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Abstract  We show improved local energy decay for the wave equation on asymptotically Euclidean
manifolds in odd dimensions in the short range case. The precise decay rate depends on the decay of
the metric towards the Euclidean metric. We also give estimates of powers of the resolvent of the wave
propagator between weighted spaces.
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1. Introduction

The aim of this paper is to investigate the decay of the local energy for the wave
equation associated with short range metric perturbations of the Euclidean Laplacian on
R? d >3 and odd. More precisely, for any p > 0, we show that the local energy decays
like () ~* if the metric converges like (x)~?~2~¢ toward the Euclidean metric. This result
rests on the C°*1 smoothness of the weighted resolvent of the wave generator.

The case of the wave equation in dimension d > 3 and odd is very specific. Indeed,
in flat space, the strong Huygens principle guarantees that the local energy decays
as fast as we want. For compactly supported perturbations, this no longer holds in
general but one can use the theory of resonances (see [21] for a general presentation
of this field) to prove dispersive estimates. In non-trapping situations, this theory gives
a resonance expansion of the cut-off propagator which implies an exponential decay of
the local energy with an optimal decay rate as in [17] for example. Such properties are
related to the meromorphic extension to the whole complex plane (and, in particular,
in a neighbourhood of 0) of the cut-off resolvent of the wave generator (see [22,24]).
The resonance theory can also be used in trapping situations, but there is necessarily a
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‘loss of derivatives’ in the local energy estimate; see [18]. There is a large literature on
this subject; we merely mention [7, 23].

One can also obtain exponential decay of the local energy using the theory of
resonances for exponentially decaying perturbations. In this case, the weighted resolvent
has a meromorphic extension only in a half-plane containing the real axis and the
exponential decay rate of the local energy is controlled by the exponential decay of
the perturbation at infinity. Such ideas were developed in [8,15,20]. It is therefore
natural to ask what are the decay rate and the regularity properties of the resolvent for
polynomially decaying perturbations. In such situations, it is unlikely that the resolvent
is analytic near the real axis. However, we might hope that the weighted resolvent
has some CK regularity properties up to the real line, depending on the decay rate
of the perturbation. In the same way, the exponential decay should be replaced by a
polynomial one. In this paper, we show that this is indeed the case.

Note that the definition of the resonances by complex dilation or distortion (see
[1,13]) does not seem to be appropriate for showing local energy decay at low
frequencies. Indeed, such methods do not give good estimates of the resolvent near
the thresholds. As regards the resonances, we also mention the dynamical definition of
[10] which describes the long time evolution of well-prepared initial data.

To prove the local energy decay, one can also apply other techniques like the vector
field methods (there is a huge literature on this field; see e.g. [16] and the books [2,12]),
the Mourre theory (see [5, 6]), etc. However, in general, these methods do not distinguish
the parity of the dimension and give the polynomial decay of the local energy that one
expects in even dimensions mutatis mutandis. Eventually, the theory of perturbations
can be used to get resolvent estimates at low energy and then decay of the local
energy for ‘small perturbations’ (short range interactions, lower order terms, etc). This
approach, close to the one developed in this paper, has been followed in numerous
papers concerning the local energy decay for the Schrédinger equation perturbed by a
potential (see [14,19] for example).

In this paper, we consider the following operator on R?, with d > 3 and odd:

d
3 3
P=—bdiv(AVh) = b(x) 5 A3 —b(). (1.1)
s} X; Xj

where b(x) € C®(R?) and A(x) € C®(R%; R¥*9) is a real symmetric d x d matrix. The
C™ hypothesis is made mostly for convenience; much weaker regularity could actually be
considered. We make an ellipticity assumption:

>0, VxeR?Y A(x)>6l; and b(x) =S4, (H1)

I; being the identity matrix on R?. We also assume that P is a perturbation of the
Euclidean Laplacian: more precisely,

