n+ b(α2 − j)),

where

κ( j)= (− 1)α2−1−j
(
α2 − 1
j

)
1

[n+ b(α2 − j)]nx̄+1 .

https://doi.org/10.1017/asb.2018.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.36


DERIVING ROBUST BAYESIAN PREMIUMS 159

Consequently,

PB,H,H∗(πhα2 ,x) =
1∑α2−1

j=0 κ( j)

α2−1∑
j=0

κ( j)
nx̄+ 1

n+ b(α2 − j)

= 1∑α2−1
j=0 κ( j)

α2−1∑
j=0

κ( j)
[
Zα2
h2
(n)x̄+ (1−Zα2

h2
(n)
) 1
b(α2 − j)

]
,

where

Zα2
h2
(n)= n

n+ b(α2 − j) . (4.9)

Therefore, the premium is a sum of α2 terms, where each term presents a factor
of credibility given by Equation (4.9). Observe that the higher α1 and α2 are,
the smaller the credibility factors in Equations (4.8) and (4.9), respectively, are.
In other words, higher α1 and α2 give more weight to the collective compared
to the sample data through the upper and lower bounds of the premium.

4.2. Example 2 [real data set]

This example is taken from Lau et al. (2006). The prior distribution of the risk
parameter θ is supposed to be uniform on (0, 10), denoted by π ∼U(0, 10).
The distribution of claims size is a Pareto distribution with shape parameter
b> 0 and mode parameter θ > 0, denoted by Xθ ∼Pa(b, θ), with density func-
tion f (x|θ)= bθ b/xb+1, x≥ θ . From Bayes theorem, the posterior distribution
is given by

πx(θ)= θ nb(nb+ 1)
min [x(1), 10]nb+1

= fB(nb+1,1)(θ/10)
10FB(nb+1,1)( min [x(1), 10]/10)

,

where θ ∈ (0, min [x(1), 10]) and fB(a1,a2)(x) and FB(a1,a2)(x) represent the density
and the distribution functions, respectively, of a classical beta distribution with
shape parameters a1 and a2 in the interval (0, 1). It is remarkable that the poste-
rior distribution results from a change of scale, equal to 10, of a right-truncated
beta distribution, truncated at min [x(1), 10]. By considering the net premium
principle forH andH∗, a straightforward computation provides the individual,
the collective, and the Bayesian premiums as

PR,H(θ)= bθ
b− 1

, PC,H,H∗(π)= 5b
b− 1

, PB,H,H∗(πx)= b(nb+ 1) min [x(1), 10]
(b− 1)(nb+ 2)

,

(4.10)
where x(1) is the sample minimum. Lau et al. (2006) suggest to take b= 3.

We consider again a perturbation scheme on the prior distribution by using
the distorted band �hα1 ,hα2 ,π , where hα1 and hα2 are defined by Equation (4.1). In
this case, the bounds are given by
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πhα1 (θ) =
α1

10

(
1− θ

10

)α1−1
= fB(1,α1)(θ/10)

10
, θ ∈ (0, 10),

πhα2 (θ) =
α2

10

(
θ

10

)α2−1
= fB(α2,1)(θ/10)

10
, θ ∈ (0, 10). (4.11)

It is well known (see, e.g., Table 2.1 in Belzunce et al., 2016) that Pareto
distributions are ordered in the likelihood ratio order according to their loca-
tion parameters. Specifically, θ1 < θ2 implies Pa(b, θ1)≤lr Pa(b, θ2). It follows
from Lemma 5 that the random risk Xθ =Pa(b, θ) is IRH for all H ∈Hlr (in
particular, Xθ is IRH for the net premium).

Some computation yields to

PC,H,H∗(πhα1 ) =
10b

(b− 1)(1+ α1) ,

PC,H,H∗(πhα2 ) =
10α2b

(b− 1)(1+ α2) . (4.12)

As in Section 4.1 (Example 1), α1 and α2 must verify Equation (4.6) for a
fixed ε > 0. Combining Equations (4.6), (4.10), and (4.12), we need to solve
the following equation system with b= 3:

10b
(b− 1)(1+ α1) + ε =

5b
b− 1

,

10α2b
(b− 1)(1+ α2) − ε =

5b
b− 1

.

