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ABSTRACT

This paper considers the model suggested by Schnieper (1991), which sepa-
rates the true IBNR claims from the IBNER. Stochastic models are defined,
using both recursive and non-recursive procedures, within the framework of the
models described in England and Verrall (2002). Approximations to the pre-
diction error of the reserves are derived analytically.

Some extensions to the original Schnieper model are also discussed, together
with other possible applications of this type of model.
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1. INTRODUCTION

Schnieper (1991) proposed a method of claims reserving, which explicitly sep-
arated the incurred data into new claims amounts and changes in incurred
amounts for existing claims. The method proposed by Schnieper has not
received much attention since then, although Mack (1993) used some of the
ideas, indirectly, to derive a method to calculate estimates of the prediction
error for the chain ladder technique. As far as we are aware, there has been no
further work in the literature following up the specific modelling structure pro-
posed by Schnieper (1991). We believe that the ideas in Schnieper (1991) should
be considered again, and so we present in this paper a number of additions to
the work of Schnieper, taking into account the advances in stochastic claims
reserves models which have taken place since the paper was published. In par-
ticular, we derive recursive formulae for the estimates of the prediction errors.
We also make some proposals for extending the Schnieper models, and discuss
ideas for extending the application of this type of approach to other types
of data.

A useful summary of stochastic claims reserving models can be found in
England and Verrall (2002). That paper, and the references given in it, supply
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a background to the development of the stochastic framework used in this
paper. Other useful references include Taylor (2000) and Wuthrich and Merz
(2008) It is assumed that the data have been aggregated by development year
and accident year (noting that the methods can be extended straightforwardly
to quarterly or monthly data). England and Verrall (2002) considers both recur-
sive and non-recursive models for claims run-off triangles, and both approaches
will be used in this paper.

The paper is set out as follows. Section 2 contains a brief description of the
model proposed in Schnieper (1991), including the estimates of the parame-
ters and of outstanding claims. Section 3 shows how to derive the estimates of
the prediction errors analytically. In Section 4, the prediction errors are esti-
mated for the data used in Schnieper (1991). Finally, in Section 5, a discussion
is given of the model proposed by Schnieper, suggesting some possible exten-
sions to the model. We also examine in this section whether a similar approach
could usefully be applied to other data sets. Thus, as well as investigating
stochastic models for the Schnieper method, another purpose of this paper is
to show how the basic ideas of stochastic claims reserving can now be extended
in order to provide further useful practical approaches to reserving.

2. THE SCHNIEPER MODEL

This section describes the model suggested by Schnieper (1991), and also gives
details of the estimates of the parameters and of outstanding claims derived
by Schnieper. The method was specifically designed with reinsurance data in
mind, but it is possible that it could be useful for other types of data as well.

2.1. The data 

The Schnieper model deals with very volatile incurred data for reinsurance
business, and the idea is to separate the data into two more detailed, separate
parts so that they become more stable and easy to model. These two parts
are the new claims that arise at each development period, and the change in
the incurred amounts for claims that arose at previous development periods.
Clearly, whether or not this is possible depends on the information available,
and the original application in Schnieper was to reinsurance data. While recog-
nising that there will be many cases where data is not available at this level
of detail, we also believe that the approach is useful when the data are avail-
able. It is also our opinion that the general approach may also be adapted to
other situations when other types of data are available, also split into two
parts.

Without loss of generality, we assume that the data are available in triangu-
lar form, indexed by accident year, i, and development year, j. The cumulative
incurred data are denoted by {Xij : 1 # i # n; 1 # j # n – i + 1}:

36 H. LIU AND R. VERRALL

https://doi.org/10.2143/AST.39.1.2038055 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038055


,

n

n

n11

21

1

12

2 1

1

g

g

-

h

X
X

X

X
X

X

It is assumed that the incremental incurred claims (Xij – Xi, j – 1) are the sum of
incremental incurred from the old claims (–Dij) and the new claims (Nij). In
other words, –Dij represents the change in the cumulative incurred claims for
claims reported in previous development periods, and Nij is the new claims
reported in development period j. Thus,

Xij – Xi, j – 1 = – Dij + Nij (2.1)

and for cumulative claims:

Xij = Xi, j – 1 – Dij + Nij . (2.2)

As was discussed in Verrall (2000) and England and Verrall (2002), the sto-
chastic models for claims reserving can be formulated either for incremental
or cumulative data, with no difference in the results. It is therefore a matter of
convenience which is used, and there are advantages to each in different cir-
cumstances. For example, when deriving expressions for the estimation error,
it is usually easier to use the cumulative claims.

Schnieper also assumes that a measure of the exposure, Ei, is also available
for each accident year i, and it will be seen that this leads to estimation that
has some similarities with the Bornhuetter-Ferguson method (Bornhuetter and
Ferguson, 1972). Also, it is noted that introducing external information can be
especially useful for unstable data, such as newly developed data with little
or no history. We continue with this assumption, in order to be consistent with
Schnieper (1991), but also discuss how the approach may be adapted when
exposure data are not available.

