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Three integrity measures are introduced: contamination, channel suppression and program

suppression. Contamination is a measure of how much untrusted information reaches

trusted outputs; it is the dual of leakage, which is a measure of information-flow

confidentiality. Channel suppression is a measure of how much information about inputs to

a noisy channel is missing from the channel outputs. And program suppression is a measure

of how much information about the correct output of a program is lost because of attacker

influence and implementation errors. Program and channel suppression do not have

interesting confidentiality duals. As a case study, a quantitative relationship between

integrity, confidentiality and database privacy is examined.

1. Introduction

Many integrity requirements for computer systems are qualitative, but quantitative

requirements can also be valuable. For example, a system might be permitted to combine

data from trusted and untrusted sensors if the untrusted sensors cannot corrupt the result

too much. And noise could be added to a database, thereby hiding sensitive information,

if the resulting anonymized database still contains enough uncorrupted information to

be useful for statistical analysis. Yet methods for quantification of corruption – that is,

damage to integrity – have received little attention to date, whereas quantification of

information leakage has been a topic of research for over 20 years (Denning 1982; Millen

1987).

We take two notions of corruption as points of departure:

— Bad information that is present in program outputs.

— Good information that is missing from program outputs.

The first leads us to a measure that we call ‘contamination’. The second leads us to two

measures that we collectively refer to as ‘suppression’.

Figure 1 depicts contamination and suppression in terms of fluid flowing into and out

of a bucket. An untrusted user adds black (bad) fluid; a trusted user adds white (good)

fluid. Fluid destined to the trusted user exits the bucket through a pipe on the right. That

fluid is grey, because it is a mixture of black and white. Quantity c of contamination
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Fig. 1. Contamination, suppression and transmission.

is the amount of black fluid in that mixture, and quantity t, which we name ‘transmission’,

is the amount of white fluid in the mixture. It might be possible to partially or fully separate

the grey fluid back into its black and white components, depending upon how thoroughly

they have been mixed in the bucket: the black fluid might dissolve so completely in the

white that it is impossible to filter out again, or the black fluid might be insoluble in the

white hence easy to filter. The bucket also has a hole near its bottom. Fluid escaping

through that hole is not seen by any users. Quantity s of white fluid that escapes, which

is shown in the figure, is the amount of suppression. Some black fluid might also escape

through the hole, but that quantity is not depicted, because we are not interested in the

amount of black fluid missing from the output pipe.

Contamination is closely related to taint analysis (Livshits and Lam 2005; Newsome

and Song 2005; Suh et al. 2004; Wall et al. 1996; Xu et al. 2006), which tracks information

flow from untrusted (tainted) inputs to outputs that are supposed to be trusted (untainted).

Such flow results in what we call contamination of the trusted outputs. We might be willing

to deem a program secure if it allows only a limited amount of contamination, but taint

analysis would deem the same program to be insecure. So quantification of contamination

would be useful.

Flow between untrusted and trusted objects was first studied by Biba (1977), who

identified a duality between the models of integrity and confidentiality. The confidentiality

dual to contamination is leakage, which is information flow from secret inputs to

public outputs. Previous work has developed measures of leakage based on information

theory (Clark et al. 2005b) and on beliefs (Clarkson et al. 2009). This paper adapts those

measures to contamination. Through the Biba duality, we obtain a measure for corruption

from a measure for leakage.

Suppression is connected to the program correctness, which is often phrased in terms of

specifications and implementations. For a given input, an implementation should produce

an output oI that conveys an output oS permitted by a specification. However, oI and

oS need not be identical: an implementation might output all the bits in the binary

representation of oS but in a reverse order, or it might output oS xor k, where k is a

known constant. It suffices that knowledgeable users can recover oS from oI.

The output of an incorrect implementation would fail to fully convey value oS. For

example, an implementation might output only the first few bits of oS; or it might output

oS with probability p and output garbage with probability 1 − p; or it might output

oS xor u, where u is an untrusted input. In each case, we say that specification-violating
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suppression of information about the correct output value has occurred. Throughout this

paper, we use a programming notation to write specifications (as well as implementations),

so henceforth we use the more succinct term program suppression instead of specification-

violating suppression.

Users might be willing to employ an implementation that produces sufficient information

about the correct output value, hence exhibits little program suppression, even though a

traditional verification methodology would deem the implementation to be incorrect. So

quantification of program suppression would be useful.

The echo specification ‘o := t’ gives rise to an important special case of program

suppression. This specification stipulates that output o should be the value of input t,

similar to the Unix echo command. For the echo specification, program suppression

simplifies to the information-theoretic model of communication channels (Shannon 1948),

in which a message is sent through a noisy channel. The receiver cannot observe the

sender’s inputs or the noise but must attempt to determine what message was sent.

Sometimes, the receiver cannot recover the message or recovers an incorrect message. A

noisy channel, for example, could be modelled by implementation ‘o := t xor u’, in which

noise u supplied as untrusted input by the attacker causes information about t to be

lost. This loss of information represents echo-specification violating suppression, which for

succinctness we henceforth call channel suppression.

This paper shows how to use information theory to quantify suppression, including how

to quantify the attacker’s influence on suppression. We start with channel suppression,

then we generalize to program suppression. Applying the Biba duality to suppression

yields no interesting confidentiality dual (see Section 4.2.4). So the classical duality of

confidentiality and integrity was, in retrospect, incomplete.

We might wonder whether contamination generalizes suppression, or vice versa, but

neither does. Consider the following three program statements, which take in trusted input

t and untrusted input u, and produce trusted output o. Suppose that these programs are

potential implementations of echo specification ‘o := t’:

— o := (t, u), where (t, u) denotes the pair whose components are t and u. This program

exhibits contamination, because trusted output contains information derived from

untrusted input u. The program does not exhibit suppression, because its output

contains all the information about the value of t. A user of this program’s output might

filter out and ignore contaminant u, but that’s irrelevant: in quantifying contamination,

we are concerned only with measuring the amount of untrusted information in the

output, not with what the user does with the output†.

— o := t xor n, where the value of n is randomly generated by the program. This

program exhibits suppression, because information about the correct output is lost.

Suppression concerns that loss; suppression is not concerned with the presence of a

† Our definition of contamination is therefore consistent with Perl’s taint mode, in which using the tainted

data to affect the outside world is prohibited. Passing pair (t, u) to a system call that writes a file would be

prohibited by Perl, because u is tainted.
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contaminant. In fact, this program cannot exhibit contamination, because it has no

untrusted inputs.

— o := t xor u. This program exhibits contamination, because untrusted input u affects

trusted output. This program also exhibits program suppression, because the noise of

u causes information about the correct output to be lost.

So, although contamination and suppression both are kinds of corruption, they are distinct

phenomena.

To illustrate our theory, we use it with two existing bodies of research. First, we revisit

the work on database privacy. Databases that contain information about individuals are

sometimes published in an anonymized form to enable statistical analysis. The goal is to

protect the privacy of individuals yet still provide useful data for analysis. Mechanisms

for anonymization suppress information – that is, integrity is sacrificed for confidentiality.

Using our measure for channel suppression along with a measure for leakage, we are

able to make this intuition precise and to analyse database privacy conditions from the

literature.

Second, we revisit work on belief-based information flow (Clarkson et al. 2005, 2009).

We give belief-based definitions of contamination and suppression. We also reexamine the

relationship between the information-theoretic and belief-based approaches to quantifying

information flow. We show that, for individual executions of a program, the belief-based

definition is equivalent to an information-theoretic definition. And we show that, in

expectation over all executions, the belief-based definition is a natural generalization of

an information-theoretic definition.

We proceed as follows. Basic notions from information theory are used throughout the

paper; Section 2 provides these definitions. Models for quantifying contamination and

suppression are given in Sections 3 and 4. Database privacy is analysed in Section 5.

Belief-based integrity is examined in Section 6. Related work is discussed in Sections 7

and 8. Some calculations are delayed from the main body to Appendix A, and all proofs

appear in Appendix B.

This paper revises and expands a CSF 2010 paper (Clarkson and Schneider 2010),

including the addition of (i) an improved model combining integrity and confidentiality,

(ii) new results about database privacy and (iii) proofs, which were absent from the earlier

paper.

2. Information theory review

This section reviews basic definitions from information theory used in the paper. More

details can be found in any introductory text (e.g., Cover and Thomas (1991) and Jones

(1979)). Readers familiar with this material might still want to scan this section to become

acquainted with our notation.

The self-information (or simply information) I(x) conveyed by a single event x that

occurs with probability Pr(x) is defined as follows:

I(x) � − log Pr(x). (1)
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The base of the logarithm determines the unit of measurement for information. We assume

base 2 for all logarithms, so the unit of measurement is bits. In effect, I(x) quantifies how

surprising event x is:

— The information conveyed by an event that is certain (i.e., an event with probability

1) is 0 – such an event is completely unsurprising.

— As the probability of an event approaches 0, the information conveyed by it approaches

infinity, because the event becomes infinitely surprising. The quantity of information

conveyed by an impossible event (i.e., probability 0) is undefined.

— If Pr(x) > Pr(y), then I(x) < I(y), because the occurrence of event x is less surprising

than event y.

— If x and y are independent events, the information conveyed by the occurrence of

both x and y is I(x) + I(y). The surprise of x occurring is unaffected by whether y

occurs, and vice versa.

The conditional information I(x|y) conveyed by event x, given that event y has occurred,

is the information conveyed by an event with conditional probability Pr(x|y):

I(x|y) � − log Pr(x|y). (2)

The mutual information I(x, y) between events x and y is the quantity of information

that the two events have in common – that is, the information about x conveyed by y, or

symmetrically, the amount of information about y conveyed by x. So, we would expect

the following equalities to hold:

I(x, y) = I(x) − I(x|y) (3)

= I(y) − I(y|x). (4)

In Equation (3), I(x) is how much information could possibly be obtained about x, and

I(x|y) is the amount remaining to obtain after observing y; the difference between these

two quantities is the amount actually obtained about x by observing the occurrence of y.

Equation (4) is symmetric. Since Pr(x, y) = Pr(x|y) · Pr(y), mutual information I(x, y) can

also be expressed as follows:

I(x, y) = I(x) − I(x|y)
= − log Pr(x) + log Pr(x|y)

� − log
Pr(x)Pr(y)

Pr(x, y)
. (5)

We take that last expression as the definition of mutual information between events. Note

that if x and y are independent, their mutual information is 0.

Generalizing to distributions of events, the mutual information I(X,Y ) between two

distributions X and Y is the expected amount of information between all events x ∈ X

and y ∈ Y :

I(X,Y ) � E[I(X,Y )] (6)

= −
∑
x,y

Pr(x, y) log
Pr(x)Pr(y)

Pr(x, y)
.
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This definition requires a joint distribution of which X and Y are marginals. Operator E

denotes expectation. By convention, 0 log 0 = 0 in this summation (and throughout this

paper). Again note that if X and Y are independent, their mutual information is 0.

To conclude our development, let IN be a distribution of inputs to a channel; and

OUT , of outputs. Then I(IN ,OUT ) is the expected amount of information that can be

obtained about the inputs by observing the outputs.

Finally, an extension to mutual information will turn out to be useful. Sometimes

auxiliary knowledge about channels is available – for example, a channel might be known

to be noisier during daytime than during night. Conditional mutual information can model

such knowledge. The conditional mutual information I(x, y | z) – note that comma binds

tighter than bar in this notation – between events x and y given the occurrence of auxiliary

event z is defined like I(x, y), but with all probabilities conditioned on z:

I(x, y | z) � − log
Pr(x|z)Pr(y|z)

Pr(x, y | z) . (7)

And conditional mutual information I(X,Y |Z) between distributions X and Y , given

distribution Z , is again an expectation (and again requires a joint distribution of which

X, Y and Z are marginals):

I(X,Y |Z) � E[I(X,Y |Z)] (8)

= −
∑
x,y,z

Pr(x, y, z) log
Pr(x|z)Pr(y|z)

Pr(x, y | z) .

The Shannon entropy (or simply entropy) H(X) of a distribution X is the expected

self-information† conveyed by the events of X:

H(X) � E[I(X)] (9)

= −
∑
x∈X

Pr(x) log Pr(x).

Entropy is always at least 0 and is maximized by uniform distributions. For example, the

entropy of the uniform distribution of a space of 232 events is 32 bits – the same number

of bits as required to store a 32-bit integer.

The joint entropy H(X,Y ) of two distributions X and Y is the expected amount of

information conveyed by the occurrence of an event from their joint distribution:

H(X,Y ) = −
∑

x∈X,y∈Y
Pr(x, y) log Pr(x, y).

If X and Y are independent, joint entropy H(X,Y ) is simply H(X) + H(Y ). If they are

instead dependent, observing one might yield information about the other. The conditional

entropy H(X|Y ) is the expected amount of information conveyed by the occurrence of an

† For consistency, a better notation for the entropy of X might be I(X) – cf. Definition (6), where E[I(X,Y )]

is equated with I(X,Y ). But H(X) is the traditional notation for entropy.
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event from X given knowledge of what event from Y has occurred:

H(X|Y ) � −
∑

x∈X,y∈Y
Pr(x, y) log Pr(x|y). (10)

An equivalent formulation of conditional entropy can be obtained by conditioning first

on a single event, then taking an expectation over all events:

H(X|y) = −
∑
x∈X

Pr(x|y) log Pr(x|y),

H(X|Y ) = Ey∈Y [H(X|y)]. (11)

The joint entropy of X and Y can also be expressed as the amount of information

obtained by observing X, then observing Y given knowledge of X; or vice versa:

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).

Mutual information is related to entropy:

I(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X). (12)

H(X) is how much (expected) information could be obtained about X, and H(X|Y ) is

the amount remaining to obtain after observing Y . The difference between these two

quantities is the amount obtained about X by observing Y .