Va e N [3%(A(x) — Iz)| + 8% (b(x) — 1)| < (x) P71l (H2),

for some p > 0.
In particular, if b =1, we are concerned with an elliptic operator in divergence form,
P = —div(AV). On the other hand, if A = (g2g"/(x));;, b = (det g'/)}/4, g = 1, then the
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above operator is unitarily equivalent to the Laplace-Beltrami operator —Ag on (R, g)
with metric

d
g=>_ gij()dxdy,
ij=1

where (g;;);; is inverse to (g"*-/),-,j and the unitary transform is just multiplication by
g. We are mainly interested in the low frequency behaviour, but our result is global in
energy if we suppose in addition

P is non-trapping. (H3)

In the following, || - || will designate the norm on L%(R?) or £(L?). Let H* be the usual
Sobolev space on R?. Then it is well known that (P, D(P) = H?) is self-adjoint on L?. Let
us first rewrite the wave equation associated with P as a first-order equation. The wave
equation

07 + Pu=0,
u(0) = ug, (1.2)
alu(o) =ul,

is equivalent to the first-order equation

{iaﬂp =Gy, 13)

¥ (0) = (ug, u1),

(o0 1
G=l<_P 0). (1.4)

(o0 1
G0:z<_P0 0)' (1.5)

Let H}, (resp., H,%) be the completion of CSO(Rd) in the norm ||u||12.{1 = (Pu, u) (resp.,
P

||u||?¥2 = (Pu, u) + ||Pu||?). Then it is well known that (G, (H3 @ H})) is self-adjoint on

P

E=H}® L% We put H* := H**! @ H*. Our main result is the following.

with ¥ = (u, d;u) and

We also put Pg = —A and

Theorem 1. Assume d > 3 and odd, (H1) and (H2),. Let > 0 be such that p > u+2 (
o>+ 1in dimension d=3).
(i) For all x € C(R) and & > 0, we have

w1 e e 1Oy Gy g

<(17H.
Loy~ (t)
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(i) If we suppose in addition (H3), then the above estimate holds globally in energy:

H <x>7uflf€efilG(x)7pL71*€

< (™"
Lo ™ (t)

For d =3, we can replace (x)"*~17¢ by (x)~H=1/2=¢ i the above estimates.
Remark 2. Combining the previous theorem with [5] and an interpolation argument,
we can replace (x) "#~17¢ by (x)#~¢ in Theorem 1 if p = 400 and u > 1.

Note that one can express the wave propagator at low frequencies in terms of P using
the classical formula

in /P

cost/p SV
JP

—/Psintv/P costvP

and that x(G) = x(v/P) ® x(v/P) for x even. The proof of Theorem 1 rests on the
following smoothness property of the weighted resolvent at low frequencies (see also the
Holder regularity stated in Proposition 11).

e—itG —

: (1.6)

Theorem 3. Assume d > 3 and odd, (H1) and (H2),. Let k € N* be such that p > k+1
(p>kford=3)andlet k =k ( Kk =k—1/2 for d=3,k >2). Then, for all s € R and
C,e >0, we have

s @G-
zeC\R, |z]<C

<1
E(Ha’y'}-{htk) ~

The polynomial decay of the local energy (resp., the C¥ smoothness of the weighted
resolvent) for polynomially decaying perturbations is analogous to the exponential decay
of the local energy (resp., the analytic extension of the resolvent) given by the resonance
theory for compactly supported or exponentially decaying perturbations.

2. The free resolvent

The goal of this section is to show the following estimate on the free resolvent.

Proposition 4. Let d > 3 be odd. For all ke N, s € R and C, ¢ > 0, we have

<1

swp WGy -t S

zeC\R, |z|<C

To prove this result, we will write the free resolvent as an integral in time over the
evolution and then use the strong Huygens principle. Note that we estimate the powers
of the resolvent in a scale of Sobolev spaces rather than in a scale of energy spaces. We
therefore first need rough estimates for the evolution on H' @ L2.