In common with Schnieper (1991), we do not attempt to forecast beyond
development year n. We refer to cumulative claims at development year n as
“Ultimate Claims”.

We define the information up to payment year k by Hk and the informa-
tion up to development year k by Fk, where 

Hk = {Nij, Dij : 1 # i, j # n; i + j – 1 # k}

and Fk = {Nij, Dij : 1 # i, j # n; j # k}.

Fk corresponds to Bk in Mack (1993).
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2.2. The model assumptions 

The general model assumptions concern the independence between accident
years, the uncorrelatedness between development years and the mean and vari-
ance of the incremental incurred claims amounts from old claims and from new
claims. These are given as follows:

ASSUMPTION 1: There exist constants lj and dj, such that for known exposure
Ei we have that,

E [Nij | Hi + j – 2] = Ei lj , 1 # i, j # n, (2.3)

E [Dij | Hi + j – 2] = Xi, j – 1 dj , 1 # i # n, 2 # j # n. (2.4)

According to Assumption 1, the model structure for the incremental incurred
claims from new claims, Nij, is non-recursive in format, with column parame-
ters, lj, which have to be estimated from the data and row parameters, Ei,
which are assumed known. Therefore, it also can be seen to be similar to the
Bornhuetter-Ferguson method with the row parameters assumed to be known
a priori. A discussion of the Bornhuetter-Ferguson method in a Bayesian con-
text can be found in Verrall (2004).

The model structure for the incremental incurred claims amounts from
existing claims has some similarities with the chain ladder model, where dj is
similar to a development factor. The difference here is that Xi, j – 1 is taken from
a different triangle, rather than being the previous cumulative claims. For this
reason, Mack (1993) describes this method as “a mixture of the Bornhuetter-
Ferguson technique and the chain ladder method”.

ASSUMPTION 2: There exist constants s2
j and t2

j , such that 

Var [Nij | Hi + j – 2] = Ei s
2
j , 1 # i, j # n, (2.5)

Var [Dij | Hi + j – 2] = Xi, j – 1 t2
j , 1 # i # n, 2 # j # n. (2.6)

Assumption 2 defines only the variances of the random variables, but not the
full distribution. This approach was also used by Mack (1993) in his stochas-
tic model for the chain ladder technique, and has been discussed in a series
of recent papers (Buchwalder et al, 2006, Mack et al, 2006, Venter, 2006, and
Gisler, 2006). Buchwalder et al (2006) use a time series approach, and raise some
difficulties concerning the estimation of the estimation error in the chain
ladder model. Mack et al (2006) discuss this further, showing that the time
series approach also presents some difficulties. In these papers, approximations
to the estimates of the estimation error are discussed in some detail. This point
was first discussed by England and Verrall (2002), in paragraph 7.6.2, which
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empirically compared two possible approximations to the estimates of the esti-
mation error, pointing out that they were very similar but not exactly identical.
Mack et al (2006) has clarified this theoretically, and we discuss the alternatives
in section 3. See also sections 3.2.3 and 3.3.1 of Wuthrich and Merz (2008).

ASSUMPTION 3: Independence between accident years

As in Schnieper (1991), it is assumed that {N1 j, D1 j : 1 # j # n}…{Nnj, Dnj : 1 #
j # n}, are independent between accident years.

ASSUMPTION 4: Uncorrelatedness between development years

{Nij | Hi + j – 2 : 1 # i, j # n} and {Dij | Hi + j – 2 : 1 # i # n, 2 # j # n} are uncorre-
lated.

2.3. Unbiased estimates of the parameters

Following the assumptions in section 2.2, the (conditionally) unbiased estimates
of the parameters were provided by Schnieper as follows.
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Following Schnieper (1991), we assume that claims are developed enough to
use the approximation that sn

2 = 0 and tn
2 = 0. Note that these are approxi-

mations rather than estimators.

PREDICTIVE DISTRIBUTIONS FOR RESERVES 39

https://doi.org/10.2143/AST.39.1.2038055 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038055


Schnieper (1991) also provides estimators for the conditional variances of
lj and dj. These can be obtained from the following identities by using estimates
of sj

2 and tj
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2.4. Ultimate claims

The main purpose of claims reserving is to predict outstanding claims. In order
to do this, we require an estimate of ultimate claims for each accident year,
given the observed data. We are also interested in the prediction of claim devel-
opment at different development period prior to the ultimate.

For both of the purposes, it is clear that we require the “t-steps-ahead”
forecast of cumulative claims, in the terminology of time series. A recursive fore-
casting formula is given in equation (2.11), where n is the number of rows in
the triangles, and k is the latest diagonal (k = n – i + 1).

n n ii i .E E E l1, ,k t k t k t k t1= - ++ + + - +H HdX X^ h7 7A A (2.11)
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Thus, for row 2 we require the 1-step-ahead forecast, for row 3 we require the
2-steps-ahead forecast, and so on. The number of steps ahead from the latest
observed time (the leading diagonal) to ultimate claims only depends on which
accident year we are considering.