3. Quantification of contamination

Three agents are involved in our model of program execution: a system, a user and

an attacker. The system executes the program, which has variables categorized as input,

output, or internal. Input variables may only be read by the system, output variables

may only be written by the system and internal variables may be read and written by

the system but may not be observed by any agent except the system. The user and the

attacker supply inputs by writing the initial values of input variables. These agents receive

outputs by reading the final values of output variables. The attacker is untrusted, whereas

the user is trusted.

Our goal is to quantify the information from untrusted inputs that contaminates

trusted outputs. This goal generalizes taint analysis, which just determines whether any

information from untrusted inputs contaminates trusted outputs. We accomplish our goal

by quantifying the information the user learns about untrusted inputs by observing trusted

inputs and outputs.

Informal definition: Contamination is the amount of information a user learns about un-

trusted inputs by observing trusted inputs and outputs.

Our use of terms ‘learning’ and ‘observation’ might suggest leakage of secret information.

This is deliberate. We seek a definition of integrity that is dual to confidentiality. As we

show in Section 3.4, our approach turns out to be dual to the technique of Clark et al.

(2005b, 2007) for quantifying leakage†.

† Readers familiar with Clark et al. (2005b, 2007) will be unsurprised by our final definition of expected

contamination in Equation (18) and by the development leading up to it. We present the full development
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Fig. 2. The contamination model.

The definition of contamination engenders two restrictions on the user’s access to

variables. First, the user may not directly read untrusted inputs. Otherwise, we would be

quantifying something trivial – the amount of information the user learns about untrusted

inputs by observing untrusted inputs. Second, the user may not read untrusted outputs,

because we are interested only in the information the user learns from trusted outputs.

In addition to these restrictions, we do not allow the user to write untrusted inputs. So

the user may access only the trusted variables. Similarly, the attacker may access only the

untrusted variables‡. These access restrictions agree with the Biba integrity model (Biba

1977): they prohibit ‘reading up’ (the user cannot read untrusted information) and ‘writing

down’ (the attacker cannot write trusted information). The resulting communication model

for contamination is depicted in Figure 2.

3.1. Contamination in single executions

One goal of information theory is to explain the behaviour of channels. A program, like a

channel, accepts inputs and produces outputs. So, information flow can be quantified by

modelling a program as a channel and using information theory to derive the amount of

information transmitted over the channel§.

A channel’s inputs are characterized by a probability distribution of individual input

events. Channels might be noisy and introduce randomness into output events, so a

channel’s outputs are also characterized by a probability distribution. Let tin , uin and

tout denote trusted input, untrusted input and trusted output events. (Each event may

comprise the values of several input or output variables.) We assume a joint probability

distribution of these events, and we let Tin , Uin and Tout denote the marginal probability

distributions of trusted inputs, untrusted inputs and trusted outputs. Distribution Tout

could alternatively be defined in terms of Tin , Uin , and some representation of the channel –

for example, if the channel is represented as a probabilistic program, the denotational

semantics of that program describes how to calculate Tout (Kozen 1981).

because it illuminates each step through the lens of integrity (rather than confidentiality), thus increasing

confidence in our definitions. It also makes this paper self-contained.
‡ Flows from trusted to untrusted need not be prohibited. The attacker could be allowed to read trusted inputs

or outputs, and the user could be allowed to write untrusted inputs. An attacker who reads trusted inputs

might adaptively choose untrusted inputs to increase contamination; the joint probability distribution on

inputs will characterize this adaptivity.
§ A consequence of using information theory to quantify information flow is that computational constraints on

attackers are ignored; the security of cryptographic primitives such as encryption and hash functions therefore

cannot be adequately characterized (Laud 2001; Backes 2005; Volpano 2000). Nonetheless, information theory

is widely used to quantify information flow (see Section 7.1).
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Mutual information characterizes the quantity of information that can be learned about

channel inputs by observing outputs. I(uin , tout ) denotes the mutual information between

events uin and tout – that is, the amount of information either event conveys about the

other. Note that I(·, ·) is mutual information between single events, not the more familiar

mutual information between distributions of events. I(uin , tout | tin ) denotes the mutual

information between events uin and tout , conditioned on the occurrence of event tin .

The quantity C1 of contamination of trusted outputs by untrusted inputs in a single

execution, given the trusted inputs, is defined as follows:

C1 � I(uin , tout | tin ). (13)

(The subscript 1 is a mnemonic for ‘single’.)

Consider the following program:

oT := iU xor jT (14)

Suppose that variables oT, iU and jT are one-bit trusted output, untrusted input and

trusted input, respectively, and that the values of iU and jT are chosen uniformly at

random. Intuitively, the user should be able to infer the value of iU by observing jT
and oT, hence there is 1 bit of contamination. And according to Definition (13) of C1,

the quantity of contamination caused by program (14) is indeed 1 bit. For example, the

calculation of I(iU = 0, oT = 1 | jT = 1) proceeds as follows:

I(iU = 0, oT = 1 | jT = 1) = − log
Pr(iU = 0 | jT = 1)Pr(oT = 1 | jT = 1)

Pr(iU = 0, oT = 1 | jT = 1)

= − log
(1/2)(1/2)

1/2

= 1.

And calculating I(iU = a, oT = b | jT = c) for any a, b and c such that b = a xor c would

yield the same contamination of 1 bit. If b �= a xor c, then the calculation would yield

an undefined quantity because of division by zero. This result is sensible, because such a

relationship among a, b and c is impossible with program (14).

Having defined the exact quantity of contamination in a single execution, we can extend

that definition to characterize any statistic of contamination. For example, we might wish

to quantify the maximum possible contamination, so that we can evaluate the worst

possible influence an attacker could have. This quantity is straightforward to define: the

maximum contamination resulting from any input, or any distribution of inputs, is

max
Tin ,Uin

(C1),

where C1 (13) depends upon distributions Tin and Uin . If we instead wish to quantify

the maximum possible contamination for a particular trusted input, the definition can be

specialized to maxUin
(C1), where Tin is no longer quantified. In the rest of this section, we

investigate two other definitions of contamination that also build upon C1.
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3.2. Contamination in sequences of executions

Given C1, which provides a means to quantify contamination for single executions, we can

quantify the contamination over a sequence of single executions. As an example, consider

the following program, where operator & denotes bitwise AND:

oT := iU & jT (15)

Suppose that the attacker chooses a value for untrusted input iU and that the user is

allowed to execute the program multiple times. The user chooses a potentially new value

for trusted input jT in each execution, but the single value for iU is used throughout. Also,

suppose that all variables are k bits and that iU is chosen uniformly at random. Intuitively,

the contamination from this program in a single execution is the number of bits of jT that

are set to 1. Thus, a user that supplies 0x0001 for jT learns† the least significant bit of iU
(so there is 1 bit of contamination); 0x0003 yields the two least significant bits (2 bits of

contamination), etc. But when a user executes the program twice, supplying first 0x0001

then 0x0003, the user learns a total of only 2 bits, not 3 (= 1 + 2). Directly summing C1

for each execution provides only an inexact upper bound on the contamination.

To calculate the exact amount of contamination for a sequence of executions, note

the following. The untrusted input is chosen randomly at the beginning of the sequence.

Each successive execution enables the user to refine knowledge of that untrusted input.

So each successive calculation of contamination should use an updated distribution of

untrusted inputs, embodying the user’s refined knowledge about the particular untrusted

input chosen at the beginning of the sequence‡. Let U� be a random variable representing

the user’s accumulated knowledge in execution � about the untrusted input event, and let

t�out and t�in be the trusted input and output events in that execution. The distribution of

U�+1 is defined in terms of the distribution of U�:

Pr(U�+1 = uin ) = Pr(U� = uin | t�out , t�in ). (16)

So, the updated distribution is obtained simply by conditioning on the trusted input and

output. This conditioning is repeated after each execution.

We thus obtain the following formula for the total contamination �C in a sequence of

executions:

�C =
∑
�

I(u�in , t
�
out | t�in ),

where u�in is the untrusted input event in execution �, and mutual information I(·) is

calculated according to distribution U� on untrusted inputs.

Returning to program (15), initial distribution U1 on iU is uniform. But distribution

U2, obtained by supplying 0x0001 as the first input, is uniform over iU that have the

same least significant bit as jT. Thus, the user learns only one additional bit by supplying

† Recall that contamination is the amount of information a user learns about untrusted input by observing

trusted input and output.
‡ Readers familiar with the use of beliefs in quantification of information flow will recognize this distribution

as representing a belief; we discuss this matter further in Section 6.
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0x0003 in the second execution. The total contamination according to �C is exactly 2 bits

for the sequence – which is what our intuition suggested.

3.3. Contamination in expectation

C1 quantifies contamination in a single execution. It could be used at runtime by

an execution monitor (Schneider 2000) to constrain how much contamination occurs

during a given program execution. We might, however, be interested in how much

contamination occurs on average over all executions of a program – a quantity that might

be conservatively bounded by a static analysis. We now turn attention to that quantity.

The expected quantity C of contamination of trusted outputs by untrusted inputs, given

the trusted inputs, is the expected value of C1:

C = E[C1]. (17)

E[C1] can be rewritten as the mutual information I(Uin , Tout |Tin ) between distributions

Uin and Tout , conditioned on observation of Tin . That yields our definition of expected

contamination:†

C � I(Uin , Tout |Tin ). (18)

Definition (18) of C yields an operational interpretation of contamination. In in-

formation theory, the capacity of a channel is the maximum quantity of information,

over all distributions of inputs, that the channel can transmit. Shannon (1948) proved

that channel capacity enjoys an operational interpretation in terms of coding theory: a

channel’s capacity is the highest rate, in bits per channel use, at which information can be

sent over the channel with arbitrarily low probability of error. Therefore, the maximum

quantity of contamination should also be the highest rate at which the attacker can

contaminate the user. We leave investigation of this interpretation as future work.

3.4. Leakage

Clark et al. (2005b, 2007) define quantity L of expected leakage from secret inputs to

public outputs, given knowledge of public inputs, as follows:

L � I(Sin , Pout |Pin ). (19)

Distributions Sin , Pout and Pin are on secret inputs, public outputs and public inputs,

respectively. The corresponding definition for quantity L1 of leakage in a single execution

is

L1 � I(sin , pout | pin ), (20)

where events sin , pout and pin unsurprisingly are secret input, public output and public

input.

Replacing ‘untrusted’ with ‘secret’ and ‘trusted’ with ‘public’ in Equation (18) yields

Equation (19); the same is true of Equations (13) and (20). Contamination and leakage

† The equality of Equations (17) and (18) follows from the definitions of C1 (13) and I (8).
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are therefore information-flow duals: their definitions are the same, except the ordering

of security levels is reversed. For example, the definition of C conditions on Tin , which

represents inputs provided by a user with a high security level (because the user is

cleared to provide trusted inputs); whereas the definition of leakage conditions on Pin ,

which represents inputs provided by a user with a low security level (because the user

is not cleared to read secret inputs). So Biba’s qualitative duality for confidentiality and

integrity (Biba 1977) extends to these quantitative models†.

4. Quantification of suppression

We begin by discussing channel suppression, then we generalize channel suppression to

program suppression‡.

4.1. Channel suppression

To quantify channel suppression, we refine our model of program execution by replacing

the user with two agents, a sender and receiver. The receiver, by observing the program’s

outputs, attempts to determine the inputs provided by the sender. For example, the sender

might be a database, and the program might construct a web page using queries to

the database; the receiver attempts to reconstruct information in the database from the

incomplete information in the web page. Information that cannot be reconstructed has

been suppressed.

Informal definition: Channel suppression is the amount of information a receiver fails to

learn about trusted inputs by observing trusted outputs.

As with contamination, the program receives trusted inputs as the initial values of

variables and produces trusted outputs as the final values of variables. But now the sender

writes the initial values of trusted inputs, and the receiver reads the final values of trusted

outputs. These are the only ways that the sender and receiver may access variables. We

continue to model an attacker, who attempts to interfere with trusted outputs by writing

the initial values of untrusted inputs. The attacker still may access only the untrusted

variables§. This communication model for channel suppression is depicted in Figure 3.

We first define channel suppression for single executions. As with our model of

contamination, let tin and tout be trusted input and trusted output events. Since I(tin , tout )

† We expect the duality between contamination and leakage would extend to other models, too. For example,

the dual of attacker influence on leakage (Heusser and Malacaria 2010) would seem to be attacker influence

on contamination. That latter quantity could be defined in the same way we define attacker-controlled

suppression in Section 4.2.2.
‡ Recall (from Section 1) that both kinds of suppression characterize information lost because a specification

is violated. There might be other kinds of suppression besides specification violating. We leave investigation

of them as future work.
§ As with contamination, flows from trusted to untrusted need not be prohibited. The attacker could be allowed

to read trusted inputs or outputs, and the sender could be allowed to write untrusted inputs. An attacker who

reads trusted inputs might adaptively choose untrusted inputs to increase suppression; the joint probability

distribution on inputs can characterize this adaptivity.
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Fig. 3. The channel suppression model.

is the quantity of information obtained about trusted inputs by observing trusted outputs,

I(tin , tout ) is defined to be the quantity CT1 of channel transmission from the sender to the

receiver in a single execution:

CT1 � I(tin , tout ). (21)

I(tin |tout ) denotes the information conveyed by the occurrence of event tin , conditioned on

observation of the occurrence of tout . Using Equation (3), we rewrite the right-hand side

of Equation (21):

CT1 = I(tin ) − I(tin |tout ). (22)

I(tin ) is the quantity of information that the receiver could learn about the trusted input,

and I(tin |tout ) is what remains to be learned after the receiver observes the trusted output.