Lemma 5. Uniformly for t € R, we have

—itGo < (t 2.1
e cenonn S0 (2.1)
~itGo —1H <1 2.9
%0 ) e S (2.2)
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Proof. Using the functional calculus, we obtain

leos tv/Poll iy S 1. fleostv/Poll gz S T,
u— oslnl‘x/_HL(Hle)—H VPosin(ty/Po) (Po) 2|

E(L2)

o2V y 0 vy
VPO L(L2,HY) ‘ '\/PO L(L?)

L(L2)

x(Po=1) SEUR

L(L2)

Combined with (1.6), this implies the first estimate.
We now prove (2.2). Using the previous arguments, we only have to show
sint4/Pgy 1
(Po)!/? —2==x (Po < D (x) Sl
H v Po

L(L?)

By the classical Hardy estimate, we have

which gives by the Fourier transform

S MV ull,

S Ml S I Cxull

u
Po

We conclude that

t
’( poy 23RO, (py < 5H<x>‘ <1,
J_ VPo
and the second estimate of the lemma follows. O

The following estimate on the free evolution is fundamental for the proof of
Proposition 4.

Lemma 6. Let d > 3 be odd and o > 1. Then, uniformly in t € R, we have

H —a —llGO —a < t>—a
LH'®L2) ™ ’
Proof. By (2.1), we can suppose t > 1. Let ¢ € C3°(] — o0, %[) be such that ¢ =1 close
to zero. In particular, this implies
X
o)
Ul oL?)

and

W01 —9) ('xt')

a |x]
)1 =9 =
L(L2)

)1 -9 <|x|>
t

LH®L?)

+

LHY)
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We obviously have
< (™%

o |x|
W Ad-9)(— N
t [:(LQ)

~ Hm_“(l ) (":') ul| + H(x)“"‘l(l _ (":') "
L2

On the other hand,

—w |x|
)" -9) <t> u

H1 L2

x|\ x X
+ 0% (H> —ull {1 —9) <H> Vu

t ) txl |2 t 12

SO Nullg

Combining the three previous estimates, this yields
i I <
A=) — SO (2.4)
)l cateor?)

Using the previous estimates, we can now finish the proof of the lemma. We write
N1~ 9) ('x'> o190 ()~

t ,C,(Hl GBLQ)
+ H(X)_“w ('f') e "1 —¢) ('XI') (x)~*

(x) "% <'x'> e 100y <"“'> (x)
t t E(H1€BL2)

=N +1r+13. (2.5)
Using (2.2), (2.4) and o > 1, we get

H (x) ﬂxefitGo (x) —a

<
CH'®L2)

LH'®L2)

_I_

_ |X|>‘ —itGo .y — -
LS - — ‘e”ox“ < (7. 2.6
1S |0 A —9) ( M conee (x) Ll L)~ (1) (2.6)
In the same way, (2.2)—(2.4) and & > 1 imply
|x|> —a —itG ’ (|x|> —
I < — ‘x @ Hb0 1-— — | (x)
2 Hcp ( ) llcier?) W L(H'®L?) =9 t W LH'GL2)

S (2.7)

Eventually, the strong Huygens principle and the assumptions on the support of ¢ give
I3=0. (2.8)
Thus, the lemma follows from (2.5) and the estimates (2.6)—(2.8). O

Proof of Proposition 4. We have, for Imz > 0,

+o00 )
G-t =i [ O
0
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and thus

R e () LT
(Go—2) " =i — e G0 gy,
o (k=1

We then estimate, for Imz > 0,

+00 )
H<x>—k—8(G0 _ Z)—k<x>—k—8 E(HO) g \/0 |t|k_1 H (x)—k—Ee—llGO (x>—k—8

400
< / (=1 rdr S 1,
0
where we have used Lemma 6. To obtain the higher order estimates, we observe that

Wllggs < [|(Go + P V|| 0 »

dt
L(HO)

and use
(Go+ )P (x) 7 = O () **(Go + )P,
(Go+)(Go—2) L =1+ G@+D(Go—27",
with |z] < C. The proof for Im z < 0 is analogous. O

3. Improved estimates for the free resolvent in dimension 3

In this section, we show improved resolvent estimates in dimension 3 using the explicit
form of the kernel.