The solution satisfies α = α1 = α2. Of course, this is coherent with the fact that
both distortions produce a symmetric effect in the uniform prior distribution.
For ε= 3, 5, and 6 we obtain α = 2.33, 5, and 9, respectively. The distorted
posterior distributions are given by

πhα1 ,x(θ) =
fB(nb+1,α1)(θ/10)

10FB(nb+1,α1)( min [x(1), 10]/10)
,

πhα2 ,x(θ) =
θ nb+α2−1(nb+ α2)
min (x(1), 10)nb+α2

= fB(nb+α2,1)(θ/10)
10FB(nb+α2,1)( min [x(1), 10]/10)

, (4.13)

where θ ∈ (0, min [x(1), 10]). From Equation (4.13), it is easy to compute a
closed-form expression for the distorted Bayesian premiums:

PB,H,H∗(πhα1 ,x) = 10
nb+ 1

nb+ α1 + 1

FBeta(nb+2,α1)
(

min (x(1),10)
10

)

FBeta(nb+1,α1)
(

min (x(1),10)
10

) ,

PB,H,H∗(πhα2 ,x) =
nb+ α2

nb+ α2 + 1
min (x(1), 10). (4.14)
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FIGURE 2: Range of the Bayesian premiums based on the net premium against x(1), for ε= 0.2, 0.6, and 1,
α1 = α2 = 1.05479, 1.17391, and 1.30769, and n= 1 and 5 for the pareto–uniform model.

From Theorem 7 (b), the Bayesian premiums in Equations (4.10) and (4.14)
satisfy

PB,H,H∗(πhα1 ,x)≤PB,H,H∗(π ′x)≤PB,H,H∗(πhα1 ,x), ∀π ′ ∈ �hα1 ,hα2 ,π .
We show in Figure 2 the effect of the distortion functions on the Bayesian pre-
miums combining several values of the minimum sample x(1) with two sample
sizes, n= 1 and n= 5. At first sight, uncertainty decreases when the sample size
increases, as expected.

As in Section 4.1 (Example 1), the range of Bayesian premiums is larger
when α increases. Likewise, the range decreases when the sample size increases
and/or the sample minimum decreases. Recall that the sample minimum is a
biased estimator of θ with a positive bias. Observe that the convex distortion
contributes more to the uncertainty when the sample minimum increases and
the concave distortion contributes more when the sample minimum decreases.
This property is again coherent with the behavior of the likelihood, given by

l(θ |x)= bnθ nb∏n
i=1 x

b+1
i

, θ ∈ (0, x(1)),
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TABLE 2

VALUES FOR THE PREMIUMS DEPENDING ON THE PREMIUM PRINCIPLES.

H–H∗ Net–Net Esscher–Net Esscher–Esscher Exponential utility–Net

Collective premium a
b eβ a

b
eβa

b−βeβ (eβ − 1) a
b2

Bayesian premium a+nx̄
b+n eβ a+nx̄

b+n eβ a+nx̄
(b+n)−βeβ (eβ − 1) a+nx̄

b(b+n)

which is strictly increasing and unimodal, with the supremum achieved at the
mls, given by θ̂mls = x(1). Then, from Proposition 9, πx ≤icx (≥icv )π holds if
and only if E[πx]≤ (≥ )E[π ] or, equivalently, if and only if min (x(1), 10)≤
(≥ )5(nb+ 2)/(nb+ 1). If x(1) ≥ 10, it follows from Remark 10 that π ≤lr πx.

The Kantorovich distance between the lower and upper distorted priors is
given by

KW (πhα2 , πhα1 )=
b

(b− 1)
10(α − 1)
(1+ α) =

b
(b− 1)

2ε. (4.15)

As in Section 4.1 (Example 1), the Kantorovich distance is proportional to ε;
therefore, it can be used to control the effect of the distortions in the collective
premium.