So, I(tin |tout ) is the quantity of information that failed to be transmitted†. Therefore,

I(tin |tout ) is the quantity CS1 of channel suppression in a single execution:

CS1 � I(tin |tout ). (23)

Although untrusted input uin does not directly appear in Equations (21) or (23), CT1

and CS1 do not ignore the attacker’s influence on channel suppression: trusted output tout ,

which does appear, can depend on uin . Also, recall that Definition (13) of contamination

C1 conditions on tin ; Equations (21) and (23) do not, because the receiver cannot directly

observe trusted input – unlike the user, who could in the contamination model.

We next define channel suppression in expectation. I(Tin , Tout ) denotes the mutual

information between distributions Tin and Tout , and H(Tin |Tout ) denotes the entropy of

distribution Tin , conditioned on observation of Tout . (As before, Tin and Tout are marginal

probability distributions of trusted inputs and trusted outputs, based on an underlying

joint distribution.) By taking the expectation of CT1 and CS1, we obtain the expected

quantities of channel transmission CT and channel suppression CS:‡

CT � I(Tin , Tout ), (24)

CS � H(Tin |Tout ). (25)

† Alternatively, the right-hand side of Equation (21) could be rewritten with Equation (4) as I(tout )− I(tout |tin ).

Perhaps this formula could also yield a measure for integrity, were we interested in backwards execution of

programs – that is, computing inputs from outputs.
‡ Equation (24) follows directly from Equations (6) and (21). Similarly, Equation (25) follows from (10) and (23).

Note that expected channel suppression CS is defined using entropy H, not using mutual information I ,

even though channel suppression CS1 is defined using self-information I . This notational quirk is inherited

from information theory and occurs because entropy – not mutual information – is the expectation of

self-information (see footnote †).
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These definitions account for the attacker’s influence on channel transmission and

channel suppression, because distribution Tout depends on the attacker’s distribution Uin

on untrusted inputs. Also, these definitions should yield an operational interpretation in

terms of coding theory; we leave that interpretation as future work†.

As an example, consider the following program:

oT := iT xor rnd(1) (26)

Variables iT and oT are one-bit trusted input and output variables. Program expression

rnd(x) returns x uniformly random bits. Suppose that trusted input distribution Tin is

uniform on {0, 1}. Then channel transmission CT is 0 bits and channel suppression CS is

1 bit. These quantities are intuitively sensible: because of the bit of random noise added

by the program, the receiver cannot learn anything about iT by observing oT.

4.1.1. Attacker-controlled channel suppression. An attacker might be able to influence

the quantity of channel suppression by maliciously choosing inputs, as in the following

program:

oT := iT xor jU (27)

Variable jU is a one-bit untrusted input. Suppose that untrusted input distribution Uin is

uniform. Then program (27) exhibits the same behaviour as program (26): 0 bits of channel

transmission and 1 bit of channel suppression. But the source of that channel suppression

is different. For program (26), the source is program randomness; for program (27), it is

the attacker. We now develop definitions that distinguish these two sources of suppression.

Let CSP denote the quantity of channel suppression attributable solely to the program

– that is, the quantity that would occur if the attacker’s input were known to the receiver:

CSP � H(Tin |Tout , Uin ). (28)

This definition differs from Definition (25) of channel suppression CS only by the

additional conditioning on Uin , which has the effect of accounting for the attacker’s

untrusted inputs. Any remaining channel suppression must come solely from the program.

Define the quantity CSA of channel suppression under the attacker’s control as the

difference between the maximum amount of channel suppression caused by the attacker’s

choice of Uin and the minimum (which need not be 0 because of channel suppression

attributable solely to the program):

CSA � max
Uin

(CS) − min
Uin

(CS). (29)

(CS is a function of Tout , which is a function of Uin , so quantifying over Uin is sensible.)

For program (26), quantity CSP of program-controlled channel suppression is 1 bit, and

quantity CSA of attacker-controlled channel suppression is 0 bits. The converse holds for

program (27), which exhibits 0 bits of program-controlled channel suppression and 1 bit

of attacker-controlled channel suppression.

† The basis of that interpretation would be the capacity of the channel from trusted inputs to trusted outputs

(see Section 3.3).
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The following program exhibits both attacker- and program-controlled channel sup-

pression:

o2T := i2T xor j2U xor rnd(1) (30)

All variables in program (30) are two-bit. One bit of program-controlled channel

suppression CSP is caused by the xor with rnd(1). But the attacker controls the rest

of the channel suppression. If the attacker chooses j2U uniformly at random, the channel

suppression is maximized and equal to 2 bits; whereas if the attacker makes j2U a

constant (e.g., always ‘00’), the channel suppression is the minimal 1 bit caused by rnd(1).

Calculating CSA yields 1 (= 2 − 1) bit of attacker-controlled channel suppression.

4.1.2. Error-correcting codes. An error-correcting code adds redundant information to a

message so that information loss can be detected and corrected. One of the simplest

error-correcting codes is the repetition code Rn (Adámek 1991), which adds redundancy

by repeating a message n times to form a code-word. For example, R3 would encode

message 1 as code-word 111. The code-word is sent over a noisy channel, which might

corrupt the code-word; the receiver reads this possibly corrupted word from the channel.

For example, the sender might send code-word 111, yet the receiver could receive word

101. To decode the received word, the receiver can employ nearest-neighbour decoding:

the nearest neighbour of a word w is a code-word c that is closest to w by the Hamming

distance. (The nearest neighbour is not necessarily unique for some codes, in which case

an arbitrary nearest neighbour is chosen.) Treating words as vectors, Hamming distance

d(w, x) between words n-bit words w = w1w2 . . . wn and x = x1x2 . . . xn is the number of

positions i at which wi �= xi. For the repetition code, nearest-neighbour decoding means

that a word is decoded to the symbol that occurs most frequently in the word. For

example, word 101 would be decoded to code-word 111, thus to message 1; but word 001

would be decoded to message 0.

Consider the following program BSC, which models the binary symmetric channel studied

in information theory:

BSC : w := m xor rndp(n)

Variable m, which contains a message, is an n-bit trusted input, and variable w, which

contains a word, is an n-bit trusted output. Expression rndp(x), in which p is a constant,

returns x independent, random bits. Each bit is distributed such that 0 occurs with

probability p and 1 occurs with probability 1 − p. (So rnd(x), used in program (26),

abbreviates rnd0.5(x).) Thus, each bit of input m has probability 1 − p of being flipped in

output w.

Suppose that n = 1 and that the distribution of trusted input m is uniform. Then, the

probability that BSC outputs w such that w = m holds is p. Using Definitions (23) and (25),

we can calculate the channel suppression from BSC, both in single executions and in

expectation:

CS1 = − log p, (31)

CS = −(p log p + (1 − p) log(1 − p)). (32)
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Next, suppose that the sender and receiver employ repetition code R3 with program

BSC. The sender encodes a one-bit input m into three bits and provides those as input to

BSC (so now n = 3). The receiver gets a three-bit output and decodes it to bit w. Denote

this composed program as R3(BSC). The probability that w = m holds is now p3+3p2(1−p),

which can be derived by a simple argument†. Denote that probability as q. Substituting q

for p in Equations (31) and (32), we can calculate the channel suppression from R3(BSC):

CS1 = − log q,

CS = −(q log q + (1 − q) log(1 − q)).

Whenever p > 1
2
, we have that

− log q � − log p,

−(q log q + (1 − q) log(1 − q)) � −(p log p + (1 − p) log(1 − p)).

So for any channel at least slightly biased toward correct transmission, the channel

suppression from R3(BSC) is less than the channel suppression from BSC, both in single

executions and in expectation. We conclude that repetition code R3 improves channel

transmission. Although this conclusion is unsurprising, it illustrates that our theory of

channel suppression suffices to re-derive a well-known fact from the coding theory.

4.1.3. Channel suppression versus contamination. Recall program (27), restated here:

oT := iT xor jU

This program is essentially the same as program ‘o := t xor u’ from Section 1. We

previously analysed program (27) and determined that it exhibits 1 bit of channel

suppression if Tin and Uin are uniform distributions on {0, 1}. We can also analyse

the program for contamination: iT is supplied by a user, and oT is observed by that same

user. Calculating C yields a contamination of 1 bit, indicating that the user learns all the

(untrusted) information in jU. So this program exhibits both contamination and channel

suppression, as we argued in Section 1.

You might wonder how a program with a one-bit output can exhibit both 1 bit of

contamination and 1 bit of channel suppression. The answer is that the contamination

and suppression models differ in what is observable: if an agent can observe both iT
and oT, then the agent can deduce jU, yielding 1 bit of contamination. But if the agent

can observe only oT, then the agent cannot deduce iT, yielding 1 bit of suppression.

Suppression concerns loss of trusted information (here 1 bit of trusted information is

lost), whereas contamination concerns injection of untrusted information (here 1 bit of

untrusted information is injected).

Also, recall program (26), restated here:

oT := iT xor rnd(1)

† Decoded output w equals input m if exactly zero or one bits are flipped during transmission. Each bit is

transmitted correctly with probability p and flipped with probability 1 − p. The probability that zero bits are

flipped is thus p3; the probability that a particular bit is flipped is p2(1 − p); and there are three possible

single bits that could be flipped. So the total probability of correct decoding is p3 + 3p2(1 − p).
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Fig. 5. The full model of channel suppression and leakage.

This program is essentially the same as program ‘o := t xor n’ from Section 1. We

previously determined that program (26) exhibits 1 bit of channel suppression. Because

there are no untrusted inputs, quantity C of contamination is 0. So this program exhibits

only channel suppression, as we argued in Section 1†.

4.1.4. Declassifiers. Recall that leakage (20) in a single execution is the quantity L1

of information flow from secret input to public output. Leakage can be prevented by

employing channel suppression. Consider a declassifier that accepts a trusted secret input

ts in and produces a trusted public output tpout , as shown in Figure 4. The declassifier’s

task is to selectively release some secret information and suppress the rest. Whatever

information is not leaked by the declassifier ought to have been suppressed.

That intuition is made formal by the following proposition. I(tsin ) denotes the self-

information of event tsin .

Proposition 1. In the declassifier model, L1 + CS1 = I(tsin ).

So for a given probability distribution of high inputs, leakage plus channel suppression

is a constant in the declassifier model. Any information that enters the declassifier via ts in

must leave via tpout or be obscured. Confidentiality is obtained by eroding integrity, and

vice versa. Any security condition for declassifiers – we discuss some in Section 5 – that

requires a minimum amount of confidentiality thereby restricts the maximum amount of

integrity. And any utility condition that requires a minimum amount of integrity thereby

restricts the maximum amount of confidentiality.

4.1.5. Channel suppression and leakage. The declassifier model of Section 4.1.4 included

only one kind of input (trusted and secret) and one kind of output (trusted and public).

More generally, programs might use all four combinations of {trusted, untrusted} ×
{secret,public} as inputs and outputs. That full model is depicted in Figure 5, which

† These arguments implicitly assume that random number generator rnd(·) is trusted. Untrusted generators

could also be modelled, but we do not pursue that here.
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includes untrusted secret input usin ; trusted secret input ts in ; untrusted public input upin ;

trusted public input tpin ; and corresponding outputs usout , tsout , upout and tpout . Each

input or output is sent or received by a distinct agent. For example, ts in is provided by

an agent named ‘TS Sender’ in the figure, who is cleared to learn secret information and

is trusted to provide high-integrity information. Similarly, upout is received by an agent

named ‘UP Receiver’ in the figure, who is cleared to learn only public information and

does not require high-integrity information. Note that none of the receivers may directly

read any of the senders’ inputs; instead, the receivers access only the outputs of the

program.

In this full model, we naturally would not expect Proposition 1 to directly hold, because

information might be both leaked and suppressed simultaneously – that is, ts in might flow

to upout . Nonetheless, in both models, any information that enters the program must leave

or be obscured: any trusted inputs must be transmitted or suppressed, and any secret

inputs must be leaked or kept hidden.

To formalize that intuition, first we define some events. As usual, let sin denote a

secret input event, pout a public output event, pin a public input event, tin a trusted input

event, and tout a trusted output event. In the full model, each of these events is the joint

occurrence of two finer-grained events:

— sin is the joint event (tsin , usin ) of both trusted and untrusted secret input.

— pout is (tpout , upout ).

— pin is (tpin , upin ).

— tin is (tpin , ts in ).

— tout is (tpout , tsout ).

Continuing with the formalization, define quantity K1 of secret information kept hidden

in a single execution as follows:

K1 = I(sin | pout , pin ). (33)

K1 is the amount of uncertainty remaining about secret inputs after observation of public

outputs and inputs; the more uncertainty, the more information is kept hidden.

Finally, we formalize the intuition that any information entering the program must

leave or be obscured. The sum of (i) the quantity of information that leaves the program

(CT1 and L1) and (ii) that is obscured by the program (CS1 and K1) equals the sum of the

quantity of information that enters via both trusted input and secret input.

Proposition 2. In the full model, CS1 + L1 + CT1 + K1 = I(tin ) + I(sin ).

Since the declassifier model is a special case of the full model, it is natural to expect

that Proposition 1 would be a special case of Proposition 2. And it is:

Corollary 1. Proposition 1 follows directly from specializing Proposition 2 to the declassifier

model.

Thus, the full model generalizes the declassifier model.
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Fig. 6. The program suppression model.

4.2. Program suppression

We now generalize the idea of suppression from communication channels to the program

correctness. Consider a specification, depicted in the top part of Figure 6: the specification

receives a trusted input tin from the sender and produces a correct, trusted output tspec for

the receiver. This idealized program does not interact with the attacker. But in the real

world, an implementation that does interact with the attacker would be used to realize the

specification. The implementation receives trusted input tin from the sender and untrusted

input uin from the attacker; the implementation then produces untrusted output uout

for the attacker and trusted output timpl for the receiver. A correct implementation would

always produce the correct tspec – that is, timpl would equal tspec . Incorrect implementations

thus produce incorrect outputs, in part because they enable the attacker to influence the

output.