Using this recursive derivation method, a formula for the expected ultimate
claim for accident year i is obtained as follows, which is the same as Schnieper
(1991):
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(2.12)

Since these expressions contain unknown parameters, it is necessary to use
estimators:

n n ii i .lEE E1, ,k t k t k t k t1= - ++ + + - +H HX Xd` j7 7A A

E [Xi,k+ t | Hn ] is the prediction of Xi,k+ t, and we use the notation of Xi,k+ t for this:
E [Xi,k+ t | Hn ] = Xi,k+ t.

Hence

Xi, k+ t = (1 – dk + t) Xi, k+ t – 1 + Ei lk + t. (2.13)

Note that it is straightforward to show that this is a conditionally unbiased esti-
mator, given Xi, n + i – 1.

3. PREDICTION ERRORS

One of the principle reasons for using stochastic models is so that prediction
errors and predictive distributions can be estimated. In the other words, a range
around the best estimate can be provided, which is essential for solvency require-
ments, and for capital modelling and risk measurement. In this section, we show
how prediction errors may be estimated using two approaches, analytically.

When using recursive models, the prediction errors for the reserves are the
same as the prediction errors for the ultimate claims, since we always condition
on the latest cumulative claims. Thus, we may consider whichever is easier to
deal with. In most cases, this means using ultimate claims, especially when the
models are set up in the form of recursive models.

In general, we require the conditional Mean Squared Error of Prediction
(MSEP). Consider n – i + 1 < m # n, so that Xim is a future observation in the
lower triangle.

MSEP [ Xim | Hn ] = E [(Xim – Xim)2 | Hn ]

= [((Xim – E [Xim | Hn ]) – (Xim – E [Xim | Hn))2 | Hn ]
= E [(Xim – E [Xim | Hn ])2 | Hn ] + (Xim – E [Xim | Hn ])2

= process variance + estimation error.
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The process variance is straightforward due to the assumptions of independence
between accident years and uncorrelatedness between development years.
However, the estimation error has been discussed in detail by Buchwalder et
al (2006), Mack et al (2006), Venter (2006) and Gisler (2006). In brief, there
are essentially two approaches which can be used, of which Mack et al (2006)
argue that one is better than the other. In addition, Gisler (2006), using a
Bayesian approach, makes a case for using the other approach. See also Gisler
and Wuthrich (2008) for a further discussion of this issue in a Bayesian context.
For completeness, we include both approaches in this paper.

The first method, which was used by England and Verrall (2002), approx-
imates the estimation error by the estimation variance, Var [Xim | Fn – i + 1]. This
is equivalent to Approach 3 of Buchwalder et al (2006). Mack et al (2006) use
a slightly different approach, and section 6 of Mack et al (2006) discusses the
difference between the two approaches and conjectures that they should give
similar results (as was also concluded in England and Verrall, 2002).

In this paper, we derive alternative approximations for the estimation error
for the Schnieper model. These are derived in sections 3.2 and 3.3, but first we
consider the other component of the MSEP, the process variance.

3.1. Process variance for accident year (row) i

The process variance is derived recursively, which makes it particularly straight-
forward to implement in a spreadsheet. The t-steps-ahead formula for the expec-
tation and variance of ultimate claims may be obtained recursively as follows.

Recall that k = n – i + 1, denoting the latest observations in the leading diag-
onal. The process variance of the t-step-ahead forecast in the lower triangle can
be recursively written as follows,

Var[Xi,k + t | Hn] = (1 – dk + t)
2Var[Xi,k + t – 1 | Hn] + t2

k + t E[Xi,k + t – 1 | Hn] + Ei s
2
k + t.

(3.1)

The proof of (3.1) is given in Appendix A.

Since this expression contains unknown parameters, it is necessary to use esti-
mators:

Var[Xi,k + t | Hn] = (1 – dk + t)
2Var[Xi,k + t – 1 | Hn] + t2

k + t E[Xi,k + t – 1 | Hn] + Ei s2
k + t.

(3.2)

A non-recursive formula can also be derived for the process variance:
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[Note that here and elsewhere in this paper we use the convention that

1j
j a

b

=
=

x% if a > b, in order to keep the equations as concise as possible.]

The proof of this expression is also given in Appendix A. Again, the esti-
mator of this can be obtained by using estimators of the parameters on the
right hand side.

Note that the second approach provides the same process variance of the
ultimate loss prediction as the first approach. However, the first approach has
the advantage that it gives the process variance of loss prediction in every
single development period.