Proposition 7. Let d =3, ke N*, s e R and

1 fork=1,
K =
k—1/2 fork>2.

Then, for all C, & > 0, we have

sup (@™ (Go — 9w
zeC\R, |z|<C

<1
E(Hx’Herk) ~

In order to prove this proposition, we will need the following lemma valid in all
dimensions.

Lemma 8. Let 0 <,y < % and 0 < B < d be such that % <a+pB<dand a+B+y >d.
Then the operator with integral kernel k(x, y) = (x)~%|x — y| P (y) ™7 is a bounded operator
on L2(RY).

Proof. Let u € L2(RY) and
v(x) = / (0~ = ¥ () 7 u(y) dy.
Then, by the Holder inequality, we have

vl S [[ =],

9

P2

/|x — P — )T T ul () dy
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d d+e 2d+2¢

with —+——2 For 0 <a < g, we can take p1 = (= and pa = 755,75, with £ >0
small enough Now, by [11, Corollary 4.5.2], we have
=B\ — -7+ —v+
11317700~ % )l )], S e 7P e =8, 1) 7l
with 1 < q1, g2 < 400 and
1 1 1
— 4 —=2-14—.
q1 92 P2
As 0 < B <d and o + B > d/2, we can take qlzﬁ and q2=#ﬁ2§)+38. We now
estimate again by the Holder inequality
[0 77 ], S ([0, Nullrs
with
1 1 _ 1
noor2 g
As a4+ B <d, we can take ro = 2 and % = “+ﬂ . We need (y —¢)r1 > d or equivalently
d d
y—e> —:d—w<:>d(a+,3+y)>d2+28d—8y+82,
r d—+ e

which is fulfilled for & > 0 small enough since ¢ + 8 + y > d.

O

Proof of Proposition 7. Using Proposition 4, it is sufficient to consider the case k > 2.

Let us first recall that the kernel of the free resolvent in dimension 3 is given by

etzlxl

P 2
(Po—z%)71 4n|x|

Using (1.5), we write
z i
(Go—Z)1=(P0—22)1< . )
—iPy z

(0 0 oz
_<—i 0>+(P0 %) <—iZ2 Z>'

The kernel of the second operator in the above line is given by
b4 i 1 e
) .
—iz® z) 4w|x =yl

kl 1
= Go i Go =07

Thus, the kernel of this operator decomposes into a sum of terms of the form

Note also that, for k > 2

(Go—2) =

e Ix — y|J/*lelZ\X*y|’
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with 0 < 8 <2,0< y <k— 1. We therefore have to bound kernels of the form
()T e — T gy e
If y — 1= —1, then Lemma 8 tells us that the corresponding operator is bounded on L?
fore > 1. If y — 1 >0, then for « =y — 1 4+ 3/2 the above kernel can be estimated by
(x) —3/2—8 <y>—3/2—8’
which clearly defines a bounded operator on L?. The worst case is y =k — 1 and thus

k =k — 1/2. This proves the estimate in £(H°) and then in £(H*, H*t¥) by the same
argument as at the end of the proof of Proposition 4. O

4. Resolvent estimates for the perturbed operator

Using the results obtained in the previous sections, we now prove the estimates for the
weighted resolvent of G stated in Theorem 3. To lighten the exposition, we will use the
notation R(z) = (G — 2)~! and Ry(z) = (Go — z)~1 in the sequel. Let 5] = 0;b and 51* = bo;.
In the following, r; will stand for an error term fulfilling

3%r;(x) = O((x)~lel=P=), (4.1)
Let us now introduce
V= GO—G:i<P_OPO 8) CHS — HT (4.2)
which is continuous. Note that
P—Po=03"r0d + 3" r1 + r1d + ra, (4.3)

where we have not written the sum over the indexes on the right-hand side. In dimension
3, we will need the following lemma. Note that this result also applies to G replaced
by Gg.