In this model, the receiver observes timpl but is interested in tspec . So the extent to which

timpl informs the receiver about tspec determines how much integrity the implementation

has with respect to the specification. We can quantify this extent with information theory:

program transmission is the amount of information that can be learned about tspec by

observing timpl . Likewise, program suppression is the amount of information that timpl fails

to convey about tspec .

Informal definition: Program suppression is the amount of information a receiver fails

to learn about the specification’s trusted output by observing the implementation’s trusted

output.

Let Tspec be the distribution on the specification’s trusted outputs, and let Timpl be the

distribution on the implementation’s trusted outputs. These output distributions depend

on trusted input distribution Tin , untrusted input distribution Uin (only for Timpl ) and

on the programs’ semantics. Moreover, Tspec and Timpl are based on the same underlying

trusted input – that is, the specification and the implementation are assumed to be

executed with the same trusted input. We require Tspec to be a function of its input

(non-functional specifications are discussed in Section 4.2.3):

H(Tspec |Tin ) = 0. (34)
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The definitions of program transmission and program suppression in single executions

(PT1 and PS1) and in expectation (PT and PS) are then as follows:

PT1 � I(tspec , timpl ), (35)

PS1 � I(tspec |timpl ), (36)

PT � I(Tspec , Timpl ), (37)

PS � H(Tspec |Timpl ). (38)

The rationale for these definitions remains unchanged from our development of channel

transmission and suppression. Note that the attacker’s influence is being incorporated,

because Timpl can depend on Uin .

Channel transmission and suppression can now be seen as instances of program

transmission and suppression for the echo specification, which stipulates that tspec equal

tin . (This specification is deterministic and therefore satisfies Equation (34).) In Section 4.1,

the output of the channel is called tout , hence timpl equals tout . Given these equalities, we

have that Tspec = Tin and Timpl = Tout . Making these substitutions in the above definitions

yields the definitions of channel transmission and channel suppression in single executions

(CT1 and CS1) and in expectation (CT and CS).

4.2.1. Examples of program suppression. Consider the following specification SumSpec for

computing the sum of array a, which contains m elements indexed from 0 to m − 1:

SumSpec : for (i = 0; i < m; i++)

{ s := s+a[i]; }

Assume throughout that s is initially 0.

Programmers frequently introduce off-by-one errors into loop guards. Such an error is

exhibited by implementation UnderSum, which omits array element a[0]:

UnderSum : for (i = 1; i < m; i++)

{ s := s+a[i]; }

Conversely, implementation OverSum adds a[m], which is not an element of a:

OverSum : for (i = 0; i <= m; i++)

{ s := s+a[i]; }

Suppose that array elements a[0]..a[m-1] are identically, independently distributed

according to a binomial distribution with parameters n and p. Let Bin(n, p) denote this

distribution†. We consider elements a[0]..a[m-1] to be properly initialized and therefore

trusted.

† A binomial distribution models the probability of the number of successes obtained in a series of n experiments,

each of which succeeds with probability p. We choose this distribution because it enjoys a convenient

summation property: if X ∼ Bin(nx, p) and Y ∼ Bin(ny, p), then X + Y ∼ Bin(nx + ny, p), where Z ∼ D
denotes that random variable Z is distributed according to distribution D. Also, this distribution illustrates

that our theory is not limited to uniform distributions.
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However, a[m] is not an element of the array, so it might have been initialized by the

attacker; we therefore consider a[m] to be untrusted. To add as much entropy as possible

to the sum, suppose that the attacker chooses a[m] to be uniformly distributed on integer

interval [0, 2j − 1]; let Unif (0, 2j − 1) denote this distribution.

UnderSum exhibits the following quantity PSUS of program suppression:

PSUS =
∑

s′∈Bin(n,p),

i∈Bin(n(m−1),p)

Pr(s′)Pr(i) log Pr(s′). (39)

(The full calculation of PSUS, as well as the calculations for Equations (40) and (41) below,

appears in Appendix B.) So if m = 10, n = 1 and p = 0.5, then PSUS is 1 bit. This quantity

is intuitively sensible: the implementation omits array element a[0], which is distributed

according to Bin(1, 0.5), and the entropy of that distribution is 1 bit (because it assigns

probability 0.5 to each of two values, 0 and 1). Moreover, this analysis suggests that

UnderSum always exhibits program suppression equal to the entropy of the distribution

on a[0]:

PS = H(Bin(n, p)). (40)

Indeed, it is straightforward to reduce Equation (39) to Equation (40). Hence, UnderSum

suppresses exactly the information about the omitted array element.

OverSum exhibits a different quantity PSOS of program suppression:

PSOS =
∑

s∈Bin(mn,p),

i′∈Unif (0,2j−1)

2−j Pr(s) log
2−j Pr(s)

Pr(s + i′)
. (41)

Now if m = 10, n = 1, p = 0.5 and j = 1, then PSOS is about 0.93 bits. Note that for this

choice of parameters, all the array elements, including a[m], are uniformly distributed on

{0, 1}. The 1 bit of randomness added by the attacker through a[m] suppresses nearly 1 bit

of information from the sum. The program suppression is not fully 1 bit because there are

corner-case values that completely determine what the summands are – for example, if the

sum is 0, then all array elements are 0 and the attacker’s input is 0. If m were to increase

while holding the other parameters constant, PSOS would approach 1, because such corner

cases occur with decreasing probability. So in the limit, the attacker can exploit memory

location a[m] to suppress a single array element†. If j were to increase while the other

parameters were held constant, PSOS would approach 2.7 bits (≈ H(Bin(10, 0.5)), because

the noise added by the attacker would drown out the correct sum almost completely.

As another example of program suppression, consider the following specification:

oT := 42

† This kind of analysis might be used to provide a mathematical explanation of why failure-oblivious computing

(FOC) (Rinard et al. 2004) is successful at increasing software robustness. FOC rewrites out-of-bounds array

reads to return strategically-chosen values that enable software to survive memory errors. Perhaps the choice

of values could be understood as minimizing program suppression; we leave further investigation as future

work.
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This specification represents a constant function: Tspec is the distribution assigning

probability 1 to output 42. So quantity PS of program suppression is 0 bits, because the

entropy of Tspec is 0 regardless of whether it is conditioned on Timpl , hence regardless of the

implementation. Therefore, no implementation of a constant function exhibits program

suppression.

As a final example, consider the following specification, in which lstT is a list of trusted

values:

oT := sort(lstT)

Implementation oT := lstT exhibits no program suppression with respect to this specific-

ation, even though the implementation does not sort the list, because all the information

needed to compute the correct output is contained in the implementation’s output.

Program suppression is information-theoretic, not functional. We leave exploration of

more functional notions of suppression as future work.

4.2.2. Attacker-controlled program suppression. Attackers might influence the quantity of

program suppression through choice of untrusted inputs. OverSum is one example. Other

examples include the following:

— A search engine models a set of web pages as a graph in which nodes are pages and

edges are links. Query results are ordered in part based on the number of incoming

edges to each page in the graph. An attacker with control over some web pages creates

many links to a particular page, causing it to be returned earlier in the query results.

The correct ordering of query results has been suppressed by the attacker’s influence

on the web.

— An implementation contains a buffer overflow vulnerability that the attacker exploits

by crafting an input containing malicious code. That code is executed and produces

arbitrary new outputs that are unrelated to the specification. Those outputs cause the

implementation to behave in malicious ways, such as deleting files, participating in

a botnet, etc. The correct behaviour of the program has been suppressed, perhaps

entirely, by the attacker’s malware.

The equations defining attacker-controlled program suppression are simple adaptations

of those defining attacker-controlled channel suppression in Section 4.1.1. The quantity

PSP of program suppression attributable solely to the implementation is the quantity of

program suppression, but conditioned on knowledge of the attacker’s untrusted inputs:

PSP � H(Tspec |Timpl , Uin ).

The quantity PSA of program suppression under the attacker’s control is the difference

between the maximum amount of program suppression caused by the attacker’s choice of

Uin and the minimum:

PSA � max
Uin

(PS) − min
Uin

(PS).

Consider OverSum: the quantity of program suppression PSP attributable solely to the

implementation is 0 bits, because given knowledge of the attacker’s untrusted input, no

suppression occurs. But without that knowledge suppression does occur, as we calculated
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above. Recall that as m increases, the quantity of program suppression approaches 1 bit.

So, the quantity of program suppression PSA under the attacker’s control approaches 1

bit.

4.2.3. Non-functional specifications. Consider eliminating our requirement (34) that spe-

cifications be functional. We might instead allow probabilistic specifications, such as

‘oT := rnd(1)’. It stipulates that the output must be 0 or 1, and that each output must

occur with probability 1
2
. There is no correct output according to this specification;

instead, there is a correct distribution on outputs. Program suppression should be the

amount of information the receiver fails to learn about that correct distribution – rather

than about a correct output – by observing the implementation.

To quantify that suppression with entropy, as we have done so far, it seems we would

need an extra level of distributions: a probability distribution on a probability distribution

on outputs. So far, we have modelled only discrete probability distributions, which have

finite support. But there are infinitely many probability distributions on outputs, so it

seems we would need to upgrade our model with continuous probability distributions and

differential entropy (the continuous analogue of entropy).

Alternatively, we might quantify suppression with relative entropy, which measures the

divergence between distributions. The relative entropy D(Y ‖X) between distributions Y

and X is defined as follows:

D(Y ‖X) �
∑
x

PrY (x) log
PrY (x)

PrX(x)
, (42)

where PrZ (z) denotes the probability of event z according to distribution Z . In the coding

theory, D(Y ‖ X) quantifies the inefficiency of a code that results from assuming that a

distribution is X when in reality it is Y . By analogy, program suppression could be defined

as D(Tspec ‖Timpl ), which is the inefficiency of assuming that the distribution on outputs is

Timpl , as observed by the receiver, instead of Tspec , as stipulated by the specification.

Further justification for this definition of suppression could be obtained by rewriting

the definition of relative entropy as follows:

D(Y ‖X) =
∑
x

PrY (x) log
PrY (x)

PrX(x)

= Ex∈Y

[
log

PrY (x)

PrX(x)

]

= Ex∈Y [log PrY (x) − log PrX(x)]

= Ex∈Y [IX(x) − IY (x)] ,

where IZ (z) denotes the self-information (1) of event z according to distribution Z , and

Ez∈Z [f(z)] denotes the expectation of f(z) with respect to distribution Z . Term IX(x) −
IY (x) is the additional surprise that results from assuming that a distribution is X when

in reality it is Y . Thus, D(Tspec ‖Timpl ) is the expected additional surprise resulting from

assuming that the distribution on outputs is Timpl , as observed by the receiver, instead of
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Fig. 7. (a) The channel suppression model, (b) dual of the channel suppression model.

Tspec , as stipulated by the specification. The greater that surprise, the more information

has been suppressed by the implementation.

We might also allow nondeterministic specifications, such as “oT := 0 � 1”. It stipulates

that the output must be 0 or 1, but nothing more. There is no correct output according

to this specification; instead, there is a correct set of outputs. We might even allow

specifications that contain both probabilistic choice and nondeterministic choice. It

could be possible to handle such specifications with the use of Dempster–Shafer belief

functions (Shafer 1976), which assign probability to sets of possibilities.

We leave further investigation of non-functional specifications as future work.

4.2.4. Duality. Program suppression is the amount of information the implementation’s

trusted output fails to reveal about the trusted output that is correct according to the

specification. Applying the Biba duality, the confidentiality dual of program suppression

would be the amount of information that the implementation’s public output fails to reveal

about the public output that is correct according to the specification. For confidentiality,

this flow is uninteresting: the amount of information that flows, or fails to flow, to public

outputs does not characterize how a program leaks or hides secret information. So, there

does not seem to be an interesting dual to suppression.

The lack of interesting duality is especially apparent in the case of the echo specification

– that is, for channel suppression. Figure 7(a) depicts channel transmission and channel

suppression. Channel transmission CT is information that flows from tin to tout , whereas

channel suppression CS is information that flows in from tin and is dropped by the

program. Figure 7(b) depicts their duals. The dual of CT is information that flows from

public inputs pin to public outputs pout . Since that flow does not involve secret inputs sin ,

it is not interesting from the perspective of confidentiality. Likewise, the dual of CS is

information that flows in from pin and is dropped by the program. That flow does not

involve secret inputs sin , so is not interesting from the perspective of confidentiality.

Other notions of integrity also lack obvious confidentiality duals – for example, the

Clark–Wilson (1987) integrity policy for commercial organizations, based on well-formed

transactions and verification procedures. Apparently, the Biba duality goes only so far.

4.2.5. Suppression versus availability. Suppose that a program suppresses information

during an execution; the program has corrupted its output and damaged integrity. But

the receiver cannot acquire that suppressed information, at least not during that execution,

so the program could also be said to exhibit compromised availability. Viewed through

this lens, information integrity and information availability seem to be essentially the
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same. So we cannot argue that suppression is about only one. Perhaps it is really about

both. We suspect interesting relationships – perhaps even new dualities – are still to be

found between availability and integrity.

However, system availability seems to be different than information integrity. System

availability is generally concerned with reachability and timely response, not with quality

of information. For example, execution of copies of a service on multiple machines

improves system availability but potentially introduces program suppression: the different

copies might provide different responses to the same request, and extracting a correct

response from them might not be possible. Conversely, error-correcting codes defend

against channel suppression but do not improve system availability – if a channel goes

down (e.g., a wire is cut), a code cannot restore communication. So suppression is not

about system availability.

5. Application: database privacy

Many organizations possess large collections of information about individuals – for

example, government census data, hospital medical records, online product reviews, etc.