3.2. Estimation error for accident year (row) i

We consider the estimation error in a recursive format. Again, it is simpler to
consider ultimate claims rather than the reserve. From section 2, the recursive
formula for the t-steps-ahead forecast is 

Xi, k+ t = (1 – dk + t) Xi, k+ t – 1 + Ei lk + t. (3.3)

We consider 2 approaches for approximating the estimation error. Firstly, we
approximate the estimation error using the estimation variance, as was done
by England and Verrall (2002). The variance of the t-steps-ahead forecast can
be obtained recursively using the following formula:

Var[ Xi,k + t | Fk ]

= (E [(1 – dk + t | Fk ])2Var[ Xi,k + t – 1 | Fk ] +Var [dk + t | Fk ] (E[Xi,k + t – 1 | Fk ])2

+ Var [dk + t | Fk ]Var[ Xi,k + t – 1 | Fk ] + Cov[(1 – dk + t)
2, X2

i,k + t – 1 | Fk ] +E2
i Var [lk + t | Fk ].

(3.4)

The derivation of this expression can be found in Appendix B. It is not straight-
forward to derive an expression for Cov[(1 – dk + t)

2, X2
i,k + t – 1 | Fk ], and approxi-

mations to (3.4) are used here. The first approximation follows England and
Verrall (2002) and simply omits this covariance (this is also the approximation
used in Approach 3 of Buchwalder et al, 2006):

Var[ Xi,k + t | Fk ]

. (E [(1 – dk + t | Fk ])2Var[ Xi,k + t – 1 | Fk ] +Var [dk + t | Fk ] (E [Xi,k + t – 1 | Fk ])2

+ Var [dk + t | Fk ]Var[ Xi,k + t – 1 | Fk ] + E2
i Var [lk + t | Fk ].

Note that an estimate of this can be obtained by using suitable estimates on the
right hand side. Since the estimators are unbiased, E[Xi,k+t – 1 |Fk ] = E[Xi,k+t – 1 |Fk ],

PREDICTIVE DISTRIBUTIONS FOR RESERVES 43

https://doi.org/10.2143/AST.39.1.2038055 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038055


and we use E [Xi,k + t – 1 | Fk ] as the estimate of this. Similarly, we estimate
E [1 – dk + t | Fk ] by (1 – dk + t ).

Denote Var [Xi,k + t | Fk ] as the estimate for Var [Xi,k + t | Fk ], then the estimate for
the estimation variance is as follows:

Var[ Xi,k + t | Fk ] = (1 – dk + t)2 Var[ Xi,k+ t – 1 | Fk ] +Var (dk + t | Fk)Var[Xi,k + t – 1 | Fk ]

+ Var (dk + t | Fk) X2
i,k + t – 1 + E 2

i Var (lk + t | Fk). (3.5)

As suggested in Mack et al (2006), section 6, it is possible also to adjust equa-
tion (3.4), by noting that often Var (dk + t | Fk )Var [Xi,k + t – 1 | Fk ] . –Cov (d 2

k + t,
X2

i,k + t – 1 | Fk ]. Thus, the omission of Cov(d2
k + t, X2

i,k + t – 1 | Fk ] can be approximately
compensated for by omitting Var(dk + t | Fk)Var[Xi,k + t – 1 | Fk ] as well. This would
mean using an approximation to (3.5):

Var[Xi,k + t | Fk ] . (1 – dk + t)2 Var[Xi,k+ t – 1 | Fk ]

+Var (dk + t | Fk) X2
i,k + t – 1 + E 2

i Var (lk + t | Fk). (3.5a)

Note that Var (dk + t | Fk) and Var (lk + t | Fk) can be obtained using the results in
section 2.3.

In section 4, where the results are compared, we refer to (3.5) as “L and V
Original” and (3.5a) as “L and V with Adjustment”.

A different approach follows Mack et al (2006) and approximates the
estimation error directly, rather than the estimation variance. The resulting
approximation for the estimation is derived in Appendix B. The estimator of
this approximation is:
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(3.6)

Although expression (3.6) appears complicated, it is not too difficult to imple-
ment in a spreadsheet.

The results from each of these approaches are compared in section 4.
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3.3. MSEP for the Total Loss Reserve

The final step is to obtain an approximation to the conditional Mean Squared
Error of Prediction (MSEP) for the overall total reserve.

As in section 3.1, the approximation to the conditional MSEP is obtained
as the sum of process variance and the estimation error. Under the indepen-
dence assumptions between accident years, the process variance of the overall
reserve is simply the sum of the process variances of the individual row reserves.
However, it becomes more complicated for the estimation error of the overall
reserve. It is straightforward to see that the predictions of the row reserves are
not independent since they are estimated by the same column parameters.
Again, there are two possible approaches here. The first considers the estima-
tion variance. In this case, we need to consider the covariance between row
reserves, and a recursive procedure is again used in this context. Consider the
covariance of the reserve estimates in column m + t for rows s and p, where
m = n – s + 1 and 2 # s < p # n, Cov[Xs, m + t, Xp,m + t |Fm ].