Lemma 9. Forall s e R and C, e > 0, we have

0
(012 (a O) R@x) 17 SL (4.4)
] LHS Hs+1)
0 O
<.X>71/276R(Z) (5* 0) <x>*1/2*8 S 1’ (45)
j E(HS,HS+1)

uniformly in z € C\ R, |z] < C.

Proof. We only show (4.4), the proof for (4.5) being analogous. Let us first recall that

. ) P1/2 0
G=U'LU with L= , (4.6)

0 —p/?
gL pY? g1
T2 \pr i) B

p-1/2 p-1/2
). (4.7)
—l l

Sl
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Therefore
R@)=U'L-2"'U. (4.8)

Note that U : H}, ®L?> - [? @ L? is a unitary transform and that L is self-adjoint on
L? @ L? with domain D(L) = H' @ H'. Using (4.6)(4.8), we compute

0 0 0 0
5]0 R(z) = A B

A=g(P? =)t 4 9(—P2 = )71,
B=i(@(P/? — 27! = g(—P? —py~Hp1/2,

with

In order to prove a bound on £(H?, H1), it is therefore sufficient to show that

are bounded uniformly in z € C\ R, |z| < C. This follows from [3, Lemmas 4.1, 4.7 and
4.8] and [4, Theorem 1]. In order to prove the estimates for s € N, we commute the two
previous operators with the partial derivatives 9 and use [3, Lemmas 4.1, 4.7 and 4.8].

For s € Z \ N, it is enough to consider the adjoint of these two operators and proceed as
before. Eventually, the case s € R follows from an interpolation argument. O

To prove Theorem 3, it will be useful to have an explicit form of the powers of the
perturbed resolvent R¥(z) in terms of the powers of the free resolvent R’O(z), 1<j<k,
and of the perturbed resolvent R(z).

Lemma 10. For all k € N* and z € C\ R, we can write
R\@) =) MgV---VM,,
finite

where Y gqie Mmeans a finite sum of terms of the type MoV ---VM, with n €N,
My = Rgo (2), M,, = Rg” (z) and M; =R(z) (in which case we put aj=1) or M; = Rg’ (2)
for 1 <j<n—1. Moreover, the a; satisfy

n
Vie{0,....,n} O<oj<k, oj+ar1<k+1 and Zajzn+k.
Jj=0

Proof. We prove the lemma by induction over k. In the case k =1, we use twice the
resolvent identity:

R(z) = Ro(2) + Ro(2)VR(z)
= Ro(2) + Ro(2)VRo(2) + Ro(2) VR(2) VR (2).
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Let us now suppose the lemma for k > 1. We write

R () = RR ()
= (Ro(2) + Ro(2)VRo(z) + Ro(z) VR(z) VR (2)) Z MoV --- VM,

finite
— Z MoV ---VM,y,,
finite
where the last sum has the required properties. (I

Proof of Theorem 3. Let us first consider the case k = 1. From (1.4), we have
z i
R@)=P—z*)"" ( , ) : (4.9)
—iP z
Using [4, Theorem 1] and a simple calculation, we get

<1

—1-¢ 2\=1,\—1-¢
P —
Jo e LS

’

uniformly in z € C\ R, |z| < C. It then follows by (4.9) that

<1, (4.10)

—1-¢ —1-¢
X R(z){x
[Ear O T R S

and the case k =1 follows.
We now treat the case k > 2, d > 3 and odd. Using Lemma 10, we can write

()R @) T = Y )T MOV MVMa - VM (1)
finite

= Z <x>a0_k(x)_(XO_SMo(x)_O‘O_S(x)a0+SV. .
finite
M) )V () ()M

V()T (x) T TE M () T TE () 2K, (4.11)
Since aj + aj11 <k +1 < p, (4.2) and (4.3) imply that
)TV ()@ s HTL
is a bounded operator. Moreover, from Proposition 4 and (4.10), we have
[ ™M) ™| s vy S 1

uniformly in z € C\ R, |z] < C. Combining (4.11) with the previous estimates, ag < k,
ap <k and Y o =k 4+ n, we get that (x) —k=¢Rk(z)(x)~%¢ is bounded uniformly in
z€ C\ R, |z] < C, as an operator from H* to H*T*.