Sharing that information with other organizations, including the public, enables research,

facilitates decision making, and provides transparency. However, these collections typically

contain sensitive information about individuals (e.g., medical diagnoses such as ‘Alice

suffers from hallucinations’). Publishing that sensitive information violates the privacy of

individuals if they have not given consent. So organizations anonymize databases before

publishing them, expecting that individuals’ privacy is thereby maintained.

Algorithms that anonymize collections of information have been widely studied (Fung

et al. 2010). The basic setup is shown in Figure 8. An anonymizer receives the contents

of a database as input and produces an anonymized database as output; this output is

made public†. The anonymizer must reveal some sensitive information about individuals,

otherwise its output would be useless. But the anonymizer must also hide some of that

information to protect privacy. So, there is an inherent tradeoff between the privacy and

utility of the anonymized database.

That tradeoff can be quantified using leakage and suppression. Suppose the anonymizer

receives input database d and produces anonymized database a as output. Input d is

trusted because it originates with the assumedly trustworthy organization, and output a

† Note that the anonymized database might involve different domains than the original data, perhaps statistics

(e.g., counts, sums, or averages) computed from individuals’ information. We do not restrict our consideration

to any particular statistics here.
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is trusted because it is computed by the assumedly trustworthy anonymizer. And input

d is secret because it contains sensitive information, whereas output a is public because

it is assumedly anonymized. Let p be a projection of d that contains exactly the non-

sensitive information in the database. By the definition of quantity L1 of leakage (20),

the amount L of sensitive information revealed by the anonymizer is I(d, a | p). That

amount is equal to quantity CT1 of channel transmission (21), because L is the amount of

sensitive information transmitted by the anonymizer†. Similarly, the amount S of sensitive

information hidden by the anonymizer is I(d | a, p), which is the same as quantity CS1 of

channel suppression (23) (except again for conditioning on p)‡.

The amount of leakage L plus the amount of suppression S is a constant that depends

on the distribution of database content. That tradeoff is expressed by the following

corollary of Proposition 1.

Corollary 2. L + S = I(d|p).

This is sensible – whatever the anonymizer does not suppress, it leaks. Designers of

anonymizers thus have the opportunity to choose a point along this tradeoff between

leakage and suppression§.

Contamination is not relevant to this model of anonymizers: there is no information

provided by an attacker as input, hence contamination must be zero. However, we could

generalize the model to include attacker input – for example, attackers could contribute

information to the database before anonymization. Beyond possibly contaminating the

output of the anonymizer, that contribution might cause the anonymizer to leak more

information that is sensitive. Hence, the attacker could influence the amount of inform-

ation leaked by the anonymizer. This attack is another example of attacker-controlled

suppression, which we discussed in Sections 4.1.1 and 4.2.2. However, for the analysis that

follows, we will not allow attacker input to anonymizers. We leave further investigation

of that to future work.

Many security conditions have been developed for anonymizers to characterize how

well they protect privacy. In what follows, we apply our quantitative frameworks for

integrity and confidentiality to some popular security conditions: k-anonymity (Samarati

and Sweeney 1998), �-diversity (Machanavajjhala et al. 2007), γ-amplification (Evfimievski

et al. 2003) and ε-differential privacy (Dwork 2006). Rather than examine particular

anonymization algorithms that enforce these conditions, we examine the conditions

themselves, so that our results are applicable to all algorithms that achieve a given

condition. We generalize each security condition to apply to information flow in programs,

rather than the special case of anonymizers. And we offer an information-theoretic

† Note that Equation (21) does not condition on any information, because it measures transmission of the

entire input. Here we condition on p to exclude it from measurement, because it is not sensitive.
‡ Were we to use program suppression to analyse the anonymizer, the specification would be “a := d”, which

simplifies to channel suppression.
§ This quantitative analysis could have been done with the confidentiality model alone. A confidentiality-only

analysis would have shown that some information is leaked, and some is not. The contribution of the analysis

here is to show that the information not leaked is the same as the information suppressed. This equality

validates the integrity model.
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characterization of the generalized security condition in terms of how much sensitive

information is suppressed or leaked. Those characterizations yield a quantitative basis for

comparison of the security conditions.

5.1. k-anonymity

Samarati and Sweeney (1998) propose k-anonymity, a security condition for anonymizers

that requires every individual to be anonymous within some set of k individuals†. For

example, suppose that a database contains only gender and birth date. If Alice were born

on 26 November, 1865, then to satisfy k-anonymity at least k − 1 other females born that

day must appear in the database. If fewer than k− 1 appear, the data must be changed in

some way. For that, Samarati and Sweeney propose generalization, which hierarchically

replaces attribute values with less specific values. For example, Alice’s birth date might

be replaced by November 1865, by 1865, or even by 18**. Generalization enhances

confidentiality by blurring attributes, but it diminishes the information conveyed – that

is, generalization corrupts integrity. That tradeoff is unsurprising in light of Corollary 2.

Sweeney (2002a) quantifies the integrity of data with a precision metric. That metric

has no obvious information-theoretic interpretation, in contrast to our metrics for leakage

and suppression‡. As an example, consider generalization of birth dates. Assume that a

program takes as input a birth date that is known to be chosen uniformly§ at random

from the year 1865. According to our definitions, if the program outputs the entire input

date, it leaks about 8.5 bits and suppresses 0 bits. If the program outputs just the month

and year, it leaks about 3.6 bits and suppresses about 4.9 bits. And if the program outputs

just the year, it leaks 0 bits and suppresses about 8.5 bits¶.

Adapting k-anonymity to information flow, we propose that the public output of a

program must correspond to at least k possible secret inputs.

Definition: A program S satisfies k-anonymity iff for every output o that program S can

produce, there exist k inputs i1, . . . , ik , such that the output of S on each of those inputs is o.

The effect of this security condition is to make it impossible for the attacker to become

certain of input by observing output. Hence, inputs are anonymous within a set of size k.

There is a similarity between our adaptation of k-anonymity and possibilistic information

flow security conditions (Joshi and Leino 2000; Mantel 2000; McCullough 1987; McLean

1996; Smith and Volpano 1998). Those conditions typically require the set of possible

outputs of a program to be independent of the secret input. The attacker, when observing

an output, thus cannot be certain which of the secret inputs produced it. So every input is

† Samarati and Sweeney separately continued inquiry into k-anonymity (Samarati 2001; Sweeney 2002b,a). Our

discussion ignores the issue of quasi-identifiers, which are part of the original definitions but are not relevant

to our purposes.
‡ Sweeney also uses the term ‘suppression’ but defines it differently than we do. She uses it to mean the

complete removal of an individual’s information from the output.
§ Birth dates are, in reality, probably not uniformly distributed (Murphy 1996).
¶ The entropy of a uniform distribution of the days in a year is about 8.5 bits, and the entropy of a uniform

distribution of the months in a year is about 3.6 bits.
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anonymous within the set of all inputs†. But with k-anonymity, this condition is weakened

to anonymity within a set of size k.

It is well known (Gray 1990; McLean 1990; Sabelfeld and Sands 2001; Volpano

and Smith 1999) that possibilistic information-flow security conditions are vulnerable to

attacks, including attacks based on the probabilistic behaviour of the program and on

the probabilistic choice of inputs. The essential problem is that even though all (or a set

of) inputs might be possible, some inputs might be more likely than others. For example,

suppose that when program S produces an output o, the input is 99% likely to have been

i1, but that inputs i2, . . . , ik , are also possible. Then the attacker can be relatively certain

that the input was i1, hence information leaks even if S satisfies k-anonymous information

flow. There is no bound on the amount of leakage that might occur with k-anonymous

information flow, nor is there any bound on the amount of channel suppression, because

the posterior input distribution might be arbitrarily skewed.

By the same reasoning, k-anonymity is vulnerable to attacks. Fung et al. (2010) argue

that k-anonymity protects against record linkage attacks but not attribute linkage. Record

linkage occurs when an attacker can identify which record in a published database

corresponds to an individual; attribute linkage occurs when an attacker can infer an

individual’s sensitive information from a published database. Machanavajjhala et al. (2007)

demonstrate two attribute linkage attacks that succeed against k-anonymity: homogeneity

attacks‡ and background knowledge attacks. The latter is a kind of probabilistic attack.

The essential problem is that even if an individual is anonymous within a record set of size

k, one record could be more likely than the others to correspond to the individual; that

record could leak information about the individual. So k-anonymity does not guarantee

an upper bound on the amount of leakage, hence it does not guarantee any amount of

channel suppression. The next security condition we examine, �-diversity, addresses these

issues.

5.2. �-diversity

The principle of �-diversity (Machanavajjhala et al. 2007) is that published data should

not only make every individual’s sensitive information appear to have at least � possible

values, but that each of those values should have roughly equal probability. This principle

blunts homogeneity attacks as well as background-knowledge attacks, which depend on

some sensitive values having higher probability than the rest.

Machanavajjhala et al. (2007) give an instantiation of the �-diversity principle based

on entropy, as follows. Define a block to be a set of records in which each record

corresponds to an individual and in which every individual has the same values for non-

sensitive attributes. For example, a block might contain all the records corresponding to

individuals whose birth date is 18** and whose favourite pet is a cat. However, individuals

† This characterization assumes that the entire input is secret. If inputs comprise secret and non-secret

components, then every input is instead anonymous within the set of all inputs having the same non-secret

component.
‡ Samarati (2001) also demonstrates homogeneity attacks.
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in the block may (indeed, should) have different values for their sensitive attributes. We

can construct an empirical probability distribution of sensitive attributes in the block by

taking their relative frequencies. For example, given the following block, the distribution

would assign probability 0.5 to cancer and 0.25 to both heart disease and influenza:

Non-sensitive Sensitive

Birth date Favourite pet Diagnosis

18** cat cancer

18** cat cancer

18** cat heart disease

18** cat influenza

For each such empirical distribution B constructed from a block of published data,

entropy �-diversity requires that H(B) � log � holds, where H(B) denotes the entropy

of B.† Applying this definition, we have that the block above is at most 1.5-diverse. A

semantic interpretation of entropy �-diversity (which is a syntactic condition) is that if

an attacker knows that an individual is in the block, but knows nothing more, then the

attacker has at least log � bits of uncertainty about the individual’s sensitive attribute.

More generally, consider any block with empirical distribution B that satisfies entropy

�-diversity. The entropy of a uniform distribution of � events is log �. So if H(B) � log �,

we have that B is at least as uncertain as a distribution of sensitive information in which

the information has at least � possible values, all of which are equally likely. Hence,

entropy �-diversity is an instantiation of the �-diversity principle.

To measure the utility of �-diverse published data – that is, how useful the data

are for studying the characteristics of a population – Kifer and Gehrke (2006) and

Machanavajjhala et al. (2007) use relative entropy (42), also known as Kullback–Leibler

divergence.

Let B be an empirical distribution of sensitive attributes, as constructed above from

anonymized data‡. And let R be an empirical distribution similarly constructed from

the original (unanonymized) data. The utility measure of Kifer and Gehrke (2006) and

Machanavajjhala et al. (2007) is the relative entropy of B to R. If B and R are the same

distribution, meaning utility is maximal, their relative entropy is zero. And the less alike

B and R are, the higher their relative entropy. So we call this metric anti-utility.

Definition: The anti-utility of B with respect to R is D(R ‖B).

To adapt anti-utility to information flow, we propose the substitution of program inputs

and outputs for blocks. We treat program inputs and outputs as unstructured, rather than

having rows and columns like blocks. For the unanonymized block, which is input to the

anonymizer, we substitute trusted input event tin . Likewise, we substitute trusted output

event tout for the anonymized block, which is output from the anonymizer. Distribution

† The definition of entropy �-diversity originates with Øhrn and Ohno-Machado (1999).
‡ We simplify their definition here. They define B as the maximum entropy distribution with respect to empirical

distributions calculated from several published data sets.
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R should be that which would result if no anonymization occurred – that is, if the

program simply echoed its input to its output. Thus for R, we substitute the distribution

that assigns probability 1 to tin ; we denote that distribution simply as tin . Distribution B

should be that which results from observing the outcome of anonymization – that is, the

actual output of the program. Thus for B, we substitute distribution Tin |tout of trusted

inputs conditioned on observation of trusted output event tout . Let T ′
in denote distribution

Tin |tout .

The equivalent of anti-utility D(R ‖ B) is thus D(tin ‖ T ′
in ) in our information-flow

adaptation. That quantity turns out to be exactly channel suppression CS1.

Theorem 1. D(tin ‖T ′
in ) = CS1.

Our metric CS1 for quantification of integrity is thus essentially the same as an exist-

ing metric for utility in database privacy. This similarity is sensible, because the less

suppression data suffers, the more useful it is.

We can also adapt entropy �-diversity to information flow. Recall that entropy �-

diversity semantically stipulates that, after observing output, the attacker has at least log �

bits of uncertainty about the individual’s sensitive attribute. For the sensitive attribute,

we substitute trusted input event tin ; the observed output is tout ; and the remaining

uncertainty about tin after observing tout is I(tin | tout ). These substitutions lead to the

following definition:

Definition: A program S satisfies entropy �-diversity iff for all tin , and for all tout produced

by S , I(tin | tout ) � log � holds.

It is straightforward to show that entropy �-diversity guarantees a lower bound on the

quantity of channel suppression exhibited by a program.

Proposition 3. A program S satisfies entropy �-diversity iff for all tin , and for all tout produced

by S , CS1 � log � holds.

This bound is an improvement upon k-anonymity, which did not guarantee any suppres-

sion of inputs.

However, entropy �-diversity does not directly impose an upper bound on the amount

of information that may be transmitted: although log � bits are suppressed, many more

bits might be transmitted. We turn to a stronger security condition, next, that addresses

this problem.