Cov [ Xs, m + t, Xp,m + t |Fm ]

= Var(dm+ t |Fm) Cov [Xs, m + t – 1, Xp,m + t – 1 |Fm ]

+ E [Xs, m + t – 1 |Fm ] E [Xp,m + t – 1 |Fm ]Var(dm+ t |Fm)

+ Cov [Xs, m + t – 1, Xp,m + t – 1 |Fm ] (E (1 – dm+ t | Fm))2

+ Cov [Xs, m + t Xp,m + t, (1 – dm+ t + 1)
2 | Fm ] + EsEpVar(lm + t |Fm) . (3.7)

The proof of (3.7) is given in Appendix B.

We denote the estimate of Cov [ Xs, m + t, Xp,m + t | Fm ] by Cov [ Xs, m + t, Xp,m + t | Fm ].
Also, we use Xs,m + t and Xp,m + t as the estimates for E [Xs,m + t |Fm ] and E [Xp,m + t | Fm ],
respectively, and (1 – dj) as the estimate for E (1 – dj |Fm). Thus, the estimate of
the covariance is as follows:

Cov [ Xs, m + t, Xp,m + t |Fm ]

= Var(dm+ t |Fm) Cov [Xs, m + t – 1, Xp,m + t – 1 |Fm ]

+ Xs, m + t – 1 Xp,m + t – 1Var(dm+ t | Fm)

+ Cov [Xs, m + t – 1, Xp,m + t – 1 |Fm ] (1 – dm+ t)2

+ Cov [Xs, m + t Xp,m + t, (1 – dm+ t + 1)
2 | Fm ] + EsEpVar(lm + t |Fm) . (3.8)

Note that a similar argument as was used following equation (3.4) can be
applied here for the treatment of Cov [Xs, m + t Xp,m + t, (1 – dm+ t + 1)

2 | Fm ], and we
follow the same choices as were described earlier.
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For ultimate claims, we put m + t = n, and derive the required covariances
using this recursive formula. For row 2 we use the iterative formula once, and
in general for row s, we use formula (3.7) (s – 1) times. This enables us to derive
the covariances between the estimates of any of the row totals, as required
when calculating the estimation variance for the overall total. Thus, we can go
on and derive the conditional mean square error of prediction for the overall
reserves.

The estimator of the conditional mean square error of prediction is approx-
imated as the sum of process variance and the estimation variance:
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This is derived recursively, using equations (3.3), (3.5) or (3.5a), and (3.7). This
is straightforward to implement in a spreadsheet, which is available on request
from the corresponding author.

The alternative approach is to follow the approximation used by Mack et
al (2006). This results in a complicated formula (A1), which is derived in Appen-
dix D. Again, it is possible to implement this formula in a spreadsheet, in spite
of its complex appearance.

The following section contains an example which illustrates the use of the
results derived in this section. The results for the two approaches are compared.

4. EXAMPLE

In this section we use the data from Schnieper (1991) and calculate the predic-
tion errors using both approximations derived in section 3. The data used by
Schnieper consisted of an IBNR triangle, Xij, and exposure, Ei, which are shown
in Table 1. Tables 2 and 3 show the more detailed data, consisting of the new
claims, Nij, and the changes in the existing claims, –Dij. These data were taken
from a practical motor third party liability excess-of-loss pricing problem.

Tables 4 and 5 show the parameters estimates for each development year
for the models. These are obtained by using equations (2.7) and (2.8), as derived
in Schnieper (1991).

Tables 6 and 7 show the estimates of the variance parameters, obtaining
using equations (2.9) and (2.10).

The reserve estimates, obtained using equation (2.12), are shown in Table 8.
In Table 9, we show the approximations to the estimation error using the

different methods derived in sections 3.2 and 3.3. The methods are as follows.
“L and V Original” refers to the first approach, which approximates the
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TABLE 1

CUMULATIVE IBNR (Xij) AND EXPOSURE (Ei)
FOR BOTH NEW AND EXISTING CLAIMS.

Dev year

Accident year
1 2 3 4 5 6 7 Exposure

1 7.5 28.9 52.6 84.5 80.1 76.9 79.5 10,224
2 1.6 14.8 32.1 39.6 55.0 60.0 12,752
3 13.8 42.4 36.3 53.3 96.5 14,875
4 2.9 14.0 32.5 46.9 17,365
5 2.9 9.8 52.7 19,410
6 1.9 29.4 17,617
7 19.1 18,129

TABLE 2

INCREMENTAL INCURRED CLAIMS FROM NEW CLAIMS (Nij).

Dev year

Accident year
1 2 3 4 5 6 7

1 7.5 18.3 28.5 23.4 18.6 0.7 5.1
2 1.6 12.6 18.2 16.1 14 10.6
3 13.8 22.7 4 12.4 12.1
4 2.9 9.7 16.4 11.6
5 2.9 6.9 37.1
6 1.9 27.5
7 19.1

TABLE 3

INCREMENTAL INCURRED CLAIMS FROM EXISTING CLAIMS (Dij).