It remains to study the case k > 2 and d = 3. As before, Lemma 10 gives

(x) —k+1/2—8Rk(Z) (x) —k+1/2—8

= WMV MM - VM () TR (4.12)
finite
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From (4.2) and (4.3), we have
0 0\ (0 irg 0 0 0 0\ (irn O
v=|- - I
" 0/ \0 0 a 0 " 0 0 0
0 0 00 0 0
+ 0 s )+
0 in o 0 iro 0

where the sum over the indexes does not appear. In particular, since o + o1 <k +1 <
p + 1, V can be written as

V= ABAj1. (4.13)
finite

where

Aj = (x)"t1/2=e (9 0

5 o) or Aj=(x)",

0 0 —ait1/9— i
5= o) e o g

and B is a bounded operator from H* to H*~1. From Proposition 7, Lemma 9 and (4.10),
we have, forje {1,...n— 1},

|anma;

uniformly in z € C\ R, |z| < C. Moreover, since k > 2, we have k — 1/2 > max(1, ag — 1/2)
and k — 1/2 > max(1, o, — 1/2). Then, Proposition 7 and Lemma 9 give

<1, 4.14
s e (4.14)

H () K 1/2=e g A

<1 and HAnM,,<x>—’<+1/2—8
L(’Hs R Hs+a0 )

<1.(4.15)
E(H.V‘H.H—Otn)

Putting together (4.12)-(4.15), we get that (x) *1/2=¢Rk()(x)~*+1/2=¢ is bounded
uniformly in z € C\ R, |z| < C, as an operator from H* to H*tK. O

It turns out that the weighted resolvent of G not only is bounded, but also has some
Holder regularity which will be used in the proof of Theorem 1.

Proposition 11. Assume d > 3 and odd, k e N with k >2, ¢ €]0,1[ and p > k+a +1 (
p>k+a ford=3). Letk =k ( k =k—1/2 for d=3). Then, for all se R and C,& > 0,
we have

Sle—=71%,

—Kk—a—&/pk kot —K—0—¢&
H (X) (R (Z) —R (Z ))(X) LHS H5+K)

uniformly in |z|, |7/| < C with Imz-Imz > 0.

Corollary 12. Proposition 11 and a classical argument imply that the powers of the
weighted resolvent have a limit on the real axis. More precisely, under the assumptions of

https://doi.org/10.1017/51474748012000801 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000801

Local energy decay in odd dimensions 647

Proposition 11, the limits

() TKTERI (A £ i0) (x) K E = %iilol(x)_’(_gRj (A £ i8) (x) 7<%,

exist for L€l — C,C[ and j€ {1, ..., k}. Moreover, for je{l,...,k— 1},
() T TER (£ 10) ()T = 0 () T TR (£ d0) () TR,
and

S ="
E('HS,HSH‘)

’

H ()T (RE (L £ 0) — RF(V £ i0)) (x) ¢

uniformly in A, M €] — C, C[.