5.3. γ-amplification

Suppose anonymizer Ac produces anonymized database a with 90% probability when

given an original database containing the fact that Alice has cancer. Also suppose that

Ac, with 1% probability, produces a from a database containing the fact that Alice has

no diseases. When a is published, an attacker can infer that Alice likely has cancer. The

anonymizer thus transmits information to the attacker. Moreover, this vulnerability is

independent of whether a satisfies k-anonymity or �-diversity – at issue is the probabilistic

behaviour of the anonymizer, not whether individual outputs satisfy certain properties.

https://doi.org/10.1017/S0960129513000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000595


Quantification of integrity 237

Evfimievski et al. (2003) propose a security condition for anonymizers† that they name

γ-amplification. It prevents attacks like the one above by bounding the amount by which

the anonymizer can amplify the posterior probability of some inputs versus others.

Definition: An anonymizer A satisfies γ-amplification (or is γ-amplifying) iff for all da-

tabases d and d′, and for all anonymized databases a, Pr(A(d) = a) � γ · Pr(A(d′) = a)

holds.

Notice that γ must be at least 1, because d and d′ can be swapped. An anonymizer Ar

that ignored its input and produced output by sampling from a fixed distribution, hence

offering maximal privacy and minimal utility, would be 1-amplifying. As γ increases,

the definition permits anonymizers to leak more sensitive information. Anonymizer Ac,

described above, is at least 90-amplifying.

Amplification is straightforward to reformulate in terms of information flow. We just

change databases to inputs and anonymized databases to outputs.

Definition: A program S satisfies γ-amplification (or is γ-amplifying) iff for all inputs i

and i′, and for all outputs o, Pr(S(i) = o) � γ · Pr(S(i′) = o) holds.

We now show that γ-amplification, unlike k-anonymity or �-diversity, yields an upper

bound on the amount of information transmitted by a program. No execution of a program

that is at most γ-amplifying can leak more than log γ bits of sensitive information.

Theorem 2. A program S satisfies γ-amplification iff for all distributions Tin on inputs, all

inputs i, and all outputs o, |CT1(i, o)| � log γ holds.

(Recall that channel transmission CT1 (21) is based on distribution Tin .)

Anonymizer Ar , which is at most 1-amplifying, leaks zero bits of information according

to this theorem. That is sensible, because Ar ignores its input. More generally, as γ

increases, programs may leak more information, hence suppress less. Security parameter

γ thus characterizes the quantitative information flow of a program.

However, γ-amplification does not characterize what specific information from the input

may be leaked. Consider an anonymizer that is 2-amplifying, hence can leak at most one

bit of information in any execution. That bit might be any bit from the input. Suppose

that the anonymizer is maliciously crafted such that the bit always reveals whether Alice

is HIV-positive. Alice will not be satisfied by this anonymizer, even with its low γ.

Anonymizers need to protect the information of individuals. We turn next to a security

condition that is designed for that goal.

5.4. ε-differential privacy

It is reasonable to desire a security condition that forbids any violation of individuals’

privacy. However, Dwork (2006) shows that it is impossible for an anonymizer to satisfy

such a condition if the anonymizer must also provide some utility. For example, if the

anonymizer must reveal the most frequent medical diagnosis in a database, an attacker

who knows that Alice’s diagnosis is the same as the most frequent diagnosis will succeed

† Their definition is for the more general case of randomized operators. We have specialized it to anonymizers.
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in violating Alice’s privacy†. Perfect protection of privacy is thus impossible, so individuals

might prefer to withhold their information from databases. That is problematic for analysts

who want to study those data.

To address this problem, Dwork et al. (2006) propose a security condition that is now

called differential privacy (Dwork 2006). It stipulates that the likelihood of violating an

individual’s privacy should not be affected by whether the individual’s information is

included in a database – so the individual might as well contribute information. To make

this intuition formal, define two databases to differ in at most one individual if they contain

the same information except that one database includes an individual but the other does

not. Let an anonymizer A take a database d as input and produce an anonymized data

set A(d) as output. Dwork (2006) defines differential privacy essentially as follows:

Definition: An anonymizer A satisfies ε-differential privacy iff for all databases d and d′

that differ in at most one individual, and for all predicates P on anonymized databases,

Pr(P (A(d))) � eε · Pr(P (A(d′))) holds.

Think of predicate P as a query run on an anonymized database‡. If the probability the

query holds is significantly affected by whether the individual is in the database, then

the query violates the individual’s privacy. Differential privacy thus requires a query to

hold with about the same probability regardless of whether the individual’s information

is included in the database. The eε factor quantifies how close the probabilities are.

Notice that ε-differential privacy is mathematically very similar to γ-amplification.

Differential privacy adds the restriction that input databases must differ in at most

one individual, whereas amplification quantifies over all inputs. And differential privacy

considers arbitrary predicates P on outputs, whereas amplification considers just the

class of equality predicates. Finally, differential privacy moves its security parameter into

an exponent, enabling a simple additive result: the composition of an anonymizer that

is ε1-differentially private with an anonymizer that is ε2-differentially private yields an

anonymizer that is (ε1 + ε2)-differentially private (Dwork et al. 2010).

To reformulate differential privacy in terms of information flow, let i ≈ i′ denote that

program input i differs in at most one individual from input i′. For example, if i and i′

are arrays of individuals, then i ≈ i′ could mean that i and i′ contain the same individuals

except that one array contains an additional individual.

Definition: A program S satisfies ε-differential privacy iff for all inputs i and i′ such that

i ≈ i′, and for all predicates P on outputs, Pr(P (S(i))) � eε · Pr(P (S(i′))) holds.

This definition is essentially a noninterference (Goguen and Meseguer 1982) condition:

similar inputs must produce similar outputs. Although the similarity relations here are not

† The proof (Dwork 2006) of this impossibility result shows that there always exists a piece of background

knowledge that, together with the information the querier learns from the anonymized result, results in a

violation of privacy.
‡ The intuition we give for A and P as an anonymizer and query is appropriate for the non-interactive model

of database privacy (Dwork 2006), in which a database is anonymized, published and the public performs

queries on it. In the interactive model (op. cit.), a curator interposes between the database and the public. In

that model, an appropriate intuition is that A is an anonymized query, and P is a characteristic predicate

identifying sets of anonymized values.

https://doi.org/10.1017/S0960129513000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000595


Quantification of integrity 239

the traditional equality of secret inputs and public outputs, researchers have studied such

relaxations before (Barthe et al. 2004; Giacobazzi and Mastroeni 2004). So differential

privacy links the field of privacy with information flow.

We now show that differential privacy bounds the amount of information leaked about

an individual. First, we state a security condition that bounds the quantity of information

transmitted. Given an input i, let i \ {x} denote input i with individual x removed. For

example, if inputs are arrays of individuals, then i \ {x} could be array i without the array

element containing x.

Definition: A program S satisfies ε-individual transmission iff for all inputs i, all individuals

x, all distributions Tin on inputs, all predicates Q on inputs and all outputs o, if the receiver

is given i \ {x}, then |CT1(Q(i), o)| � ε.

(Recall that channel transmission CT1 (21) is based on distribution Tin and program S .)

Think of predicate Q(i) as a privacy-violating fact about individual x. Input i is chosen,

and the attacker (who is the receiver) is given the entire input except for x. The attacker

might then infer some information about x – for example, if the rest of the input contains

only cancer patients, the attacker might surmise that x has cancer. Program S is run with

input i, producing output o. If S satisfies ε-individual transmission, the attacker learns

almost no new information from o about whether Q holds of x.

The previous two definitions are equivalent up to a constant factor, which simply

accounts for the discrepancy between logarithm bases in the two definitions:

Theorem 3. A program S satisfies ε-differential privacy iff S satisfies (ε · log2 e)-individual

transmission.

This result establishes information-theoretic bounds on leakage for differential privacy.

Differential privacy is equivalent to transmitting almost no information about an indi-

vidual x from database d beyond what is transmitted by database d \ {x} without the

individual. Thus, by Corollary 2, differential privacy is equivalent to suppressing almost

all information about an individual. Note that d \ {x} might inherently leak information

about x. For example, if the attacker knows that x was a candidate for inclusion in the

database, and if all the medical diagnoses in the database are of cancer, then the attacker

can deduce that x likely has cancer.

Our goal with Theorem 3 was to provide an exact characterization of differential

privacy, as it has previously been defined in the literature, using our quantitative theory of

integrity. It turned out that this exact characterization was in terms of channel suppression

CT 1 in a single execution. The fact that we could do so illustrates the usefulness of our

theory, because it was able to exactly express known definitions from the literature.

5.5. Summary

We adapted four security conditions from the database privacy literature to information

flow in programs. Each condition offers a different guarantee on the amount of sensitive

information that might be transmitted and suppressed. Sensitive information that is

transmitted has been leaked, whereas sensitive information that is suppressed has been

hidden.
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— k-anonymity provides no guarantee about the amount of sensitive information that is

transmitted or suppressed.

— �-diversity guarantees a lower bound on the amount of suppression, so attackers

cannot learn all the sensitive information.

— γ-amplification guarantees an upper bound on the amount of transmission, thereby

ensuring that attackers learn only a limited amount of sensitive information.

— ε-differential privacy guarantees that the additional amount of transmission about an

individual, after the attacker is informed of the database without that individual, is

nearly zero.

The first three conditions thus offer increasing security as quantified by our metrics.

Differential privacy is similar to γ-amplification but guarantees individuals’ privacy.

6. Application: beliefs

In our definitions of contamination and suppression, inputs are chosen according to

probability distributions, and those distributions are assumed to be known by all agents.

However, that assumption could be wrong – for example, with contamination, the user

could believe that the attacker chooses untrusted inputs by sampling a distribution D,

but the attacker might actually sample from another distribution D′. The quantity of

contamination would then need be defined in terms of both distributions.

Clarkson et al. (2005, 2009) show how to quantify leakage from secret inputs to public

outputs when agents have incorrect beliefs about the inputs. And since leakage is dual to

contamination, that belief-based approach ought to work for quantifying contamination.

We show that it does, next, as well as adapt it to suppression. For both contamination and

suppression, the belief-based approach turns out to generalize the information-theoretic

approach used so far in this paper.

6.1. Contamination and beliefs

A belief is a statement an agent makes about the state of the world, accompanied by

some measure of how certain the agent is about the truthfulness of the statement†. Here,

we define a belief to be a probability distribution of untrusted inputs. The state of the

world is the actual untrusted input event, and the probability distribution characterizes

the agent’s (un)certainty. Note that the object of the belief is the actual input event, not

the distribution of that event.

The user has a prebelief Uin about untrusted input event uin . Recall that uin is

unobservable by the user. The user instead observes the trusted input and output,

employing them to refine Uin to a postbelief U ′
in about uin . Unless the user’s prebelief

assigns probability 1 to uin , the prebelief is inaccurate.

To quantify inaccuracy, we stipulate a function Δ such that Δ(X � Y ) is the inaccuracy

of belief X about reality Y , where Y is also a distribution. Intuitively, Δ(X � Y ) is the

† See Halpern (2003) for a comprehensive treatment of belief representations.
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distance from the belief to reality. In previous work (Clarkson et al. 2009),† we showed

that relative entropy (42) can successfully instantiate Δ:

Δ(X � Y ) � D(Y ‖X). (43)

Since reality, in our model of contamination, is always a distribution that assigns

probability 1 to event uin , we can simplify our notation and definition. Let Δ(X � x) be

the inaccuracy of belief X about event x:

Δ(X � x) � − log Pr(X = x). (44)

Equation (44) follows from (43) by setting Y to be a distribution that assigns probability

1 to event x. This simplified definition is equivalent to self-information – that is,

Δ(X � x) = I(x), (45)

where the probability of x in the calculation of self-information I(x) is specified by X.

Quantity CB of contamination of beliefs is the improvement in accuracy of the user’s

belief, because the more accurate the belief becomes, the more untrusted information the

user has learned:

CB � Δ(Uin � uin ) − Δ(U ′
in � uin ). (46)

In previous work (Clarkson et al. 2009), we defined an experiment protocol for calculating a

postbelief from a prebelief and a probabilistic program semantics. That protocol turns out

to be equivalent to calculating U ′
in according to Equation (16): U ′

in equals Uin conditioned

on tin and tout .

The quantity of contamination according to CB equals the quantity of contamination

according to C1 (13).

Theorem 4. CB = C1.

Thus belief-based quantification is equivalent to mutual information-based quantification

on single executions.

Moreover, Theorem 4 holds in expectation if the user knows the distribution the attacker

uses to choose uin . To capture that knowledge, define prebelief Uin to be congruent with

the attacker’s distribution (henceforth, attacker congruent) if the attacker chooses uin by

sampling user prebelief Uin . Accuracy and attacker congruence are orthogonal: ‘attacker

congruent’ means that the user’s prebelief is identical to the attacker’s input distribution,

hence the user and attacker have the same uncertainty about the trusted input event

before it is sampled; whereas ‘accurate’ means that the user’s prebelief assigns probability

1 to the actual input event uin sampled from the attacker’s input distribution, hence the

user and attacker have the same uncertainty about the trusted input event after it is

sampled. So a prebelief can be

— accurate but attacker incongruent (e.g., the attacker chooses uniformly between values

a and b for uin , the actual input event uin in the execution under consideration is a,

and the prebelief assigns probability 1 to a), or

† Function Δ(X � Y ) is written D(X � Y ) in Clarkson et al. (2009). We change notation from D to Δ here

to avoid confusion with relative entropy D(Y ‖X).
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— inaccurate but attacker congruent (e.g., the attacker chooses uniformly between a and

b, actual input event uin is a, and the prebelief assigns probability 0.5 to both a and

b), or

— inaccurate and attacker incongruent (e.g., the attacker chooses a with probability 1,

hence actual input event uin must be a, but the prebelief assigns probability 1 to b), or

— accurate and attacker congruent (e.g., the attacker chooses a with probability 1, hence

actual input event uin must be a, and the prebelief assigns probability 1 to a).