Dev year

Accident year
1 2 3 4 5 6

1 –3.1 4.8 –8.5 23 3.9 2.5
2 –0.6 0.9 8.6 –1.4 5.6
3 –5.9 10.1 –4.6 –31.1
4 –1.4 –2.1 –2.8
5 0 –5.8
6 0

https://doi.org/10.2143/AST.39.1.2038055 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038055


48 H. LIU AND R. VERRALL

TABLE 4

ESTIMATES OF THE PARAMETERS IN THE N TRIANGLE.

l1 l2 l3 l4 l5 l6 l7

0.0005 0.0011 0.0014 0.0012 0.0012 0.0005 0.0005

TABLE 5

ESTIMATES OF THE PARAMETERS IN THE D TRIANGLE.

d2 d3 d4 d5 d6 d7

–0.3595 0.0719 –0.0476 –0.0536 0.0703 0.0325

TABLE 6

ESTIMATES OF THE VARIANCE PARAMETERS FOR N TRIANGLE.

s2
1 s2

2 s2
3 s2

4 s2
5 s2

6

0.002895 0.005433 0.011851 0.006314 0.003131 0.003302

TABLE 7

ESTIMATES OF THE VARIANCE PARAMETERS FOR D TRIANGLE.

t2
2 t2

3 t2
4 t2

5 t2
6

0.150082 1.609408 1.38487 11.97382 0.092046

TABLE 8

SCHNIEPER RESERVES.

Accident Year 2 3 4 5 6 7 Overall Total

Reserve 4.410 4.796 32.914 60.303 77.188 104.326 283.938

estimation error using the estimation variance. This was the approach used by
England and Verrall (2002) for the chain ladder technique. “L and V with
Adjustment” follows the same approach as “L and V Original”, but omits the
products of the variances as suggested by Mack et al (2006) – see the end of

https://doi.org/10.2143/AST.39.1.2038055 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038055


section 3.2 for details. Finally, “Mack’s approximation” gives the results using
the second approach described in sections 3.2 and 3.3. This was the approach
used by Mack (1993) to approximate the estimation error for the chain ladder
technique.

In a similar way, Table 10 shows the different approximations for the pre-
diction error, again using the 2 approaches derived in section 3.

It can be seen that there is a reasonably good agreement between the three
sets of results. For the Schnieper method, there does not appear to be an order-
ing of the prediction errors, as was found for the chain ladder technique by
Mack et al (2006). For the chain ladder technique, it was found that Mack’s
approximation gave consistently lower values for the prediction error. We sur-
mise that the same ordering does not apply in this case since Schnieper’s method
is rather more complicated and uses 2 triangles of data.

5. DISCUSSION

This paper has extended the analysis of the Schnieper model to include predic-
tion errors using analytical methods. We believe that the model deserves to be
reconsidered in the context of its original, using the new stochastic framework.
One limitation of the application of the Schnieper model is that it requires
a relatively detailed data set. i.e. the exposure of every accident year, the time
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TABLE 9

A COMPARISON OF THE ESTIMATES OF THE ESTIMATION ERROR.

Accident Year

Method
2 3 4 5 6 7 Overall Total

L & V Original 7.057 10.172 16.626 24.325 24.299 28.493 100.396
L & V with adjustment 7.057 10.172 16.623 24.242 24.137 28.282 100.276
Mack’s Approximation 7.059 10.176 16.624 24.244 24.139 28.284 96.267

TABLE 10

A COMPARISON OF THE PREDICTION ERROR.

Accident Year

Method
2 3 4 5 6 7 Overall Total

L & V Original 9.475 14.297 29.814 41.199 43.507 49.202 121.859
L & V with adjustment 9.475 14.297 29.812 41.150 43.417 49.080 121.761
Mack’s Approximation 9.477 14.300 29.813 41.151 43.418 49.081 118.481
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when the claims occur and how they develop in every calendar year. For this
reason, the model can not be used in every application. The model was also
originally used in a specific context, and it is likely that this is a further reason
why it has not been considered any further since it was published. However,
the ideas from Schnieper (1991) of modelling two sets of data have some sim-
ilarities with other slightly different problems, for example, the consideration
of paid and incurred run-off triangles.

We believe that this paper may pave the way for new approaches to paid
and incurred data, which may use the results derived here for the predictive dis-
tributions and the prediction errors. For example, we could suggest a straight-
forward extension to paid and incurred data, which may have some practical
appeal. This is to use the model for incremental incurred amounts from new
claims, Nij, for incremental paid data for all development years apart from the
first. In fact, the claims amount from first development years can always be
ignored as they represent, in effect, non-random elements of the model. Sim-
ilarly, incremental case reserves can be fitted by the model for the incremental
decreases in incurred amount from existing claims, Dij, proposed by Schnieper
(1991). The underlying requirement of the consistent ultimate losses projection
between paid and incurred can be reflected by the exposure assumption.