4.3. Example 3

In Gómez-Déniz et al. (1999), the uncertainty with regard to the prior dis-
tribution is represented by the assumption that π belongs to the classical
contamination class of priors. Starting from this class, the authors make a
Bayesian robustness analysis to measure the sensitivity with respect to the
prior of the Bayesian premium for the Esscher principle in the Poisson-gamma
model. Now we extend the study by considering different premium principles
and the distorted band class.

Let suppose that the number of claims follows a Poisson distribution with
parameter θ > 0, Xθ ∼P(θ), and let π be a gamma distribution with shape
parameter a> 0 and scale parameter, b> 0, denoted by π ∼G(a, b), with
density function

π(θ)= ba

�(a)
θ a−1e−bθ .

The posterior distribution is also a gamma distribution with shape parameter
nx̄+ a and scale parameter b+ n, denoted by πx ∼G(nx̄+ a, b+ n).

Table 2 shows the collective and Bayesian premiums for different combina-
tions of H and H∗.

We consider again a perturbation scheme on the prior distribution by using
the distorted band �hα1 ,hα2 ,π , where hα1 and hα2 are given by Equation (4.1).
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TABLE 3

KW METRIC DEPENDING ON THE DISTORTION PARAMETERS.

KW metric α1 = α2 = 1.05 α1 = α2 = 1.11 α1 = α2 = 1.15 α1 = α2 = 2

KW (πhα2 , πhα1 ) 0.03406 0.06697 0.09875 0.12945

KW (πhα2 ,x, πhα1 ,x) 0.01577 0.02494 0.04352 0.05654

In this case, there are no closed-form expressions for the bounds, neither
for the prior bounds πhα1 (θ) and πhα2 (θ) nor for the posterior ones πhα1 ,x(θ)
and πhα2 ,x(θ). As in Section 4.1 (Example 1), Xθ =P(θ) is IRH for all H ∈Hlr

(in particular, for the net, the Esscher and the exponential utility premium
principles). Therefore, it follows from Theorem 7 (b) that

PB,H,H∗(πhα1 ,x)≤PB,H,H∗(π ′x)≤PB,H,H∗(πhα1 ,x), ∀π ′ ∈ �hα1 ,hα2 ,π ,

for any combination of the principles H and H∗ considered in Table 2. This
band is illustrated in Figures 3 and 4 for different scenarios. As in Gómez-
Déniz et al. (1999), we have assumed a fixed expected amount of claims, c= 100
monetary units, and a prior gamma distribution with shape and scale parame-
ters equal to 5 and 2, respectively, G(5, 2). We have fixed the sample size n= 10
under two scenarios: the first one with sample mean x= 2 and the second one
with sample mean x= 5. We have considered different distortion parameters
(namely α1 = α2 = 1.05, 1.11, 1.15, and 1.2).

To obtain the risk aversion constant β in the Esscher premium, we have
supposed that the Esscher premium differs from the net premium in a σ%,
that is, θeβ = (1+ σ%)θ . Taking σ = 10 we obtain β = 0.0953. The same risk
aversion constant has been considered for the exponential utility principle. The
Bayesian premiums PB,H,H∗(πhα1 ,x) and PB,H,H∗(πhα2 ,x) have been estimated by
simulation using the algorithms described in Arias-Nicolás et al. (2016).

On one hand, observe that the range of the Bayesian premiums is larger
when the uncertainty about the baseline prior π increases, that is, when α
increases. On the other hand, the range decreases when the sample mean
of the number of claims is close to a/b= 2.5. Concave distortions con-
tribute more to the uncertainty when the sample mean of the number of
claim is smaller than a/b= 2.5, while convex distortions contribute more
when it is larger. As in Section 4.1 (Example 1), this is coherent with the
fact that the likelihood is unimodal and the supremum is achieved at the
mls of θ , given by the sample mean θ̂mls = x̄. Then, from Proposition 9,
πx ≤icx (≥icv)π if and only if E[πx]≤ (≥)E[π ] or, equivalently, if and only
if x̄≤ (≥)a/b.