Note that if a prebelief is both accurate and attacker congruent, the attacker must choose

some input event with probability 1.

Corollary 3. Uin is attacker congruent implies E[CB] = C.

Thus belief-based quantification generalizes mutual information-based quantification.

Corollary 3 can also be understood in terms of leakage by applying the duality of

contamination C and leakage L (19). If the attacker’s distribution Sin on secret inputs

is congruent with the high security user’s distribution, the expected quantity of leakage

according to the belief-based approach equals the quantity of leakage according to the

mutual information-based approach. So, Corollary 3 also establishes how belief-based and

mutual information-based measures for confidentiality are related: the mutual information

measure is a special case of the belief measure.

6.2. Suppression and beliefs

In our model of contamination, the user holds beliefs about untrusted inputs. To model

channel suppression, we replaced the user with a sender and a receiver. So to model

channel suppression with beliefs, we now regard the receiver as the agent who holds

beliefs. The receiver’s joint prebelief (Tin , Uin ) characterizes the receiver’s uncertainty

about trusted input tin supplied by the sender and untrusted input uin supplied by the

attacker. And the receiver’s postbelief T ′
in characterizes the receiver’s uncertainty about

the untrusted input after observing the trusted output, so T ′
in equals Tin conditioned

on tout . The improvement in the accuracy of the receiver’s belief is the quantity CTB of

belief-based channel transmission:

CTB � Δ(Tin � tin ) − Δ(T ′
in � tin ). (47)

Term Δ(T ′
in � tin ) characterizes the remaining error in the receiver’s postbelief, hence the

quantity of information that the receiver did not learn about tin . So Δ(T ′
in � tin ) is the

quantity CSB of belief-based channel suppression:

CSB � Δ(T ′
in � tin ). (48)

Unsurprisingly, the following results, corresponding to those we obtained for contam-

ination, hold. For the corollary, we extend the notion of a congruent prebelief: (Tin , Uin )

is (sender,attacker)-congruent if inputs tin and uin are chosen by the sender and attacker

by sampling distributions Tin and Uin , respectively.

Theorem 5. CTB = CT1 and CSB = CS1.
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Corollary 4. (Tin , Uin ) is (sender,attacker)-congruent implies E[CTB] = CT and E[CSB] =

CS .

Thus, the belief-based definition of channel suppression generalizes the mutual

information-based definition.

Likewise, we can generalize belief-based channel suppression and transmission to

program suppression and transmission. Let T ′
spec = Tspec |timpl . The following definitions

of belief-based program transmission PTB and belief-based program suppression PSB are

straightforward generalizations of Equations (47) and (48):

PTB � Δ(Tspec � tspec) − Δ(T ′
spec � tspec), (49)

PSB � Δ(T ′
spec � tspec). (50)

We obtain the obvious result:

Corollary 5. PTB = PT1 and PSB = PS1. Further, (Tin , Uin ) is (sender,attacker)-congruent

implies E[PTB] = PT and E[PSB] = PS .

So belief-based definitions again generalize mutual information-based definitions.

7. Related work

7.1. Quantitative

Research on quantification of information flow began with analysis of covert channels,

and progress has been made from theoretical definitions to automated analyses (Backes

et al. 2009; Clark et al. 2005a; Denning 1982; Gray 1991; Lowe 2002; McCamant and

Ernst 2008). Quantification of integrity and corruption is a relatively new line of research.

Newsome et al. (2009) implement a dynamic analysis that automatically quantifies

attacker influence, which is a specialization of channel capacity to deterministic programs

in which all inputs are either under the control of the attacker or are fixed constants. Our

definitions allow probabilistic programs, trusted inputs that are not under the control of

the attacker, and arbitrary distributions on inputs and outputs.

Heusser and Malacaria (2009) quantify the information leaked by a database query.

They model database queries as programs, which enables application of their general

purpose, automated, static analysis of leakage for C programs. Their work does not address

integrity or relate information flow to existing database-privacy security conditions.

Our result (Theorem 3) about differential privacy was presented at CSF 2010; other

researchers have since reported relationships between quantitative information flow and

differential privacy. Alvim et al. (2010) and Barthe and Köpf (2011) both prove upper

bounds on the leakage of differentially private mechanisms. Neither of these works,

however, provides an exact characterization of differential privacy – that is, a statement of

the form ‘mechanism K leaks f(ε) bits if and only if K satisfies ε-differential privacy’,for

some f. Our Theorem 3 does provide such a characterization.

It was natural for our investigation of quantification of integrity to begin with mutual

information, because variants of Shannon entropy, including conditional entropy, mutual

information and channel capacity, have long been popular as metrics for quantification of
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information flow (Backes et al. 2009; Chatzikokolakis et al. 2008a; Chen and Malacaria

2009; Clark et al. 2002, 2005a, 2007; Denning 1982; Gray 1991; Heusser and Malacaria

2010; Malacaria 2007; McCamant and Ernst 2008). Indeed, Smith (2009) calls these the

‘consensus definitions’ of a metric for quantitative information flow. Other metrics have

also been proposed, including

— guessing entropy (Backes et al. 2009; Köpf and Basin 2007),

— relative entropy (Clarkson et al. 2005, 2009; Hamadou et al. 2010),

— min-entropy (Backes et al. 2009; Braun et al. 2009; Hamadou et al. 2010; Smith 2009),

— Bayes risk (Braun et al. 2008, 2009; Chatzikokolakis et al. 2008b),

— maximum likelihood (Braun et al. 2008) and

— marginal guesswork (Köpf and Basin 2007).

As Backes et al. (2009) point out, ‘which [metric] is appropriate depends on the given

attack scenario’. Variants of Shannon entropy were appropriate for the scenarios we

examined in this work. Change the scenario, and a different metric might well become

appropriate.

7.2. Qualitative

Biba (1977) defines the integrity problem as the formulation of ‘policies and mechanisms

that provide a subsystem with the isolation necessary for protection from subversion.’ He

formulates several such policies, one of which (his strict integrity policy) is dual to the Bell–

LaPadula confidentiality policy (Bell and LaPadula 1973). But if the motivating concern is

guaranteeing that systems perform as their designers intended, correctness should also be

considered a critical piece of the integrity puzzle. And our program suppression measure

PS does incorporate correctness. Perhaps other quantitative notions of correctness,

such as software testing metrics, could also be understood as quantitative measures of

integrity.

Li et al. (2003) identify three classes of qualitative integrity policies: program correct-

ness, noninterference and data invariant. The first two are quantified by our program

suppression PS and contamination C metrics, respectively. The third class contains

policies stipulating that data is ‘precise or accurate, consistent, unmodified, or modified

only in acceptable ways’. Their formal definition of such policies clarifies that data

invariant policies are safety properties (Lamport 1985). Birgisson et al. (2010), building

upon the work of Li et al., identify two kinds of data invariants that they call value and

predicate invariants. The former stipulates that data values do not change; the latter,

that a predicate holds before and after execution. Birgisson et al. argue that the program

correctness subsumes all these. (And it does.) They give an execution monitor that can

enforce noninterference as well as value and predicate invariants.

Information-flow integrity policies seem to receive less attention than their confidential-

ity counterparts. For example, early versions of Jif (Myers 1999, there called JFlow) did not

include integrity policies, and Flow Caml (Pottier and Simonet 2003) does not distinguish

confidentiality from integrity but instead uses an arbitrary lattice of security levels. But

work on securing information flows in distributed systems programmed in Jif led to an
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appreciation for the role of information-flow integrity policies, because they were needed

to ‘protect security-critical information from damage by subverted hosts’ (Zdancewic et al.

2001) – an instance of Biba’s integrity problem. Securing information flows in the presence

of declassification (when, e.g., secret information is reclassified as public) also turned out

to require integrity policies, so that attackers could not gain control over what information

is declassified (Zdancewic and Myers 2001). Integrity cannot be easily dismissed, even

when confidentiality is the primary concern.

Several recent systems use integrity policies in interesting ways. Some Jif-derived

languages and systems incorporate integrity policies for building secure distributed

applications – for example, SIF (Chong et al. 2007b), Swift (Chong, Liu et al. 2007a)

and Fabric (Liu et al. 2009). These policies enable a principal to specify fine-grained

requirements on how information may be affected by other principals. Policies also

drive automated partitioning of applications, in which computations can be assigned

to principals who are sufficiently trusted to perform the computations. When no such

principal exists, computations can be replicated and their results validated against each

other to boost integrity. Flume (Krohn et al. 2007) – a system that integrates information

flow with operating system abstractions such as processes, pipes and sockets – also

incorporates integrity policies, preventing (e.g.) untrusted dynamically-loaded code from

affecting information in the process that loads it. Airavat (Roy et al. 2010) integrates

information flow with MapReduce (Dean and Ghemawat 2004) and differential pri-

vacy (Dwork 2006), providing confidentiality and integrity for MapReduce computations

and automatically declassifying computation results if they do not violate differential

privacy.

7.3. Availability

Availability is usually treated as a concern that is separate from confidentiality and

integrity. However, Zheng and Myers (2005) give a noninterference condition that

simultaneously characterizes all three. Li et al. (2003) also examine noninterference policies

for availability. We are not aware of any work in quantitative information-flow availability,

but metrics such as mean time to failure seem related.

8. Concluding remarks

When we began this work, we thought we could simply apply Biba’s duality to obtain

a quantitative model of integrity from previous work on quantitative confidentiality.

We soon discovered that the resulting model, which we named contamination, was not

the same as the classical information-theoretic model of quantitative integrity, which we

have since named channel suppression. We later came to see that channel suppression could

be generalized to characterize the program correctness, yielding another kind of quantit-

ative integrity.

Are there other kinds of (quantitative) integrity waiting to be discovered? We suspect

so. We have not dealt, for example, with the Clark–Wilson (1987) integrity policy, which

https://doi.org/10.1017/S0960129513000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000595


M. R. Clarkson and F. B. Schneider 246

uin

tin

uout

tout

Fig. 9. Information-flow integrity in a program.

stipulates the use of trusted procedures to modify data. Nor have we dealt with database

integrity constraints, which stipulate conditions that database records must satisfy.

We have not attempted to prove that contamination and suppression are sufficient to

express all integrity properties, because we lack a formal definition of integrity†. But we

gain some insight by reviewing the information-flow model we have used in this paper,

depicted in Figure 9. The black arrows in this figure represent two kinds of integrity that

we identified, contamination (flow from uin to tout ) and channel suppression (attenuation

of flow from tin to tout ). The grey lines represent flows that are uninteresting from our

security perspective: it does not matter how much trusted or untrusted information flows

to untrusted outputs. Since these four arrows represent all possible flows, we conclude

that contamination and channel suppression are the only interesting integrity properties

in this information-flow model. However, other models almost certainly exist, and other

kinds of integrity might have natural formulations there.

In our effort to measure integrity, we came to disentangle suppression from contamina-

tion. We also bridged a gap between database privacy and quantitative information-flow

security. Here, Lord Kelvin had it right:

When you can measure what you are speaking about, and express it in numbers, you know

something about it; but when you cannot measure it, when you cannot express it in numbers, your

knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you

have scarcely in your thoughts advanced to the state of Science.

—William Thomson, 1st Baron Kelvin‡
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Appendix A. Calculations of Program Suppression

The following calculations support our analysis of program suppression examples in

Section 4.2.1.

Calculation of UnderSum program suppression.

PSUS = 〈definition (38)〉

H(Tspec |Timpl )

= 〈definition (10)〉
∑

s∈Tspec ,i∈Timpl

Pr(s, i) log Pr(s|i)

= 〈definition of Tspec for UnderSum (see note at end of calculation)〉
∑

s′∈Bin(n,p),i∈Timpl

Pr(s′, i) log Pr(s′|i)

= 〈definition of Timpl for UnderSum〉
∑

s′∈Bin(n,p),i∈Bin(n(m−1),p)

Pr(s′, i) log Pr(s′|i)

= 〈s′ is independent of i; this yields Equation (39)〉
∑

s′∈Bin(n,p),i∈Bin(n(m−1),p)

Pr(s′)Pr(i) log Pr(s′)

= 〈distributivity〉
⎛
⎝ ∑

s′∈Bin(n,p)

Pr(s′) log Pr(s′)

⎞
⎠

⎛
⎝ ∑

i∈Bin(n(m−1),p)

Pr(i)

⎞
⎠

= 〈definition (9)〉

H(Bin(n, p))

⎛
⎝ ∑

i∈Bin(n(m−1),p)

Pr(i)

⎞
⎠

= 〈probability distribution must sum to 1〉

H(Bin(n, p)).

Note: In the third step, we introduce bound variable s′ such that s = i + s′. Variable s′

represents array element a[0]. By the definitions of UnderSum and SumSpec, we have that

s = i + a[0] and a[0] ∼ Bin(n, p,). Hence s′ ∼ Bin(n, p).
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Calculation of OverSum program suppression.