Proof of Proposition 11. For j > 2, Proposition 4 (for d > 5 and odd) and
Proposition 7 (for d = 3) yield

R (2) () K <1, 4.16
[E O e (4.16)
and
7K7175R1'+1 —k—1—¢ <1
[te e oo S
with
_ j ford > 5,
T lj—1/2 ford=3.
Since 8le6 () = ]’R’(-f'l(z)7 the last estimate gives
—k—1-¢ R/ - R/ / —k—1—¢ <lz—Jl 417
@™ Ry — Ry ) oo S (4.17)

Thus, an argument of interpolation between (4.16) and (4.17) implies

<lz—7% (4.18)
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Since k > 2, Theorem 3 yields
o s

’

< 1’ H 7278R2 —2—¢
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for all d > 3 and odd. This gives

<
E('Hx"HerQ) ~
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For the improvement in dimension d = 3, we need estimates in the spirit of Lemma 9.
Since k > 2, Theorem 3 yields

|2 R 32

@ R@ — RE)

< 1,
E(HS,HS+2) ~
and then

< 1.

~

(x)73/27s (g 8) RQ(Z)<X)73/276

[,(HS,HJ+2)

https://doi.org/10.1017/51474748012000801 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000801

648 J.-F. Bony and D. Hiifner

Interpolating with Lemma 9, we get

Slz—=7Z1%  (4.20)
ﬁ(’).{s"HHl)

0 0
()2 (5 0) (R(2) = R(@)) () 1/

In the same way,

Sle=71% (4.21)
ﬁ(HS,HXJrl)

0 0
(x)—l/Q—a—e(R(Z) —R(Z)) <5* 0) <x>—1/2—a—e

By Lemma 10, we can write

R'@) =R =D > MoV V(IMj(2) — Mi@ )V - My (D). (4.22)
finite j=0

Now, the rest of the proof is similar to that of Theorem 3 and we omit the details.
The difference is that we add an additional (x)™® on the left and on the right of
(M;(z) — M;()) and that we use (4.18)—(4.21) instead of Propositions 4, 7, Lemma 9 and
(4.10) to estimate this term. O

5. Proof of the main theorem

In this part, we deduce Theorem 1 from the smoothness of the weighted resolvent
obtained in §4. First note that for u < 2, this theorem follows from [5]. Indeed, under
the assumption p > 0, it is proved in [5, Theorem 1 i)] that

H <x>17defilGX(G)<x>1de g <t)1*d+€'
On the other hand, [3, Lemma 4.2] gives || (x)~1/2=¢u|| < ||PY/4u|, and then

H<x>—1/2—£e—ilGX(G)(x)—l/Q—s 5 1

Interpolating the two previous estimates yields Theorem 1 for u < 2.
In the sequel, we assume that p > 2. Thus, we can apply Corollary 12 with
k= [n] + 1> 3. Using Stone’s formula and integrating by parts, we get

O (1

=5 X (e ™ () THTITE(R(A 4 i0) — R(A — i0)) (x) *~1=#dx,

Lue]+1
11 1 . .
= oAl ! ; —ith (y—H—1—e pj i —pn—1-¢
~ 2mi (ir) ] zi: 21: +C) /Xj()")e (x) R (% i0) (x) d, (5.1)
j:

with xj = all+l—iy C°(R). Moreover, mimicking the proof of [9, Theorem 25], we
obtain, for all 1 <j < [u] + 1,

A= / KiWe ) TR i0) (x) T
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= / X O+ /e 1T () T RN 4 /8 2 i0) (x) TR
= - / X+ 7 /De” P ) TETITE R G4 /e £ i0) (x) TR
=—-A+ / (X)) — i + 7 /0)e™ ™ () THTIZERI (£ i0) (x) T Ed
+ / X0+ m/De™ ™ () I (RIL £ i0) — RIO. + 7/t % i0)) (x) 1 d

= O@lH—my, (5.2)

since A > (x) THTITERI(L £ i0) (x)H1E (and of course A — x;(1)) is Holder continuous
of order u — |pu] thanks to Corollary 12. Then, (5.1) and (5.2) imply part (i) of
Theorem 1 in the case d > 3 and odd. This argument gives also the improvement in
dimension d = 3. In order to prove part (ii) of the theorem, it is sufficient to use the high
energy estimates of [5, Theorem 5 ii)] as well as the formula (1.6).
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