Table 3 provides the Kantorovich metrics for the different α’s used in this
study.

https://doi.org/10.1017/asb.2018.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.36


164 M. SÁNCHEZ-SÁNCHEZ, M.A. SORDO, A. SUÁREZ-LLORENS AND E. GÓMEZ-DÉNIZ

FIGURE 3: Range of the Bayesian premiums based on the different premiums in Table 2 with x= 2, for
α1 = α2 = 1.05, 1.1, 1.15, and 1.2 and n= 10 for the gamma–gamma model.

5. CONCLUDING REMARKS

Given a random risk that depends on a parameter, we have addressed the prob-
lem of computing collective and Bayesian premiums from a robust approach.
We have focused on a class of priors, recently introduced in the literature, that
fulfills the requirements described in Berger (1994) and reflects accurately the
prior uncertainty using distortion functions.We have illustrated how the uncer-
tainty propagates from this class of priors to collective and Bayesian premiums
for a wide family of premium principles, specifically those that preserve the
likelihood ratio order. One strength of this approach is that the sensitivity mea-
sures based on ranges of the premiums are easy to compute from the extremal
distributions of the class.

An anonymous reviewer pointed out, in the light of Theorem 7, that
weighted distributions also provide a natural framework for the ideas devel-
oped in this paper. In fact, if we restrict to absolutely continuous random
variables, weighted distributions are more general objects than distorted dis-
tributions. For a non-negative random variable X with density function f and
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FIGURE 4: Range of the Bayesian premiums based on the different premiums in Table 2 with x= 5, for
α1 = α2 = 1.05, 1.1, 1.15, and 1.2 and n= 10 for the gamma–gamma model.

for a non-negative function ω such that E [ω(X )] is strictly positive and finite,
a weighted random variable Xω is a random variable with density function

f ω(x)= ω(x)
E [ω(X )]

f (x), x> 0. (5.1)

A distorted distribution h(F(x)) is a particular case of weighted distribution
by taking the weight function w(x)= h′(F(x)) (this is noted, e.g., in Furman
and Zitikis, 2008). Moreover, the distortion h is convex (resp. concave) if and
only if the weight function ω is increasing (resp. decreasing). In this new frame-
work, we can perturbate the prior belief π by considering two weight functions:
ω1 (decreasing) and ω2 (increasing). Then we have πω1 ≤lr π ≤lr π

ω2 and we
can define a class of priors based on weighted distributions. In this paper,
we have adopted the distortion approach for several reasons. First, this work
was motivated by the paper of Arias-Nicolás et al. (2016), which perturbated
the prior belief π by using distortions. The second reason is that the distorted
distribution approach enables to consider, at least from a theoretical point of
view, more general random variables (not necessarily absolutely continuous).
Finally, the literature provides some useful preservation results for distorted
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distributions that cannot be stated, in general, in terms of weighted distribu-
tions. For example, consider two prior beliefs π and π and two distortion
functions h1, concave, and h2, convex. It follows from Theorem 7(a) in Sordo
(2008) that if π is less disperse than π in the sense of Bickel and Lehmann
(1979), then KW

(
πh1 , πh2

)≤KW (
π h1 , π h2

)
, where KW is the Kantorovich

metric. This is a very reasonable result: the more disperse prior belief, the wider
uncertainty band. Unfortunately, we do not have a similar result for general
weighted distributions.

In this paper, we have considered three classical claim counts models:
exponential–Poisson, uniform–Pareto, and gamma–Poisson. Our future work
will be addressed to the multivariate case, when the risk depends on more than
one parameter.
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NOTES

1. For example, Gómez-Déniz et al. (1999) study the propagation of uncertainty from certain
class of priors to the Bayesian premium, which is computed using twice the Esscher premium.
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