PSOS = 〈Definition (38)〉

H(Tspec |Timpl )

= 〈definition (10)〉∑
s∈Tspec ,i∈Timpl

Pr(s, i) log Pr(s|i)

= 〈definition of Tspec for OverSum〉∑
s∈Bin(mn,p),i∈Timpl

Pr(s, i) log Pr(s|i)

= 〈definition of Timpl for OverSum (see note at end of calculation)〉∑
s∈Bin(mn,p),i′∈Unif (0,2j−1)

Pr(s, i′) log Pr(s|s + i′)

= 〈definition of conditional probability〉
∑

s∈Bin(mn,p),i′∈Unif (0,2j−1)

Pr(s, i′) log
Pr(s, s + i′)

Pr(s + i′)

= 〈s is independent of i′〉
∑

s∈Bin(mn,p),i′∈Unif (0,2j−1)

Pr(s)Pr(i′) log
Pr(s)Pr(i′)

Pr(s + i′)

= 〈Pr(i′) = 2−j; this yields Equation (41).〉
∑

s∈Bin(mn,p),i′∈Unif (0,2j−1)

2−j Pr(s) log
2−j Pr(s)

Pr(s + i′)

Note. In the fourth step, we introduce bound variable i′ such that i = s + i′. Variable i′

represents memory location a[m]. By the definitions of OverSum and SumSpec, we have

that i = s + a[m] and a[m] ∼ Unif (0, 2j − 1). Hence i′ ∼ Unif (0, 2j − 1).

Appendix B. Proofs

In the main body, we used I(·) to denote information with respect to an implicit probability

distribution; that distribution was always clear from context. In the proofs, it will

sometimes be helpful to make the distribution explicit. So, we now let IX(·) denote

information according to distribution X – for example, IX(x) is the self-information of

event x according to distribution X.

Proposition 1. In the declassifier model, L1 + CS1 = I(tsin ).
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Proof. By definition (20), L1 = I(sin , pout | pin ). Since the declassifier model does not

include public inputs, L1 simplifies to I(sin , pout ). In the declassifier model, ts in is the

(trusted) secret input and tpout is the (trusted) public output. So L1 = I(tsin , tpout ).

By definition (23), CS1 = I(tin |tout ). In the declassifier model, ts in is the trusted (secret)

input and tpout is the trusted (public) output. So CS1 = I(tsin |tpout ). By Equation (3),

I(tsin |tpout ) = I(tsin ) − I(tsin , tpout ), hence CS1 = I(tsin ) − I(tsin , tpout ).

Therefore, L1 + CS1 = I(tsin , tpout ) + I(tsin ) − I(tsin , tpout ) = I(tsin ).

Proposition 2. In the full model, CS1 + L1 + CT1 + K1 = I(tin ) + I(sin ).

Proof. By definitions (23), (20), (21) and (33), respectively,

— CS1 = I(tin |tout ),

— L1 = I(sin , pout | pin ),

— CT1 = I(tin , tout ) and

— K1 = I(sin | pout , pin ).

Since the receivers in the full model may not observe public inputs, L1 simplifies to I(sin ,

pout ) and K1 simplifies to I(sin | pout ). Now we calculate:

CS1 + L1 + CT1 + K1 = 〈definitions and reasoning above〉
I(tin |tout ) + I(sin , pout ) + I(tin , tout ) + I(sin | pout )

= 〈regrouping terms〉(
I(tin |tout ) + I(tin , tout )

)
+

(
I(sin , pout ) + I(sin | pout )

)
= 〈Equation (3) and algebra, twice〉

I(tin ) + I(sin ).

Corollary 1. Proposition 1 follows directly from specializing Proposition 2 to the declassifier

model.

Proof. In the declassifier model, events sin and tin are simply tsin , events pout and tout are

simply tpout and there is no public input event pin . Thus we have that, in the declassifier

model,

— CS1 = I(tsin | tpout ),

— L1 = I(tsin , tpout ),

— CT1 = I(tsin , tpout ),

— K1 = I(tsin | tpout ) and

— I(tin ) = I(sin ) = I(tsin ).

Starting with Proposition 2, we have that

CS1 + L1 + CT1 + K1 = I(tin ) + I(sin ).

We can rewrite Proposition 2 to specialize it to the declassifier model, using the above

equalities to replace CT1, K1, I(tin ) and I(sin ):

CS1 + L1 + L1 + CS1 = I(tsin ) + I(tsin ).
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And that simplifies to Proposition 1:

CS1 + L1 = I(tsin ).

Corollary 2. L + S = I(d|p).

Proof. The proof is identical to that of Proposition 1, except that we use the following

generalization of Equation (3) to conditional probabilities: I(x, y | z) = I(x|z) − I(x | y, z).

Theorem 1. D(tin ‖T ′
in ) = CS1.

Proof. By definition (42),

D(tin ‖T ′
in ) =

∑
i

Pr(tin = i) log
Pr(tin = i)

Pr(T ′
in = i)

.

Since point-mass distribution tin assigns probability 1 to the event tin , the summation

collapses to just a single term, which is

log
1

Pr(T ′
in = tin )

.

Applying a simple log identity, that term simplifies to − log Pr(T ′
in = tin ). Now we calculate:

D(tin ‖T ′
in ) = 〈reasoning above〉

− log Pr(T ′
in = tin )

= 〈by definition, T ′
in = Tin |tout 〉

− log Pr(Tin = tin | tout )
= 〈definition (2)〉

ITin
(tin |tout )

= 〈definition (21)〉
CS1.

Therefore D(tin ‖T ′
in ) = CS1.

Proposition 3. A program S satisfies entropy �-diversity iff for all tin , and for all tout produced

by S , CS1 � log � holds.

Proof. By definition, S satisfies entropy �-diversity iff I(tin | tout ) � log � for all tin and

tout . By definition (23), CS1 = I(tin | tout ). Making that substitution, we have that S satisfies

entropy �-diversity iff CS1 � log � for all tin and tout .

Theorem 2. A program S satisfies γ-amplification iff for all distributions Tin on inputs, all

inputs i, and all outputs o, it holds that |CT1(i, o)| � log γ.

Proof. The proof is essentially the same as the proof of Theorem 3 below. (That

similarity is unsurprising, given the similarity of the definitions of γ-amplification and

ε-differential privacy.)
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First, we claim that a program S satisfies γ-amplification iff S satisfies γ-amplification

semantic security, which is defined as follows.

Definition: A program S satisfies γ-amplification semantic security iff for all input distri-

butions D, all inputs i, and all outputs o, it holds that Pr(D = i) � γ · Pr(D = i | S(D) = o).

The proof of that claim follows the same steps as the proof of the equivalence of

differential privacy and its associated semantic security condition (Dwork et al. 2006).

Second, we claim that a program S satisfies γ-amplification semantic security iff S

transmits at most log γ bits in any execution – that is, iff for all distributions Tin on

inputs, all inputs i, and all outputs o, it holds that |CT1(i, o)| � log γ. The proof of that

claim follows the same steps as the proof below of the equivalence of ε-semantic security

and (ε · log2 e)-individual transmission.

The theorem follows immediately from the preceding two claims.

Theorem 3. A program S satisfies ε-differential privacy iff S satisfies (ε · log2 e)-individual

transmission.

Proof. First, we state a definition of Dwork et al. (2006), adapted to information flow. In

this definition, an i-consistent distribution is a distribution of inputs that assigns non-zero

probability only to inputs of the form i ∪ {x} for an individual x, where i ∪ {x} denotes

an input that contains all the individuals in i as well as individual x.

Definition: A program S satisfies ε-semantic security iff for all inputs i, all i-consistent

distributions Tin , all predicates Q on inputs, and all outputs o, if the attacker is informed of

i, then, letting I ′ be a random variable distributed according to Tin ,

∣∣∣∣ln
(

Pr(Q(I ′))

Pr(Q(I ′) | S(I ′) = o)

)∣∣∣∣ � ε.

The probabilities in the inequality are with respect to Tin and S . Random variable I ′

describes a random choice of one more individual in addition to those individuals already

in i. Note that our definition is simplification of the definition of Dwork et al.: we

consider the privacy of only one individual rather than k individuals, and we assume a

non-interactive program.

Second, we note that Dwork et al. (2006, claim 3) prove the equivalence of semantic

security and differential privacy. Adapted to information flow, that result can be stated as

follows.

Claim. A program S satisfies ε-differential privacy iff S satisfies ε-semantic security.

Finally, our own theorem is now simple to prove using that claim. We need only show

that S satisfies ε-semantic security iff S satisfies (ε · log2 e)-individual transmission. Let i,

Q, and o be arbitrary, and let Tin be i-consistent. Assume that the attacker is informed
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of i.

S satisfies ε-semantic security

= 〈definition of semantic security〉∣∣∣∣ln
(

Pr(Q(I ′))

Pr(Q(I ′)|S(I ′) = o)

)∣∣∣∣ � ε

= 〈log manipulation; |x − y| = | − x + y|〉

|− ln Pr(Q(I ′)) + ln Pr(Q(I ′)|S(I ′) = o)| � ε

= 〈convert ln to log2; definitions (1) and (2)〉∣∣∣∣I(Q(I ′))

log2 e
− I(Q(I ′)|S(I ′) = o)

log2 e

∣∣∣∣ � ε

= 〈simplify; Equation (22), substituting Q(I ′) for tin and o for tout 〉

|CT1(Q(I ′), o)| � ε · log2 e

= 〈definition of individual transmission〉

S satisfies (ε · log2 e)-individual transmission.

Theorem 4. CB = C1.

Proof. By definition (46), CB = Δ(Uin � uin ) − Δ(U ′
in � uin ). Applying Equation (45)

twice to that equality, we have that CB = IUin
(uin ) − IU ′

in
(uin ). (For an explanation of

subscripts Uin and U ′
in on self-information I , see the first paragraph of this appendix.)

Since untrusted inputs are independent of trusted inputs, Pr(uin ) = Pr(uin |tin ), hence

IUin
(uin ) = IUin

(uin |tin ). Also, by Equation (16), U ′
in = Uin | tin , tout . So we have that

IU ′
in
(uin ) = IUin | tin ,tout

(uin ) = IUin
(uin | tin , tout ).

Thus,

CB = IUin
(uin |tin ) − IUin

(uin | tin , tout ).

For the rest of this proof, all self-information will be in terms of distribution Uin , so we

cease writing that subscript on I . By definition (13), C1 = I(uin , tout | tin ). So, to show that

C1 = CB , it suffices to show that

I(uin , tout | tin ) = I(uin |tin ) − I(uin | tin , tout ).

The following lemma does just that.

Lemma 1. I(x, z | y) = I(x|y) − I(x | y, z).
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Proof. Intuitively, this lemma is the same as Equation (3), but with every term

conditioned on y. Formally, we calculate, starting with the left-hand side of the lemma:

I(x, z | y) = 〈definition (7)〉

− log
Pr(x|y)Pr(z|y)

Pr(x, z|y)
= 〈definition Pr(a|b), twice〉

− log
Pr(x|y)Pr(y, z)Pr(y)

Pr(x, y, z)Pr(y)

= 〈simplification〉

− log
Pr(x|y)Pr(y, z)

Pr(x, y, z)
.

Similarly, we calculate, starting with the right-hand side of the lemma:

I(x|y) − I(x | y, z) = 〈definition (2), twice〉
−

(
log Pr(x|y) − log Pr(x | y, z)

)
= 〈log identity〉

− log
Pr(x|y)

Pr(x | y, z)
= 〈definition Pr(a|b)〉

− log
Pr(x|y)Pr(y, z)

Pr(x, y, z)
.

Both sides of the lemma turned out to equal the same formula. We therefore have that

I(x, z | y) = − log
Pr(x|y)Pr(y, z)

Pr(x, z, y)
= I(x|y) − I(x | y, z).

Corollary 3. Uin is attacker congruent implies E[CB] = C.

Proof. In the calculation of E[CB], the user’s prebelief Uin could in general differ from

the actual distribution R on untrusted inputs. Expectation E[CB] should be with respect to

R, since R yields the actual probabilities that should be used as weights in the expectation’s

weighted average. However, by the assumption that Uin is attacker congruent, we have that

Uin = R. Therefore, E[CB] = EUin
[C1] = C, where EX[·] denotes expectation with respect to

distribution X, the first equality follows from Theorem 4 and the second equality follows

from Equation (17).

Theorem 5. CTB = CT1 and CSB = CS1.

Proof. In this proof, I(·) abbreviates ITin
(·) – that is, if no subscript is present on I , the

self-information is with respect to distribution Tin .

By definition, CSB = Δ(T ′
in � tin ). By Equation (45), we have that Δ(T ′

in � tin ) =

IT ′
in
(tin ). By the definition of T ′

in , we have that IT ′
in
(tin ) = I(tin |tout ). And that last term is

the definition of CS1 (23). Therefore, CSB = CS1.
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By definition,

CTB = Δ(Tin � tin ) − Δ(T ′
in � tin ),

and by Equation (22),

CT1 = I(tin ) − I(tin |tout ).
By the definitions of CSB (48) and CS1 (23), we can rewrite those equalities as follows:

CTB = Δ(Tin � tin ) − CSB,

CT1 = I(tin ) − CS1.

By Equation (45), we have that Δ(Tin � tin ) = I(tin ). Therefore, since CSB = CS1, we have

that CTB = CT1.

Corollary 4. (Tin , Uin ) is (sender,attacker)-congruent implies E[CTB] = CT and E[CSB] =

CS .

Proof. The proof technique is the same as in the proof of Corollary 3. In short, if

(Tin , Uin ) is (sender,attacker)-congruent, then Theorem 5 implies that E[CTB] =

E(Tin ,Uin )[CT1] = CT , and likewise for E[CSB] and CS .

Corollary 5. PTB = PT1 and PSB = PS1. Further, (Tin , Uin ) is (sender,attacker)-congruent

implies E[PTB] = PT and E[PSB] = PS .

Proof. The proof techniques are the same as in the proofs of the corresponding

statements in Theorem 5 and Corollary 4. One additional fact is needed: if (Tin , Uin )

is (sender,attacker)-congruent, then Tspec and Timpl as calculated by the receiver are equal

to those distributions as they would be calculated by an agent who knows the distributions

used by both the sender and attacker. That fact holds because Tspec and Timpl are defined

in terms of Tin , Uin and the program semantics – which is known to the receiver.
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