Further, a prior distribution could be applied to model parameters, such as
lj and dj, and a Bayesian approach adopted. This would have the advantages
that the flexibilities of the stochastic models are improved by introducing expert
opinion: the prediction errors for the ultimate losses parameters could also be
calculated, even when the model parameters are intuitively adjusted by experts
under certain circumstances. For example, an appropriate prior distribution
for the development factor parameters could be used in order to reflect
significant changes observed in the data, which may be caused by changes in
the management of claims.

As discussed before, the Schnieper model is a mixture of a chain ladder
model and the Bornhuetter-Ferguson method. Another possible application
of the Schnieper model is to change the Bornhuetter-Ferguson model for the
losses from new claims to a chain ladder model type, so that we can drop the
exposure requirement. This could be done by replacing (2.3) and (2.5) by

E [Nij | Hi + j – 2] = Ni, j – 1 lj, 1 # i # n, 2 # j # n,

and

Var [Nij | Hi + j – 2] = Ni, j – 1 s2
j , 1 # i # n, 2 # j # n.

Notice that this model is exactly the same as the chain ladder stochastic model.
In summary, we suggest that the Schnieper model, in the stochastic frame-

work given in this paper, deserves further consideration, now that these types
of stochastic model are gaining practical acceptance. We would also suggest
that this provides a useful avenue for further research in models that have
useful practical applications.
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APPENDIX A. PROCESS VARIANCE

Proof of (3.1)

From the model assumptions, it is easy to get the formulae for one-step-ahead:

Var [Xi, k + 1 | Hi + k – 1] = Var [Xik – Di, k + 1 + Ni, k + 1 | Hi + k – 1] = t2
k + 1Xik + Ei s

2
k +1.

This shows that the recursive formulae are (trivially) correct for t = 1, using the
fact that the mean and variance of Xik | Xik are Xik and 0, respectively.

We assume that the above formula is true for t and show that it is correct
for t + 1. Double expectation theory is used in order to condition on the infor-
mation up to last development year. In this way, the mean and variance assump-
tions can be used in the process variance derivation.

Var [Xi,k+ t+1|Hn ] = Var [E(Xi,k+ t+1 |Hi +k+ t– 1) |Hn ] + E [Var(Xi,k+ t+1 |Hi+k+ t– 1) |Hn ]

= Var [E (Xi, k+ t – Di, k + t + 1 + Ni, k + t + 1 | Hi + k + t – 1) | Hn ]

+ E [Var (Xi, k+ t – Di, k + t + 1 + Ni, k + t + 1 | Hi + k + t – 1) | Hn ]

= Var [(1 – dk+ t +1) Xi, k+ t + Ei lk+ t +1 | Hn ]
+ E [t2

k+ t +1Xi, k+ t + Ei s
2
k+ t +1 | Hn ]

= (1 – dk+ t +1)
2Var [Xi, k+ t | Hn ] + t2

k+ t +1E [Xi, k+ t | Hn ] + Ei s
2
k+ t +1

which concludes the proof.

Proof of the non-recursive expressions for the process variances for both the
individual row total reserve and the overall total reserve:

For the individual row total reserve,

Var [Xin | Hn ] = (1 – dn)2(1 – dn – 1)
2Var [Xi, n – 2 | Hn ] + (1 – dn)2t2

n – 1E [Xi, n – 2 | Hn ]

+ (1 – dn)2Ei s
2
n – 1 + t2

n E [Xi, n – 1 | Hn ] +Ei s
2
n

= (1 – dn)2(1 – dn – 1)
2(1 – dn – 2)

2Var [Xi, n – 3 | Hn ]

+ (1 – dn)2(1 – dn – 1)
2t2

n E [Xi, n – 3 | Hn ]

+ (1 – dn)2(1 – dn – 1)
2Ei s

2
n – 2 + (1 – dn)2t2

n – 1E [Xi, n – 2 | Hn ]

+ (1 – dn)2Ei s
2
n – 1 + t2

n E [Xi, n – 1 | Hn ] +Ei s
2
n

= …

= Xi,n – i + 1
n i

n

n 2= - +

! (1 – dn – i + 2) … (1 – dn – 1)t2
n (1 – dn + 1)2 … (1 – dn)2
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For the overall total, the squared prediction error is simply the sum of the
squared prediction error for individual row totals.

APPENDIX B

Proof of (3.4)

Var [Xi, k + t | Fk ]
= Var [(1 – dk + t) Xi, k + t – 1 + lk + t Ei | Fk ]
= Var [(1 – dk + t) Xi, k + t – 1 | Fk ] +Var [lk + t Ei | Fk ]
= (E [(1 – dk + t) | Fk ] )2

Var [Xi, k + t – 1 | Fk ] +Var [dk + t | Fk ] (E [Xi, k + t –1 | Fk ] )2

+ Var [dk + t | Fk ]Var [Xi, k + t – 1 | Fk ] + Cov [(1 – dk + t)
2, X 2

i, k + t – 1 | Fk ]
– 2E [(1 – dk + t) | Fk ]Cov [(1 – dk + t), Xi, k + t – 1 | Fk ] E [Xi, k + t – 1 | Fk ]
– (Cov [(1 – dk + t), Xi, k + t – 1 | Fk ])2 + Ei

2Var [lk + t | Fk ]

where Cov [(1 – dk + t), Xi, k + t – 1 | Fk ] = 0 since dk + t and Xi, k + t – 1 are uncorrelated.

Hence

Var [Xi, k + t | Fk ]

= (E [(1 – dk + t) | Fk ] )2
Var [Xi, k + t – 1 | Fk ] +Var [dk + t | Fk ] (E [Xi, k + t –1 | Fk ] )2

+ Var [dk+ t |Fk ]Var [Xi, k+ t – 1 |Fk ] + Cov [(1– dk+ t)
2, X2

i, k+ t – 1 |Fk ] + Ei
2Var [lk + t |Fk ]

which completes the proof.

Note that this proof also uses the fact that lj and dj are uncorrelated, which is
easy to see from model assumption 3.
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Proof of (3.7)

Covariance for a row total

This proof is also in a recursive format. We start from the one-step-ahead esti-
mation covariance, i.e. t = 1.

Cov [ Xs, m + 1, Xp, m + 1 | Fm ]
= Cov [Xsm(1 – ds + m + 1) + Es lm + 1, E(Xpm | Fm) (1 – ds + m + 1) + Ep lm + 1 | Fm ]
= Var (ds + m + 1 | Fm) Xsm E(Xpm | Fm) + Es EpVar (lm + 1 | Fm).

Again, this shows that the recursive formula (3.7) is (trivially) correct for the
one-step-ahead case.

In the same way as for the proof of the recursive formulae for the process
error, we assume that the above formula is true for t and show that it is cor-
rect for t + 1.

We now consider the covariance for t + 1, using this one-step-ahead pre-
diction formula,

Xij = (1 – dj ) Xi, j – 1 + Ei l j.

Cov [Xs, m + t + 1, Xp, m + t + 1 | Fm ]
= Cov [Xs, m + t(1 – dm + t + 1) + Es lm + t + 1, Xp, m + t(1 – dm + t + 1) + Ep lm + t + 1 | Fm ]
= Cov [Xs, m + t(1 – dm + t + 1), Xp, m + t(1 – dm + t + 1) | Fm] + Es EpVar (lm + t + 1 | Fm)

= Var (dm + t + 1 | Fm) Cov [ Xs, m + t, Xp, m + t | Fm ]
+ E [Xs, m + t | Fm ] E [Xp, m + t | Fm ] Var (dm + t + 1 | Fm)

+ Cov [Xs,m+t, Xp,m+t |Fm ] (E(1 – dm+t+1))2 + Cov [Xs,m+t, Xp,m+t, (1 – dm+t+1)
2 | Fm]

+ Es EpVar (lm + t + 1 | Fm).

which completes the proof.

APPENDIX C

Proof of (3.6), the estimation variances for the individual row total reserve
using Mack’s approximation approach.

We use the same approach as used in the proof of Theorem 3 on page 218,
Mack (1993). Mack considers expressions similar to those in this proof and
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we write these expressions in such a way that appropriate approximations may
be derived.
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This can be rewritten as follows, using the same logic as Mack (1993), page 219:
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From the definition of Mun, (1*) can be estimated as follows:
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Next, since E [dn – dn | Fn – 1] = 0, (2*) = 0.

For (3*), we note that E [(lr – lr)
2 | Fr – 1] = Var(lr | Fr – 1) and hence, (3*) is esti-

mated using Var(lr | Fr – 1) (1 – dr + 1)
2 … (1 – dn )2.

Finally, we note that (4*) = 0, since E [lr – lr | Fr – 1] = 0.

Hence we estimate Gr
2 by Gr

2, where
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Therefore, (2) is estimated as:
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Again, we approximate this by its expectation, and note that this is 0: hence
(3) disappears.
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Therefore, the estimation error of row total reserve is estimated as:
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which complete the proof.

APPENDIX D

The estimation error for the overall total reserve.
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Considering first A, we note that this can be treated in the same way as Pi
2 (the term

labelled (1)) in Appendix C. Thus, denoting Pi Pj as the estimator of Pi Pj, we have
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Again, we can follow the same method as was used in Appendix C in the treat-
ment of Gr

2 (the term labelled (2)). As before, when we use expectations in
order to estimate this expression, the cross-product terms disappear. Denoting
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For each of the terms labelled C, we refer back to the term labelled (4) in
Appendix C, and note that the estimator of this is
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Therefore the squared estimation error of overall total reserve is estimated as
follows:
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Note that the first part of the above expression leads to the prediction error
of individual row totals, which is derived in Appendix C.
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